SLUS920A July   2009  – July 2015

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Battery Voltage Regulation
      2. 8.3.2  Battery Current Regulation
      3. 8.3.3  Input Adapter Current Regulation
      4. 8.3.4  Adapter Detect and Power Up
      5. 8.3.5  Enable and Disable Charging
      6. 8.3.6  System Power Selector
      7. 8.3.7  Battery Learn Cycles
      8. 8.3.8  Automatic Internal Soft-Start Charger Current
      9. 8.3.9  Converter Operation
      10. 8.3.10 Synchronous and Non-Synchronous Operation
      11. 8.3.11 High Accuracy IADAPT Using Current Sense Amplifier (CSA)
      12. 8.3.12 Input Overvoltage Protection (ACOV)
      13. 8.3.13 Input Undervoltage Lockout (UVLO)
      14. 8.3.14 AC Lowvoltage (ACLOWV)
      15. 8.3.15 Battery Overvoltage Protection
      16. 8.3.16 Battery Shorted (Battery Undervoltage) Protection
      17. 8.3.17 Charge Overcurrent Protection
      18. 8.3.18 Thermal Shutdown Protection
      19. 8.3.19 Adapter Detected Status Register (ACGOOD Pin)
    4. 8.4 Device Functional Modes
      1. 8.4.1 Input Overpower Protection (ACOP)
        1. 8.4.1.1 Conditions For ACOP Latch Off
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Input Capacitance Calculation
        2. 9.2.2.2 Inductor Selection
        3. 9.2.2.3 Input Capacitor
        4. 9.2.2.4 Output Capacitor
        5. 9.2.2.5 Power MOSFET Selection
      3. 9.2.3 Application Curve
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)(2)
MIN MAX UNIT
Voltage range PVCC, ACP, ACN, SRP, SRN, BAT, BATDRV, ACDRV –0.3 30 V
PH –1 30
REGN, LODRV, VREF, VDAC, VADJ, ACSET, SRSET, ACDET, ACOP, CHGEN, CELLS, STAT, ACGOOD, LEARN, OVPSET –0.3 7
VREF, IADAPT –0.3 3.6
BTST, HIDRV with respect to AGND and PGND –0.3 36
Maximum difference voltage ACP–ACN, SRP–SRN, AGND–PGND –0.5 0.5 V
Junction temperature, TJ –40 155 °C
Storage temperature, Tstg –55 155
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltages are with respect to GND if not specified. Currents are positive into, negative out of the specified terminal. Consult Packaging Section of the data book for thermal limitations and considerations of packages.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged device model (CDM), per JEDEC specification JESD22-C101(2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
Voltage range PH –1 24 V
PVCC, ACP, ACN, SRP, SRN, BAT, BATDRV, ACDRV 0 24 V
REGN, LODRV, VADJ 0 6.5 V
VDAC, IADAPT 0 3.6 V
VREF 0 3.3 V
ACSET, SRSET, TS, ACDET, ACOP, CHGEN, CELLS, ACGOOD, LEARN, OVPSET 0 5.5 V
BTST, HIDRV with respect to AGND and PGND 0 30 V
AGND, PGND –0.3 0.3 V
Maximum difference voltage ACP–ACN, SRP–SRN –0.3 0.3 V
Junction temperature range, TJ –40 125 °C
Storage temperature range, Tstg –55 150

7.4 Thermal Information

THERMAL METRIC(1) bq24753A UNIT
RHD (VQFN)
28 PINS
RθJA Junction-to-ambient thermal resistance 39 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

7 V ≤ VPVCC ≤ 24 V, 0°C < TJ < 125°C, typical values are at TA = 25°C, with respect to AGND (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
OPERATING CONDITIONS
VPVCC_OP PVCC Input voltage operating range 8 24 V
CHARGE VOLTAGE REGULATION
VBAT_REG_RNG BAT voltage regulation range 4-4.512 V per cell, times 2,3,4 cells 8 18.048 V
VVDAC_OP VDAC reference voltage range 2.6 3.6 V
VADJ_OP VADJ voltage range 0 REGN V
Charge voltage regulation accuracy 8 V, 8.4 V, 9.024 V –0.5% 0.5%
12 V, 12.6 V, 13.536 V –0.5% 0.5%
16 V, 16.8 V, 18.048 V –0.5% 0.5%
Charge voltage regulation set to default to 4.2 V per cell VADJ connected to REGN, 8.4 V, 12.6 V, 16.8 V –0.5% 0.5%
CHARGE CURRENT REGULATION
VIREG_CHG Charge current regulation differential voltage range VIREG_CHG = VSRP – VSRN 0 100 mV
VSRSET_OP SRSET voltage range 0 VDAC V
Charge current regulation accuracy VIREG_CHG = 40–100 mV –3% 3%
VIREG_CHG = 20 mV –5% 5%
VIREG_CHG = 5 mV –25% 25%
VIREG_CHG = 1.5 mV (VBAT>4V) –33% 33%
INPUT CURRENT REGULATION
VIREG_DPM Adapter current regulation differential voltage range VIREG_DPM = VACP – VACN 0 100 mV
VACSET_OP ACSET voltage range 0 VDAC V
Input current regulation accuracy VIREG_DPM = 40–100 mV –3% 3%
VIREG_DPM = 20 mV –5% 5%
VIREG_DPM = 5 mV –25% 25%
VIREG_DPM = 1.5 mV –33% 33%
VREF REGULATOR
VVREF_REG VREF regulator voltage VACDET > 0.6 V, 0-30 mA 3.267 3.3 3.333 V
IVREF_LIM VREF current limit VVREF = 0 V, VACDET > 0.6 V 35 80 mA
REGN REGULATOR
VREGN_REG REGN regulator voltage VACDET > 0.6 V, 0-75 mA, PVCC > 10 V 5.6 5.9 6.2 V
IREGN_LIM REGN current limit VREGN = 0 V, VACDET > 0.6 V 90 135 mA
ADAPTER CURRENT SENSE AMPLIFIER
VACP/N_OP Input common mode range Voltage on ACP/ACN 0 24 V
VIADAPT IADAPT output voltage range 0 2
IIADAPT IADAPT output current 0 1 mA
AIADAPT Current sense amplifier voltage gain AIADAPT = VIADAPT / VIREG_DPM 20 V/V
Adapter current sense accuracy VIREG_DPM = 40–100 mV –2% 2%
VIREG_DPM = 20 mV –3% 3%
VIREG_DPM = 5 mV –25% 25%
VIREG_DPM = 1.5 mV –33% 33%
IIADAPT_LIM Output current limit VIADAPT = 0 V 1 mA
CIADAPT_MAX Maximum output load capacitance For stability with 0 mA to 1 mA load 100 pF
ACDET COMPARATOR
VACDET_CHG ACDET adapter-detect rising threshold Min voltage to enable charging, VACDET rising 2.376 2.40 2.424 V
VACDET_CHG_HYS ACDET falling hysteresis VACDET falling 40 mV
deglitch time after VACDET rising VACDET rising above 2.4V 518 700 908 ms
deglitch time after VACDET falling VACDET falling below 2.4V 7 9 11 ms
VACDET_BIAS ACDET enable-bias rising threshold Min voltage to enable all bias, VACDET rising 0.56 0.62 0.68 V
VACDET_BIAS_HYS Adapter present falling hysteresis VACDET falling 20 mV
ACDET_BIAS rising deglitch VACDET rising above 0.62V 10 μs
ACDET_BIAS falling deglitch VACDET falling below 0.62V 10 μs
PVCC / BAT COMPARATOR
VPVCC-BAT_OP Differential Voltage from PVCC to BAT –20 24 V
VPVCC-BAT_FALL PVCC to BAT falling threshold VPVCC – VBAT to turn off ACFET 140 185 240 mV
VPVCC-BAT__HYS PVCC to BAT hysteresis 50 mV
PVCC to BAT Rising Deglitch VPVCC – VBAT > VPVCC-BAT_RISE 7 9 11 ms
PVCC to BAT Falling Deglitch VPVCC – VBAT < VPVCC-BAT_FALL 6 μs
OPEN-DRAIN LOGIC OUTPUT PIN CHARACTERISTICS (ACGOOD)
VOUT_LO Output low saturation voltage Sink Current = 5 mA 0.5 V
Delay between system power selector (ACDRV and BATDRV) switching and ACGOOD edge 10 μs
INPUT UNDERVOLTAGE LOCK-OUT COMPARATOR (UVLO)
UVLO AC Undervoltage rising threshold to exit UVLO Measured on PVCC 3.5 4 4.5 V
UVLO(HYS) AC Undervoltage hysteresis, falling 260 mV
AC LOWVOLTAGE COMPARATOR (ACLOWV)
VACLOWV AC low voltage rising threshold Measure on ACP pin 3.6 V
AC low voltage falling threshold 3
ACN / BAT COMPARATOR
VACN-BAT_FALL ACN to BAT falling threshold VACN – VBAT to turn on BATDRV 175 285 340 mV
VACN-BAT_HYS ACN to BAT hysteresis 50 mV
ACN to BAT rising deglitch VACN – VBAT > VACN-BAT_RISE 20 μs
ACN to BAT falling deglitch VACN – VBAT < VACN-BAT_FALL 6 μs
BAT OVERVOLTAGE COMPARATOR
VOV_RISE Overvoltage rising threshold As percentage of VBAT_REG 104%
VOV_FALL Overvoltage falling threshold As percentage of VBAT_REG 102%
BAT SHORT (UNDERVOLTAGE) COMPARATOR
VBAT_SHORT_FALL VBAT falling threshold to begin C/8 charge VBAT falling 2.75 2.9 3.05 V/cell
VBAT_SHORT_HYS BATSHORT hysteresis VBAT rising 230 250 270 mV/cell
Deglitch time of VBAT rising to resume full charge VBAT > VBAT_SHORT+VBAT_SHORT_HYS 1.5 s
Deglitch time of VBAT falling to begin C/8 charge VBAT < VBAT_SHORT 1.5
BATSHORT EXIT delay to turn on BATFET and turn off ACFET when LEARN=HIGH 600 ms
BATSHORT ENTRY delay to turn off BATFET and turn on ACFET when LEARN=HIGH 10 μs
CHARGE OVERCURRENT COMPARATOR
VOC Charge overcurrent rising threshold As percentage of IREG_CHG 145%
OCP Floor Minimum overcurrent current limit Measure at (SRP-SRN) 50 mV
CHARGE UNDERCURRENT COMPARATOR (SYNCHRONOUS TO NON-SYNCHRONOUS TRANSITION)
VISYNSET_FALL Charge undercurrent falling threshold Changing from synchronous to non-synchronous 9.75 13 16.25 mV
VISYNSET_HYS Charge undercurrent rising hysteresis 8 mV
Charge undercurrent, falling-current deglitch VIREG_DPM < VISYNSET 20 μs
Charge undercurrent, rising-current deglitch 640
INPUT OVERPOWER COMPARATOR (ACOP)
VACOC ACOC Gain for initial ACOC current limit (Percentage of programmed VIREG_DPM) Begins 700 ms after ACDET, VACSET=1V
Input current limited to this threshold for fault protection
250 265 283 %
VIREG_DPM
VACOC_CEILING Maximum ACOC input current limit (VACP–VACN)max Internally limited ceiling,
VACOC_MAX = (VACP–VACN)max
100 mV
ACOP Latch Blankout Time with ACOC active
(begins 700 ms after ACDET)
Begins 700 ms after ACDET
(does not allow ACOP latch-off, and no ACOP source current)
2 ms
VACOP ACOP pin latch-off threshold voltage
(See ACOP in Pin Configuration and Functions)
1.95 2 2.05 V
KACOP Gain for ACOP Source Current when in ACOC Current source on when in ACOC limit. Function of voltage across power FET
IACOP_SOURCE = KACOP ×(VPVCC -VACP)
18 μA / V
IACOP_SINK ACOP Sink Current when not in ACOC
ACOP Latch is reset by going below ACDET or UVLO
Current sink on when not in ACOC 5 μA
VACN-SHORT ACN Short protection threshold latching ACN < 2.4 V, ACDET > 2.4 V 2.4 V
INPUT OVERVOLTAGE COMPARATOR (ACOV)
VACOV AC Overvoltage rising threshold on OVPSET
(See OVPSET in Pin Configuration and Functions)
Measured on OVPSET 3.007 3.1 3.193 V
VACOV_HYS AC Overvoltage rising deglitch 1.3 ms
AC Overvoltage falling deglitch 1.3
THERMAL SHUTDOWN COMPARATOR
TSHUT Thermal shutdown rising temperature Temperature Increasing 155 °C
TSHUT_HYS Thermal shutdown hysteresis, falling 20 °C
BATTERY SWITCH (BATDRV) DRIVER
RDS(off)_BAT BATFET Turn-off resistance VACN > 5 V 160 Ω
RDS(on)_BAT BATFET Turn-on resistance VACN > 5 V 3
VBATDRV_REG BATFET drive voltage VBATDRV_REG = VACN – VBATDRV when
VACN > 5 V and BATFET is on
6.5 V
BATFET Power-up delay Delay to turn off BATFET after adapter is detected (after VACDET > 2.4 V) 518 700 908 ms
AC SWITCH (ACDRV) DRIVER
RDS(off)_AC ACFET turn-off resistance VPVCC > 5 V 80 Ω
RDS(on)_AC ACFET turn-on resistance VPVCC > 5 V 2.5
VACDRV_REG ACFET drive voltage VACDRV_REG = VPVCC – VACDRV when
VPVCC > 5 V and ACFET is on
6.5 V
ACFET Power-up Delay Delay to turn on ACFET after adapter is detected (after VACDET > 2.4 V) 518 700 908 ms
PWM HIGH SIDE DRIVER (HIDRV)
RDS(on)_HI High side driver turn-on resistance VBTST – VPH = 5.5 V, tested at 100 mA 3 6 Ω
RDS(off)_HI High side driver turn-off resistance VBTST – VPH = 5.5 V, tested at 100 mA 0.7 1.4 Ω
VBTST_REFRESH Bootstrap refresh comparator threshold voltage VBTST – VPH when low side refresh pulse is requested 4 V
PWM LOW SIDE DRIVER (LODRV)
RDS(on)_LO Low side driver turn-on resistance REGN = 6 V, tested at 100 mA 3 6 Ω
RDS(off)_LO Low side driver turn-off resistance REGN = 6 V, tested at 100 mA 0.6 1.2 Ω
PWM OSCILLATOR
FSW PWM switching frequency 240 300 360 kHz
VRAMP_HEIGHT PWM ramp height As percentage of PVCC 6.6 %PVCC
QUIESCENT CURRENT
IOFF_STATE Total off-state quiescent current into pins SRP, SRN, BAT, BTST, PH, PVCC, ACP, ACN VBAT = 16.8 V, VACDET < 0.6 V,
VPVCC > 5 V, TJ = 0 to 85°C
7 10 μA
IBATQ_CD Total quiescent current into pins: SRP, SRN, BAT, BTST, PH Adapter present, VACDET > 2.4 V, charge disabled 100 200 μA
IAC Adapter quiescent current VPVCC = 20 V, charge disabled 1 1.5 mA
INTERNAL SOFT START (8 steps to regulation current)
Soft start steps 8 step
Soft start step time 1.7 ms
CHARGER SECTION POWER-UP SEQUENCING
Charge-enable delay after power-up Delay from when adapter is detected to when the charger is allowed to turn on 518 700 908 ms
LOGIC INPUT PIN CHARACTERISTICS (CHGEN, LEARN)
VIN_LO Input low threshold voltage 0.8 V
VIN_HI Input high threshold voltage 2.1
IBIAS Input bias current VCHGEN = 0 to VREGN 1 μA
tCHGEN_DEGLITCH Charge enable deglitch time ACDET > 2.4 V, CHGEN rising 2 ms
LOGIC INPUT PIN CHARACTERISTICS (CELLS)
VIN_LO Input low threshold voltage, 3 cells CELLS voltage falling edge 0.5 V
VIN_MID Input mid threshold voltage, 2 cells CELLS voltage rising for MIN,
CELLS voltage falling for MAX
0.8 1.8
VIN_HI Input high threshold voltage, 4 cells CELLS voltage rising 2.5
IBIAS_FLOAT Input bias float current for 2-cell selection VCHGEN = 0 to VREGN –1 1 μA

7.6 Timing Requirements

7 V ≤ VPVCC ≤ 24 V, 0°C < TJ < 125°C, typical values are at TA = 25°C, with respect to AGND (unless otherwise noted)
MIN NOM MAX UNIT
AC / BAT MOSFET DRIVERS TIMING
Driver dead time – Dead time when switching between ACDRV and BATDRV 10 μs
PWM DRIVERS TIMING
Driver Dead Time – Dead time when switching between LODRV and HIDRV. No load at LODRV and HIDRV 30 ns

7.7 Typical Characteristics

Table 1. Table of Graphs(1)

FIGURE
VREF Load and Line Regulation vs Load Current Figure 1
REGN Load and Line Regulation vs Load Current Figure 2
BAT Voltage vs VADJ/VDAC Ratio Figure 3
Charge Current vs SRSET/VDAC Ratio Figure 4
Input Current vs ACSET/VDAC Ratio Figure 5
BAT Voltage Regulation Accuracy vs Charge Current Figure 6
BAT Voltage Regulation Accuracy Figure 7
Charge Current Regulation Accuracy Figure 8
Input Current Regulation (DPM) Accuracy Figure 9
VIADAPT Input Current Sense Amplifier Accuracy Figure 10
Input Regulation Current (DPM), and Charge Current vs System Current Figure 11
Transient System Load (DPM) Response Figure 12
Fast (DPM) Response Figure 13
Charge Current Regulation vs BAT Voltage Figure 14
Efficiency vs Battery Charge Current Figure 15
Battery Removal (from Constant Current Mode) Figure 16
ACDRV and BATDRV Startup Figure 17
REF and REGN Startup Figure 18
System Selector on Adapter Insertion with 390-μF SYS-to-PGND System Capacitor Figure 19
System Selector on Adapter Removal with 390-μF SYS-to-PGND System Capacitor Figure 20
System Selector LEARN Turn-On with 390-μF SYS-to-PGND System Capacitor Figure 21
System Selector LEARN Turn-Off with 390-μF SYS-to-PGND System Capacitor Figure 22
System Selector on Adapter Insertion Figure 23
Selector Gate Drive Voltages, 700 ms delay after ACDET Figure 24
System Selector when Adapter Removed Figure 25
Charge Enable / Disable and Current Soft-Start Figure 26
Nonsynchronous to Synchronous Transition Figure 27
Synchronous to Nonsynchronous Transition Figure 28
Near 100% Duty Cycle Bootstrap Recharge Pulse Figure 29
Battery Shorted Charger Response, Over Current Protection (OCP) and Charge Current Regulation Figure 30
Continuous Conduction Mode (CCM) Switching Waveforms Figure 32
Discontinuous Conduction Mode (DCM) Switching Waveforms Figure 31
BATSHORT Entry Figure 33
BATSHORT Exit Figure 34
(1) Test results based on Figure 37 application schematic. VIN = 20 V, VBAT = 3-cell Li-Ion, ICHG = 3 A, IADAPTER_LIMIT = 4 A, TA = 25°C, unless otherwise specified.
bq24753A lreg_vref_lus735.gif
Figure 1. VREF Load and Line Regulation vs Load Current
bq24753A vreg_vadj_lus735.gif
Figure 3. BAT Voltage vs VADJ/VDAC Ratio
bq24753A icr_adac_lus735.gif
Figure 5. Input Current vs ACSET/VDAC Ratio
bq24753A bat_setpnt_lus735.gif
Figure 7. BAT Voltage Regulation Accuracy
bq24753A acset_i_cur_lus735.gif
Figure 9. Input Current Regulation (DPM) Accuracy
bq24753A dpm_sys_cur_lus835.gif
Figure 11. Input Regulation Current (DPM), and Charge Current vs System Current
bq24753A fast_dpm_resp_lus885.gif
Figure 13. Fast DPM Response
bq24753A eff_batchg_lus735.gif
Figure 15. Efficiency vs Battery Charge Current
bq24753A ac-batdrv_lus835.gif
Figure 17. ACDRV and BATDRV Startup
bq24753A ssai390_lus735.gif
Figure 19. System Selector On Adapter Insertion With 390 μF SYS-to-PGND System Capacitor
bq24753A lrnon_lus734.gif
Figure 21. System Selector Learn Turnon With 390 μF SYS-to-PGND System Capacitor
bq24753A sys_slect_lus835.gif
Figure 23. System Selector On Adapter Insertion
bq24753A adap_rem_lus885.gif
Figure 25. System Selector On Adapter Removal
bq24753A nonsyn_tr_lus920.gif
Figure 27. Nonsynchronous to Synchronous Transition
bq24753A bootstrap_lus920.gif
Figure 29. Near 100% Duty Cycle Bootstrap Recharge Pulse
bq24753A cond_mode_lus920.gif
Figure 31. Continuous Conduction Mode (CCM) Switching Waveforms
bq24753A batshort_entry_lus885.gif
Figure 33. BATSHORT Entry
bq24753A lreg_regn_lus735.gif
Figure 2. REGN Load and Line Regulation vs Load Current
bq24753A srset_vdac_lus735.gif
Figure 4. Charge Current vs SRSET/VDAC Ratio
bq24753A re_chg_cur_lus735.gif
Figure 6. BAT Voltage Regulation Accuracy vs Charge Current
bq24753A chg_cur_vreg_lus735.gif
Figure 8. Charge Current Regulation Accuracy
bq24753A iadapt_acp_lus735.gif
Figure 10. VIADAPT Input Current Sense Amplifier Accuracy
bq24753A trans_resp_lus885.gif
Figure 12. Transient System Load (DPM) Response
bq24753A cur_reg_bat_lus885.gif
Figure 14. Charge Current Regulation vs BAT Voltage
bq24753A const_cur2_lus735.gif
Figure 16. Battery Removal
bq24753A vstart_lus735.gif
Figure 18. REF and REGN Startup
bq24753A ssar390_lus735.gif
Figure 20. System Selector On Adapter Removal With 390 μF SYS-to-PGND System Capacitor
bq24753A lrnoff_lus734.gif
Figure 22. System Selector Learn Turnoff With 390 μF SYS-to-PGND System Capacitor
bq24753A sel_gate_lus835.gif
Figure 24. Selector Gate Drive Voltages, 700 ms Delay After ACDET
bq24753A eable_dable_lus920.gif
Figure 26. Charge Enable / Disable and Current Soft-Start
bq24753A synch_lus920.gif
Figure 28. Synchronous to Nonsynchronous Transition
bq24753A short_chg_lus920.gif
Figure 30. Battery Shorted Charger Response, Overcurrent Protection (OCP) and Charge Current Regulation
bq24753A discont_mode_lus920.gif
Figure 32. Discontinuous Conduction Mode (DCM) Switching Waveforms
bq24753A batshort_exit_lus885.gif
Figure 34. BATSHORT Exit