SLLS867K September   2007  – October 2015 ISO7230C , ISO7230M , ISO7231C , ISO7231M

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Electrical Characteristics: VCC1 and VCC2 at 5-V
    6. 7.6  Electrical Characteristics: VCC1 at 5-V, VCC2 at 3.3-V
    7. 7.7  Electrical Characteristics: VCC1 at 3.3-V, VCC2 at 5-V
    8. 7.8  Electrical Characteristics: VCC1 and VCC2 at 3.3 V
    9. 7.9  Power Dissipation Characteristics
    10. 7.10 Switching Characteristics: VCC1 and VCC2 at 5-V
    11. 7.11 Switching Characteristics: VCC1 at 5-V, VCC2 at 3.3-V
    12. 7.12 Switching Characteristics: VCC1 at 3.3-V and VCC2 at 5-V
    13. 7.13 Switching Characteristics: VCC1 and VCC2 at 3.3-V
    14. 7.14 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Package Insulation and Safety-Related Specifications
      2. 9.3.2 Insulation Characteristics
      3. 9.3.3 Regulatory Information
      4. 9.3.4 Safety Limiting Values
    4. 9.4 Device Functional Modes
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
      3. 10.2.3 Application Curve
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
      1. 12.1.1 PCB Material
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Related Documentation
    2. 13.2 Related Links
    3. 13.3 Community Resources
    4. 13.4 Trademarks
    5. 13.5 Electrostatic Discharge Caution
    6. 13.6 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

パッケージ・オプション

デバイスごとのパッケージ図は、PDF版データシートをご参照ください。

メカニカル・データ(パッケージ|ピン)
  • DW|16
サーマルパッド・メカニカル・データ
発注情報

9 Detailed Description

9.1 Overview

The isolator in Figure 13 is based on a capacitive isolation barrier technique. The I/O channel of the device consists of two internal data channels, a high-frequency channel (HF) with a bandwidth from 100 kbps up to 150 Mbps, and a low-frequency channel (LF) covering the range from 100 kbps down to DC. In principle, a single-ended input signal entering the HF-channel is split into a differential signal via the inverter gate at the input. The following capacitor-resistor networks differentiate the signal into transients, which then are converted into differential pulses by two comparators. The comparator outputs drive a NOR-gate flip-flop whose output feeds an output multiplexer. A decision logic (DCL) at the driving output of the flip-flop measures the durations between signal transients. If the duration between two consecutive transients exceeds a certain time limit, (as in the case of a low-frequency signal), the DCL forces the output-multiplexer to switch from the high- to the low-frequency channel.

Because low-frequency input signals require the internal capacitors to assume prohibitively large values, these signals are pulse-width modulated (PWM) with the carrier frequency of an internal oscillator, thus creating a sufficiently high frequency signal, capable of passing the capacitive barrier. As the input is modulated, a low-pass filter (LPF) is needed to remove the high-frequency carrier from the actual data before passing it on to the output multiplexer.

9.2 Functional Block Diagram

ISO7230C ISO7230M ISO7231C ISO7231M fbdc_slls868.gif Figure 13. Conceptual Block Diagram of a Digital Capacitive Isolator

9.3 Feature Description

9.3.1 Package Insulation and Safety-Related Specifications

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
L(I01) Minimum air gap (Clearance)(1) Shortest terminal-to-terminal distance through air 8 mm
L(I02) Minimum external tracking
(Creepage)(1)
Shortest terminal-to-terminal distance across the package surface 8 mm
CTI Tracking resistance
(comparative tracking index)
DIN EN 60112 (VDE 0303-11); IEC 60112 400 V
DTI Minimum Internal Gap
(Internal Clearance)
Distance through the insulation 0.008 mm
RIO(2) Isolation resistance Input to output, VIO = 500 V, TA = 25°C >1012 Ω
Input to output, VIO = 500 V, 100°C ≤ TA ≤ TA max >1011 Ω
CIO(2) Barrier capacitance Input to output VI = 0.4 sin (4E6πt) 2 pF
(1) per JEDEC package dimensions.
(2) All pins on each side of the barrier tied together creating a two-terminal device.

9.3.2 Insulation Characteristics

PARAMETER TEST CONDITIONS SPECIFICATION UNIT
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12(1)
VIORM Maximum repetitive peak isolation voltage 560 VPK
VPR Input to output test voltage Method b1, VPR = VIORM x 1.875,
100% production test with t = 1 s,
Partial discharge < 5 pC
1050 VPK
VIOTM Maximum transient isolation voltage VTEST = VIOTM,
t = 60 s (qualification),
t = 1 s (100% production)
4000 VPK
RS Isolation resistance VIO = 500 V at TS = 150 °C >109 Ω
Pollution degree 2
UL 1577
VISO Withstanding isolation voltage VTEST = VISO = 2500 VRMS, t = 60 s (qualification),
VTEST = 1.2 x VISO = 3000 VRMS, t = 1 s (100% production)
2500 VRMS
(1) Climatic classification 40/125/21

Table 1. IEC 60664-1 Ratings Table

PARAMETER TEST CONDITIONS SPECIFICATION
Basic isolation group Material group II
Installation classification Rated mains voltage ≤150 VRMS I-IV
Rated mains voltage ≤300 VRMS I-III

9.3.3 Regulatory Information

VDE CSA UL
Certified according to DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 and DIN EN 61010-1 (VDE 0411-1):2011-07 Approved under CSA Component Acceptance Notice 5A and IEC 60950-1 Recognized under UL 1577 Component Recognition Program
Basic insulation;
Maximum transient isolation voltage, 4000 VPK;
Maximum repetitive peak isolation voltage, 560 VPK
4000 VPK Isolation rating;
384 VRMS Basic insulation working voltage per CSA 60950-1-07+A1 and IEC 60950-1 2nd Ed.+A1
Single protection, 2500 VRMS
File Number: 40016131 Master Contract Number: 220991 File Number: E181974

9.3.4 Safety Limiting Values

Safety limiting intends to prevent potential damage to the isolation barrier upon failure of input or output circuitry. A failure of the IO can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat the die and damage the isolation barrier potentially leading to secondary system failures.

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
IS Safety input, output, or supply current SOIC-16 θJA = 168°C/W, VI = 5.5 V, TJ = 170°C, TA = 25°C 156 mA
θJA = 168°C/W, VI = 3.6 V, TJ = 170°C, TA = 25°C 239
TS Maximum case temperature SOIC-16 150 °C

The safety-limiting constraint is the absolute maximum junction temperature specified in the absolute maximum ratings table. The power dissipation and junction-to-air thermal impedance of the device installed in the application hardware determines the junction temperature. The assumed junction-to-air thermal resistance in the Thermal Characteristics table is that of a device installed in the JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages and is conservative. The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient temperature plus the power times the junction-to-air thermal resistance.

ISO7230C ISO7230M ISO7231C ISO7231M cur_ta_SLLS868.gif Figure 14. SOIC-16 ΘJC Thermal Derating Curve per VDE

9.4 Device Functional Modes

Table 2. Device Function Table ISO723x (1)

VCCI VCCO INPUT
(INx)
OUTPUT ENABLE
(ENx)
OUTPUT
(OUTx)
PU PU H H or Open H
L H or Open L
X L Z
Open H or Open H
PD PU X H or Open H
PD PU X L Z
X PD X X Undetermined
(1) VCCI = Input-side VCC; VCCO = Output-side VCC; PU = Powered Up; PD = Powered Down; X = Irrelevant; H = High Level; L = Low Level
ISO7230C ISO7230M ISO7231C ISO7231M io_sch_lls867.gif Figure 15. Device I/O Schematics