SNAS236G October   2005  – January 2016 LMX2485 , LMX2485E

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Typical Characteristics
      1. 6.7.1 Sensitivity
      2. 6.7.2 FinRF Input Impedance
      3. 6.7.3 FinIF Input Impedance
      4. 6.7.4 OSCin Input Impedance
      5. 6.7.5 Currents
  7. Parameter Measurement Information
    1. 7.1 Bench Test Set-Ups
      1. 7.1.1 Charge Pump Current Measurement
      2. 7.1.2 Charge Pump Current Specification Definitions
        1. 7.1.2.1 Charge Pump Output Current Magnitude Variation vs Charge Pump Output Voltage
        2. 7.1.2.2 Charge Pump Sink Current vs Charge Pump Output Source Current Mismatch
        3. 7.1.2.3 Charge Pump Output Current Magnitude Variation vs Temperature
      3. 7.1.3 Sensitivity Measurement Procedure
      4. 7.1.4 Input Impedance Measurement
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 TCXO, Oscillator Buffer, and R Counter
      2. 8.3.2 Phase Detector
      3. 8.3.3 Charge Pump
      4. 8.3.4 Loop Filter
      5. 8.3.5 N Counters and High Frequency Input Pins
        1. 8.3.5.1 High Frequency Input Pins, FinRF and FinIF
        2. 8.3.5.2 Complementary High Frequency Pin, FinRF*
      6. 8.3.6 Digital Lock Detect Operation
      7. 8.3.7 Cycle Slip Reduction and Fastlock
        1. 8.3.7.1 Cycle Slip Reduction (CSR)
        2. 8.3.7.2 Fastlock
        3. 8.3.7.3 Using Cycle Slip Reduction (CSR) to Avoid Cycle Slipping
          1. 8.3.7.3.1 (Fastlock Charge Pump Current) / (Steady-State Charge Pump Current) = CSR
        4. 8.3.7.4 Using Fastlock to Improve Lock Times
        5. 8.3.7.5 Capacitor Dielectric Considerations for Lock Time
      8. 8.3.8 Fractional Spur and Phase Noise Controls
    4. 8.4 Device Functional Modes
      1. 8.4.1 Power Pins, Power-Down, and Power-Up Modes
    5. 8.5 Programming
      1. 8.5.1 General Programming Information
        1. 8.5.1.1 Register Location Truth Table
        2. 8.5.1.2 Control Register Content Map
        3. 8.5.1.3 Quick Start Register Map
        4. 8.5.1.4 Complete Register Map
    6. 8.6 Register Maps
      1. 8.6.1 R0 Register
        1. 8.6.1.1 RF_FN[11:0]—Fractional Numerator for RF PLL
        2. 8.6.1.2 RF_N[10:0]—RF N Counter Value
      2. 8.6.2 R1 Register
        1. 8.6.2.1 RF_FD[11:0]—RF PLL Fractional Denominator
        2. 8.6.2.2 RF_R [5:0]—RF R Divider Value
        3. 8.6.2.3 RF_P—RF Prescaler Bit
        4. 8.6.2.4 RF_PD—RF Power-Down Control Bit
      3. 8.6.3 R2 Register
        1. 8.6.3.1 IF_N[18:0]—IF N Divider Value
        2. 8.6.3.2 IF_PD—IF Power Down Bit
      4. 8.6.4 R3 Register
        1. 8.6.4.1 IF_R[11:0]—IF R Divider Value
        2. 8.6.4.2 RF_CPG—RF PLL Charge Pump Gain
        3. 8.6.4.3 ACCESS—Register Access Word
      5. 8.6.5 R4 Register
        1. 8.6.5.1 MUX[3:0] Frequency Out and Lock Detect MUX
        2. 8.6.5.2 IF_P—IF Prescaler
        3. 8.6.5.3 RF_CPP—RF PLL Charge Pump Polarity
        4. 8.6.5.4 IF_CPP—IF PLL Charge Pump Polarity
        5. 8.6.5.5 OSC_OUT Oscillator Output Buffer Enable
        6. 8.6.5.6 OSC2X—Oscillator Doubler Enable
        7. 8.6.5.7 FM[1:0]—Fractional Mode
        8. 8.6.5.8 DITH[1:0]—Dithering Control
        9. 8.6.5.9 ATPU—PLL Automatic Power Up
      6. 8.6.6 R5 Register
        1. 8.6.6.1 Fractional Numerator Determination { RF_FN[21:12], RF_FN[11:0], Access[1] }
        2. 8.6.6.2 Fractional Denominator Determination { RF_FD[21:12], RF_FD[11:0], Access[1]}
      7. 8.6.7 R6 Register
        1. 8.6.7.1 RF_TOC—RF Time Out Counter and Control for FLoutRF Pin
        2. 8.6.7.2 RF_CPF—RF PLL Fastlock Charge Pump Current
        3. 8.6.7.3 CSR[1:0]—RF Cycle Slip Reduction
      8. 8.6.8 R7 Register
        1. 8.6.8.1 DIV4—RF Digital Lock Detect Divide By 4
        2. 8.6.8.2 IF_RST—IF PLL Counter Reset
        3. 8.6.8.3 RF_RST—RF PLL Counter Reset
        4. 8.6.8.4 RF_TRI—RF Charge Pump Tri-State
        5. 8.6.8.5 IF_TRI—IF Charge Pump Tri-State
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Related Links
    2. 12.2 Community Resources
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ

1 Features

  • Quadruple Modulus Prescaler for Lower Divides
    • RF PLL: 8/9/12/13 or 16/17/20/21
    • IF PLL: 8/9 or 16/17
  • Advanced Delta-Sigma Fractional Compensation
    • 12-Bit or 22-Bit Selectable Fractional Modulus
    • Up to 4th Order Programmable Delta-Sigma Modulator
  • Features for Improved Lock Time
    • Fastlock / Cycle Slip Reduction With Integrated Time-Out Counter Which Requires Only a Single-Word Write
  • Wide Operating Range
    • LMX2485 RF PLL: 500 MHz to 3.0 GHz
    • LMX2485E RF PLL: 50 MHz to 3.0 GHz
  • Useful Features
    • Digital Lock Detect Output
    • Hardware and Software Power-Down Control
    • On-Chip Input Frequency Doubler.
    • RF Phase Detector Frequency up to 50 MHz
    • 2.5 to 3.6 V Operation With ICC = 5.0 mA

2 Applications

  • Cellular Phones and Base Stations
  • Direct Digital Modulation Applications
  • Satellite and Cable TV Tuners
  • WLAN Standards

3 Description

The LMX2485 device is a low power, high performance delta-sigma fractional-N PLL with an auxiliary integer-N PLL. The device is fabricated using Texas Instruments' advanced process.

With delta-sigma architecture, fractional spurs at lower offset frequencies are pushed to higher frequencies outside the loop bandwidth. The ability to push close in spur and phase noise energy to higher frequencies is a direct function of the modulator order. Unlike analog compensation, the digital feedback technique used in the LMX2485 is highly resistant to changes in temperature and variations in wafer processing. The LMX2485 delta-sigma modulator is programmable up to fourth order, which allows the designer to select the optimum modulator order to fit the phase noise, spur, and lock time requirements of the system.

Serial data for programming the LMX2485 is transferred through a three-line, high-speed (20-MHz) MICROWIRE interface. The LMX2485 offers fine frequency resolution, low spurs, fast programming speed, and a single-word write to change the frequency. This makes it ideal for direct digital modulation applications, where the N-counter is directly modulated with information. The LMX2485 is available in a 24-lead 4.0 × 4.0 × 0.8 mm WQFN package.

Device Information(1)

PART NUMBER RF PLL Frequency IF PLL Frequency
LMX2485E 50 - 3000 MHz 75 - 800 MHz
LMX2485 500 - 3000 MHz 75 - 800 MHz
  1. For all available packages, see the orderable addendum at the end of the data sheet.

Functional Block Diagram

LMX2485 LMX2485E 20087701.gif