JAJS280O October   2003  – March 2019 TMS320F2801 , TMS320F28015 , TMS320F28016 , TMS320F2802 , TMS320F2806 , TMS320F2808 , TMS320F2809

PRODUCTION DATA.  

  1. 1デバイスの概要
    1. 1.1 特長
    2. 1.2 アプリケーション
    3. 1.3 概要
    4. 1.4 機能ブロック図
  2. 2改訂履歴
  3. 3Device Comparison
    1. 3.1 Related Products
  4. 4Terminal Configuration and Functions
    1. 4.1 Pin Diagrams
    2. 4.2 Signal Descriptions
  5. 5Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings – Automotive
    3. 5.3  ESD Ratings – Commercial
    4. 5.4  Recommended Operating Conditions
    5. 5.5  Power Consumption Summary
      1. Table 5-1 TMS320F2809, TMS320F2808 Current Consumption by Power-Supply Pins at 100-MHz SYSCLKOUT
      2. Table 5-2 TMS320F2806 Current Consumption by Power-Supply Pins at 100-MHz SYSCLKOUT
      3. Table 5-3 TMS320F2802, TMS320F2801 Current Consumption by Power-Supply Pins at 100-MHz SYSCLKOUT
      4. Table 5-4 TMS320C2802, TMS320C2801 Current Consumption by Power-Supply Pins at 100-MHz SYSCLKOUT
      5. 5.5.1     Reducing Current Consumption
      6. 5.5.2     Current Consumption Graphs
    6. 5.6  Electrical Characteristics
    7. 5.7  Thermal Resistance Characteristics for F280x 100-Ball GGM Package
    8. 5.8  Thermal Resistance Characteristics for F280x 100-Pin PZ Package
    9. 5.9  Thermal Resistance Characteristics for C280x 100-Ball GGM Package
    10. 5.10 Thermal Resistance Characteristics for C280x 100-Pin PZ Package
    11. 5.11 Thermal Resistance Characteristics for F2809 100-Ball GGM Package
    12. 5.12 Thermal Resistance Characteristics for F2809 100-Pin PZ Package
    13. 5.13 Thermal Design Considerations
    14. 5.14 Timing and Switching Characteristics
      1. 5.14.1 Timing Parameter Symbology
        1. 5.14.1.1 General Notes on Timing Parameters
        2. 5.14.1.2 Test Load Circuit
        3. 5.14.1.3 Device Clock Table
          1. Table 5-6 TMS320x280x Clock Table and Nomenclature (100-MHz Devices)
          2. Table 5-7 TMS320x280x/2801x Clock Table and Nomenclature (60-MHz Devices)
      2. 5.14.2 Power Sequencing
        1. Table 5-8 Reset (XRS) Timing Requirements
      3. 5.14.3 Clock Requirements and Characteristics
        1. Table 5-9  Input Clock Frequency
        2. Table 5-10 XCLKIN Timing Requirements - PLL Enabled
        3. Table 5-11 XCLKIN Timing Requirements - PLL Disabled
        4. Table 5-12 XCLKOUT Switching Characteristics (PLL Bypassed or Enabled)
      4. 5.14.4 Peripherals
        1. 5.14.4.1 General-Purpose Input/Output (GPIO)
          1. 5.14.4.1.1 GPIO - Output Timing
            1. Table 5-13 General-Purpose Output Switching Characteristics
          2. 5.14.4.1.2 GPIO - Input Timing
            1. Table 5-14 General-Purpose Input Timing Requirements
          3. 5.14.4.1.3 Sampling Window Width for Input Signals
          4. 5.14.4.1.4 Low-Power Mode Wakeup Timing
            1. Table 5-15 IDLE Mode Timing Requirements
            2. Table 5-16 IDLE Mode Switching Characteristics
            3. Table 5-17 STANDBY Mode Timing Requirements
            4. Table 5-18 STANDBY Mode Switching Characteristics
            5. Table 5-19 HALT Mode Timing Requirements
            6. Table 5-20 HALT Mode Switching Characteristics
        2. 5.14.4.2 Enhanced Control Peripherals
          1. 5.14.4.2.1 Enhanced Pulse Width Modulator (ePWM) Timing
            1. Table 5-21 ePWM Timing Requirements
            2. Table 5-22 ePWM Switching Characteristics
          2. 5.14.4.2.2 Trip-Zone Input Timing
            1. Table 5-23 Trip-Zone input Timing Requirements
          3. 5.14.4.2.3 High-Resolution PWM Timing
            1. Table 5-24 High-Resolution PWM Characteristics at SYSCLKOUT = 60–100 MHz
          4. 5.14.4.2.4 Enhanced Capture (eCAP) Timing
            1. Table 5-25 Enhanced Capture (eCAP) Timing Requirement
            2. Table 5-26 eCAP Switching Characteristics
          5. 5.14.4.2.5 Enhanced Quadrature Encoder Pulse (eQEP) Timing
            1. Table 5-27 Enhanced Quadrature Encoder Pulse (eQEP) Timing Requirements
            2. Table 5-28 eQEP Switching Characteristics
          6. 5.14.4.2.6 ADC Start-of-Conversion Timing
            1. Table 5-29 External ADC Start-of-Conversion Switching Characteristics
        3. 5.14.4.3 External Interrupt Timing
          1. Table 5-30 External Interrupt Timing Requirements
          2. Table 5-31 External Interrupt Switching Characteristics
        4. 5.14.4.4 I2C Electrical Specification and Timing
          1. Table 5-32 I2C Timing
        5. 5.14.4.5 Serial Peripheral Interface (SPI) Timing
          1. 5.14.4.5.1 SPI Master Mode Timing
            1. Table 5-33 SPI Master Mode External Timing (Clock Phase = 0)
            2. Table 5-34 SPI Master Mode External Timing (Clock Phase = 1)
          2. 5.14.4.5.2 SPI Slave Mode Timing
            1. Table 5-35 SPI Slave Mode External Timing (Clock Phase = 0)
            2. Table 5-36 SPI Slave Mode External Timing (Clock Phase = 1)
      5. 5.14.5 Emulator Connection Without Signal Buffering for the DSP
      6. 5.14.6 Flash Timing
        1. Table 5-37 Flash Endurance for A and S Temperature Material
        2. Table 5-38 Flash Endurance for Q Temperature Material
        3. Table 5-39 Flash Parameters at 100-MHz SYSCLKOUT
        4. Table 5-40 Flash/OTP Access Timing
        5. Table 5-41 Flash Data Retention Duration
    15. 5.15 On-Chip Analog-to-Digital Converter
      1. Table 5-43 ADC Electrical Characteristics
      2. 5.15.1     ADC Power-Up Control Bit Timing
        1. Table 5-44 ADC Power-Up Delays
        2. Table 5-45 Current Consumption for Different ADC Configurations (at 12.5-MHz ADCCLK)
      3. 5.15.2     Definitions
      4. 5.15.3     Sequential Sampling Mode (Single-Channel) (SMODE = 0)
        1. Table 5-46 Sequential Sampling Mode Timing
      5. 5.15.4     Simultaneous Sampling Mode (Dual-Channel) (SMODE = 1)
        1. Table 5-47 Simultaneous Sampling Mode Timing
      6. 5.15.5     Detailed Descriptions
    16. 5.16 Migrating From F280x Devices to C280x Devices
      1. 5.16.1 Migration Issues
    17. 5.17 ROM Timing (C280x only)
      1. Table 5-48 ROM/OTP Access Timing
  6. 6Detailed Description
    1. 6.1 Brief Descriptions
      1. 6.1.1  C28x CPU
      2. 6.1.2  Memory Bus (Harvard Bus Architecture)
      3. 6.1.3  Peripheral Bus
      4. 6.1.4  Real-Time JTAG and Analysis
      5. 6.1.5  Flash
      6. 6.1.6  ROM
      7. 6.1.7  M0, M1 SARAMs
      8. 6.1.8  L0, L1, H0 SARAMs
      9. 6.1.9  Boot ROM
      10. 6.1.10 Security
      11. 6.1.11 Peripheral Interrupt Expansion (PIE) Block
      12. 6.1.12 External Interrupts (XINT1, XINT2, XNMI)
      13. 6.1.13 Oscillator and PLL
      14. 6.1.14 Watchdog
      15. 6.1.15 Peripheral Clocking
      16. 6.1.16 Low-Power Modes
      17. 6.1.17 Peripheral Frames 0, 1, 2 (PFn)
      18. 6.1.18 General-Purpose Input/Output (GPIO) Multiplexer
      19. 6.1.19 32-Bit CPU-Timers (0, 1, 2)
      20. 6.1.20 Control Peripherals
      21. 6.1.21 Serial Port Peripherals
    2. 6.2 Peripherals
      1. 6.2.1  32-Bit CPU-Timers 0/1/2
      2. 6.2.2  Enhanced PWM Modules (ePWM1/2/3/4/5/6)
      3. 6.2.3  Hi-Resolution PWM (HRPWM)
      4. 6.2.4  Enhanced CAP Modules (eCAP1/2/3/4)
      5. 6.2.5  Enhanced QEP Modules (eQEP1/2)
      6. 6.2.6  Enhanced Analog-to-Digital Converter (ADC) Module
        1. 6.2.6.1 ADC Connections if the ADC Is Not Used
        2. 6.2.6.2 ADC Registers
      7. 6.2.7  Enhanced Controller Area Network (eCAN) Modules (eCAN-A and eCAN-B)
      8. 6.2.8  Serial Communications Interface (SCI) Modules (SCI-A, SCI-B)
      9. 6.2.9  Serial Peripheral Interface (SPI) Modules (SPI-A, SPI-B, SPI-C, SPI-D)
      10. 6.2.10 Inter-Integrated Circuit (I2C)
      11. 6.2.11 GPIO MUX
    3. 6.3 Memory Maps
    4. 6.4 Register Map
      1. 6.4.1 Device Emulation Registers
    5. 6.5 Interrupts
      1. 6.5.1 External Interrupts
    6. 6.6 System Control
      1. 6.6.1 OSC and PLL Block
        1. 6.6.1.1 External Reference Oscillator Clock Option
        2. 6.6.1.2 PLL-Based Clock Module
        3. 6.6.1.3 Loss of Input Clock
      2. 6.6.2 Watchdog Block
    7. 6.7 Low-Power Modes Block
  7. 7Applications, Implementation, and Layout
    1. 7.1 TI Design or Reference Design
  8. 8デバイスおよびドキュメントのサポート
    1. 8.1 はじめに
    2. 8.2 デバイスおよび開発ツールの項目表記
    3. 8.3 ツールとソフトウェア
    4. 8.4 ドキュメントのサポート
    5. 8.5 関連リンク
    6. 8.6 Community Resources
    7. 8.7 商標
    8. 8.8 静電気放電に関する注意事項
    9. 8.9 Glossary
  9. 9メカニカル、パッケージ、および注文情報
    1. 9.1 パッケージ情報

パッケージ・オプション

デバイスごとのパッケージ図は、PDF版データシートをご参照ください。

メカニカル・データ(パッケージ|ピン)
  • PZ|100
  • NMF|100
サーマルパッド・メカニカル・データ
発注情報

Interrupts

Figure 6-23 shows how the various interrupt sources are multiplexed within the 280x devices.

Eight PIE block interrupts are grouped into one CPU interrupt. In total, 12 CPU interrupt groups, with 8 interrupts per group equals 96 possible interrupts. On the 280x, 43 of these are used by peripherals as shown in Table 6-28.

The TRAP #VectorNumber instruction transfers program control to the interrupt service routine corresponding to the vector specified. TRAP #0 attempts to transfer program control to the address pointed to by the reset vector. The PIE vector table does not, however, include a reset vector. Therefore, TRAP #0 should not be used when the PIE is enabled. Doing so will result in undefined behavior.

When the PIE is enabled, TRAP #1 through TRAP #12 will transfer program control to the interrupt service routine corresponding to the first vector within the PIE group. For example: TRAP #1 fetches the vector from INT1.1, TRAP #2 fetches the vector from INT2.1 and so forth.

TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801 TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015 int_pie_prs230.gifFigure 6-23 External and PIE Interrupt Sources
TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801 TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015 muxint_prs230.gifFigure 6-24 Multiplexing of Interrupts Using the PIE Block

Table 6-28 PIE Peripheral Interrupts(1)

CPU INTERRUPTS PIE INTERRUPTS
INTx.8 INTx.7 INTx.6 INTx.5 INTx.4 INTx.3 INTx.2 INTx.1
INT1 WAKEINT
(LPM/WD)
TINT0
(TIMER 0)
ADCINT(2)
(ADC)
XINT2 XINT1 Reserved SEQ2INT
(ADC)
SEQ1INT
(ADC)
INT2 Reserved Reserved EPWM6_TZINT
(ePWM6)
EPWM5_TZINT
(ePWM5)
EPWM4_TZINT
(ePWM4)
EPWM3_TZINT
(ePWM3)
EPWM2_TZINT
(ePWM2)
EPWM1_TZINT
(ePWM1)
INT3 Reserved Reserved EPWM6_INT
(ePWM6)
EPWM5_INT
(ePWM5)
EPWM4_INT
(ePWM4)
EPWM3_INT
(ePWM3)
EPWM2_INT
(ePWM2)
EPWM1_INT
(ePWM1)
INT4 Reserved Reserved Reserved Reserved ECAP4_INT
(eCAP4)
ECAP3_INT
(eCAP3)
ECAP2_INT
(eCAP2)
ECAP1_INT
(eCAP1)
INT5 Reserved Reserved Reserved Reserved Reserved Reserved EQEP2_INT
(eQEP2)
EQEP1_INT
(eQEP1)
INT6 SPITXINTD
(SPI-D)
SPIRXINTD
(SPI-D)
SPITXINTC
(SPI-C)
SPIRXINTC
(SPI-C)
SPITXINTB
(SPI-B)
SPIRXINTB
(SPI-B)
SPITXINTA
(SPI-A)
SPIRXINTA
(SPI-A)
INT7 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
INT8 Reserved Reserved Reserved Reserved Reserved Reserved I2CINT2A
(I2C-A)
I2CINT1A
(I2C-A)
INT9 ECAN1_INTB
(CAN-B)
ECAN0_INTB
(CAN-B)
ECAN1_INTA
(CAN-A)
ECAN0_INTA
(CAN-A)
SCITXINTB
(SCI-B)
SCIRXINTB
(SCI-B)
SCITXINTA
(SCI-A)
SCIRXINTA
(SCI-A)
INT10 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
INT11 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
INT12 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Out of the 96 possible interrupts, 43 interrupts are currently used. The remaining interrupts are reserved for future devices. These interrupts can be used as software interrupts if they are enabled at the PIEIFRx level, provided none of the interrupts within the group is being used by a peripheral. Otherwise, interrupts coming in from peripherals may be lost by accidentally clearing their flag while modifying the PIEIFR. To summarize, there are two safe cases when the reserved interrupts could be used as software interrupts:
1) No peripheral within the group is asserting interrupts.
2) No peripheral interrupts are assigned to the group (example PIE group 12).
ADCINT is sourced as a logical "OR" of both the SEQ1INT and SEQ2INT signals. This is to support backward compatibility with the implementation found on the TMS320F281x series of devices, where SEQ1INT and SEQ2INT did not exist, only ADCINT. For new implementations, TI recommends using SEQ1INT and SEQ2INT and not enabling ADCINT in the PIEIER register.

Table 6-29 PIE Configuration and Control Registers

NAME ADDRESS SIZE (x16) DESCRIPTION(1)
PIECTRL 0x0CE0 1 PIE, Control Register
PIEACK 0x0CE1 1 PIE, Acknowledge Register
PIEIER1 0x0CE2 1 PIE, INT1 Group Enable Register
PIEIFR1 0x0CE3 1 PIE, INT1 Group Flag Register
PIEIER2 0x0CE4 1 PIE, INT2 Group Enable Register
PIEIFR2 0x0CE5 1 PIE, INT2 Group Flag Register
PIEIER3 0x0CE6 1 PIE, INT3 Group Enable Register
PIEIFR3 0x0CE7 1 PIE, INT3 Group Flag Register
PIEIER4 0x0CE8 1 PIE, INT4 Group Enable Register
PIEIFR4 0x0CE9 1 PIE, INT4 Group Flag Register
PIEIER5 0x0CEA 1 PIE, INT5 Group Enable Register
PIEIFR5 0x0CEB 1 PIE, INT5 Group Flag Register
PIEIER6 0x0CEC 1 PIE, INT6 Group Enable Register
PIEIFR6 0x0CED 1 PIE, INT6 Group Flag Register
PIEIER7 0x0CEE 1 PIE, INT7 Group Enable Register
PIEIFR7 0x0CEF 1 PIE, INT7 Group Flag Register
PIEIER8 0x0CF0 1 PIE, INT8 Group Enable Register
PIEIFR8 0x0CF1 1 PIE, INT8 Group Flag Register
PIEIER9 0x0CF2 1 PIE, INT9 Group Enable Register
PIEIFR9 0x0CF3 1 PIE, INT9 Group Flag Register
PIEIER10 0x0CF4 1 PIE, INT10 Group Enable Register
PIEIFR10 0x0CF5 1 PIE, INT10 Group Flag Register
PIEIER11 0x0CF6 1 PIE, INT11 Group Enable Register
PIEIFR11 0x0CF7 1 PIE, INT11 Group Flag Register
PIEIER12 0x0CF8 1 PIE, INT12 Group Enable Register
PIEIFR12 0x0CF9 1 PIE, INT12 Group Flag Register
Reserved 0x0CFA –
0x0CFF
6 Reserved
The PIE configuration and control registers are not protected by EALLOW mode. The PIE vector table is protected.