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ABSTRACT
This application report describes the implementation of the system management bus (SMBus) using the
MSP430™ hardware I2C peripheral. SMBus is used as a communication link for smart batteries, power-
related devices, and a wide variety of other system devices. This report includes the support for master
and slave protocols in a SMBus communication system.

The source code described in this application report is available from http://www.ti.com/lit/zip/slaa249. For
additional help enabling communication with SMBus devices, see the MSP430 SMBUS Library.
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1 Introduction
SMBus is a two-wire serial interface based on the principles of I2C. The two lines are serial clock (SCL)
and serial data (SDA), which are tied to VCC using pullup resistors. The devices communicating on this bus
can drive the lines low or release them to high impedance. This connection is a wired-AND configuration.
Multiple I2C or SMBus devices can be connected on the bus, but pins of the MSP430 MCU should not be
pulled above VCC. For example, if the VCC of the MSP430 MCU is at 3 V, then all devices on the bus must
be pulled up to only 3 V.

A device performing data transfers on the bus can be considered as a master or a slave. Each master and
slave device can either be a transmitter (send data) or a receiver (receive data), and the communication
on the bus is always initiated by the master by providing a valid start condition and the SCL signal.

Multiple master and slave devices may be connected on the bus, but only one device may master the bus
during a data transfer. Since more than one master may simultaneously attempt to take control of the bus
and start a transmission, the I2C/SMBus protocol provides an arbitration mechanism that relies on the
wired-AND connection of all devices to the bus. A master device that generates a logic high on the SDA
bus loses arbitration to a master that generates a logic low on the data bus. The MSP430 MCU master
transmitter that loses arbitration switches to slave receiver mode and sets the arbitration lost flag, ALIFG.
[1] Each device on the bus has a unique 7-bit address, which allows a total of 128 devices to be
connected on the bus. Some addresses are dedicated SMBus addresses that are reserved and must not
be assigned to any SMBus device; for example, the SMBus Alert response address (0001 100b). [2]

2 SMBus Protocols
The different communication protocols can be found in the System Management Bus specification. [2] The
communication always begins with a valid start condition from the master followed by a 7-bit slave
address and the read/write bit that defines the master as a receiver /transmitter respectively, except in the
quick command protocol. In quick command protocol, the read/write bit is used to turn a device on/off or
enable/disable a low-power mode. The read/write bit is followed by an Acknowledge from the slave. This
is followed by 8-bit transfers that may be data, command, or Packet Error Check (PEC). An acknowledge
is sent by the receiver after each byte is received. To end the transfer, a valid stop condition is initiated by
the master.

The SMBus standard introduced the Packet Error Checking (PEC) mechanism to improve communication
reliability. The PEC is a CRC-8 error check byte, calculated on all message bytes except the ACK, NACK,
START, and STOP bits. The PEC is added to the message by the transmitter. The PEC in this application
report is calculated using a cyclic redundancy check (CRC-8) polynomial, C(x) = x8 + x2 + x1+ 1 and is
calculated bit by bit in the order of bits received. See the SMBus specification for details on the PEC.

Another optional signal defined in the SMBus standard is the SMBALERT signal. This pin is also pulled up
to VCC through a resistor. A slave device can signal the master through SMBALERT to request
communication with the master. The master acknowledges such a slave device by sending the SMBus
alert response address (0001 1001b) on the bus. The slave device acknowledges this Alert command by
returning its 7-bit slave address on the bus and the ALERT signal becomes inactive. The eighth bit can be
a 0 or 1. If multiple devices pull the SMBALERT signal low, the lowest address device wins arbitration,
and its signal becomes inactive after the corresponding slave address byte is put on the bus.

The SMBus operating frequency range is 10 kHz to 100 kHz. Because a minimum speed needs to be
maintained in this communication, a slave can hold SCL low for only a specified amount of time before the
master times out and issues a stop condition. A slave can hold the clock low for 25 ms before timeout
occurs. After this time, the slave must be able to receive a new start condition within 35 ms. Additional
timing information can be found on the SMBus specification site (http://www.smbus.org). [2]

http://www.ti.com
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3 Software
The firmware used to test this application is attached in a zip folder (http://www.ti.com/lit/zip/slaa249)
along with this application report. Code coverage for this application report is supported in C and
assembly using IAR and Code Composer Essentials.

The firmware was tested using the MSP430F169 device and a MSP-FET430P140 target board as shown
in Figure 1.

Figure 1. MSP430F169 Master-Slave SMBus Communication

4 Example Code

4.1 Example 1

fet140_SMB_mstr.c(.s43)
The master is the receiver and detects a timeout due to the slave holding the clock line low for a period
greater than "timeout". TimerA0 is used to detect this timeout period, and the master issues a stop
condition at the conclusion of the byte transfer currently in progress.

The hardware I2C has the built-in I2CBB (Bus Busy) bit that is set after a start condition. I2CBB and
I2CSCLLOW may be used to determine how long SCL has been held low after a start condition. The
corresponding slave code source file is fet140_SMB_slav.c.

fet140_SMB_slav.c(.s43)
This is the slave code source for the master code in fet140_SMB_mstr.c. TimerA0 is used to generate the
delay between consecutive data bytes. This simulates a delay in data handling causing SCL to be held
low during that period, exercising the timeout features of the SMBus protocol. Data is transmitted inside
the I2C_ISR.

4.2 Example 2

fet140_SMB_mstr_slvrst.c(.s43)
In this example the master device issues a start condition and waits in LPM0 for data reception.

fet140_SMB_slav_slvrst.c(.s43)
This is the slave code source used with fet140_SMB_mstr_slvrst.c (Master). The slave resets the
communication port upon detecting a timeout. TimerA1 is used to detect the 25-ms timeout. TimerA2 is
used to cause delay in data transfer to hold SCL low. TimerB0 is used as the capture input to detect SCL
transitions to start/stop TimerA0 to detect timeout. SCL (Pin 31) is tied to TB0 (Pin 36) to detect
transitions.
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4.3 Example 3

fet140_SMB_mstr_PEC.c
This is the master code source that reads one data byte and the corresponding PEC byte from the slave.
It performs a PEC using a CRC-8 algorithm on the received bytes and slave address.

fet140_SMB_slave_PEC.c
This is the slave code source used with fet140_SMB_mstr_PEC.c. The example writes one byte of data
and one byte of PEC from the slave. The PEC byte is calculated using a CRC-8 algorithm on the
transmitted byte and slave address.

4.4 Example 4
A test is also performed on the MSP430F169 device and SMBus-compatible TMP175 device. Pullup
resistors (10 kΩ) are used on the SCL, SDA, and ALERT lines, as shown in Figure 2.

fet140_SMB_tmp175.c
This is the master code source used to communicate with the TMP175 digital temperature sensor. [3] The
TMP175 is a SMBus-compatible slave device. This example sets up the TMP175 in 9-bit temperature
mode with interrupt (TM = 1) to test the SMBALERT function. The master reads the temperature from the
TMP175. Because the TMP175 is in the interrupt mode, the ALERT pin becomes active when the
temperature equals or exceeds T(high) or equals or falls below T(low). The ALERT pin remains active until
the device successfully responds to the SMBus alert response address. The alert pin is pulled up to VCC
through a resistor. This pin is tied to P2.0 (Pin 20) of the MSP430F169. P2.0 is setup to detect a falling
edge transition and respond with the SMBus Alert response command.

TimerA0 is set to have the master periodically send out the start condition to request a new temperature
reading from the TMP175.

Figure 2. MSP430F169 Master-TMP175 Slave SMBus Communication

5 SMBus Using the USCI I2C Peripheral
This application report has been expanded for SMBus implementation using the newer USCI I2C module
on the latest 2xx, 4xx, and 5xx families of devices. This module provides automatic clock activation for use
with low-power modes when the module needs the clock for an I2C transaction. See the appropriate
device data sheets and family user's guides for more details.

The tests on example 1 through 3 were performed using a MSP430F2619 and TI target board (MSP-
TS430PM64). See the MSP430 Hardware Tools User's Guide for a schematic of the board.

The following codes (available from http://www.ti.com/lit/zip/slaa249) are used to test this implementation
and the newer features and code enhancements are highlighted in each example mentioned below (as
applicable).
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5.1 Example 1a: Timeout Implementation for Master/Slave on a MSP430F2xx Device

msp430x26x_SMB_MST_timeout.c
The master transmits one byte and receives two bytes from the slave. The master detects a timeout due
to the slave holding the clock line low for a period greater than "timeout", which is defined in the SMBUS
specification. TimerA0 (clocked by SMCLK/DCO at 1.1 MHz) is used to detect this timeout period (as
defined by CCR0 in the code), and the master issues a stop condition when the timeout is detected. An
LED is toggled upon a timeout condition.

The corresponding slave code source file is msp430x26x_SMB_SLV_timeout.c.

This code simulates the READ WORD protocol of the SMBus specification.

msp430x26x_SMB_SLV_timeout.c
This is the slave code source for the master code in msp430x26x_SMB_MST_timeout.c. The slave
receives one byte and transmits two bytes to the master. After the first byte is transmitted, the transmit
interrupt enable (UCBxTXIE) is disabled to prevent the slave from sending the second byte and causing
the clock line (SCL) to be held low during that period exercising the timeout features of the SMBus
protocol. This creates a timeout condition. The master and slave on detecting the timeout proceed to reset
the USCI logic allowing the I2C bus to be released. The functionality following a timeout can be varied as
required by the user. On reset of the USCI module, the slave stays in LPM4 waiting for an instruction from
the master, making use of the automatic clock activation feature on this device. In order to transmit and
receive bytes without simulating a timeout, the user can comment out the following line in the TX ISR in
the example:
// IE2 &= ~UCB0TXIE; // Read the comment below

This is also documented in the code.

5.2 Example 1b: Timeout Implementation for Master/Slave on a MSP430F5xx Device
This example demonstrates SMBus READ WORD protocol using the USCI module. The USCI module on
the MSP4305xx device family uses a shared interrupt vector scheme that combines the transmit, receive,
and status interrupts into a single interrupt vector compared to two interrupt vectors on the 2xx USCI
module. A MSP430F5438 device and TI target board (MSP-TS430PZ5x100) was used to test this. See
the MSP430 Hardware Tools User's Guide for a schematic of the board.

This code is tested with the SMBus compatible BQ27541 device and a MSP430 as a Slave.

msp430x5xx_SMB_MST_timeout.c
The master transmits one byte and receives two bytes from the slave. The master detects a timeout due
to the slave holding the clock line low for a period greater than "timeout". TimerA0 is used to detect this
timeout period, and the master issues a stop condition when the timeout is detected. An LED is toggled
upon a timeout condition.

The corresponding slave code source file is msp430x5xx_SMB_SLV_timeout.c.

This code simulates the READ WORD protocol of the SMBus specification.

msp430x5xx_SMB_SLV_timeout.c
This is the slave code source for the master code in msp430x26x_SMB_MST_timeout.c. The slave
receives one byte and transmits two bytes to the master. After the first byte is transmitted, the transmit
interrupt enable (UCxxTXIE) is disabled to prevent the slave from sending the second byte and causing
the clock line (SCL) to be held low during that period, exercising the timeout features of the SMBus
protocol. This creates a timeout condition that is detected by the master, causing the master and slave to
reset (or perform any other desired function). An LED is toggled upon a timeout condition. The slave stays
in LPM4 waiting for an instruction from the master, making use of the automatic clock activation feature on
this device. To transmit and receive bytes in a normal fashion (by avoiding the timeout condition), the user
can comment out the following line in the TX ISR from this code:
// IE2 &= ~UCB0TXIE; // Read the comment below

This is also documented in the code.

http://www.ti.com
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5.3 Example 2: Implementation of CRC-8 PEC

msp430x26x_SMB_mstr_PEC.c
This is the master code source that reads one data byte and the corresponding PEC byte from the slave.
It performs a PEC using a CRC-8 algorithm on the received bytes (Data byte and CRC from slave) and
slave address. An improved and more efficient CRC-8 algorithm is used. [4]

msp430x26x_SMB_slave_PEC.c
This is the slave code source used with msp430x26x_SMB_mstr_PEC.c. The example writes one byte of
data and one byte of PEC from the slave. The PEC byte is calculated using a CRC-8 algorithm on the
transmitted byte and slave address. An improved and more efficient CRC-8 algorithm is used.

5.4 Example 3: Implementation With SMBUS Slave TMP175
This example is implemented on the MSP430F2619 device and SMBus-compatible TMP175 digital
temperature sensor device. Pullup resistors (10 kΩ) are used on the SCL, SDA, and ALERT lines, as
shown in Figure 2.

msp430x26x_SMB_tmp175.c
This is the master code source used to communicate with the TMP175 digital temperature sensor. [3] The
TMP175 is a SMBus-compatible slave device. This example sets up the TMP175 in 9-bit temperature
mode with interrupt (TM = 1) to test the SMBALERT function. The master reads the temperature from the
TMP175. Since the TMP175 is in the interrupt mode, the ALERT pin becomes active when the
temperature equals or exceeds T(high) or equals or falls below T(low). See the TMP175 data sheet for
more details. [3] The ALERT pin remains active until the device successfully responds to the SMBus alert
response address. The alert pin is pulled up to VCC through a resistor. This pin is tied to P2.0 of the
MSP430F2619. P2.0 is set to detect a falling edge transition, and the MSP430 master responds by
sending the Alert Response Address (ARA) on the bus. The slave device that pulled the alert line low
responds by sending its device address as the data byte. The master then receives the slave device
address, determines which slave issued the alert, and proceeds accordingly. This portion has not been
implemented in the example code but the I2C transaction framework is provided for the user. See
reference [2] for more details on Alert Response Address.

TimerA0 (clocked by SMCLK/DCO at 1.1 MHz) is set to have the master periodically send out the start
condition to request a new temperature reading from the TMP175.

6 Conclusion
The hardware I2C peripheral and its built-in features help the MSP430 MCU to easily adopt SMBus
protocols. The ultra low-power operation of the MSP430 MCU is useful when interfacing with power
management devices such as the smart battery systems used in notebook computers, cameras, cellular
phones, or other portable electronic devices on a SMBus network.
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