
1SLAA249B–April 2005–Revised September 2018
Submit Documentation Feedback

Copyright © 2005–2018, Texas Instruments Incorporated

Implementing SMBus Using MSP430™ Hardware I2C

Application Report
SLAA249B–April 2005–Revised September 2018

Implementing SMBus Using MSP430™ Hardware I2C

Harman Grewal .. MSP430

ABSTRACT
This application report describes the implementation of the system management bus (SMBus) using the
MSP430™ hardware I2C peripheral. SMBus is used as a communication link for smart batteries, power-
related devices, and a wide variety of other system devices. This report includes the support for master
and slave protocols in a SMBus communication system.

The source code described in this application report is available from http://www.ti.com/lit/zip/slaa249. For
additional help enabling communication with SMBus devices, see the MSP430 SMBUS Library.

Contents
1 Introduction ... 2
2 SMBus Protocols... 2
3 Software... 3
4 Example Code.. 3

4.1 Example 1 ... 3
4.2 Example 2 ... 3
4.3 Example 3 ... 4
4.4 Example 4 ... 4

5 SMBus Using the USCI I2C Peripheral.. 4
5.1 Example 1a: Timeout Implementation for Master/Slave on a MSP430F2xx Device....................... 5
5.2 Example 1b: Timeout Implementation for Master/Slave on a MSP430F5xx Device....................... 5
5.3 Example 2: Implementation of CRC-8 PEC ... 6
5.4 Example 3: Implementation With SMBUS Slave TMP175 .. 6

6 Conclusion .. 6
7 References ... 6

List of Figures

1 MSP430F169 Master-Slave SMBus Communication ... 3
2 MSP430F169 Master-TMP175 Slave SMBus Communication .. 4

Trademarks
MSP430 is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA249B
http://www.ti.com/lit/zip/slaa249
http://www.ti.com/tool/msp430-smbus

Introduction www.ti.com

2 SLAA249B–April 2005–Revised September 2018
Submit Documentation Feedback

Copyright © 2005–2018, Texas Instruments Incorporated

Implementing SMBus Using MSP430™ Hardware I2C

1 Introduction
SMBus is a two-wire serial interface based on the principles of I2C. The two lines are serial clock (SCL)
and serial data (SDA), which are tied to VCC using pullup resistors. The devices communicating on this bus
can drive the lines low or release them to high impedance. This connection is a wired-AND configuration.
Multiple I2C or SMBus devices can be connected on the bus, but pins of the MSP430 MCU should not be
pulled above VCC. For example, if the VCC of the MSP430 MCU is at 3 V, then all devices on the bus must
be pulled up to only 3 V.

A device performing data transfers on the bus can be considered as a master or a slave. Each master and
slave device can either be a transmitter (send data) or a receiver (receive data), and the communication
on the bus is always initiated by the master by providing a valid start condition and the SCL signal.

Multiple master and slave devices may be connected on the bus, but only one device may master the bus
during a data transfer. Since more than one master may simultaneously attempt to take control of the bus
and start a transmission, the I2C/SMBus protocol provides an arbitration mechanism that relies on the
wired-AND connection of all devices to the bus. A master device that generates a logic high on the SDA
bus loses arbitration to a master that generates a logic low on the data bus. The MSP430 MCU master
transmitter that loses arbitration switches to slave receiver mode and sets the arbitration lost flag, ALIFG.
[1] Each device on the bus has a unique 7-bit address, which allows a total of 128 devices to be
connected on the bus. Some addresses are dedicated SMBus addresses that are reserved and must not
be assigned to any SMBus device; for example, the SMBus Alert response address (0001 100b). [2]

2 SMBus Protocols
The different communication protocols can be found in the System Management Bus specification. [2] The
communication always begins with a valid start condition from the master followed by a 7-bit slave
address and the read/write bit that defines the master as a receiver /transmitter respectively, except in the
quick command protocol. In quick command protocol, the read/write bit is used to turn a device on/off or
enable/disable a low-power mode. The read/write bit is followed by an Acknowledge from the slave. This
is followed by 8-bit transfers that may be data, command, or Packet Error Check (PEC). An acknowledge
is sent by the receiver after each byte is received. To end the transfer, a valid stop condition is initiated by
the master.

The SMBus standard introduced the Packet Error Checking (PEC) mechanism to improve communication
reliability. The PEC is a CRC-8 error check byte, calculated on all message bytes except the ACK, NACK,
START, and STOP bits. The PEC is added to the message by the transmitter. The PEC in this application
report is calculated using a cyclic redundancy check (CRC-8) polynomial, C(x) = x8 + x2 + x1+ 1 and is
calculated bit by bit in the order of bits received. See the SMBus specification for details on the PEC.

Another optional signal defined in the SMBus standard is the SMBALERT signal. This pin is also pulled up
to VCC through a resistor. A slave device can signal the master through SMBALERT to request
communication with the master. The master acknowledges such a slave device by sending the SMBus
alert response address (0001 1001b) on the bus. The slave device acknowledges this Alert command by
returning its 7-bit slave address on the bus and the ALERT signal becomes inactive. The eighth bit can be
a 0 or 1. If multiple devices pull the SMBALERT signal low, the lowest address device wins arbitration,
and its signal becomes inactive after the corresponding slave address byte is put on the bus.

The SMBus operating frequency range is 10 kHz to 100 kHz. Because a minimum speed needs to be
maintained in this communication, a slave can hold SCL low for only a specified amount of time before the
master times out and issues a stop condition. A slave can hold the clock low for 25 ms before timeout
occurs. After this time, the slave must be able to receive a new start condition within 35 ms. Additional
timing information can be found on the SMBus specification site (http://www.smbus.org). [2]

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA249B
http://www.smbus.org

VCC

10kΩ

SDA

SCL

GND

MSP430F169
SMBus Master

Receiver

MSP430F169
SMBus Slave
Transmitter

P3.1

P3.3

VCC

10kΩ

VCC

GND

P3.1

P3.3

www.ti.com Software

3SLAA249B–April 2005–Revised September 2018
Submit Documentation Feedback

Copyright © 2005–2018, Texas Instruments Incorporated

Implementing SMBus Using MSP430™ Hardware I2C

3 Software
The firmware used to test this application is attached in a zip folder (http://www.ti.com/lit/zip/slaa249)
along with this application report. Code coverage for this application report is supported in C and
assembly using IAR and Code Composer Essentials.

The firmware was tested using the MSP430F169 device and a MSP-FET430P140 target board as shown
in Figure 1.

Figure 1. MSP430F169 Master-Slave SMBus Communication

4 Example Code

4.1 Example 1

fet140_SMB_mstr.c(.s43)
The master is the receiver and detects a timeout due to the slave holding the clock line low for a period
greater than "timeout". TimerA0 is used to detect this timeout period, and the master issues a stop
condition at the conclusion of the byte transfer currently in progress.

The hardware I2C has the built-in I2CBB (Bus Busy) bit that is set after a start condition. I2CBB and
I2CSCLLOW may be used to determine how long SCL has been held low after a start condition. The
corresponding slave code source file is fet140_SMB_slav.c.

fet140_SMB_slav.c(.s43)
This is the slave code source for the master code in fet140_SMB_mstr.c. TimerA0 is used to generate the
delay between consecutive data bytes. This simulates a delay in data handling causing SCL to be held
low during that period, exercising the timeout features of the SMBus protocol. Data is transmitted inside
the I2C_ISR.

4.2 Example 2

fet140_SMB_mstr_slvrst.c(.s43)
In this example the master device issues a start condition and waits in LPM0 for data reception.

fet140_SMB_slav_slvrst.c(.s43)
This is the slave code source used with fet140_SMB_mstr_slvrst.c (Master). The slave resets the
communication port upon detecting a timeout. TimerA1 is used to detect the 25-ms timeout. TimerA2 is
used to cause delay in data transfer to hold SCL low. TimerB0 is used as the capture input to detect SCL
transitions to start/stop TimerA0 to detect timeout. SCL (Pin 31) is tied to TB0 (Pin 36) to detect
transitions.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA249B
http://www.ti.com/lit/zip/slaa249

VCC

10kΩ

SDA

SCL

MSP430F169
SMBus Master

Receiver

TMP175
SMBus Slave
Transmitter

P3.1

P3.3

VCC

VCC

GND

10kΩ 10kΩ

P2.0 ALERTGND

Example Code www.ti.com

4 SLAA249B–April 2005–Revised September 2018
Submit Documentation Feedback

Copyright © 2005–2018, Texas Instruments Incorporated

Implementing SMBus Using MSP430™ Hardware I2C

4.3 Example 3

fet140_SMB_mstr_PEC.c
This is the master code source that reads one data byte and the corresponding PEC byte from the slave.
It performs a PEC using a CRC-8 algorithm on the received bytes and slave address.

fet140_SMB_slave_PEC.c
This is the slave code source used with fet140_SMB_mstr_PEC.c. The example writes one byte of data
and one byte of PEC from the slave. The PEC byte is calculated using a CRC-8 algorithm on the
transmitted byte and slave address.

4.4 Example 4
A test is also performed on the MSP430F169 device and SMBus-compatible TMP175 device. Pullup
resistors (10 kΩ) are used on the SCL, SDA, and ALERT lines, as shown in Figure 2.

fet140_SMB_tmp175.c
This is the master code source used to communicate with the TMP175 digital temperature sensor. [3] The
TMP175 is a SMBus-compatible slave device. This example sets up the TMP175 in 9-bit temperature
mode with interrupt (TM = 1) to test the SMBALERT function. The master reads the temperature from the
TMP175. Because the TMP175 is in the interrupt mode, the ALERT pin becomes active when the
temperature equals or exceeds T(high) or equals or falls below T(low). The ALERT pin remains active until
the device successfully responds to the SMBus alert response address. The alert pin is pulled up to VCC
through a resistor. This pin is tied to P2.0 (Pin 20) of the MSP430F169. P2.0 is setup to detect a falling
edge transition and respond with the SMBus Alert response command.

TimerA0 is set to have the master periodically send out the start condition to request a new temperature
reading from the TMP175.

Figure 2. MSP430F169 Master-TMP175 Slave SMBus Communication

5 SMBus Using the USCI I2C Peripheral
This application report has been expanded for SMBus implementation using the newer USCI I2C module
on the latest 2xx, 4xx, and 5xx families of devices. This module provides automatic clock activation for use
with low-power modes when the module needs the clock for an I2C transaction. See the appropriate
device data sheets and family user's guides for more details.

The tests on example 1 through 3 were performed using a MSP430F2619 and TI target board (MSP-
TS430PM64). See the MSP430 Hardware Tools User's Guide for a schematic of the board.

The following codes (available from http://www.ti.com/lit/zip/slaa249) are used to test this implementation
and the newer features and code enhancements are highlighted in each example mentioned below (as
applicable).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA249B
http://www.ti.com/lit/pdf/SLAU278
http://www.ti.com/lit/zip/slaa249

www.ti.com SMBus Using the USCI I2C Peripheral

5SLAA249B–April 2005–Revised September 2018
Submit Documentation Feedback

Copyright © 2005–2018, Texas Instruments Incorporated

Implementing SMBus Using MSP430™ Hardware I2C

5.1 Example 1a: Timeout Implementation for Master/Slave on a MSP430F2xx Device

msp430x26x_SMB_MST_timeout.c
The master transmits one byte and receives two bytes from the slave. The master detects a timeout due
to the slave holding the clock line low for a period greater than "timeout", which is defined in the SMBUS
specification. TimerA0 (clocked by SMCLK/DCO at 1.1 MHz) is used to detect this timeout period (as
defined by CCR0 in the code), and the master issues a stop condition when the timeout is detected. An
LED is toggled upon a timeout condition.

The corresponding slave code source file is msp430x26x_SMB_SLV_timeout.c.

This code simulates the READ WORD protocol of the SMBus specification.

msp430x26x_SMB_SLV_timeout.c
This is the slave code source for the master code in msp430x26x_SMB_MST_timeout.c. The slave
receives one byte and transmits two bytes to the master. After the first byte is transmitted, the transmit
interrupt enable (UCBxTXIE) is disabled to prevent the slave from sending the second byte and causing
the clock line (SCL) to be held low during that period exercising the timeout features of the SMBus
protocol. This creates a timeout condition. The master and slave on detecting the timeout proceed to reset
the USCI logic allowing the I2C bus to be released. The functionality following a timeout can be varied as
required by the user. On reset of the USCI module, the slave stays in LPM4 waiting for an instruction from
the master, making use of the automatic clock activation feature on this device. In order to transmit and
receive bytes without simulating a timeout, the user can comment out the following line in the TX ISR in
the example:
// IE2 &= ~UCB0TXIE; // Read the comment below

This is also documented in the code.

5.2 Example 1b: Timeout Implementation for Master/Slave on a MSP430F5xx Device
This example demonstrates SMBus READ WORD protocol using the USCI module. The USCI module on
the MSP4305xx device family uses a shared interrupt vector scheme that combines the transmit, receive,
and status interrupts into a single interrupt vector compared to two interrupt vectors on the 2xx USCI
module. A MSP430F5438 device and TI target board (MSP-TS430PZ5x100) was used to test this. See
the MSP430 Hardware Tools User's Guide for a schematic of the board.

This code is tested with the SMBus compatible BQ27541 device and a MSP430 as a Slave.

msp430x5xx_SMB_MST_timeout.c
The master transmits one byte and receives two bytes from the slave. The master detects a timeout due
to the slave holding the clock line low for a period greater than "timeout". TimerA0 is used to detect this
timeout period, and the master issues a stop condition when the timeout is detected. An LED is toggled
upon a timeout condition.

The corresponding slave code source file is msp430x5xx_SMB_SLV_timeout.c.

This code simulates the READ WORD protocol of the SMBus specification.

msp430x5xx_SMB_SLV_timeout.c
This is the slave code source for the master code in msp430x26x_SMB_MST_timeout.c. The slave
receives one byte and transmits two bytes to the master. After the first byte is transmitted, the transmit
interrupt enable (UCxxTXIE) is disabled to prevent the slave from sending the second byte and causing
the clock line (SCL) to be held low during that period, exercising the timeout features of the SMBus
protocol. This creates a timeout condition that is detected by the master, causing the master and slave to
reset (or perform any other desired function). An LED is toggled upon a timeout condition. The slave stays
in LPM4 waiting for an instruction from the master, making use of the automatic clock activation feature on
this device. To transmit and receive bytes in a normal fashion (by avoiding the timeout condition), the user
can comment out the following line in the TX ISR from this code:
// IE2 &= ~UCB0TXIE; // Read the comment below

This is also documented in the code.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA249B
http://www.ti.com/lit/pdf/SLAU278

SMBus Using the USCI I2C Peripheral www.ti.com

6 SLAA249B–April 2005–Revised September 2018
Submit Documentation Feedback

Copyright © 2005–2018, Texas Instruments Incorporated

Implementing SMBus Using MSP430™ Hardware I2C

5.3 Example 2: Implementation of CRC-8 PEC

msp430x26x_SMB_mstr_PEC.c
This is the master code source that reads one data byte and the corresponding PEC byte from the slave.
It performs a PEC using a CRC-8 algorithm on the received bytes (Data byte and CRC from slave) and
slave address. An improved and more efficient CRC-8 algorithm is used. [4]

msp430x26x_SMB_slave_PEC.c
This is the slave code source used with msp430x26x_SMB_mstr_PEC.c. The example writes one byte of
data and one byte of PEC from the slave. The PEC byte is calculated using a CRC-8 algorithm on the
transmitted byte and slave address. An improved and more efficient CRC-8 algorithm is used.

5.4 Example 3: Implementation With SMBUS Slave TMP175
This example is implemented on the MSP430F2619 device and SMBus-compatible TMP175 digital
temperature sensor device. Pullup resistors (10 kΩ) are used on the SCL, SDA, and ALERT lines, as
shown in Figure 2.

msp430x26x_SMB_tmp175.c
This is the master code source used to communicate with the TMP175 digital temperature sensor. [3] The
TMP175 is a SMBus-compatible slave device. This example sets up the TMP175 in 9-bit temperature
mode with interrupt (TM = 1) to test the SMBALERT function. The master reads the temperature from the
TMP175. Since the TMP175 is in the interrupt mode, the ALERT pin becomes active when the
temperature equals or exceeds T(high) or equals or falls below T(low). See the TMP175 data sheet for
more details. [3] The ALERT pin remains active until the device successfully responds to the SMBus alert
response address. The alert pin is pulled up to VCC through a resistor. This pin is tied to P2.0 of the
MSP430F2619. P2.0 is set to detect a falling edge transition, and the MSP430 master responds by
sending the Alert Response Address (ARA) on the bus. The slave device that pulled the alert line low
responds by sending its device address as the data byte. The master then receives the slave device
address, determines which slave issued the alert, and proceeds accordingly. This portion has not been
implemented in the example code but the I2C transaction framework is provided for the user. See
reference [2] for more details on Alert Response Address.

TimerA0 (clocked by SMCLK/DCO at 1.1 MHz) is set to have the master periodically send out the start
condition to request a new temperature reading from the TMP175.

6 Conclusion
The hardware I2C peripheral and its built-in features help the MSP430 MCU to easily adopt SMBus
protocols. The ultra low-power operation of the MSP430 MCU is useful when interfacing with power
management devices such as the smart battery systems used in notebook computers, cameras, cellular
phones, or other portable electronic devices on a SMBus network.

7 References
1. MSP430x1xx Family User’s Guide
2. System Management Bus (SMBus) Specification, Version 2, Aug 2000
3. TMPx75 Temperature Sensor With I2C and SMBus Interface in Industry Standard LM75 Form Factor

and Pinout
4. CRC Implementation with MSP430 MCUs
5. MSP430 SMBUS Library

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA249B
http://www.ti.com/lit/pdf/SLAU049
http://www.ti.com/lit/pdf/SBOS288
http://www.ti.com/lit/pdf/SBOS288
http://www.ti.com/lit/pdf/SLAA221
http://www.ti.com/tool/msp430-smbus

www.ti.com Revision History

7SLAA249B–April 2005–Revised September 2018
Submit Documentation Feedback

Copyright © 2005–2018, Texas Instruments Incorporated

Revision History

Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from October 15, 2009 to September 25, 2018 .. Page

• Editorial changes throughout document.. 1
• Moved former Appendix A to Section 5 .. 4

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA249B

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

	Implementing SMBus Using MSP430™ Hardware I2C
	1 Introduction
	2 SMBus Protocols
	3 Software
	4 Example Code
	4.1 Example 1
	4.2 Example 2
	4.3 Example 3
	4.4 Example 4

	5 SMBus Using the USCI I2C Peripheral
	5.1 Example 1a: Timeout Implementation for Master/Slave on a MSP430F2xx Device
	5.2 Example 1b: Timeout Implementation for Master/Slave on a MSP430F5xx Device
	5.3 Example 2: Implementation of CRC-8 PEC
	5.4 Example 3: Implementation With SMBUS Slave TMP175

	6 Conclusion
	7 References

	Revision History
	Important Notice

