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Optimizing the switching frequency of 
ADSL power supplies

Introduction
DSL modems send their signals through a
twisted-pair telephone line. As the length of
this copper line increases, the high-frequency
signal becomes attenuated. The modem bit
rate starts decreasing after just a few thousand
feet. It continues to decrease with loop length,
out to a maximum loop length of about 3 miles,
where the connection becomes marginal.
Data rates as high as 8 Mb/s are achievable
with short loops but drop off to around 
100 kb/s with the longest loops. As the line
length exceeds 3 miles, the bandwidth
decreases and data throughput drops off
quickly. Transmission signal attenuation of 
80 to 90 dB is possible at these line lengths,
forcing the modem to implement noise reduc-
tion techniques that produce high signal-to-
noise ratios (SNRs), minimize crosstalk and
interference, and have large dynamic signal
ranges. The SNR measurement of the modem
has a trough at the power supply’s switching
frequency. This trough negatively affects the
modem’s performance by reducing the num-
ber of data bits transmitted, thereby reducing
the modem’s overall data transfer rate. If
attention is not given to the power-supply
noise, modem performance suffers and customers are
forced to accept a lower data transmission rate.

An ADSL modem uses a 25-kHz to 1.1-MHz frequency
spectrum for data transmission. The downstream direction
(server to client) uses the 138-kHz to 1.1-MHz band. The
upstream direction (client to server) uses the 25-kHz to
138-kHz band. The modem divides this spectrum into 256
equally spaced carrier bands, or “bins,” each having a
4.3125-kHz bandwidth. The carrier bands are allocated to
voice transmission, upstream and downstream data, and
buffer zones. The number of bits assigned to each carrier
band depends on the level of noise and interference 
present. Figure 1 shows how the switching noise from a

power supply affects the number of data bits per carrier
band on an ADSL client modem. An 80-mVpp, 250-kHz
square wave imposed on the 3.3-Vdc voltage significantly
reduces the available bits at the 250-kHz carrier band, its
750-kHz harmonic, and to a lesser extent the 500-kHz 
harmonic (due to distortion present on the square wave
signal). The harmonics of a square wave follow a sin(x)/x
function, which has peaks at multiples of the odd harmonics.
The data in Figure 1 represents 11,000 ft of transmission
line length.

Table 1 shows the reduction in the overall modem bit
rate versus power-supply switching frequency and ripple
amplitudes. The data shows that both the amplitude and

the frequency of the ripple
affect the overall modem data
rate. Increasing the ripple volt-
age amplitude reduces the 
overall modem data rate. The
increase in ripple reduces the
SNR in the carrier bands corre-
sponding to the ripple frequency
and its harmonics, which lowers
transmission rate in the affected
bands. Higher power-supply
switching frequencies have less
effect on the overall modem
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Figure 1. 250-kHz power-supply frequency and its harmonics
reduce bit rate throughput

DATA TRANSFER RATE
INJECTED 100-kHz 250-kHz 500-kHz 1-MHz

SQUARE WAVE POWER-SUPPLY POWER-SUPPLY POWER-SUPPLY POWER-SUPPLY
AMPLITUDE SWITCHING SWITCHING SWITCHING SWITCHING

(mVpp) (Mb/s) (Mb/s) (Mb/s) (Mb/s)

2 6.8 6.8 6.8 6.8
10 6.7 6.7 6.7 6.7
20 6.5 6.6 6.7 6.7
60 6.4 6.5 6.6 6.6
80 6.2 6.3 6.5 6.6

Table 1. Power-supply ripple voltage reduces ADSL modem data rate
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data rate for two reasons. First, higher switching frequen-
cies affect higher-frequency “bins,” which already have
lower bit rates. Second, the harmonics are spaced farther
apart so that fewer “bins” are affected. Power-supply
switching frequencies greater than 1.1 MHz typically have
minimal or no impact on the modem data rate because the
fundamental of the switching frequency is above the fre-
quencies used to transmit data. Reducing the switching
frequency below 100 kHz will move the fundamental
below the first downstream modem carrier band; however,
the harmonics will affect many carrier bands up to 1.1 MHz.

The effects of switching frequency
Based on throughput only, a power-supply switching fre-
quency greater than 1 MHz is desirable. However, there
are other power-supply factors that are affected by the
switching frequency. Some of these factors include overall
supply cost, size, efficiency, and reliability. None of these
factors can be optimized independently of the others; and,
in many cases, optimizing only one supply parameter leads
to a less than optimal overall solution.

A typical power-supply requirement for the client
modem core consists of a 3.3-V at 3.6-A output that is 
generated from an input voltage ranging from 10 to 14 V.
Figure 2 shows a simple block diagram for a synchronous
buck topology that is easily implemented using a Texas
Instruments UCC3813 controller with a TPS2836 synchro-
nous buck MOSFET driver. The supply was operated at
100 kHz, 250 kHz, 500 kHz, and 1 MHz. The output ripple
of the supply was adjusted at each switching frequency to
keep a constant data transfer rate of 6.7 Mb/s, per Table 1.

Increasing the switching frequency of an ADSL power
supply reduces the overall volume for two reasons: smaller
passives and higher allowable ripple. Table 1 shows that
lower switching frequencies require a lower output ripple
to maintain a data rate of 6.7 Mb/s. For example, at 100 kHz,
the allowable ripple for 6.7 Mb/s is 10 mVpp; while at 1 MHz,
the allowable ripple is 80 mVpp. Power-supply filter compo-
nents are inversely proportional to switching frequency. Not

only is more filtering needed at lower frequencies, but filter-
ing a lower-frequency signal requires larger components.
The 100-kHz circuit requires a 22-µH inductor, while the
1-MHz circuit requires only a 2.2-µH inductor. Inductor
volume is proportional to inductor value; therefore, the
100-kHz inductor is significantly larger than the 1-MHz
inductor. The decrease of inductor volume with size is not
linear. At some point, an additional increase in switching
frequency does not significantly decrease the inductor 
volume. As the inductor becomes smaller, the packaging
and solder pads take up an increasing percentage of over-
all volume, thereby diminishing the reduction in inductor
volume with increasing frequency. Shielded inductors with
closed flux paths are preferred to “open” bobbin-type
cores. These closed-core structures contain or hold most
of the flux lines within the magnetic material, which pre-
vents it from coupling into nearby components and etch.
The flux field is highest near the gap of the inductor, so
care must be taken during layout to keep sensitive and
high-impedance circuits away from it. Shielded inductors
have current ratings that are approximately 25% less than
the non-shielded variety, due to the additional core volume
and the smaller-gauge wire that must be used.

The minimum input and output capacitance require-
ments are also inversely proportional to frequency. As the
frequency increases, the required filtering is reduced; so
smaller capacitance values are required. At lower frequen-
cies, ceramic capacitors do not have the bulk capacitance
necessary for the required filtering; therefore, aluminum
electrolytic, organic electrolytic, or specialty polymer
capacitors are used. Because these capacitors are ESR
and ripple current limited, their volume varies little with
switching frequency. Around 500 kHz and above, ceramic
capacitors become a viable option. Ceramic capacitors
have very low ESR; therefore, they are capacitance limited.
As the switching frequency increases, the amount of charge
per cycle delivered by the capacitors is reduced. The
capacitance values are determined by the charge require-
ments; therefore, the capacitance requirements decrease
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Figure 2. Simplified synchronous buck block diagram
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as frequency increases. As with inductors, the packaging
issues diminish the reduction in capacitor volume as
switching frequency is increased. While power-supply 
filter component areas are reduced with increasing fre-
quency, the control circuitry area stays constant. Figure 3
shows the overall power-supply area as well as the break-
down of area between the control circuit and the filter.
Note that the total area is reduced by about 23% when
going from 100 kHz to 250 kHz but is reduced by only 13%
when going from 250 kHz to 500 kHz.

Switching frequency has a direct impact on power-
supply efficiency. The main power-loss component in a
power supply is typically in the power FETs. Power FET
losses are comprised of several different terms, some being
frequency-dependent and some not. Conduction losses in
the FET are independent of frequency. This loss term is a
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function of power-supply current and FET resistance. FET
losses that are directly proportional to frequency include
gate drive, Coss, reverse recovery, body diode conduction,
and switching losses. Each of these terms dissipates a
fixed amount of energy each time the power supply com-
pletes a switching cycle. The more times per second the
power supply switches, the more power is dissipated by
these frequency-dependent loss components. At lower 
frequencies, FET conduction losses dominate. At higher
frequencies, the conduction losses remain constant; while
the frequency-dependent losses increase. At maximum
output power, the fixed losses in the power supply are 
892 mW at both 100 kHz and 1 MHz. The frequency-
dependent losses are 165 mW at 100 kHz but increase to
1650 mW at 1 MHz. Figure 4 shows a graph of efficiency
versus load and switching frequency.
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Figure 3. Power-supply area vs. switching frequency
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Figure 4. Higher switching frequencies result in lower efficiency
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Figure 6. Complete ADSL power-supply schematic (with aux output)
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Figure 5. Power-supply temperature
increases rapidly with frequency

Power-supply reliability and cost are indirectly related
to switching frequency. Reduced efficiency at higher
switching frequencies translates into higher operating
temperatures. Failure rate for semiconductors doubles for
every 10°C rise in temperature. An estimate of tempera-
ture rise above ambient is shown in Figure 5. The data in
Figure 5 assumes natural convection cooling with the board
area shown in Figure 3. The designer has a few options to
maintain a reasonable temperature rise for the higher
switching frequencies. One is to increase the available area
for cooling. This may include using either larger or multi-
ple components in parallel in conjunction with a larger
PWB to help spread the heat. For example, replacing one
SO-8 package with two SO-8s or a D-Pak can significantly
reduce junction temperatures. Another option is to pro-
vide additional cooling in the form of fans, heat sinks, or
both. Both options increase the overall cost and size of the
supply. The power supply shown in Figures 6 and 7 has
over 2.5 in2 of surface area; therefore, it runs with a tem-
perature rise of only 45°C at 1 MHz and maximum load.
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Figure 8. Trade-offs for a constant 
modem throughput

Figure 7. Dual-output (3.3-V/5-V) circuit
operates at 1 MHz

Conclusion
Figure 8 summarizes the trade-offs between switching 
frequency versus ripple, size, and efficiency while main-
taining a constant modem throughput. It may be tempting
to try to optimize a particular power-supply parameter,
but Figure 8 shows that changing one parameter may 
negatively impact the other parameters. The power-supply
designer must act as a system engineer at the power-supply
level, taking into account all design parameters to produce
the optimal solution. If minimum area is a concern, the
designer may choose a switching frequency around 500 kHz.
At 500 kHz, the power-supply area is minimal due to the
decreased sensitivity of the modem to switching noise;
and the efficiency is still at an acceptable level. If mini-
mum losses are the driving factor due to limited cooling or
input-power constraints, the supply should be run some-
where between 200 kHz and 300 kHz. Within that range,
frequency-dependent losses are minimized and the power-
supply efficiency is near its maximum level; however, the
volume is increased due to the additional filtering required
to maintain an acceptable modem throughput.

For further information, contact:
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