
PC16552D

AN-770 PC16552C Dual UART/DMA Micro Channel Adapter

Literature Number: SNLA024

TL/F/11195

P
C

1
6
5
5
2
C

D
u
a
l
U

A
R

T
/
D

M
A

M
ic

ro
C

h
a
n
n
e
l
A

d
a
p
te

r
A

N
-7

7
0

National Semiconductor
Application Note 770
Greg DeJager
July 1991

PC16552C Dual UART/DMA
Micro Channel Adapter

Table Of Contents
INTRODUCTION AND FEATURES

PC16552C ADAPTER BLOCK DIAGRAM

PC16552C ADAPTER USER’S GUIDE

POSÐPROGRAMMABLE OPTION SELECT

An overview of the Micro Channel Programmable Option

Select (POS), a unique feature which replaces all adapter

jumpers and switches with programmable configuration reg-

isters.

A. POS Mechanism

B. Adapter Description File (ADF)

C. Configuration Utilities

D. POS Registers

E. PC16552C Adapter POS Register Design

MICRO CHANNEL BUS INTERFACE

General information on the adapter interface to the Micro

Channel, applicable to any adapter design, and specific in-

formation on the design of the PC16552C Adapter.

A. Micro Channel Control Signals

B. Data Bus

C. Address Decode

D. UART Interface

E. Interrupts

MICRO CHANNEL BUS ARBITRATION

An overview of the bus arbitration system implemented on

all Micro Channel machines.

A. Central Arbiter

B. Local Arbiter

PC16552C ADAPTER DMA INTERFACE DESIGN

The design of the PC16552C Adapter’s Local Arbiter and

interface to the UART DMA request signals is described in

detail.

A. Design Considerations

B. DMA Request Enable

C. DMA Request Prioritization

D. Arbitration Vector Selection

E. Local Arbiter

F. Fairness

G. Terminal Count Interrupt

SOFTWARE

A. Programming the Micro Channel DMA Controller

B. Driver Programs

EISA BUS DESIGN COMPARISON

Brief description of a possible EISA bus serial port/DMA

design.

APPENDICES

A. ADF Listing (@6e6D.adf)

B. PALÉ Equations

APPENDICES (Continued)

C. Schematics

D. Layout Drawing

E. Bill of Materials

INTRODUCTION

The PC16552C integrates two NS16550AF UARTs into a

single package. The product provides control for two inde-

pendent PC-ATÉ and PS/2É compatible serial ports. In ad-

dition, the on-board FIFOs and DMA request strobes of the

PC16552C create the basis for a high-performance serial

port design.

Advancing modem technology is causing a substantial in-

crease in serial transfer baud rates, putting a severe strain

on existing serial port designs. Personal computer systems

are unable to keep up with transfer rates that are now

reaching 115k baud. The PC16552C allows the serial port

designer to design ports that can handle these faster data

rates. Transmitter and Receiver FIFOs buffer up to 16 bytes

of data each, and request strobes signal the system DMA

controller to transfer data to empty transmitter FIFOs and

from full receiver FIFOs. DMA burst transfers can move

data from the serial I/O ports to system RAM very quickly

with no latency time and no attention from the system CPU.

This document contains a user’s guide for the adapter and

discusses the considerations involved in designing any Mi-

cro Channel Adapter equipped with a DMA slave. It gives an

overview of the Micro Channel POS mechanism, adapter

interface and bus arbitration system. The design of the

PC16552C Serial/DMA Adapter, intended as an example of

a DMA slave serial adapter, is described in detail. A descrip-

ton of the software necessary to facilitate four simultaneous

file transfers serviced by the Micro Channel DMA controller

is also included.

PC16552C ADAPTER FEATURES

Two independent PC-AT and PS/2 compatible serial

ports with FIFOs capable of running all existing NS16450

and NS16550AF software.

All configuration done through POS mechanism. No

hardware jumpers or switches.

Serial ports relocatable to all eight standard I/O address-

es.

Serial interrupts available on IRQ3 and IRQ4.

Hardware interface between UART FIFO DMA requests

and the Micro Channel bus arbitration and DMA system.

POS configurable priority levels for UART DMA requests.

Support for software enable/disable of UART DMA re-

quests.

POS configurable Fairness feature for UART DMA re-

quests.

Automatic interrupt generation and DMA request disable

upon receipt of DMA Terminal Count.

Two DB-9 connectors for the two RS-232 compatible se-

rial ports.

C1995 National Semiconductor Corporation RRD-B30M75/Printed in U. S. A.

PC16552C Adapter Block Diagram

TL/F/11195–1

2

PC16552C ADAPTER USER’S GUIDE

The PC16552C Adapter comes with a 3(/2× diskette which

contains the ADF file for the adapter. The file is called
@6e6d.adf and must be used to configure the adapter. Copy

the file onto the Reference Diskette (actually the user’s

copy of the Diskette) for the machine to be used. To config-

ure the adapter, plug it into an expansion slot and power up

the machine with the user’s reference diskette inserted in

the A drive. The configuration utility is menu driven and is

simple to follow. Use the manual configuration to see all the

different options available.

The DMA demo programs included on the Adapter’s disk-

ette require that it be configured with Channel 1 on COM2

and Channel 2 on COM3. The priority of the DMA requests

must be configured with Channel 1 Receiver at level 0 (high-

est priority), Channel 2 Receiver at level 1 and Channel 1

Transmitter at level 6. The Transmitter for Channel 2 de-

faults to level 7. The Fairness feature should be enabled at

all times except for evaluation purposes.

When the card has been configured and the configuration

has been saved to the system’s CMOS RAM, remove the

Reference Diskette and reboot. The two serial ports may

then be evaluated and tested as any other 16550AF port

would be tested. To demonstrate the DMA transfers, run the

included sample demo programs.

POSÐPROGRAMMABLE OPTION SELECT

A unique feature of Micro Channel machines is their Pro-

grammable Option Select, known as POS. POS eliminates

switches and jumpers from adapter cards by replacing their

function with programmable registers. The POS registers al-

low the system microprocessor to poll each adapter card to

determine its characteristics as well as write configuration

data to it. All resources required by an adapter (memory and

I/O addresses, interrupts used, DMA arbitration vectors,

etc.) can be relocatable and reconfigurable by the POS sys-

tem. Additionally, each card stores in POS registers a

unique ID number that the POS system uses to identify the

cards present in the system. A full understanding of the

POS mechanism is necessary before an adapter design is

undertaken. The IBM Technical Reference Manuals provide

details about POS that this document may not provide.

POS Mechanism

Each connector slot in the Micro Channel has a unique sig-

nal called CDSETUP that when asserted, puts the card resi-

dent in that slot in setup mode. The setup mode allows

access to a block of 8 POS registers located at I/O ad-

dresses 100h–107h. All cards in the system locate their

POS registers in this space but since only one card can be

placed in setup at a time, no conflicts can occur.

Micro Channel machines store in battery-backed CMOS

RAM the ID numbers of all resident adapters, the slot num-

bers they’re plugged into and the configuration data to be

written to their respective POS registers. During Power On

Self Test (POST), the system microprocessor puts each slot

in turn into setup mode and reads its ID. If it finds a valid ID

it sends the card its configuration data. If there is no card in

a slot, the microprocessor will read an ffH which it recogniz-

es as an empty slot.

Since the system remembers which adapter and ID resides

in each slot, removing a card, inserting a new card, or even

moving an existing card to a different slot will cause a POST

failure. IBM’s System Configuration utilities must then be run

to reconfigure the system by modifying the configuration

data stored in CMOS RAM.

ADFsÐAdapter Description Files

System board and adapter POS data is also stored on the

Reference diskette in the form of Adapter Description Files.

ADFs are given names corresponding to the ID of the card it

is to configure. The PC16552C Adapter has an ID number of

6E6Dh, giving it an ADF name of @6E6D.adf. A listing of
@6E6D.adf is included with this documentation.

The ADF is divided into sections which each list one or

more choices of resources to be allocated to the adapter

card. A given choice specifies the data to be loaded into a

particular POS register and also lists the resources allocat-

ed. For example, in @6E6D.adf, choosing ‘‘Serial 2’’

(COM2) for connector 1 will reserve the I/O address space

2f8–2ffh and will notify the system that IRQ3 is used. It also

specifies the data to be written to some of the bits in POS

registers 102 and 103. Note that pos[0] denotes POS102

and pos[1] denotes POS103 because registers POS100

and 101 contain the read-only card ID bytes which are not

referred to in ADFs. See PC16552C Adapter POS Register

Description for a description of the contents of the registers

used in this adapter.

The syntax for the ADF is straight forward and described in

detail in IBM’s Technical Reference manual. However, the

Configuration utilities are unforgiving of errors. Any errors in

a designer’s ADF will prevent any POS data for that card

from being loaded and the card from being enabled for op-

eration. In addition, the system will not boot to the operating

system while the new card is inserted until the ADF is cor-

rect and the system has been reconfigured with the new

data. One undocumented idiosyncrasy involves the 4-bit

fields for arbitration vectors. Since the system DMA control-

ler only recognizes vectors 0–7, only 3 bits are needed to

specify the vectors to be used on the card. However, the

Configuration utilities required that all four bits be specified,

including the most significant bit which is always 0.

Configuration Utilities

There are two different utilities on the Reference diskette

provided with the system which actually convert the ADFs to

configuration data in CMOS RAM. One of these utilities

must be run whenever a new card is installed. The first is

the Automatic Configuration program. It takes the first

choice in each resource list that will not cause a conflict with

other adapters in the system and automatically stores the

corresponding POS register data in CMOS RAM.

The second program is Set Configuration which allows the

user to manually select the resources desired. It first reads

the configuration data already in CMOS RAM and displays

the resources allocated to each installed card. It then allows

the user to change these choices of resources by displaying

one-by-one all of the options for that adapter listed in the

ADFs. After all new choices have been made, exiting the

program causes the new POS data to be loaded into CMOS

RAM and the system is reconfigured and re-booted.

3

POS Registers

Address (hex) Function

0100 (POS Register 100) Adapter Identification Byte (LSB)

0101 (POS Register 101) Adapter Identification Byte (MSB)

0102 (POS Register 102) General Option Select Data

0103 (POS Register 103) General Option Select Data

0104 (POS Register 104) General Option Select Data

0105 (POS Register 105) General Option Select Data

0106 (POS Register 106) Sub Address Extension (LSB)

0107 (POS Register 107) Sub Address Extension (MSB)

Registers 100 and 101 are read-only and registers 102–107

are read and write. The ID registers are required on all

adapters, but all bits in registers 102–105 are optional and

user-defined except for the following:

102 Bit 0: Card Enable (CDEN): This bit must be imple-

mented and is used to enable the entire adapter card. It

is set last during POS initialization and only if the card will

not produce any resource conflicts. The CDEN signal

gates the decode of all addresses used on the adapter

as well as any interrupt requests.

105 Bit 7: Channel Check Active Indicator. This bit is

required only by adapters which generate CHCK errors

(see Micro Channel Interface Control Signals). Error han-

dlers need this bit to identify the source of the error sig-

nal.

105 Bit 6: Channel Check Status Indicator (STAT). This

bit is also required only by adapters supporting CHCK. It

is used to indicate that channel check status information

is available in POS106 and 107.

PC16552C Serial/DMA Adapter

POS Register Description

The Chips and Technologies 82C611 Micro Channel Inter-

face IC, used to simplify the interface between the

PC16552C Adapter and the Micro Channel, provides good

POS register support. For all 8 POS registers, the 82C611

can be configured to generate read and write strobes for

externally implemented registers or can implement registers

internally. The 82C611 defines how several of the POS bits

used in this adapter were assigned. As can be seen in the

following register descriptions, some bits are available on

external pins while others are used for internal address de-

coding or to define the operating modes of the 82C611.

POS100 and POS101ÐAdapter ID Bytes

All adapters must store a two-byte ID number in POS regis-

ters 100 and 101. IBM specifies that all direct program con-

trol adapters (including memory-mapped I/O) have an ID

byte between 6000 and 6FFFh. As previously mentioned,

the ID byte for this adapter is 6E6DH. When POS100 and

101 are read during setup, the 82C611 produces two sepa-

rate read strobesÐ100RD and 101RD. These signals, as

well as their logical AND, are used by the INTR PAL to pull

down the data bus bits necessary for the CPU to read back

6D from POS100 and 6E from POS101 (see INTR.ABL for

equations). The data bus is pulled up to insure legal high

levels on bits not driven low.

6E6D has been registered at IBM and is guaranteed not to

conflict with any other legitimate adapters. The number to

call to register an ID is 800-426-7763. It is a good idea to

find out what numbers are available before implementing it

in a design as many numbers are already reserved. Num-

bers that minimize the logic necessary to implement them

have as few logic 0 bits as possible and also have low and

high order bytes that have 0 bits in the same position.

POS102

This register is internal to the 82C611 and has all 8 bits

brought out to pins POS102B1–7 and CDEN. It is pro-

grammed as follows:

102B7: Fairness: (Used to enable IBM’s

Fairness algorithm. See DMA INTERFACE.)

102B6: A7*A6*A4

102B5: A8

102B4: A3

(Address bits providing decode information

for UART channel 1.)

102B3: A7*A6*A4

102B2: A8

102B1: A3

(Address bits providing decode information

for UART Channel 1.)

102B0: CDEN: (See POS Registers.)

POS103

This register is internal to the 82C611. The bits are not avail-

able on external pins but instead are compared to 3 input

pins which are connected to address bus bits 14, 13 and 12.

A match produces an output used for the decode of the

UART channels.

102B7: unused

102B6: unused

102B5: A14

102B4: A13

102B3: A12

(Address bits providing decode information

for UART channel 1.)

102B2: A14

102B1: A13

102B0: A12

(Address bits providing decode information

for UART channel 2.)

4

POS104

This register stores the bus arbitration vectors for the UART

receiver DMA requests RXRDY1 and RXRDY2. It is imple-

mented externally using a 74LS374 latch and 74LS245 buff-

er. The 82C611 decodes reads and writes to the register

during setup and provides the correct strobes. This informa-

tion is also needed as external signals so they were imple-

mented in a register with corresponding output pins.

102B7: RX2 ARB3

102B6: RX2 ARB2

102B5: RX2 ARB1

102B4: RX2 ARB0

102B3: RX1 ARB3

102B2: RX1 ARB2

102B1: RX1 ARB1

102B0: RX1 ARB0

POS105

This register is implemented internal to the 82C611. The

lower four bits contain the arbitration vector for UART chan-

nel 1 transmitter. They were selected for the vector because

output pins were needed. The upper four bits contain con-

trol bits for the Micro Channel interface.

105B7: Channel Check Active Indicator. See

POS registers. It is not used in this

adapter.

105B6: Channel Check Status Indicator

(STAT). See POS Registers. It is not used in

this adapter.

105B5: Synchronous Extended Mode: The 82C611

specifies the definition of this bit. It

generates synchronous extended cycles if set

and asynchronous extended cycles if cleared

(see CHRDY in Micro Channel Control

Signals).

105B4: unused

105B3: TX1 ARB3

105B2: TX1 ARB2

105B1: TX1 ARB1

105B0: TX1 ARB0

POS106 and POS107 are not used in this adapter. The sub-

addressing bits are used to specify the location of a block of

initial program load (IPL) or additional setup information.

MICRO CHANNEL BUS INTERFACE

Micro Channel Control Signals

All of the Micro Channel signals needed to control an 8- or

16-bit adapter are described below. They are all connected

directly to the 82C611 which meets all IBM timing and drive

specifications for those signals.

CD SFDBK: Card Selected Feedback: This signal must be

driven low by an adapter to acknowledge to the system

when it decodes a specified address. The 82C611 drives

this signal low when the adapter logic asserts the part’s

CDSEL input. The CDSEL signal is generated by a logical

OR of the unlatched address decodes of both UART chan-

nels and the two registers decoded on the adapter for DMA

control and status (see DMA Interface Design).

CD DS16: Card Data Size 16: This signal is driven low

when an adapter requires a 16-bit data transfer. The

82C611 drives this signal as a function of its DS16 input

which is tied high in this design.

CD CHRDY: Card Channel Ready: An adapter which

needs more time to transfer data on the Micro Channel pulls

this signal low (not ready) to extend the current bus cycle.

There are two types of extended cycles: Asynchronous Ex-

tended and Synchronous Extended. The difference be-

tween them is when the CD CHRDY signal driven back high

(ready). In the synchronous case, CD CHRDY is removed

within 30 ns of the falling edge of CMD. This causes the

system to extend the cycle 100 ns or 1 wait state. In the

asynchronous case, CD CHRDY is removed at any time by

the adapter providing as many wait states as necessary (the

limit for holding CD CHRDY low is 3 ms). POS105 bit 5 de-

fines which type the 82C611 supports. A single wait state is

needed to support DMA transfers from the PC16552C so

the bit is programmed for synchronous mode. The 82C611

causes an extended cycle when its ADPRDY signal is as-

serted by the adapter. In this design, the ADPRDY signal is

the same as the CDSEL signal thus causing an extended

cycle to be generated on every access to the Adapter.

CHRESET: Channel Reset: This active high strobe from

the Micro Channel resets devices on adapter cards. It is

connected to the 82C611, PC16552C, and the Busarb,

Lockout and Fair state machines.

CD SETUP: Card Setup: The Micro Channel drives this sig-

nal low during POS setup. Upon receiving this signal, the

82C611 places the PC16552C Adapter into setup mode by

allowing access to the POS registers.

REFRESH: This system indicates through this signal that a

refresh cycle is occuring on the bus. The refresh cycle looks

like a normal memory read, which the 82C611 will ignore

upon receiving an active REFRESH signal.

CHCK: Channel Check: Adapters assert this signal to indi-

cate a serious error (such as parity) which threatens system

operation. The signal is common to all adapter slots so it

must be driven with an open-collector driver. The 82C611

drives this signal as a function of the ERROR input which is

tied high (inactive) in this design.

S0,S1,M/IO and CMD: The 82C611 decodes these signals

into separate I/O read (IOR) and I/O write (IOW) strobes.

Data Bus

A 74LS245 buffer isolates the Adapter’s data bus from the

Micro Channel data bus to prevent excessive loading of Mi-

cro Channel bus. Direction and gating during read and write

cycles is controlled by the 82C611’s BUFDIR and BUFENL

signals. The internal bus connects to the PC16552C,

POS104, DMAÐEN and ISR registers (see DMA Interface)

and the INTR PAL (POS ID generator).

5

Address Decode

Micro Channel adapters should have their resources relo-

catable and selectable through the POS mechanism. This

design allows for the two serial channels on board the

PC16552C to be located at any two of the 8 ‘‘standard’’ IBM

serial port addresses. The following table shows those ad-

dresses:

COM Port Hex Address Binary Address (A15–0)

1 03F8 0000 0011 1111 1000

2 02F8 0000 0010 1111 1000

3 3220 0011 0010 0010 0000

4 3228 0011 0010 0010 1000

5 4220 0100 0010 0010 0000

6 4228 0100 0010 0010 1000

7 5220 0101 0010 0010 0000

8 5228 0101 0010 0010 1000

The upper 13 bits of the address must be decoded while the

lower 3 bits, A2–A0, connect directly to the PC16552C to

select one of 8 internal registers of the selected channel. As

can be seen from the binary addresses above, 5 bits stay

the same for the 8 COM ports (A15, A11, A10, A9, A5) and

8 bits must be programmed for the port selected for decode.

Adapter card logic gates ‘‘compress’’ bit fields that are al-

ways at the same logic level so that all 13 bits will not need

to be decoded separately. The 82C611 has inadequate ad-

dress decoding resources so two 74LS521 Comparators,

one for each UART channel, are implemented to compare

compressed bits and some of the address bus bits with POS

programmed bits and hard-wired bits. POS registers 102

and 103 are programmed with the data necessary to de-

code the two ports selected for use on the adapter (see

POS Register Description). The entire decode works as fol-

lows:

Address bits A15, A11 and A10 are always 0. They are com-

pressed to one bit with a NOR gate and compared to a

hard-wired 1 on both comparators.

A9 and A5 are always 1. They are compressed by a NAND

gate to a bit which is compared to a hard-wired 0 by both

comparators.

A7, A6 and A4 are all 0 if the port address is for COM3–8. A

NAND gate compresses the bits to a signal which is com-

pared to POS102 bit 6 by the channel 1 comparator and to

POS102 bit 3 by the channel 2 comparator. Thus POS102

bit 6 must be programmed to a 0 if channel 1 is to be COM1

or COM2 and to a 1 if it’s to be COM3–8. POS102 bit 3 is

programmed similarly for channel 2.

A8 is a 1 in the COM1 address and 0 in all others. It is

connected directly to both comparators and compared to

POS102 bit 5 and POS102 bit 2 which are programmed for

channel 1 and channel 2 respectively.

A3 equals 1 in COM1, 2, 4, 6 and 8 and equals 0 in COM3, 5

and 7. It is also connected directly to each comparator and

compared to POS102 bit 4 and bit 1 which are programmed

for channel 1 and channel 2 respectively.

A14, A13 and A12 are connected to 82C611 multi-function

pins MFP6, 5 and 4 respectively. They are constantly com-

pared to two bit fields in POS103ÐB5–3 and B2–0. Bits 5–

3 are programmed with the A14, A13 and A12 bits expected

for channel 1 and bits 2–0 with the bits expected for chan-

nel 2. The 82C611 will assert MFP3 when a match is made

for channel 1 and will assert MFP2 when a match is made

for channel 2. MFP3 is connected to the channel 1 compar-

ator and MFP2 is connected to the channel 2 comparator.

Both are compared to a hard-wired 0.

As stated in the POS Register Description, POS102 bit 0 is

the card enable signal CDEN. The signal enables UART

address decode by being compared to a hard-wired 1 on

both comparators (CDEN is 0 until POS102 bit 0 is set).

Finally, the M/IO signal from the Micro Channel is used to

gate both LS521 comparators so that only I/O addresses

are decoded. The two comparators produce active low out-

puts when an address match is found. These signals are

CS1 and CS2, the selects for the PC16552’s two channels.

The adapter decodes one additional I/O address, 2F7h,

which is the location of the write-only DMAÐEN register

and read-only ISR register (see DMA Interface for register

description). These registers are not relocatable. However,

the I/O resource is ‘‘claimed’’ in the adapter’s ADF so any

conflict with other cards will be caught by POST which will

not enable the card, preventing system damage.

UART Interface

The PC16552C register address bits (A2, A1, A0) and the

CS outputs of the LS521 comparators are latched into a

74LS373 by the CMD signal and held for the duration of a

bus cycle. The latched CS1 and CS2 signals are ANDed to

produce the PC16552’s CS signal. The correct channel on

the UART is selected by connecting the CS2 signal to the

UART’s CHSL input which produces the following channel

decode:

CS1 CS2 (CHSL) Channel Selected

0 1 1

1 0 2

1 1 X

The adapter’s address decode logic and the PC16552C cy-

cle time is fast enough to operate with the Micro Channel’s

default bus cycle length. No wait states are needed for ac-

cess to the UART.

Interrupts

The Micro Channel’s IRQ interrupts are designed as active-

low, level-sensitive signals. This simplifies adapter interrupt

sharing logic and reduces transient sensitivity on the inter-

rupt controller while retaining compatibility with existing soft-

ware. Because IRQ lines are shared, open-collector drivers

or active-low TRI-STATEÉ drivers must be used by adapters

to drive the lines.

6

The INTR GALÉ on the PC16552C Adapter drives the IRQ3

and IRQ4 signals. INTR inputs the interrupt signals from the

PC16552C (INTR1 and INTR2) and the TC interrupt (see

DMA Interface). INTR will assert IRQ3 if a TC interrupt is

generated or if a UART channel configured as COM2–8

generates a serial interrupt. It will assert IRQ4 if it receives a

serial interrupt from a channel configured as COM1. INTR

decodes the serial interrupts by using POS102 bits 5 and 2

which store address bit A8 for channels 1 and 2 respective-

ly. A8 is used because it is a 1 if COM1 is being used and a

0 if any other COM port is used. See the included INTR.ABL

listing for the GAL equations.

MICRO CHANNEL BUS ARBITRATION

The PC16552C Dual Serial/DMA Adapter implements the

logic necessary to interface a DMA slave device to the Mi-

cro Channel’s bus arbitration system and DMA controller. A

DMA slave adapter must contain a Local Arbiter, as defined

by IBM, in order to compete for the bus and communicate

with the system’s Central Arbiter. The adapter must also

contain any logic necessary to directly support the device

requesting DMA service.

The following material on the DMA Interface discusses the

function of the Central Arbiter and the bus arbitration pro-

cess, Local Arbiters and DMA interface design considera-

tions. It then describes in detail the functions of the DMA

interface logic implemented on the PC16552C Adapter.

Central Arbiter

The Central Arbiter exists on all of IBM’s Micro Channel

machines and gives intelligent subsystems the ability to

share and control the system. It supports up to 16 arbitrating

devices, such as a DMA slave, a bus master and the system

microprocessor.

The Central Arbiter is located on the system board of the

Micro Channel machines and uses seven Micro Channel

signals to control arbitration between devices. The seven

signals are PREEMPT, ARB/GNT, BURST and ARB3–0.

ARB/GNT may only be driven by the Central Arbiter. The

rest of the signals may be driven by any device on the Chan-

nel and therefore must be connected to open-collector driv-

ers.

Any device requesting control of the bus asynchronously

drives PREEMPT active. The Central Arbiter responds by

initiating an arbitration cycle after the device currently using

the Channel has completed. The Central Arbiter indicates

the arbitration cycle by driving the ARB/GNT signal high

into the arbitration state. Requesting devices then drive their

assigned 4-bit arbitration vector onto the ARB3–0 bus.

These vectors are prioritized with 0000 being the highest

and 1111 being the lowest priority. Each competing device

compares the vector it is driving onto the ARB pins with the

level already on the bus. If it finds a level that has a higher

priority it stops driving its vector onto the bus, thus leaving

the highest priority vector on the bus. When the Central

Arbiter ends the arbitration period by changing the ARB/

GNT signal to the grant state, the device driving the winning

vector assumes control of the bus.

Devices requiring multiple data transfers must notify the

central arbiter by driving the BURST signal until all transfers

are complete. A bursting device may also stop transfers

if another device drives PREEMPT active, thus postponing

any further transfers until it wins the system channel again.

IBMÉ requires a bursting device not to ignore an active

PREEMPT for more than 7.8 ms (thus 7.8 ms is the maxi-

mum time allowed for a single BURST transfer). At this time

the Central Arbiter forcibly takes control away from the

bursting device by raising the ARB/GNT signal. The system

will also generate an error indication and NMI.

The Central Arbiter recognizes the end of a transfer when

both status signals (S0 and S1) are inactive (signifying the

end of a bus cycle) and BURST or CMD go inactive, which-

ever occurs last. Arbitration then begins for the next highest

priority requesting device. The system CPU, which is as-

signed the lowest priority arbitration vector 1111, will re-

sume control of the system bus if no other devices are re-

questing the bus.

A programmable (through POS) fairness feature prevents

high priority devices from locking out lower priority devices.

If fairness is active, a device that has control of the bus

cannot compete again for the bus until all other competing

devices have been allowed to run their cycles. This ensures

that all arbitrating devices will be serviced in order of priority

before the same device can gain control of the channel

again.

The system DMA controller is an integral part of the Central

Arbiter. The controller has 8 channels (0–7) which corre-

spond to arbitration vectors 0000–0111. A device request-

ing DMA service competes for the system bus with the vec-

tor corresponding to the DMA channel previously pro-

grammed to perform the desired transfer. The DMA control-

ler assumes control of the bus when the highest priority

requesting DMA wins the arbitration cycle. The controller

will execute single byte transfers unless the DMA slave as-

serts the BURST signal. In this case, the controller will exe-

cute a burst cycle, executing transfers until the BURST sig-

nal is deasserted or the controller’s Terminal Count (TC) is

reached. See the Software section of this document for de-

tails on the operation and programming of the DMA control-

ler.

Local Arbiter

Devices requesting control of the Micro Channel must im-

plement logic known as a Local Arbiter. The Arbiter logic

must drive the arbitration bus in a manner that allows all

competing devices to recognize a winner.

When the Central Arbiter starts an aribtration, a competing

local arbiter drives its vector onto the ARB bus. At the same

time, it compares that vector to the value appearing on the

bus on a bit-by-bit basis beginning with the most significant

bit, ARB3. If it finds a mismatch on one of the bits, it will

cease driving that bit and all lower order bits. If it subse-

quently finds a match on that bit, it will continue driving low-

er order bits until another mismatch is detected. The arbitra-

tion bus must be driven by open collector drivers so that

multiple devices may drive the bus and compete for service.

The following is an example of a bus arbitration:

1. Devices A and B, with arbitration levels 1001 and 0110

respectively, compete for the channel. Both devices drive

their vectors onto the ARB bus which then appears as

0000.

7

2. Device A detects a mismatch on ARB3 so it ceases driv-

ing all lower order bits. Device B sees a mismatch on

ARB2 so it stops driving its lower order bits. The bus now

shows 0111.

3. Device B now sees a match on ARB2 so it continues to

drive its lower order bits (only ARB0 in this case).

4. The bus now stabilizes at a value of 0110 and device B

has won control of the channel.

PC16552C ADAPTER DMA INTERFACE DESIGN

Design Considerations

The PC16552C Adapter contains not one but four indepen-

dent devices which may request DMA service. These ‘‘de-

vices’’ are the four on-board FIFOs (two Transmit and two

Receive). Each FIFO has an independent request signal

which indicates when it is empty (transmitters) or when it is

full (receivers). These signals are named TXRDY1,

TXRDY2, RXRDY1 and RXRDY2. This creates some free-

dom in the design of the interface between the UART re-

quests and the Micro Channel. However, there is a severe

timing limitation concerning the termination of a burst cycle

that adds constraints to the design.

The design freedom lies in where the competition between

the four UART request takes place. One possibility is to

have them compete against each at the system level during

the central arbitration cycle. This requires the adapter to

implement four Local Arbiters, one for each UART request.

At the other end of the spectrum, the adapter may imple-

ment prioritization logic that allows only one of the requests

to compete for the channel at a time. Thus only one Local

Arbiter is needed. The designer may also choose a compro-

mise such as prioritizing the receiver and transmitter re-

quests separately and using two Local Arbiters. Using four

separate Local Arbiters simplifies the overall design by elim-

inating the UART request prioritization. However, it creates

duplication of functionality (the same logic implemented four

times) and will generate a higher component cost. The

PC16552C Adapter is designed with the latter implementa-

tion.

One particular timing specification required by the Micro

Channel when a DMA slave terminates a burst cycle is the

most critical issue in the design of a useful DMA-serviced

serial port. The goal of the DMA interface design is to be

able to transfer four files simultaneously in two directions

with attention from the CPU only at the beginning and end

of the file transfers. This can only be accomplished by con-

tinually performing FIFO-sized burst transfers (16 bytes) in

response to UART FIFO requests until the DMA controller

reaches its programmed Terminal Count (end of the file).

This type of operation is called slave-terminated burst mode

and requires the UART to terminate a burst as soon as its

FIFO has been filled or emptied by the controller.

DMA controller-terminated transfers can also be used but

requires the DMA controller to be programmed with the

number of bytes to be transferred to or from a FIFO instead

of with the total number of bytes in a file. The controller

must be reprogrammed after every transfer which requires

much more attention from the CPU than with slave-terminat-

ed transfers.

When the DMA controller writes the byte that fills a Transmit

FIFO or reads the last byte in a Receiver FIFO, the

PC16552C deasserts the appropriate DMA request. The re-

quest signal passes through the logic on the adapter and

deasserts the BURST signal. The Micro Channel specifies a

minimum time that BURST be inactive high before the end

of a bus cycle in order to stop a burst without an additional

byte transfer. This is the critical timing issue. The timing

diagram in Figure 1 illustrates the signals and delays in-

volved.

TL/F/11195–2

Timing Parameters:

tR/W: Time to decode S0, S1 and M/IO signals into IOR and IOW strobes.

tRXI/tWXI: RXRDYTXRDY inactive from leading edge of read and write strobes respectively (PC16552C DMA request signal spec).

tLOG: Propagation delay of request signal through logic controlling BURST.

tRC: RC restoration of BURST on the Micro Channel.

t56: BURST inactive high setup to CMD inactiveÐMicro Channel specifies 35 ns minimum.

FIGURE 1

8

Without extending the bus cycle, the maximum delay time

from the leading edge of CMD to BURST inactive is

55 ns. The two delays which must be minimized in the DMA

interface design are tR/W and tLOG. tRXI/tWXI are con-

trolled by the PC16552C and tRC is created by the Micro

Channel. It is a quantity that is unknown to this designer as it

is not specified in the IBM Technical Reference Manual.

The PC16552C TXRDY signals were designed to be re-

leased by the rising edge of the last IOW strobe. This makes

it impossible to meet the BURST inactive setup time and

therefore perform slave-terminated bursts. The PC16552C

has since been redesigned so that TXRDY is released by

the RXRDY signals. The RXTXI.C driver program included in

this package uses DMA controller terminated burst transfers

for the transmitter FIFOs, a method which must be used

with the older revision of the PC16552C. The new revision

of the PC16552C was not available when this documenta-

tion was completed. However, slave-terminated transfers

were run with the old revision and the adapter performed

correctly except that due to the lateness of the

BURST deassertion, a 17th byte was always transferred to

the transmit FIFO. The last byte was lost since the FIFO

was already full. Therefore, the RXTXI.C driver program

should be used with all current PC16552C parts.

A second issue with the PC16552C is the length of both

tRXI and tWXI which are specified as 78 ns and 60 ns

(max). These times plus the delays in the logic implemented

on this adapter forces the use of an extended cycle (wait

state). Using the Synchronous Extended cycle as explained

in the Micro Channel Control Signals section, adds 100 ns

to the length of the CMD strobe, providing enough time to

meet the BURST inactive specification.

Adding a wait state is obviously undesirable since it increas-

es the bus cycle length by 50% (200 ns to 300 ns). One way

for a designer to avoid needing a wait state is to minimize

tLOG and tR/W. Besides using fast logic, the delay through

the DMA logic interface can be reduced by implementing

the design with four Local Arbiters. This eliminates the delay

created by the prioritization of the UART requests. Also, an

effort is being made to reduce the tRXI and tWXI specs on

the PC16552C. Finally, the IBM documentation is not clear

as to whether the t56 spec must be met for both IO read/

memory write and memory read/IO write transfers. The

spec is marked on the timing diagrams for both types of

transfers, but a separate note says that the spec must be

guaranteed for IO write cycles with no mention of the IO

read cycles. It is likely that the spec need not be met for IO

read cycles because the read to the IO device occurs long

before the end of the byte transfer since the byte must still

be written to memory.

While it did not meet worst-case specifications, the

PC16552C Adapter (with the old PC16552C rev) was also

tested without a wait state and ran I/O read DMA transfers

without errors. A test of the IO write transfers was futile

because only the older PC16552C was available making

slave-terminated transfers impossible.

The design chosen for implementation uses just one Local

Arbiter and prioritizes the UART DMA requests on the

adapter. This design was chosen because it is more inform-

ative example and has a lower chip count. This section de-

scribes the following functions of the interface logic: en-

able/disable of UART DMA requests; prioritization of the

four DMA requests; selection of the proper arbitration vec-

tor; local bus arbitration; fairness and Terminal Count inter-

rupt generation. Refer to the block diagram and schematics

for the PC16552C Adapter during the following discussions.

DMA Request Enable

A 4-bit write-only DMA request enable/disable register

(DMAÐEN) is implemented on the PC16552C Adapter us-

ing four 74LS74 latches. The complemented outputs of the

latches are used to gate the PC16552C’s DMA request sig-

nals RXRDY and TXRDY. To enable DMA request signals,

the system CPU must write a 1 to the bit locations corre-

sponding to those requests. Table I summarizes the regis-

ter’s function.

TABLE I

DMAÐEN Bits

7 6 5 4 3 2 1 0

X X X X 0 0 0 0 All DMA Request Disabled

X X X X 0 0 0 1 TXRDY2 Enabled

X X X X 0 0 1 0 TXRDY1 Enabled

X X X X 0 1 0 0 RXRDY2 Enabled

X X X X 1 0 0 0 RXRDY1 Enabled

DMAÐEN is necessary to prevent errant DMA requests to

the Micro Channel (such as the immediate transmitter re-

quests after reset) and to maintain compatibility with stan-

dard CPU-serviced serial port operation. A hardware disable

is also implemented and is described in the TC Interrupt

section.

DMAÐEN is located at I/O address 2F7h. This location is

not used by IBM and was chosen because of its similarity to

the COM2 address block made the decode simpler. The

active low output of the register’s address decoder is gated

with the IOW signal to produce a write strobe to the CLK

inputs of the 74LS74 latches.

DMA Request Prioritization

If the adapter card is used at its full capability i.e. four simul-

taneous DMA-serviced file transfers, the four UART DMA

request strobes will operate as fully independent, asynchro-

nous signals. The asynchronous state machine, Lockout,

implemented in a 16L8D GAL, is used to select the highest

priority active DMA request and lock out all other requests

until that request has been serviced. The state diagram for

Lockout is illustrated in Figure 2. The state machine resides

in the Idle state until one or more DMA requests go active.

The requests are the active high gated versions of the

RXRDY and TXRDY signals and are called RX1, TX1, RX2,

and TX2. An active request moves Lockout to the corre-

sponding request state. If more than one request are active

at once, the machine will move to the highest priority state.

The requests are prioritized as follows: RX1 (highest), RX2,

TX1 and TX2. Note that this prioritization mechanism pro-

vides adapter-level arbitration between the requests leaving

only one which competes for the bus at the system level

(Central Arbitration).

9

TL/F/11195–3

FIGURE 2. Lockout State Machine

Upon entering a request state, Lockout asserts the DREQ

signal and a 2-bit code, S1 and S0 (not to be confused with

the bus signals S1, S0) corresponding to the request select-

ed. The machine remains in the request state until the cor-

responding request signal goes inactive signifying the end

of the DMA service. It then moves back to the idle state,

deasserts DREQ and waits for a new request.

A delay feature was implemented to handle two or more

requests active at one time. Without this delay, the machine

would move very quickly from a request state, through the

Idle state and into the next highest priority request state.

The result is that the DREQ signal, which is inactive only

while in the Idle state, does not go inactive long enough to

cause a state change in the Busarb state machine (see Lo-

cal Arbiter). BUSARB must change states so that it can sig-

nal the end of a transfer to the DMA controller by deassert-

ing BURST. The Delay input to the Lockout machine is the

feedback DREQ signal, inverted and delayed 100 ns. During

a transfer, DREQ is active low and the Delay signal is active

high. At the end of a transfer cycle, the Lockout machine

moves to the Idle state and deaserts DREQ. It will stay in

Idle until the Delay signal goes inactive low 100 ns later.

Thus DREQ is guaranteed to be inactive for at least 100 ns.

Selection of Arbitration Vector

The PC16552C Adapter is designed to store four different

arbitration vectors which correspond to the 4 DMA channels

programmed to service the UART’s RXRDY and TXRDY

DMA request signals. Two 74LS153 Dual 4-Line to 1-Line

Data selectors are used to present the proper vector to the

Arbcon PAL for arbitration (see Local Arbiter). The S0, S1

outputs of Lockout are connected to the select inputs of the

Data Selectors. The data inputs to the selectors are the

outputs of the POS registers holding the arbitration vectors.

Note, however, that in this design the vector for TXRDY1 is

hardwired to 0111, the lowest priority vector, due to lack of

POS space. Another POS register could have been added

to provide flexibility for the TXRDY1 vector, but would have

required additional logic.

Local Arbiter

The PC16552C Adapter implements the Local Arbiter in two

PALs, Arbcon and Busarb.

The Arbcon 20L8A PAL implements the vector arbitration

function. It competes for the bus with the vector belonging

to the UART request selected by Lockout. The ENARB sig-

nal from the Busarb state machine gates the vector onto the

ARB bus during the arbitration cycle. If the Arbcon logic

finds a match between its vector and the ARB bus, it has

won the bus and signals to the Busarb machine by asserting

BUSWIN.

10

TL/F/11195–4

FIGURE 3. Busarb State Machine

An asynchronous state machine, Busarb, implemented in a

20V8D GAL, controls the bus arbitration. It connects directly

to the ARB/GNT, PREEMPT, BURST and CHRESET Micro

Channel signals. The following describes Busarb’s states

and operation. Figure 3 illustrates the state diagram.

IDLE: No DMA requests from UART (DREQ e 1).

REQ: UART is requesting DMA service. PREEMPT is as-

serted to request control of the bus.

ARB: Central Arbiter has begun arbitration cycle. ENARB

is asserted causing Arbcon to start competing for

the bus. PREEMPT still active.

LOSE: Central Arbiter ends arbitration cycle. Arbcon did not

win vector arbitration so BUSWIN was not asserted.

ENARB is deasserted causing Arbcon to degate its

vector. PREEMPT remains active. When the winning

device is finished, the Central Arbiter will start a new

arbitration cycle and Busarb will move back into the

ARB state.

XFR1: The PC16552C Adapter has won arbitration. This is

an intermediate state to XFR2 needed to prevent

more than one bit from changing between states.

The state transitions from intermediate states

(XFR1 and XFR2) are unconditional and marked

‘‘uct’’ on the state diagram. PREEMPT deasserted.

XFR2: BURST is asserted and DMA controller begins

transfer.

XFR3: DREQ has gone inactive signifying completion of

transfer. BURST is deasserted. This is an intermedi-

ate state to IDLE.

Fairness

IBM’s Fairness algorithm is enabled when POS register 102

bit 7 is set. An asynchronous state machine for each of the

four UART DMA request signals, implemented in 2 PALs,

Fair1 and Fair2, ensures that the four requests obey the

Fairness algorithm by disabling them when Fairness re-

quires them to wait.

All four machines have the same 7 inputs: CHRESET, FAIR,

PREEMPT and the four gated UART requests: RX1, RX2,

TX1 and TX2. The machines have one unique output, FR,

that is a second UART request gating signal along with the

DMAÐEN output. The Fairness state machines have the

following states:

[1,1] IDLE: Reset state. Particular DMA request (RX1,

TX1, RX2, TX2) not active. Output: none.

[1,0] XFR: DMA request active. Output: none.

[0,0] FAIR: DMA request goes inactive, FAIR e 1 (en-

abled) and at least one other UART request or

PREEMPT is active. Output: FR degating sig-

nal is active.

[0,1] TEMP: All requests for bus have gone inactive. This is

an intermediate state to IDLE. Output: FR still

asserted (deasserted upon transition to IDLE).

Figure 4 shows the state diagrams for the RX1 and TX1

state machines. The machines for RX2 and TX2 are identi-

cal. On the adapter card, RX1 and RX2 machines are imple-

mented in the 16L8A PAL Fair1 and TX1 and TX2 in Fair2.

11

TL/F/11195–5 TL/F/11195–6

FIGURE 4. Fairness State Machines

All four machines use their particular DMA request signal

(RX1, RX2, TX1 or TX2) to move from the IDLE state to XFR

to FAIR. But it is all the other request signals that either

keep the machine in the FAIR state (if there is at least one

active) or allow it to move back to IDLE via TEMP (no other

requests active). Thus if a particular channel finishes being

serviced and there are others waiting for service at the time,

the channel will be degated by its FR signal, preventing it

from requesting service again before all other devicesÐ

both UART and other bus devicesÐare finished.

Terminal Count Interrupt

A signal to the CPU that a file or block of data has complet-

ed transmission or reception is a crucial feature of a practi-

cal DMA-serviced serial port. It is necessary because the

entire transfer process is completely transparent to the

CPU. The CPU must be notified one or all files being trans-

ferred are done so that it can start a new transfer, process

received data, notify the user, etc. The DMA controller pro-

vides a Terminal Count (TC) pulse when it has transferred

the number of bytes programmed into its Terminal Count

Register (see Software). The PC16552C Adapter uses this

pulse to generate an IRQ3 interrupt and disable the DMA

request line of the UART channel that completed its trans-

fer. The TC signal is common to all devices on the Micro

Channel so it was necessary to decode the signal and cre-

ate a TC unique to the UART channel that generated it.

Since the DMA controller generates the TC pulse during the

final read or write to the I/O address it is servicing, this was

accomplished by decoding TC along with the adapter’s IOR,

IOW, CS1 and CS2 signals. For example, TC, IOR and CS1

active generates TC pulse unique to the UART’s channel 1

receiver (RXRDY1).

The channel-unique TC pulses are connected to the CL in-

puts of the DMAÐEN register’s 74LS74 latches. The TC

pulse clears the adapter card enable bit for the decoded

channel and prevents any further DMA request from that

channel until the CPU has re-intialized the system for a new

file transfer.

All four UART TC pulses are OR’ed together to set a 1-bit

read-only register called Interrupt Status Register (ISR). The

output of ISR is connected to the INTR GAL and generates

an IRQ3 interrupt (see Adapter Interrupts). ISR was imple-

mented because the Micro Channel requires that adapters

generating interrupts have a status register that the CPU

can poll to determine which adapter caused the interrupt.

The ISR is implemented with two 74LS74 latches connect-

ed in a master-slave arrangement. This provides a self-

clearing mechanism when the register is read. The register

is located at I/O address 2f7H along with DMAÐEN. Its

read strobe is generated by a logical AND of the 2f7H de-

coder output and the IOR signal. The read strobe is con-

nected to the clock input of the slave latch and the inverted

strobe is connected to the master’s clock. The strobe is

also connected to the gate input of a 74LS125 buffer which

gates the output of the slave latch onto the Adapter Data

Bus bit 0. The falling edge of the read strobe gates the

register onto the data bus and clears the master latch. The

rising edge clears the slave latch.

SOFTWARE

Programming the Micro Channel DMA Controller

The Micro Channel DMA controller is register and software

compatible with the IBM Personal Computer AT DMA chan-

nels, but also has an extended mode of operation. Control-

ler registers can be read and written in the extended mode

using two registers, the Function register and the Execute

Function register. To perform an extended mode register

read/write, the CPU must write to the Function register a 4-

bit command code in the upper nibble and the channel num-

ber in the lower nibble. The command is executed by read-

ing or writing the Execute Function register. The driver pro-

grams included in this package illustrate this register access

process.

12

The most important feature of the extended mode is that it

provides access to two new registers: the I/O Address reg-

ister and the Extended Mode register. The programmer can

now use the I/O Address register to specify the address of

the I/O port being serviced (the 8237 and therefore the AT

machines are not capable of generating this address). The

Extended Mode register defines the operation of the chan-

nel: Read Memory or Write Memory, Verify or Transfer data,

8-bit or 16-bit transfers and enable/disable of the I/O ad-

dress generation.

The controller begins the DMA transfers when a DMA slave

has won the arbitration bus and the DMA controller has

been unmasked and programmed to service the winning re-

quest. The controller performs transfers serially with sepa-

rate read and write cycles for each byte or word transferred.

The DMA bus cycles are identical to CPU bus cycles. They

may be Default cycles or be extended by the CHRDY signal.

Driver Programs

Two driver programs are included in this package that dem-

onstrate four simultaneous file transfersÐRXTX.C, which

operates with slave-terminated burst transfers and RXTXI.C,

which uses controller-terminated transfers for the serial

transmitter channels. Both programs are relatively simple

since most of the work is done by the DMA controller, not

the CPU.

RXTX.C

RXTX.C performs the following functions:

Ð allocates 4 RAM buffers the same size as the 4

files being transferred.

Ð initializes the two serial ports to 19.2k, 8, N, 1

and enables the FIFOs and line status registers.

Receiver FIFO trigger levels are set to 14.

Ð programs the following into the DMA controller:

starting address of the RAM buffers into the

Memory Address registers

I/O addresses of the UART receive and trans-

mit FIFOs into the I/O address registers

number of bytes in the files into the Terminal

Count registers

receiver channels’ Extended Mode registers

are set for 8-bit transfers from memory to the

programmed I/O addresses

transmit channels’ Extended Mode registers

are set for 8-bit transfers from the pro-

grammed I/O addresses to memory

Ð fills transmit data buffers with 00–FFh test data

Ð 8259 PIC is programmed to execute dmaÐint()

upon receiving an IRQ3 interrupt

Ð Enables UART DMA request by writing xFh to

DMAÐEN

Ð waits for all file transfers to complete

The DMA channels programmed for the UART requests are:

channel 0ÐRXRDY1; channel 1ÐRXRDY1; channel 6Ð

TXRDY1; channel 7ÐTXRDY1. These numbers correspond

to the arbitration vectors specified in the adapter’s ADF.

Immediately after enabling the UART DMA requests, the

adapter will generate transmit FIFO empty requests

(TXRDY1 and TXRDY2), the controller will service the re-

quests and data will begin transmitting from the UART. One

or two other systems must also begin at this time to transmit

00–FFh test data to the two receivers. The size of these

files must be the same as the Terminal Count programmed

into the DMA channels servicing the receivers. The receiv-

ers will generate their first request after the first 14 bytes

arrive. The CPU sits in a wait loop while the DMA controller

continues to service the serial ports. The program stops af-

ter all four files have been transferred.

The dmaÐint() IRQ3 service routine is executed if a line

status error is generated or a TC is generated by a file trans-

fer completion. The routine first checks for line status errors

in both channels. It then reads the 1-bit Interrupt Status

Register (ISR) which will be set if a TC has occurred. The

program then identifies which of the four file transfers com-

pleted by reading the DMA controller’s status registers.

They contain bit locations for all 8 channels which are set if

a TC has been reached on that channel.

For any channel that has generated a TC, the DMA control-

ler mask bit for that channel is set along with a flag signify-

ing file transfer completion. If a channel servicing a receiver

generated a TC, the received data is also verified by check-

ing the data in the RAM buffer. Finally, RAM buffers are

deallocated.

RXTXII.C

This driver is identical to RXTX.C except that the DMA chan-

nels servicing the UART transmitter FIFOs are programmed

differently and TC interrupts for the transmitters are serv-

iced differently. This is a sample driver for the old version of

the PC16552C which cannot run slave-terminated bursts on

the transmitter.

The DMA channels for the transmit FIFOs are programmed

with a TC of 16 or lessÐnot with the size of the entire file.

This causes the controller to terminate the burst when the

FIFO is full instead of waiting for TXRDY to go inactive

which will be late as discussed in Design Considerations.

During initialization and after every burst transfer to the

transmit FIFOs, the TC is programmed for 16 bytes unless

there are less than that left in the file. A software counter

keeps track of the number of bytes transferred.

dmaÐint() is executed after every service of the FIFO be-

cause of the TC indication. Line Status interrupts and the

receiver channels are treated the same as in RXTX.C.

Transmitter channels are masked, have their TC registers

reloaded as explained above and then unmasked.

DMAÐEN is written with a special mask variable (chÐcom-

plete) that remembers which DMA channels are no longer in

operation so as not to inadvertantly enable another channel.

EISA BUS DESIGN COMPARISON

From a DMA slave’s point of view, the DMA system in EISA

machines is essentially the same as in ISA machines. DMA

requests from a slave device interface directly to the EISA

bus DRQ signals. No local arbitration is necessary.

An EISA bus design utilizing the PC16552C DMA request

signals would be much simpler than the Micro Channel de-

sign. The RXRDY and TXRDY DMA request signals would

be connected directly to 4 different system DRQ signals,

eliminating the need for the Local Arbiter, Fairness logic,

request selection and lockout, and the generation of 4 arbi-

tration vectors. However it would still be necessary to imple-

ment a DMA request enable register and Terminal Count

handling logic.

The advantage of a DMA slave design for an EISA machine

over an ISA machine is the increased DMA transfer rate.

EISA specifies enhanced DMA modes which will transfer

data at a substantially higher rate than the 4 MHz rate that is

standard on ISA machines.

13

Adapter Description File ListingÐ@6E6D.adf

Adapterld 06E6Dh

AdapterName ‘‘NSC PC16552C Dual Async Adapter’’

NumBytes 4

NamedItem

Prompt ‘Connector 1‘

choice ‘SERIAL 1‘ pos[0]4X011XXXXb pos[1]4XX000XXXb io 03f8h-03ffh 02f7h-02f7h int 4

choice ‘SERIAL 2‘ pos[0]4X001XXXXb pos[1]4XX000XXXb io 02f8h-02ffh 02f7h-02f7h int 3

choice ‘SERIAL 3‘ pos[0]4X100XXXXb pos[1]4XX011XXXb io 3220h-3227h 02f7h-02f7h int 3

choice ‘SERIAL 4‘ pos[0]4X101XXXXb pos[1]4XX011XXXb io 3228h-322fh 02f7h-02f7h int 3

choice ‘SERIAL 5‘ pos[0]4X100XXXXb pos[1]4XX100XXXb io 4220h-4227h 02f7h-02f7h int 3

choice ‘SERIAL 6‘ pos[0]4X101XXXXb pos[1]4XX100XXXb io 4228h-422fh 02f7h-02f7h int 3

choice ‘SERIAL 7‘ pos[0]4X100XXXXb pos[1]4XX101XXXb io 5220h-5227h 02f7h-02f7h int 3

choice ‘SERIAL 8‘ pos[0]4X101XXXXb pos[1]4XX101XXXb io 5228h-522fh 02f7h-02f7h int 3

Help ‘‘This connector on the IBM Dual Async Adapter can be assigned to use Serial 1 though Serial 8. Use the F5ePrevious

and the F6eNext keys to change serial port assignments if you are in the ‘Change configuration’ window. Conflicting assign-

ments are marked with an asterisk and must be changed to use the adapter.’’

NamedItem

Prompt ‘Connector 2‘

choice ‘SERIAL 1‘ pos[0]4XXXX011Xb pos[1]4XXXXX000b io 03f8h-03ffh int 4

choice ‘SERIAL 2‘ pos[0]4XXXX001Xb pos[1]4XXXXX000b io 02f8h-02ffh int 3

choice ‘SERIAL 3‘ pos[0]4XXXX100Xb pos[1]4XXXXX011b io 3220h-3227h int 3

choice ‘SERIAL 4‘ pos[0]4XXXX101Xb pos[1]4XXXXX011b io 3228h-322fh int 3

choice ‘SERIAL 5‘ pos[0]4XXXX100Xb pos[1]4XXXXX100b io 4220h-4227h int 3

choice ‘SERIAL 6‘ pos[0]4XXXX101Xb pos[1]4XXXXX100b io 4228h-422fh int 3

choice ‘SERIAL 7‘ pos[0]4XXXX100Xb pos[1]4XXXXX101b io 5220h-5227h int 3

choice ‘SERIAL 8‘ pos[0]4XXXX101Xb pos[1]4XXXXX101b io 5228h-5227h int 3

Help ‘‘This connector on the IBM Dual Async Adapter can be assigned to use Serial 1 through Serial 8. Use the F5ePrevious

and the F6eNext keys to change serial port assignments if you are in the ‘Change configuration’ window. Conflicting assign-

ments are marked with an asterisk and must be changed to use the adapter.’’

NamedItem

Prompt ‘Extended Cycle Mode‘

choice ‘Synchronous Extended‘ pos[3]4XX1XXXXXb

Help ‘‘This sets the synchronous extended mode. It must always be set.’’

NamedItem

Prompt ‘Fairness On/Off‘

choice ‘On‘ pos[0]41XXXXXXXb choice ‘Off‘ pos[0]40XXXXXXXb

Help ‘‘Bus Arbitration Fairness. This controls whether the adapter will release control of the bus when it has been using it

exclusively. All four UART channels will use Fairness when it is On. Under normal circumstances, select kOnl.’’

NamedItem

Prompt ‘DMA Arbitration Level for Channel 1 Receiver‘

choice ‘Level 0‘ pos[2]4XXXX0000b arb 0

choice ‘Level 1‘ pos[2]4XXXX0001b arb 1

choice ‘Level 3‘ pos[2]4XXXX0011b arb 3

choice ‘Level 4‘ pos[2]4XXXX0100b arb 4

choice ‘Level 5‘ pos[2]4XXXX0101b arb 5

choice ‘Level 6‘ pos[2]4XXXX0110b arb 6

14

Help ‘‘This selects the arbitration level and DMA channel for Channel 1 Receiver.’’

NamedItem

Prompt ‘DMA Arbitration Level for Channel 1 Receiver’

choice ‘Level 0‘ pos[2]40000XXXXb arb 0

choice ‘Level 1‘ pos[2]40001XXXXb arb 1

choice ‘Level 3‘ pos[2]40011XXXXb arb 3

choice ‘Level 4‘ pos[2]40100XXXXb arb 4

choice ‘Level 5‘ pos[2]40101XXXXb arb 5

choice ‘Level 6‘ pos[2]40110XXXXb arb 6

Help ‘‘This selects the arbitration level and DMA channel for Channel 2 Receiver.’’

NamedItem

Prompt ‘DMA Arbitration Level for Channel 1 Transmitter‘

choice ‘Level 0‘ pos[3]4XXXX0000b arb 0

choice ‘Level 1‘ pos[3]4XXXX0001b arb 1

choice ‘Level 3‘ pos[3]4XXXX0011b arb 3

choice ‘Level 4‘ pos[3]4XXXX0100b arb 4

choice ‘Level 5‘ pos[3]4XXXX0101b arb 5

choice ‘Level 6‘ pos[3]4XXXX0110b arb 6

Help ‘‘This selects the arbitration level and DMA channel for Channel 1 Transmitter.’’

PC16552C Adapter PAL/State Machine Equations

BUSARB: Local Arbiter State Machine

The following asynchronous state machine controls the Local Arbiter on the Adapter Card. The device used is a 20L8 PAL.

outputs: q3, q2, q1, q0, burst, preout, ack, enarb: pins 21, 20, 19, 18, 17, 16, 22, 15;

inputs: dreq, arbgnt, buswin, prein, chrst: pins 1, 2, 3, 4, 5;

States of Arbiter

idle e [1,1,1,1];
req e [1,1,1,0]; ‘‘req uchannel bus; preout (q0) active

arb e [1,0,1,0]; ‘‘vector enabled; preout, enarb active

lose e [1,0,0,0]; ‘‘lost arb battle; preout active

xfer1 e [0,0,1,0]; ‘‘intermediate state to xfer2

xfer2 e [0,0,1,1]; ‘‘xfering data on bus; burst ack active

xfer3 e [1,0,1,1]; ‘‘intermediate state to idle

Equations

!q0 e idle & !dreq & !larbgnt & !chrst # ‘‘This is also PREEMPT

req & !dreq & !arbgnt & !chrst Ý

req & !dreq & arbgnt & !chrst Ý

arb & arbgnt & !chrst Ý

arb & !arbgnt & buswin & !chrst Ý

arb & !arbgnt & !buswin & !chrst Ý

lose & !arbgnt & !chrst Ý

lose & arbgnt & !chrst;

!q1 e arb & !arbgnt & buswin & !chrst Ý

lose & !arbgnt & !chrst;

!q2 e req & !dreq & arbgnt & !chrst Ý

arb & arbgnt & !chrst Ý

arb & !arbgnt & buswin & !chrst Ý

arb & !arbgnt & !buswin & !chrst Ý

lose & !arbgnt & !chrst Ý

lose & arbgnt & !chrst Ý

xfer1 & !chrst Ý

xfer2 & !dreq & !arbgnt & !chrst Ý

xfer2 & dreq & !arbgnt & !chrst;

15

!q3 e arb & !arbgnt & !buswin & !chrst Ý

xfer1 & !chrst Ý xfer2 & !dreq & !arbgnt & !chrst;

!enarb4arb#xfer1#xfer2; ‘enables arb vector (ARB0-3) on bus

!ack4xfer 2; ‘acknowledge signal enable

burst4xfer2; ‘BURST on MCA Bus (TRI-STATE output)

enable preout4!q0; ‘PREEMPT on MCA Bus (TRI-STATE output)

burst40;

preout40;

ARBCON: Local Arbiter-Arbitration Bus Interface Logic

This logic drives and monitors the 4-bit Arbitration Bus during arbitration cycles. The device used is a 20L10 PAL.

Outputs: buswin, arb3, arb2, arb1, arb0, Q3, Q2, Q; pins 22, 21, 20, 19, 18, 17, 16, 15;

Inputs: sel3, sel2, sel1, sel0, enarb: pins 1, 2, 3, 4, 5;

Equations

arb3 e 0; arb2 e 0; arb1 e0; arb0 e 0; ‘‘When enabled, these TRI-STATE outputs will be pulled low.

Q e (arb3 Ý !sel3);

Q2 e (arb3 Ý !sel3) & (arb2 Ý !sel2);

Q3 e (arb1 Ý !sel1);

!buswin e Q2 & Q3 & (arb0 Ý !sel0) and !enarb;

enable arb3 e !sel3 & !enarb;

enable arb2 e !sel2 & Q & !enarb;

enable arb1 e !sel1 & Q2 & !enarb;

enable arb0 e !sel0 & Q2 & Q3 & !enarb;

LOCKOUT: Device Request Lockout State Machine

This machine selects and prioritizes the four UART DMA requests and issues a single request to the Local Arbiter. Once a

particular request is selected, all others are locked out. The device used is 16L8D PAL.

Outputs dreq, s1, s0, q0, q1, q2, q3: pins 12, 13, 14, 15, 16, 17, 18;

Inputs: rxrdy1, rxrdy2, txrdy1, txrdy2, delay, chrst: pins 1, 2, 3, 4, 5, 6;

States of lockout machine

idle e [1,1,1,1,]; rx1 e [1,1,1,0]; rx2 e [1,1,0,1]; tx1 e [1,0,1,1,]; tx2 e [0,1,1,1];
Equations

!q0 e idle & rxrdy1 & !delay & !chrst Ý !q0 & rxrdy1 & !chrst;

!q1 e idle & !rxrdy1 & rxrdy2 & !delay & !chrst Ý q0 & !q1 & rxrdy2 & !chrst;

!q2 e idle & !rxrdy1 & !rxrdy2 & txrdy1 & !delay & !chrst Ý q0 & q1 & !q2 & txrdy1 & !chrst;

!q3 e idle & !rxrdy1 & !rxrdy2 & !txrdy1 & txrdy2 & !delay & !chrst Ý q0 & q1 & q2 & !q3 & txrdy2 & !chrst;

rx1win e q0; rx2win e q1; tx1win e q2; tx2win e q3;

s0 e q0 & (!q1 Ý q2);

s1 e q0 & q1;

dreq e rx1win & rx2win & tx1win & tx2win;

16

FAIR1/FAIR2: Local Arbiter Fairness State Machines

These equations describe two independent state machines which gate the RXRDY1 and RXRDY2 signals in such a way that

they obey the Fairness algorithm. Both machines are contained in a 16L8 PAL. The equations for the transmitter signal state

machines (contained in FAIR2 PAL) are identical to these equations except that the receiver signals are exchanged for corre-

sponding transmitter signals and vice versa.

Outputs: rx1q1, rx1q0, rx2q1, rx2q0, rx1fair, rx2fair: pins 13, 14, 15, 16, 17, 18;

Inputs: rx1, rx2, tx1, tx2, PREEMPT, fair chrst: pins 1, 2, 3, 4, 5, 6, 7;

States:

rx1Ðst e [rx1q1, rx1q0]; rx2Ðst e [rx2q1, rx2q0];

rx1Ðidle e rx1Ðst ee [1,1];
rx1Ðxfr e rx1Ðst ee [1,0];
rx1Ðwait e rx1Ðst ee [0,0];
rx1Ðtemp e rx1Ðst ee [0,1];

rx2Ðidle e rx2Ðst ee [1,1];
rx2Ðxfr e rx2Ðst ee [1,0];
rx2Ðwait e rx2Ðst ee [0,0];
rx2Ðtemp e rx2Ðst ee [0,1];
Equations

!rx1q0 e rx1Ðidle & rx1 & !chrst Ý

rx1Ðxfr & rx1 & !chrst Ý

rx1Ðxfr & !rx1 & fair & !chrst Ý rx1Ðwait & fair & !(!rx2 & !tx1 & !tx2 & PREEMPT) & !chrst;

!rx1q1 e rx1Ðxfr & !rx1 & fair & !chrst Ý

rx1Ðwait & !(!rx2 & !tx1 & !tx2 & PREEMPT) & !chrst Ý

rx1Ðwait & !rx2 & !tx1 & !tx2 & PREEMPT & !chrst;

!rx2q0 e rx2Ðdle & rx2 & !chrst Ý

rx2Ðxfr & rx2 & !chrst Ý

rx2Ðxfr & !rx2 & fair !chrst Ý

rx2Ðwait & fair & !(!rx1 & !tx1 & !tx2 & PREEMPT) & !chrst;

!rx2q1 e rx2Ðxfr & !rx2 & fair & !chrst Ý

rx2Ðwait & !(!rx1 & !tx1 & !tx2 & PREEMPT) & !chrst Ý

rx2Ðwait & !rx1 & !tx1 & !tx2 & PREEMPT & !chrst;

rx1fair e !rx1q1;

rx2fair e !rx2q1;

Interrupt Logic

This logic provides the interface between the UART and TC interrupts and the IRQ3 and IRQ4 signals on the Micro Channel. It

also provides the Adapter ID bytes in response to ID byte reads. The device used is a 16L8 PAL.

Outputs IRQ3ÐEN, IRQ4ÐEN, IRQ3, IRQ4, bit 7, bit 4 bit 1, bit 0: pins 15, 16, 17, 18, 19, 12, 14, 13;

Inputs: intr1, intr2, P102B2, P102B5, CDEN, RD100, RD101, dmaÐint, RDÐBOTH: pins 1, 2, 3, 4, 5, 6, 7, 8, 9;

Equations

enable IRQ3 e intr1 & !P102B5 & CDEN Ý

intr2 & !P102B2 & CDEN Ý

dmaÐint & CDEN;

enable IRQ4 e intr1 & P102B5 & CDEN Ý

intr2 & P102B2 & CDEN;

IRQ3 e 0; IRQ4 e 0

enable bit 7 e RDÐBOTH;

enable bit 4 e RDÐBOTH;

enable bit 1 e !RD100;

enable bit 0 e !RD101;

bit 7 e 0; bit 4 e 0; bit 1 e 0; bit 0 e 0;

17

TL/F/11195–7

18

TL/F/11195–8

19

T
L
/
F
/
1
1
1
9
5
–
9

20

T
L
/
F
/
1
1
1
9
5
–
1
0

21

T
L
/
F
/
1
1
1
9
5
–
1
1

22

TL/F/11195–12

23

A
N

-7
7
0

P
C

1
6
5
5
2
C

D
u
a
l
U

A
R

T
/
D

M
A

M
ic

ro
C

h
a
n
n
e
l
A

d
a
p
te

r

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor National Semiconductores National Semiconductor
Corporation GmbH Japan Ltd. Hong Kong Ltd. Do Brazil Ltda. (Australia) Pty, Ltd.
2900 Semiconductor Drive Livry-Gargan-Str. 10 Sumitomo Chemical 13th Floor, Straight Block, Rue Deputado Lacorda Franco Building 16
P.O. Box 58090 D-82256 F 4urstenfeldbruck Engineering Center Ocean Centre, 5 Canton Rd. 120-3A Business Park Drive
Santa Clara, CA 95052-8090 Germany Bldg. 7F Tsimshatsui, Kowloon Sao Paulo-SP Monash Business Park
Tel: 1(800) 272-9959 Tel: (81-41) 35-0 1-7-1, Nakase, Mihama-Ku Hong Kong Brazil 05418-000 Nottinghill, Melbourne
TWX: (910) 339-9240 Telex: 527649 Chiba-City, Tel: (852) 2737-1600 Tel: (55-11) 212-5066 Victoria 3168 Australia

Fax: (81-41) 35-1 Ciba Prefecture 261 Fax: (852) 2736-9960 Telex: 391-1131931 NSBR BR Tel: (3) 558-9999
Tel: (043) 299-2300 Fax: (55-11) 212-1181 Fax: (3) 558-9998
Fax: (043) 299-2500

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications

Amplifiers amplifier.ti.com Computers and Peripherals www.ti.com/computers

Data Converters dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps

DLP® Products www.dlp.com Energy and Lighting www.ti.com/energy

DSP dsp.ti.com Industrial www.ti.com/industrial

Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical

Interface interface.ti.com Security www.ti.com/security

Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Mobile Processors www.ti.com/omap

Wireless Connectivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/communications
http://amplifier.ti.com
http://www.ti.com/computers
http://dataconverter.ti.com
http://www.ti.com/consumer-apps
http://www.dlp.com
http://www.ti.com/energy
http://dsp.ti.com
http://www.ti.com/industrial
http://www.ti.com/clocks
http://www.ti.com/medical
http://interface.ti.com
http://www.ti.com/security
http://logic.ti.com
http://www.ti.com/space-avionics-defense
http://power.ti.com
http://www.ti.com/automotive
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://www.ti.com/wirelessconnectivity
http://e2e.ti.com

