LF398

Application Note 294 Special Sample and Hold Techniques

Literature Number: SNOA603

Special Sample and Hold Techniques

Although standard devices (e.g., the LF398) fill most sample and hold requirements, situations often arise which call for special capabilities. Extended hold times, rapid acquisition and reduced hold step are areas which require special circuit techniques to achieve good results. The most common requirement is for extended hold time. The circuit of Figure 1 addresses this issue.

EXTENDED HOLD TIME SAMPLE AND HOLD

In this circuit, extended hole time is achieved by "stacking" two sample and hold circuits in a chain. In addition, rapid acquisition time is retained by use of a feed-forward path. When a sample command is applied to the circuit (trace A, Figure 2), A1 acquires the input very rapidly because its National Semiconductor Application Note 294 April 1982

+

 $0.002 \ \mu\text{F}$ hold capacitor can charge very quickly. The sample command is also used to trigger the DM74C221 one-shot (trace B, Figure 2), which turns on the FET switch, S1. In this fashion, A1's output is fed immediately to the A3 output buffer. During the time the one-shot is high, A2 acquires the value of A1's output. When the one-shot drops low, S1 opens, disconnecting A1's output from A3's input. At this point A2's output is allowed to bias A3's input and the circuit output does not change from A1's initial sampled value. Trace C details what happens when S1 opens. A small glitch, due to charge transfer through the FET, appears but the steady state output value does not change. This circuit will acquire a 10V step in 10 µs to 0.01% with a droop rate of just 30 µV/second.

1

A₂ = LF400 *Ratio match 0.1%

-

FIGURE 3.

INFINITE HOLD SAMPLE AND HOLD

Figure 3 details a circuit which extends the hold time to infinity with an acquisition time of 10 $\mu s.$ Once a signal has been acquired, this circuit will hold its output with no droop for as long as is desired. If this arrangement, A4's divided down output is fed directly to the circuit output via A5 as soon as a sample command (trace A, Figure 4) is applied. The sample command is also used to trigger the DM74123 one-shots. The first one-shot (trace B, Figure 4) is used to bias the FET switch OFF during the time it is low. The second one-shot (trace C, Figure 4) delivers a pulse to the ADC0801 A/D converter which then performs an A/D conversion on A4's output. The DAC1020, in combination with A2 and A3, converts the A/D output back to a voltage. The A/D/A process requires about 100 µs. When the one-shot (trace B) times out, its output goes high, closing the FET switch. This action effectively connects A3's output to A5 while disconnecting A4's output. In this manner, the circuit output will remain at the DC level

that was originally determined by A4's sampling action. Because the sampled value is stored digitally, no droop error can occur. The precision resistors noted in the circuit provide offsetting capability for the unipolar A/D output so that a -10V to +10V input range can be accommodated. To calibrate this circuit, apply 10V to the input and drive the sample command input with a pulse generator. Adjust the gain match potentiometer so that minimum "hop" occurs at the circuit output when S1 closes. Next, ground the input and adjust the zero potentiometer for 0V output. Finally, apply 10V to the input and adjust the gain trim for a precise 10V circuit output. Once adjusted, this circuit will hold a sampled input to within the 8-bit quantization level of the A/D converter over a full range of +10V to -10V. Trace D, Figure 4 shows the circuit output in great detail. The small glitch is due to parasitic capacitance in the FET switch, while the level shift is caused by quantization in the A/D. An A/D with higher resolution could be used to minimize this effect.

www.national.com

2

HIGH SPEED SAMPLE AND HOLD

-

Another requirement encountered in sample and hold work is high speed. Although conventional sample and hold circuits can be built for very fast acquisition times, they are difficult and expensive. If the input waveform is repetitive, the circuit of *Figure 5* can be employed. In this circuit a very fast comparator and a digital latch are placed in front of a differential integrator. Feedback is used to close a loop around all these elements. Each time an input pulse is applied, the DM7475 latch is opened for 100 ns. If the summing junction error at the LM361 is positive, A1 will pull current out of the junction. If the error is negative, the inverse will occur. After some number of input pulses, A1's output will settle at a DC level which is equivalent to the value of the level sampled during the 100 ns window. Note that the delay time of one-shot A is variable, allowing the sample pulse from one-shot B to be placed at any desired point on the input waveform. Figure 6 shows the circuit waveforms. Trace A is the circuit input. After the variable delay provided by one-shot A, one-shot B generates the sample pulse (trace B). In this case the delay has been adjusted so that sampling occurs at the mid-point of the input waveform, although any point may be sampled by adjusting the delay appropriately. Figure 7 shows the circuit at work sampling a 1 MHz sine wave input. The optional comparator (C2) shown in dashed lines is used to convert the sine wave input into a TTL compatible signal for the DM74123 one-shot. Trace A is the sine wave input while trace B represents the output of C2. Trace C is the delay generated by one-shot A and trace D is the sample width window out of one-shot B. Note that this pulse can be positioned at any point on the high speed sine wave with the resultant voltage level appearing at A1's output.

REDUCED HOLD STEP SAMPLE AND HOLD

Another area where special techniques may offer improvement is minimization of hold step. When a standard sample and hold switches from sample to hold, a large amplitude high speed spike may occur. This is called hold step and is usually due to capacitive feedthrough in the FET switches used in the circuit.

+

PrintDate=1998/03/24 PrintTime=15:10:43 36764 an005637 Rev. No. 3 cmserv **Proof**

+

www.national.com

+

4

Book Extract End

+

LIFE SUPPORT POLICY

Fax: 1-800-737-7018

www.national.com

Email: support@nsc.com

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation National Semiconductor Europe Americas Fax: +49 (0) 1 8' Tel: 1-800-272-9959 Email: europe.supj

 Europe
 Fax:
 +49 (0) 1 80-530 85 86

 Email:
 europe.support@nsc.com

 Deutsch
 Tel:
 +49 (0) 1 80-530 85 85

 English
 Tel:
 +49 (0) 1 80-532 78 32

 Français
 Tel:
 +49 (0) 1 80-534 16 80

National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: sea.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated