

TMS320 DSP
DESIGNER’S NOTEBOOK

Fast Logarithms on a
Floating-Point Device
APPLICATION BRIEF: SPRA218

 Keith Larson
 Digital Signal Processing Products
 Semiconductor Group

 Texas Instruments
 March 1993

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor
product or service without notice, and advises its customers to obtain the latest version of relevant information
to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at
the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are
utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each
device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license, either
express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property
right of TI covering or relating to any combination, machine, or process in which such semiconductor products
or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated

TRADEMARKS

TI is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

CONTACT INFORMATION

US TMS320 HOTLINE (281) 274-2320

US TMS320 FAX (281) 274-2324

US TMS320 BBS (281) 274-2323

US TMS320 email dsph@ti.com

Contents
Abstract... 7
Design Problem.. 8
Solution... 8

Figures
Figure 1. Accuracy Plot... 10

Tables
Table 1. Squaring Operation of F0 = 1.5 .. 9

Fast Logarithms on a Floating-Point Device 7

Fast Logarithms on a Floating-Point
Device

Abstract

This document discusses a fast way to calculate logarithms (base 2)
on a TMS320C30 or TMS320C40. This TMS320C30/C40 function
calculates the log base two of a number in about half the time of
conventional algorithms. The method can easily be scaled for faster
execution if less accuracy is desired. The mathematics of the
function is discussed in detail. There are plots to determine accuracy
at different calculation levels, and a complete code listing.

8 SPRA218

Design Problem

What is the fastest way to calculate logarithms (base 2) on a
TMS320C30 or TMS320C40?

Solution

The following TMS320C30/C40 function calculates the log base two
of a number in about half the time of conventional algorithms.
Furthermore, the method can easily be scaled for faster execution if
less accuracy is desired. The method is efficient because the
algorithm uses the floating-point multipliers’ exponent/normalization
hardware in a unique way. The following is a proof of the algorithm.

The value of a floating point number X is given by:

X = 2^EXP_old * mant_old

If you then consider that the bit fields used to store the exponent and
mantissa are actually integer, you will notice that the exponent is
already in log2 (log base 2) form. In fact, the exponent is nothing
more than a normalizing shift value.

By converting both sides of the first equation to a logarithm, we find
that the logarithm of the value becomes the sum of the exponent
and mantissa in log form:

log2(X) = EXP_old + log2(mant_old) (Log base two)

Since EXP is in the exponent register, no calculation is needed and
the value can be used directly as an integer. To extract the value of
the exponent, PUSH, POP, and masking operations are used.

The remaining mantissa conversion is done by first forcing the
exponent bits to zero using an LDE 1.0 instruction. This causes the
exponent term 2^EXP to equal 1.0, leaving 1.0 ≤ Value < 2.0. Then,
by using the following identity, the logarithm of the mantissa can be
extracted from the final result exponent.

If the value (mant_old) is repeatedly squared, the sequence
becomes:

X_new = mant_old^N Where: 1.0 ≤ X_new < 2^N
N = 1,2,4,8,16...

Since the hardware multiplier will restructure the new value (X_new)
during each squaring operation, we see that X_new will be
represented by a new exponent (EXP_new) and mantissa
(mant_new).

X_new = 2^EXP_New * mant_new

Fast Logarithms on a Floating-Point Device 9

By then applying familiar logarithm rules, we find that EXP_new
holds the logarithm of Old_mant. This is best shown by setting the
previous two equations equal to each other and taking the logarithm
of both sides.

mant_old^N = 2^EXP_new * mant_new N=1,2,4,8,16...
N * log2(mant_old) = EXP_new + log2(mant_new)
log2(mant_old) = EXP_new/N + log2(mant_new)/N

This last equation shows that the logarithm of mant_old is indeed
related to EXP_new. And as shown earlier, EXP_new can be
separated from the new mantissa and used as the logarithm of the
original mantissa.

We also need to consider the divisor N, which is defined to be the
series 1, 2, 4, 8, 16... , and EXP_new is an integer. The division by
N becomes a shift for each squaring operation. What remains is to
concatenate the bits of EXP_new to EXP_old and then repeat the
process until the desired accuracy is achieved.

Example

Consider a mantissa value of 1.5 and an exponent value of 0 (giving
an exponent multiplier 2^0, or 1.0). The TMS320C30/’C40 extended
register bit pattern for the algorithm sequence is shown below.

Table 1. Squaring Operation of F0 = 1.5

Exp S Mantissa

00000000 0 1000000000000000000000000000000 X =1.5 Exp=0

00000001 0 0010000000000000000000000000000 X^2 =2.25 Exp=1

00000010 0 0100010000000000000000000000000 X^4 =5.0625 Exp=2

00000100 0 1001101000010000000000000000000 X^8 =25.628906 Exp=4

00001001 0 0100100001101011101000001000000 X^16 =656.84083 Exp=9

00010010 0 1010010101010011111101110011111 X^32 =431.43988-E3 Exp=18

00100101 0 0101101010110110101000010101001 X^64 =186.14037-E9 Exp=37

01001010 0 1101010110010010001010101100011 X^128 =34.648238-E21 Exp=74

XXXXXXXX S MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

Hand-calculated value of log2(1.5)

 log2(1.5) = 0.58496250 = 1001010 111000000
xxxxxxx Åfirst 7 bits (exponent)

mmm Åquick 3 bits (mantissa)

10 SPRA218

If you compare the hand-calculated value and the binary
representation of log2(1.5) you will find that the sequence of bits in
the exponent (seven bits worth) are equivalent to the seven MSBs of
the logarithm. If the exponent could hold all the bits needed for full
accuracy, then it would be possible to continue the operation for all
24 bits of the mantissa. Since there are only eight bits in the
exponent and the MSBs is used for negative values, only seven
iterations are possible before the exponent must be off-loaded and
reinitialized to zero.

By concatenating EXP_new to the previous exponent, longer strings
of bits can be built for greater accuracy. The process is then
repeated until the desired accuracy is achieved. Also remember that
the original numbers exponent, which represents the whole number
part of the result, becomes the eight MSBs of the final result.

Another trick is to look at the three MSBs of the mantissa, and apply
a roundup from the fourth bit, those same MSBs can be used as a
quick extension of the exponent (logarithm). To visualize this,
consider the following tabulated values and graph.

Figure 1. Accuracy Plot

 NOTE:
Notice how the fractional part is the same at the
endpoints.

Fast Logarithms on a Floating-Point Device 11

In the middle, only a slight bowing exists which can either be ignored
or option-ally rounded for better accuracy. The maximum actually
occurs at a mantissa value of 1/ln(2.0) or 1.442695. The value of
log2(mant) at that point is 0.52876637, giving a maximum error of
0.086071.

When finished, the bits representing the finished logarithm are in a
fixed-point notation and will need to be scaled. This is done by using
the FLOAT instruction followed by a multiplication by a constant
scaling factor. If the final result needs to be in any other base, the
scaling factor is simply adjusted for that base.

Here are a few more helpful points.

The round-off accuracy of the first three squaring operations will
affect the final result if >21 mantissa bits are desired. A RND
instruction placed after the first three MPYF R0,R0 instructions will
remedy this, but adds to the cycle count.

When the input value approaches 1.0, the result will be driven close
to zero and accuracy will suffer. In this case, an input range
comparison and a branch to a McLauren series expansion is used
as a solution with minimal degradation in speed. This is because the
power series converges quickly for input values close to 1.0.

If you only need to calculate a visual quality logarithm, such as in
spectrum analysis, the logarithm can often be calculated in one
cycle. In this case the mantissa is substituted directly into the
fractional bits of the logarithm giving a maximum error of 0.086
(about 3.5 bits). The one cycle arises from the need to remove the
2’s compliment sign bit in the TMS320C30/’C40’s mantissa. As far
as your eye is concerned, it will never notice the difference!

Example 1. Code Listing

* FAST logarithm for FFT displays *
* >>>> NEED ONLY ADD ONE INSTRUCTION IN MANY CASES <<<< *

|| || ;
MPYF REAL,REAL,R0 ; calculate the magnitude
MPYF IMAG,IMAG,R1 ; Note: sign bit is zero
ADDF R1,R0 ;
ASH -1,R0 ;<- One instruction logarithm!
STF R0,OUT ; scaled externally in DAC
|| || ;

* _log_E.asm DEVICE: TMS320C30 *

.global _log_E
_log_E: POP AR1 ; return address -> AR1

POPF R0 ; X -> R0
LDF R0,R1 ; use R1 to accumulate answer

12 SPRA218

LDI 2,RC ; repeat 3x
RPTB loop ; 8 + 13*3 + 9
ASH 7,R1 ;
LDE 1.0,R0 ; EXP = 0
MPYF R0,R0 ; mant^2
MPYF R0,R0 ; mant^4
MPYF R0,R0 ; mant^8
MPYF R0,R0 ; mant^16
MPYF R0,R0 ; mant^32
MPYF R0,R0 ; mant^64
MPYF R0,R0 ; mant^128
PUSHF R0 ; offload 7 bits of exponent
POP R3 ;
ASH -24,R3 ; remove mantissa

loop: OR R3,R1 ; R2 accumulates EXP <log2(man)>
ASH 11,R1 ; Jam mant_R1 to top

; (concat. EXP_old)
ASH -20,R0 ; align and append the

; MSBs of mant_R0
OR R0,R1 ; (accurate to 3 bits)
PUSHF R1 ; PUSH EXP and Mantissa

; (sign is now data!)
POP R0 ; POP as integer (EXP+FRACTION)
BD AR1 ;
FLOAT R0 ; convert EXP+FRACTION to float
MPYF @CONST,R0 ; scale the result by 2^-24

; and change base
ADDI 1,SP ; restore stack pointer
.data

CONST_ADR: .word CONST
CONST .long 0e7317219h ;Base e hand calc w/1 lsb round

.end

