

Point-to-Point Serial
Communications Using
the SPI Module of the
TMS320F240 DSP
Controller

APPLICATION REPORT: SPRA451

 Authors: Jeff Crankshaw
Jeff Stafford

Digital Signal Processing Solutions
 May 1998

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest version of
relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable
at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques
are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of
each device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license,
either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual
property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used.

Copyright © 1998, Texas Instruments Incorporated

TRADEMARKS

TI is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

CONTACT INFORMATION

US TMS320 HOTLINE (281) 274-2320

US TMS320 FAX (281) 274-2324

US TMS320 BBS (281) 274-2323

US TMS320 email dsph@ti.com

Contents
Abstract7
Product Support..8

Related Documentation...8
World Wide Web ...8
Email...8

Introduction... 9
SPI Overview ... 10
Internal Interface between the SPI Module and ’C2xx CPU...................................... 12

System Clock .. 12
SPI Register Accesses.. 13

SPI Interrupt .. 16
TMS320x240 Interrupt Architecture Overview ... 16
SPI Interrupt Conditions .. 17

SPI Priority Bit... 17
Transmit/Receive Interrupt .. 18
Receiver Overrun Interrupt.. 18

Reading the Interrupt Vector ... 19
Putting It All Together.. 20

Interrupt Initialization ... 20
General Interrupt Service Routine (GISR) ... 22
Specific Interrupt Service Routine (SISR).. 23

Interface Topologies... 25
Point-to-Point .. 25
Addressed Multi-Node... 26
Chip-Enabled Multi-Node .. 28

Implementation ... 30
Hardware Description.. 30
Software Description ... 31

’F240 Slave Code.. 31
’F240 Master Test Code.. 43
’C167 Master Test Code ... 46

Running the Programs .. 50
Implementing Point-to-Point Communication between Two ’F240 EVMs 51
Implementing Point-to-Point Communication between the ’F240 and ’C167 ... 52

Appendix A. FAQ Summary of SPI Features.. 54
Appendix B. ’C167 Master Mode Program Files .. 56

SPI.C .. 56
SPI.H .. 60
SYS_INIT.C .. 61

Appendix C. ’F240 Master Mode Program Files... 63
Example ’C2xx Debugger Command Line Options.. 63
Emulator Initialization Command File -’F240evm.cmd... 63
SPI.ASM ... 65
SPI.CMD... 74

SPI1.TAK .. 74
F240REGS.H .. 76

Appendix D. ’F240 Slave Mode Program Files... 82
SPI.ASM ... 82
SPI1.TAK .. 91

Figures
Figure 1. SPI Block Diagram.. 10
Figure 2. Representation of Relationship between the CPUCLK and the SYSCLK for

(a) Divide-by-2 Mode and (b) Divide-by-4 Mode.. 14
Figure 3. SPI Interrupt Priority within ’F240 Interrupt Hierarchy...................................... 16
Figure 4. High-Level Block Diagram of Point-to-Point Topology 25
Figure 5. Flow Chart for Point-to-Point Topology.. 26
Figure 6. High-Level Block Diagram of Addressed Multi-Node Topology 27
Figure 7. Flow Chart for Addressed Multi-Node Topology .. 28
Figure 8. High-Level Block Diagram of Chip-Enabled Multi-Node Topology 29
Figure 9. High-Level Block Diagram of Point-to-Point Interconnections for (a) ’F240 to

’F240 and (b) ’C167 to ’F240... 30
Figure 10. Flow Chart for Read Message Function .. 40
Figure 11. ’C167 Master Event Time Line for Three Message Sequence......................... 47
Figure 12. Memory Image of ’F240 Master after Successful Program Run 51
Figure 13. Memory Image of ’F240 Slave after Successful Program Run 53

Tables
Table 1. SPI Control Register Memory Map.. 11
Table 2. Instruction Word and Cycle Counts for Peripheral Accesses........................... 14
Table 3. SPI Interrupt Configuration and Status Bits ... 17
Table 4. Interrupt Level 1 (INT1) Interrupt Sources and Overall Priorities 19
Table 5. Interrupt Level 5 (INT5) Interrupt Sources and Overall Priorities 20
Table 6. ’F240 EVM to ’F240 EVM Board Connections... 31
Table 7. ’F240 EVM to MCB-167 Board Connections ... 31
Table 8. Master Mode SPI Register Initialization Sequence for Falling Edge 44
Table 9. Expected Results for All Three Message Types .. 52

Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller7

Point-to-Point Serial
Communications Using the SPI

Module of the TMS320F240 DSP
Controller

Abstract

This application report discusses serial communications using the
Serial Peripheral Interface (SPI) synchronous serial port of the
Texas Instruments (TIä) TMS320F240 digital signal processor
(DSP) controller. A general description of SPI features is provided
for necessary background information. The CPU/SPI interface
description includes a discussion of the bus interface and interrupt
architecture.

An overview of inter-processor communication topologies
describes how the SPI module is used in several applications. A
hardware implementation example of a point-to-point
communication scheme uses the ’F240 SPI in slave mode
connected to a Seimens ’C167 SSC configured as the SPI master.

All ’F240 code is generated using TI assembly language tools and
validated on the ’F240 EVM hardware. All ’C167 code is
generated using the Keil demonstration tools and validated on the
Keil MCB-167 evaluation board. Source code for both processors,
as well as the necessary header, build, and link files, and tools
options are provided as appendices so that the reader can modify
this solution to suit a specific need.

SPRA451

8 Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller

Product Support

Related Documentation

The following list specifies product names, part numbers, and
literature numbers of corresponding TI documentation.

q TMS320C24x DSP Controllers CPU, System, and Instruction
Set Reference Set, Volume 1, September 1997, Literature
number SPRU160B

q TMS320C24X DSP Controllers Peripheral Library and Specific
Devices Reference Set, Volume 2, December 1997, Literature
number SPRU161B

q XDS51x Emulator Installation Guide, January 1996, Literature
number SPNU070A

World Wide Web

Our World Wide Web site at www.ti.com contains the most up to
date product information, revisions, and additions. Users
registering with TI&ME can build custom information pages and
receive new product updates automatically via email.

Email

For technical issues or clarification on switching products, please
send a detailed email to dsph@ti.com . Questions receive prompt
attention and are usually answered within one business day.

SPRA451

Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller 9

Introduction

The TI TMS320 family of DSP controllers is designed with special
features to facilitate serial communications between multiple
processors. In particular, the TMS320x2401 DSP controller
incorporates an SPI module specifically for this purpose. The
external hardware and software overhead for inter-processor
communication is reduced by the flexibility and programmability of
this module.

The SPI is a high-speed synchronous serial I/O port that allows a
serial bit stream of programmed length (one to eight bits) to be
shifted into and out of the device at a programmable bit transfer
rate. The SPI is normally used for communications between the
DSP controller and external peripherals or another controller.
Typical applications include external I/O or peripheral expansion
via devices such as shift registers, display drivers, and analog-to-
digital (A/D) converters. Multi-processor communications are
supported by the master/slave operation of the SPI. The focus of
this application report is the master/slave operation of the SPI,
which supports multi-processor communication.

This application report is organized into two main parts.

q The first part consists of a general description of the ’F240
SPI, its interface with the ’C2xx DSP core, and an overview of
different serial communication topologies enabled by the SPI.

q The second part describes the implementation of a point-to-
point interface between the ’F240 and a Seimens ’C167. This
section presents a detailed description of the hardware and
software used to implement the communication scheme. All
relevant source code and build options are provided in the
appendices.

1 The “x” indicates either ‘F” for flash EEPROM or “C” for masked ROM. For the purposes of this application

report, ’F240 is used to represent both flash and ROM devices since the internal program memory type
has no effect on the SPI.

SPRA451

10 Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller

SPI Overview

This brief overview of the SPI describes key features with respect
to the topic application of inter-processor communications. (A
complete description of the SPI module is offered in Chapter 5, of
the TMS320C24X DSP Controllers Peripheral Library and Specific
Devices Reference Set, Volume 2.)

Figure 1 shows the key features of the SPI.

Figure 1. SPI Block Diagram

8

SPIBUF.7-0

SPISTS.7
SPIBUF

buffer re gister

Receiver
overrun

‡The SPISTE pin is shown as being disabled, meaning the data can be transmitted or received in this mode.
Note that switches SW1, SW2, and SW3 are closed in this configuration.

†The diagram is shown in slave mode.

SPPRI.6

SPIPC2.7-4

SPIPC2.3-0

SPIPC1.7-4

The SPI has four external pins, SPISOMI, SPISTE, SPISIMO, and
SPICLK, providing the interface to external devices. The SPI is a
full-duplex communication port, with the simultaneous transmit
and receive taking place on the SPISOMI and SPISIMO pins. The
SPICLK pin provides the time base for communications. This pin
is bi-directional to allow the time base to be generated in master
mode and received in slave mode.

SPRA451

Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller 11

The fourth pin, SPISTE, has the capability to act as the slave
enable. This operation is conditional, based on the status of the
SPISTE FUNCTION bit. When this bit is set and the SPISTE input
is active low, the SPI sends and receives data from the master.
When the SPISTE pin is inactive high, the SPI serial shift register
is disabled and the SPISOMI output pin is placed in the high
impedance state. However, when the SPISTE FUNCTION bit is
cleared, the SPI receives all data and transmits data based on the
status of the TALK bit.

The key features of the SPI are software programmable, which
make it extremely flexible and capable of communicating with
many types of serial ports. Some of the key programmable
features are:

q Operation mode: master or slave

q Character length: 1-8 bits

q Interrupt priority: level 1 or 5

q Serial bit transfer clock rate

q Serial clock phase and polarity

All of the SPI features are controlled by the ten control registers,
which are mapped into the internal data space of the ’F240.
Table 1 summarizes these ten control registers, including their
symbols and addresses.

Table 1. SPI Control Register Memory Map

ADDRESS SYMBOL NAME

7040h SPICCR Configuration control register

7041h SPICTL Operation control register

7042h SPISTS Status register

7043h — Reserved

7044h SPIBRR Baud rate register

7045h–7046h — Reserved

7047h SPIBUF Serial input buffer register

7048h — Reserved

7049h SPIDAT Serial data register

704Ah–704Ch — Reserved

704Dh SPIPC1 Port control register 1

704Eh SPIPC2 Port control register 2

704Fh SPIPRI Priority control register

SPRA451

12 Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller

Internal Interface between the SPI Module and ’C2xx CPU

The TMS320x240 DSP controllers represent a new approach to
peripheral integration for the TMS320 series. The flexible and
easy-to-use peripherals found in the TMS370 family of MCUs
have been integrated with the low cost ’C2xx DSP. This new
approach differs from the other members in the ’C2xx family (such
as the ‘C203 and ‘F206) in that the peripherals are located in data
space and operate in a different clock domain based on the
system clock.

To better understand the peripheral architecture of the
TMS320x240, this section covers some of the basic interface
characteristics that are important from a programming point of
view. A solid understanding of the architecture helps the
programmer to take advantage of this architecture.

Two factors concern the programmer:

q System clock speed

q Register reads/writes

The next two sections describe each factor and its relationship to
application development.

System Clock

The first and most important factor to consider when beginning
application development is system clock frequency selection. The
SPI is clocked by the system clock, SYSCLK, which can be
configured to run at either one half or one fourth the frequency of
the ’C2xx CPU clock, CPUCLK. The actual SYSCLK pre-scale
ratio is determined by the PLL pre-scale bit, PLLPS, in Clock
Control Register 0, CKCR0, at address 0x702B in data space.

In most applications, it makes sense to configure SYSCLK to run
at its highest frequency, which is one half the CPU clock
frequency. This minimizes the number of clock cycles necessary
to perform peripheral register accesses. A divide-by-2 ratio is
accomplished by setting bit PLLPS to 1 during the initialization
sequence following a power-on reset condition.

Once selected, the frequency of SYSCLK remains set to one half
of CPUCLK until another power on reset condition occurs. Normal
system resets do not affect the PLLPS bit. Example 1 shows a
typical code sequence used to configure the clock control register.

SPRA451

Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller 13

Example 1. PLL initialization code

* Set Data Page pointer to page 1 of the peripheral frame

LDP #DP_PF1 ; Page DP_PF1 includes WET through EINT frames

* Configure PLL for 10MHz osc, 10MHz SYSCLK and 20MHz CPUCLK

SPLK #00B1h,CKCR1 ; CLKIN (OSC)=10MHz,CPUCLK=20MHz

SPLK #00C3h,CKCR0 ; CLKMD=PLL Enable, SYSCLK=CPUCLK/2,

SPI Register Accesses

It is necessary to understand which CPU instructions can be used
to access the peripheral registers of the TMS320x240 in order to
understand peripheral register accesses. All of the peripherals,
including the SPI, are located in data space. Thus, any instruction
that operates on data space can be used to access the SPI
control registers.

For the ’C2xx CPU, the simplest form of a read is the 16-bit load
accumulator instruction, or LACL. Likewise, the simplest form of a
write is the 16-bit store accumulator instruction, or SACL. Both are
single-cycle instructions when executed from zero wait-state
program memory (e.g. internal Flash EEPROM) and the operand
is located in zero wait-state data memory (e.g. on-chip Dual
Access RAM). The SPI is interfaced to the CPU through the
peripheral bus. This internal bus acts as a bridge between the
CPU and SPI. To maintain high performance for complex
algorithms, the CPU is clocked at a higher clock frequency. The
SPI, which has been designed to minimize CPU loading, does not
require the faster clock frequency. The peripheral bus acts as a
“bridge” between these two clock domains.

Accesses to the slower peripheral bus require the addition of wait
states. There are two reasons for the wait states: first, the access
has to be synchronized with the peripheral bus. At any given time,
the CPUCLK could be in one of two (¸2), or one of four (¸4),
phases with respect to the SYSCLK. Peripheral bus accesses will
not begin until the SYSCLK is in the correct phase. This
relationship is demonstrated in Figure 2.

SPRA451

14 Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller

Figure 2. Representation of Relationship between the CPUCLK and the SYSCLK
for (a) Divide-by-2 Mode and (b) Divide-by-4 Mode

CPUCLK

SYSCLK

1 2

(a)

CPUCLK

SYSCLK

1 2 43

(b)

The second reason for wait states is the slower peripheral latency
or access time. The SPI, and other eight-bit peripherals, require
one SYSCLK period for reads and one and a half SYSCLK
periods for writes. Thus, single writes to the peripheral bus require
one more clock cycle than single reads.

Table 2. Instruction Word and Cycle Counts for Peripheral Accesses

Cycles
Instruction # Words ¸̧2 ¸̧4

Reads

LACL 1 3 or 4 5 - 8

BIT 1 3 or 4 5 - 8

Writes

SACL 1st access 1 4 or 5 6 - 9

SACL 2nd or more consecutive access 1 4 8

SPLK 1st access 2 5 or 6 7 - 10

SPLK 2nd or more consecutive access 2 6 8

The net effect of the wait states is shown in Table 2. The number
of cycles for instructions commonly used to access the SPI
registers are shown for both divide-by-2 and divide-by-4 SYSCLK
settings. Based on these facts, the following general guidelines
can be followed to minimize register access times:

SPRA451

Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller 15

q Configure the SYSCLK for divide-by-2.

The reset state of the ’F240 sets the SYSCLK divide-by-ratio
to 4. The default divide-by-4 mode ensures that the system
peripherals would function correctly on power up. The divide-
by-ratio can be set to 2 during the initialization routines after
reset to minimize the number of cycles required for register
reads and writes.

q Use direct addressing with immediate operand for SPI register
initialization.

Since initialization is generally performed once and at least
four registers need to be written to configure the SPI, it makes
sense to modify the data page pointer and use the direct
addressing mode. The store long constant (SPLK) instruction
is recommended.

SPRA451

16 Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller

SPI Interrupt

From an application point of view, one of the critical design
decisions involves selection of the interrupt strategy. The ’F240 is
designed to provide maximum flexibility in the use of interrupts.
This section will describe the ’F240 interrupt architecture as it
relates to the SPI. In addition, the programmable priority and
receive-error detection capabilities of the SPI module are
discussed. Finally, examples of interrupt initialization and service
code are provided to illustrate these important features.

TMS320x240 Interrupt Architecture Overview

In order to select the correct SPI interrupt strategy for a given
design, it is necessary to understand how the SPI interrupt fits into
the overall interrupt architecture of the ’F240. An overview of the
’F240 interrupt hierarchy is presented in block diagram form in
Figure 3. The DSP core provides six maskable interrupt levels,
INT1 through INT6, with INT1 given highest priority and INT6
being the lowest. Since the ’F240 device has more than six
maskable interrupts, each of the six interrupt levels are shared by
multiple interrupt sources. These interrupt sources are generated
from on-chip peripherals and external interrupt pins.

This grouping of peripheral interrupts makes it possible to isolate a
particular peripheral to efficiently prioritize its use.

Figure 3. SPI Interrupt Priority within ’F240 Interrupt Hierarchy

INT1

INT2

INT3

INT4

INT5

INT6

Event Manager

Highest

Lowest

P
R
I
O
R
I
T
Y

PERIPHERAL PRIORITY

C
P
U

Highest Lowest

External
(XINTn) SCI RTI

SPI SCI

External
(XINTn)ADC

Capture
1 - 4

GP Timer
2

GP Timer
3

GP Timer
1

Simple
Compares

Full
Compares

Pwr Drive
Protect

SPI

SPRA451

Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller 17

SPI Interrupt Conditions

The SPI can initiate an interrupt after the occurrence of either of
two events. The first event is defined as occurring after a
character has been transmitted or received. The second event is
defined as occurring after a receiver overrun condition is
encountered. Both of these conditions can be independently
enabled and both share a common interrupt vector. Five control
bits are used to configure and determine the status of SPI
interrupts. Table 3 summarizes their register locations, names,
and descriptions.

Table 3. SPI Interrupt Configuration and Status Bits

Control
Register

Bit Name Bit
Type

Description

SPIPRI.6 SPI
PRIORITY

Control Determines interrupt level of an SPI interrupt. When
set, SPI interrupts are sent on level 5. When cleared,
SPI interrupts are sent on level 1.

SPICTL.0 SPI INT
ENA

Control Enables the SPI to request an interrupt when the last
bit in a transmit/receive operation has been
sent/received. When set, SPI interrupts are enabled.

SPISTS.6 SPI INT
FLAG

Status Indicates the SPI has transmitted/received the last bit
in a transmit/receive operation.

SPICTL.4 OVERRUN
INT ENA

Control Enables the SPI to request an interrupt when a
transmit/receive operation is completed before the
previous character has been read from the buffer.

SPISTS.7 RECEIVER
OVERRUN

Status Indicates the SPI has completed a transmit/receive
operation before the previous character has been
read from the buffer.

SPI Priority Bit

The first bit that must be configured is the SPI PRIORITY bit. This
bit determines the interrupt level of the SPI interrupt request. If this
bit is cleared to 0, the interrupt request is seen by the DSP core as
a high priority and is received on interrupt level 1 (INT1). If this bit
is set to 1, the interrupt request is seen by the DSP core as a low
priority and is received on interrupt level 5 (INT5). This allows the
designer to have software control over the priority of the SPI
interrupt. For example, in some multi-processor applications, it
may be desirable to send or receive large amounts of data at a
high baud rate.

SPRA451

18 Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller

One common application is to use the SPI to receive flash
programming code and data. Other on-chip resources, such as
the Event Manager, would be inactive in such a case, and a high
priority interrupt would be desirable. Then, after this initial burst of
data has been transferred, the SPI interrupt priority can be
lowered to allow other interrupts to take priority. This flexibility can
be used in other situations where the SPI communications need to
take high priority in particular situations, but then can be reduced
to a background task with lower priority.

Transmit/Receive Interrupt

The main method to determine completion of an SPI
transmit/receive operation is the SPI interrupt. Setting the SPI INT
ENA bit enables this interrupt. This event is indicated by the SPI
INT FLAG bit. Anytime the SPI completes sending or receiving,
this bit is set and the SPI is ready to be serviced. This event
causes an interrupt to be requested if the SPI interrupt is enabled.

The user must clear the SPI INT FLAG bit during the SPI interrupt
service routine by reading the SPIBUF register. If this register is
not read, the SPI INT FLAG remains set and no additional SPI
TX/RX interrupts will be generated. This bit is also automatically
cleared by writing a 1 to the SPI software reset (SPICCR.7) bit
and by any device reset.

Receiver Overrun Interrupt

The SPI can be configured to detect a receiver overrun condition,
which occurs anytime the previous character has not been read
from the SPI buffer register before a new character is received.
Setting the OVERRUN INT ENA bit to a 1 enables this error
detection feature. The RECEIVER OVERRUN flag bit is set by the
SPI hardware when a receive or transmit operation completes
before the previous character has been read from the buffer. This
flag indicates that the last received character has been overwritten
and therefore lost. When the overrun interrupt is enabled, the SPI
requests an interrupt each time this flag is set.

The RECEIVER OVERRUN flag bit must be cleared before
another overrun interrupt will be generated by the SPI. It is up to
the user to clear this bit, which is most easily done by writing a 0
to it in the SPI interrupt service routine. Other actions that clear
the RECEIVER OVERRUN flag bit are an SPI software reset or a
device reset, both of which require reconfiguration of the SPI
control registers.

SPRA451

Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller 19

Reading the Interrupt Vector

After an interrupt request leaves the SPI peripheral, it is sent to
arbitration logic, which compares the priority level of competing
interrupt requests and passes the highest priority interrupt request
to the DSP core. The corresponding interrupt flag is set in the
DSP core's interrupt flag register (IFR). If the corresponding bit in
the interrupt mask register (IMR) is set and the INTM bit is 0, the
DSP core will acknowledge the interrupt and branch to the
interrupt service routine (ISR). The DSP core services any
remaining interrupt requests in order of priority.

As described in Figure 3, the ’C2xx CPU has six interrupt levels,
but there are multiple requests per level. The ’F240 implements a
vector offset scheme to distinguish between the peripheral
interrupt requests within each level. Table 4 and Table 5
summarize the peripherals, their interrupt vector offsets, and
priorities for both SPI interrupt levels one and five.

Table 4. Interrupt Level 1 (INT1) Interrupt Sources and Overall Priorities

Overall
Priority

Interrupt
Name

Vector
Offset

'F240
Module

Interrupt Function

4 XINT1 0001h System
Module

High-priority external user interrupt

5 XINT2 0011h System
Module

High-priority external user interrupt

6 XINT3 001Fh System
Module

High-priority external user interrupt

7 SPIINT 0005h SPI High-priority SPI interrupt

8 RXINT 0006h SCI High-priority SCI receiver interrupt

9 TXINT 0007h SCI High-priority SCI transmitter interrupt

10 RTINT 0010h WDT Real-time interrupt

The SPI shares interrupt level one with interrupts from three
external pins (XINT1-3), the SCI receive and transmit interrupts,
and the WDT real time interrupt. The level five interrupt is shared
between the SPI and SCI modules.

The interrupt vector offset for the requesting source is loaded into
the system interrupt vector register (SYSIVR) when the CPU
acknowledges its interrupt request. If more than one of the
interrupt sources on the selected level is enabled, the user must
read the SYSIVR to determine the source of the interrupt. For an
SPI interrupt, the vector offset of 0x05 is loaded into the SYSIVR
when either of the SPI interrupts (tx/rx complete or rx overrun) is
acknowledged.

SPRA451

20 Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller

Table 5. Interrupt Level 5 (INT5) Interrupt Sources and Overall Priorities

Overall
Priority

Interrupt
Name

Vector
Offset

'F240
Module Interrupt Function

34 SPIINT 0005h SPI Low-priority SPI
interrupt

35 RXINT 0006h SCI Low-priority SCI
receiver interrupt

36 TXINT 0007h SCI Low-priority SCI
transmitter interrupt

In the most general case, the user implements a two-part interrupt
service routine. The first part is called the general interrupt service
routine (GISR). The second part is called the specific interrupt
service routine (SISR).

The CPU branches to and executes the code at GISR1 when an
interrupt request on priority level INT1 is acknowledged. The
GISR, after performing any necessary context saves, identifies the
acknowledged interrupt by reading SYSIVR and then branches to
the SISR. The SISR performs the actions specific to the triggering
interrupt and then returns program control to the interrupted
program sequence.

Putting It All Together

The previous section describes the process of both configuring
and servicing the SPI interrupts.. This section presents a simple
example of each process. These examples are used as the basis
for the point-to-point programs described in the implementation
section of this report. (A complete description of the ’F240
interrupt architecture is provided in the TMS320C24x DSP
Controllers CPU, System, and Instruction Set Reference Set,
Volume 1.)

Interrupt Initialization

The procedure to enable the SPI interrupts on level 5 involves
three steps.

1) First, the CPU interrupt flag and interrupt mask registers must
be initialized, as shown in Example 2.

2) Second, the SPI control and priority registers must be
configured for the desired operation. The code in Example 3
shows the necessary instructions for enabling both the SPI
rx/tx interrupt and rx overrun interrupt on the low priority level.
In addition, the status bits are cleared to ensure the SPI is in a
known state. Typically, this section of code is included within a
subroutine call that configures the rest of the SPI registers.

SPRA451

Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller 21

Example 2. CPU Level 5 Interrupt Initialization Code Sequence

;Initialize DSP for interrupts

LDP #0 ; set dp for CPU memory mapped registers

LACL #010h ; load mask value for level 5 int. to ACC

SACL IMR ; Enable interrupt 5 only (SPI,SCI)

LACL IFR ; Clear IFR by reading and

SACL IFR ; writing contents back into itself

Example 3. SPI Interrupt Initialization Code Sequence

LDP #DP_PF1 ; Change data page for SPI

SPLK #0040h,SPIPRI ; Set SPI interrupt to low priority.

SPLK #0000h,SPISTS ; Clear the SPI interrupt status bits

SPLK #0013h,SPICTL ; Enable SPI INT, TALK, and OVERRUN

; INT; set CLK ph 0, and slave mode

3) The third and final step is to clear the global interrupt mask bit.
This bit should be cleared just prior to entering the main
program loop. The code in Example 4 shows the instruction
required to globally enable interrupts.

Example 4. CPU Global Interrupt Enable Code

CLRC INTM ; Enable global DSP interrupts

This same sequence is recommended for initialization of all
interrupts. Specifically, the CPU interrupt mask and flag registers
are configured and enabled first, followed by the peripheral
interrupt initialization. The last step in the sequence should be to
clear the global interrupt mask bit, INTM. If a peripheral interrupt is
enabled and that interrupt event occurs before the CPU interrupt
flag register has been cleared, that peripheral interrupt will never
be acknowledged. This is because only one peripheral interrupt
request is sent per event.

SPRA451

22 Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller

General Interrupt Service Routine (GISR)

The structure of the GISR varies depending on the ISR method
selected. For methods 1 and 2, the GISR includes intermediate
branches prior to reaching the SISR, as shown in Example 5 and
Example 6. The CPU interrupt vector table contains the branch
instruction and address for jumping to the GISR5 for any level 5
interrupt. Once at the GISR, the context is saved before any
registers are modified. Then the SYSIVR is loaded into the
accumulator with a shift left by one bit. The start location of the
peripheral interrupt vector table is added to the shifted interrupt
vector offset. This value is then used as the branch address to the
peripheral interrupt vector table.

Example 5. CPU Interrupt Vector Table for GISR, Methods 1 and 2

.sect "vectors"

RESET B START ;reset branches to start

B PHANTOM ;Int level 1 not used

B PHANTOM ;Int level 2 not used

B PHANTOM ;Int level 3 not used

B PHANTOM ;Int level 4 not used

B GISR5 ;Int level 5, low priority SPI

For an SPI interrupt, the program branches to the SPI_VEC
location and executes the branch to the SISR (labeled SPI_ISR).

Example 6. GISR Code Sequence, Method 1

GISR5 ; first, save machine context

SST #0, ST0_TEMP ;Auto page-0 DP addressing is used to

SST #1, ST1_TEMP ; save status registers to B2 DARAM.

LDP #CONTEXT_MEM_PTR ; change the dp to context stack

SACL CONTEXT_MEM_PTR ; save lower 16-bits of ACC

SACH CONTEXT_MEM_PTR+1; save upper 16-bits of ACC

SAR AR7, CONTEXT_MEM_PTR+2

SAR AR6, CONTEXT_MEM_PTR+3

; begin GISR5 to find which source requested the interrupt.

LDP #DP_PF1 ; change dp for SYSIVR

LACC SYSIVR,1 ; read SYSIVR with shift of 1 (for x2)

ADD #(PERIPH_OFFSET-2) ; add offset to peripheral

BACC ; int. vector table and branch there

SPRA451

Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller 23

PERIPH_OFFSET:

XINT_VEC B XINT1_ISR ; vector offset 0x1 is for XINT1

B PHANTOM ; vector offset 0x2 not implemented

B PHANTOM ; vector offset 0x3 not implemented

ADC_VEC B ADC_ISR ; vector offset 0x4 is for ADC

SPI_VEC B SPI_ISR ; vector offset 0x5 is for SPI

Method 3 can be used for the interrupt service routine when the
SPI is the only active interrupt on level 5. This condition is met in
two cases: one, in any application which does not use the SCI;
and two, if the SCI is always configured for level 1 interrupts. In
either case, the intermediate branches are not necessary, and the
CPU interrupt vector table can be written to branch directly to the
SPI interrupt service routine, as shown in Example 7.

Example 7. CPU Interrupt Vector Table for GISR, Method 3

.sect "vectors"

RESET B START ;reset branches to start

B PHANTOM ;Int level 1 not used

B PHANTOM ;Int level 2 not used

B PHANTOM ;Int level 3 not used

B PHANTOM ;Int level 4 not used

B SPI_ISR ;Int level 5, low priority SPI

Specific Interrupt Service Routine (SISR)

The SISR performs actions specific to the event that caused the
interrupt and then returns program control to the interrupted code
sequence. The code shown in Example 8 implements the SISR for
the SPI based on method 1 or 2 ISR. In the case of method 3, the
context save provided at the beginning of GISR5 can be included
at the beginning of the SPI_ISR.

This version of an SPI ISR includes a simple test for the rx
overrun condition and, if detected, clears the condition and returns
from the ISR without performing additional tasks. If the overrun
condition is false, the ISR continues with the servicing of the rx/tx
interrupt. Again, the specifics of this section are left blank,
indicating that the user may write whatever code is deemed
appropriate. Finally, the context is restored to the pre-interrupt
state before returning from the ISR.

SPRA451

24 Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller

Example 8. SISR Code Sequence for SPI Interrupt Service Routine

SPI_ISR ; first, save machine context

;Check for Overrun condition

OVER_RUN:

LDP #DP_PF1 ;Page DP_PF1 includes SPI

BIT SPISTS, 8 ;Overrun flag (SPISTS.7) set?

BCND CLEAR_FLAG, TC ;If set, clear & return

 (Insert SPI service code here)

SPI_DONE: ;restore context as saved in GISR5

LDP #CONTEXT_MEM_PTR

LAR AR6, CONTEXT_MEM_PTR+3

LAR AR7, CONTEXT_MEM_PTR+2

LACC CONTEXT_MEM_PTR+1,16

ADDS CONTEXT_MEM_PTR

LDP #0

LST #1, ST1_TEMP

LST #0, ST0_TEMP

CLRC INTM

RET

CLEAR_FLAG:

SPLK #0H, SPISTS

B SPI_DONE

The preceding code sequences provide a template for
establishing the interrupt service routines for the SPI. These code
sequences serve as the basis for the point-to-point application
code presented in the implementation section. The reader is
referred to the code in the appendix to see the complete
implementation in context of the point-to-point application.

SPRA451

Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller 25

Interface Topologies

Three different SPI implementations are presented:

q Point-to-point

q Addressed multi-node

q Chip-enabled multi-node

Each configuration has advantages and disadvantages. Since the
point-to-point configuration is the most common configuration for
SPI communication, an example is provided in the Implementation
section.

Point-to-Point

The point-to-point configuration consists of two devices and is the
most basic SPI configuration. One-device controls communication
by providing the synchronous clock, commonly referred to as the
master. The device that receives the clock is commonly referred to
as the slave. This configuration can consist of two processors or a
processor communicating with a peripheral like an EPROM or an
ADC.

Figure 4. High-Level Block Diagram of Point-to-Point Topology

240 SPI (slave)

S O M I

S I M O

SPICLK

240 SPI (master)

S O M I

S I M O

SPICLK

Figure 5 shows a flow chart used to process received data using
the point-to-point configuration.

SPRA451

26 Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller

Figure 5. Flow Chart for Point-to-Point Topology

Start: SPI ISR

Store received byte to
receive buffer

Transmit buffer
empty ?

Receiver
overrun?

Store retransmit
command in SPIDAT

Store next byte from
transmit buffer in

SPIDAT

RET

yes

no

no

yes

Read SPIBUF to
reset int flag

Addressed Multi-Node

The ’F240 SPI module can be used in an addressed-based, multi-
node network. The SPI master is always connected to the network
and supplies the SPICLK signal to the entire slave SPIs
connected to the network, as shown in Figure 6.

SPRA451

Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller 27

Figure 6. High-Level Block Diagram of Addressed Multi-Node Topology

240 SPI (slave)

SOMI

SIMO

SPICLK

240 SPI (slave)

240 SPI (master)

SOMI

SIMO

SPICLK

SOMI

SIMO

SPICLK

All slave nodes receive all messages sent on the network, but only
the slave node addressed by the master node is able to send
messages. All other slave nodes have their SOMI pins
disconnected from the network via internal circuitry. When a slave
node receives an address byte that matches its address stored in
memory, its TALK bit is then enabled. By enabling this bit, the
slave node's SOMI pin is connected to the SPI's internal circuitry.
This is functionality is handled in the SPI ISR.

Once the addressed slave node is attached to the network, the
master and slave establish a connection that is essentially a point-
to-point type connection. In addition to the address recognition, all
real-time issues discussed for the point-to-point topology are
applied here.

Figure 7 shows a flow chart used to process received data using
this configuration.

SPRA451

28 Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller

Figure 7. Flow Chart for Addressed Multi-Node Topology

Start: SPI ISR

Store received byte to
receive buffer

Transmit buffer
empty ?

Receiver
overrun?

Store retransmit
command in SPIDAT

Store next byte from
transmit buffer in

SPIDAT

RET

yes

no

yes

Address
byte ?

Match
address in
memory ?

Set talk bit

Reset talk bit

Talk bit
set ?

no

yes yes

no

no

yes
no

Chip-Enabled Multi-Node

By using direct chip-enables for each slave node, the ’F240 SPI
module can be used in multi-node networks without using
addresses. The master node must provide a digital output for each
slave's strobe pin (SPISTE). The master node always has its
SIMO connected to the network and supplies the SPICLK signal to
the entire slave SPIs connected, as shown in Figure 8.

SPRA451

Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller 29

Figure 8. High-Level Block Diagram of Chip-Enabled Multi-Node Topology

240 SPI (slave)

SOMI

SIMO

SPICLK

240 SPI (master)

SOMI

SIMO

SPICLK

SPISTE

GPIO

240 SPI (slave)

SOMI

SIMO

SPICLK

SPISTE

The basic function of the strobe (SPISTE) pin is to act as a
transmit enable for the slave nodes. It stops the shift register so
that it cannot receive data. This is an advantage over the address-
based network, in which all nodes receive every byte transmitted
on the network. Instead of every slave node interrupting on every
byte, only the SPISTE selected slave-node will interrupt and
receive the transmitted bytes from the master node.

The SPISTE pin also 3-states the SOMI pin, eliminating the need
to set and reset the TALK bit. For the master node, the SPISTE
pin is automatically configured as a GPIO and can be used as one
of the outputs to enable selected slave nodes. The disadvantage
of this approach is that the number of outputs available on the
master node limits the number of nodes that can be on the
network.

The procedure to process received information in this
configuration is the same as the Point-to-Point configuration and is
shown in Figure 5.

SPRA451

30 Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller

Implementation

The Point-to-Point communication scheme described in Interface
Topologies is implemented using an ’F240 as the slave “point” and
either a different ’F240 as the master “point” or an 80C167CR as
the master “point”. The hardware used for the ’F240 platform is
the ’F240 EVM available from Texas Instruments. The ’C167
hardware is the MCB-167 prototype board available from Keil
Software. The hardware and software aspects of the
implementations are provided in the following sections. In addition,
a step-by-step procedure is provided describing how the
application was tested.

Hardware Description

One of the benefits of the SPI interface is the simple three-wire
interface. The slave SPI port is directly connected to the master
SPI (SSC configure as SPI for the ’C167) port. The high-level
block diagrams of Figure 9 show the connections for each
implementation.

Figure 9. High-Level Block Diagram of Point-to-Point Interconnections for (a)
’F240 to ’F240 and (b) ’C167 to ’F240

SLAVE M ASTER

‘F240 ‘F240

SPISO MI

SPISIMO

SPICLK

SPISO MI

SPISIMO

SPICLK

Vss Vss

(a)

‘F240 ‘C 167

M RST

M TSR

SCLK

SPISO MI

SPISIMO

SPICLK

Vss Vss

(b)

Table 6 and Table 7 list the actual pin connections for each
implementation.

SPRA451

Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller 31

Table 6. ’F240 EVM to ’F240 EVM Board Connections

’F240 EVM
I/O Connector (P1)

’F240 EVM
I/O Connector (P1)

SPICLK/IO pin 31 connected to pin 31 SPICLK/IO

SPISOMI/IO pin 30 connected to pin 30 SPISOMI/IO

SPISIMO/IO pin 29 connected to pin 29 SPISIMO/IO

GND pin 33 connected to pin 33 GND

Table 7. ’F240 EVM to MCB-167 Board Connections

’F240 EVM
I/O Connector (P1)

MCB-167
Wire Wrap Field (P3)

SPICLK/IO pin 31 connected to p3.13 SCLK

SPISOMI/IO pin 30 connected to p3.8 MRST

SPISIMO/IO pin 29 connected to p3.9 MTSR

GND pin 33 connected to COM,pin1 GND

Software Description

The software written for the point-to-point communication
implementation is divided into three sections. The slave code
written for the ’F240 EVM is described first. This is followed by two
versions of the master code; one for the ’F240 and another for the
’C167. The ’F240 master code was written in assembly to debug
the slave code. Once the slave code was fully functional, the
’F240 master code was rewritten in C for the ’C167. Both sets of
code are included for reference in the appendices.

’F240 Slave Code

The ’F240 slave supports the three message types used in this
example: (1) send new parameters and receive status update; (2)
send new parameters; (3) status information request. The
message formats for the three messages are the following:

(1) send new parameters and receive status update
Byte Description

1 Message type = 3, bits 0 & 1 are set

2 message length, which is 3+n bytes long, where n is the
number of parameters

3 to n+2 n data parameters

n+3 checksum of bytes 1 through n+2

SPRA451

32 Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller

(2) send new parameters
Byte Description

1 message type = 1, bit 0 is set

2 message length, which is 3+n bytes long, where n is the
number of parameters

3 to n+2 n data parameters

n+3 checksum of bytes 1 through n+2

(3) status information request
Byte Description

1 message type = 2, bit 1 is set

2 to n Checksum request bytes (#08) are sent by the Master
until the Slave sends the last byte of the status
information.

The ’F240 slave source code developed for this application report
consists of the following files: SPI.ASM, SPI.CMD, and
F240REGS.H. These files are available for review in Appendix D.

The file SPI.ASM contains the entire program with the following
main sections:

Label Description
START System and SPI initialization.

MAIN Continuous loop waiting for a byte to be received.

RD_MSG Processes each received byte, it is called by MAIN
whenever a byte is received.

SPI_ISR Interrupt service routine for the SPI.

System Initialization

At reset the initialization code starts execution at the label START:

START: CLRC SXM

This is done by placing the instruction "B START" at the reset
vector location. All ISRs used in this example are defined in the
user named section "vectors".

.sect "vectors"

B START ;reset vector

B START ;Int level 1 not used

B START ;Int level 2 not used

B START ;Int level 3 not used

B START ;Int level 4 not used

B SPI_ISR ;Int level 5, low priority SPI

SPRA451

Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller 33

The initialization code then disables the watchdog, defines the
clock, and clears the system reset flag bits. The DARAM blocks
B1 and B2 are initialized to zero since their values are not defined
at reset.

SPLK #06Fh, WDCR ; Clear WDFLAG, Disable WDT,

;set WDT for 1 second overflow

SPLK #07h, RTICR ; Clear RTI Flag, set RTI for

;1 second overflow (max)

;EVM 10MHz oscillator settings.

;(XTAL2 open,OSCBYP_=GND)

SPLK #00B1h,CKCR1 ; CLKIN(OSC)=10MHz, Mult by 2,

;Div by 1.

SPLK #00C3h,CKCR0 ; CLKMD=PLL, SYSCLK=CPUCLK/2,

; Clear reset flag bits in SYSSR

LACL SYSSR

AND #00FFh

SACL SYSSR

After the system has been initialized, starting values are given to
the variables used by the application: STATUS_INFO,
NEW_BYTE_FLAG, and COPIED. The five bytes of status
information are defined at memory location STATUS_INFO and
used to respond to a request by the Master SPI for status
information. The single-byte flag NEW_BYTE_FLAG is used by
the SPI ISR to indicate to the main loop that a new byte has been
received and requires service. The single-byte flag COPIED is
used by RD_MSG to limit copying status information to the
DATA_OUT buffer once per request. The pointers for the
DATA_OUT and DATA_IN buffers are initialized to start at the top
of each buffer. The default transmission byte from the slave is the
ACKnowledge byte (#0FFh), and this is also stored at the top of
the DATA_OUT buffer.

; initialize STATUS_INFO

LAR AR1,#STATUS_INFO

MAR *,AR1

SPLK #01,*+ ; STAT1 = 1

SPLK #02,*+ ; STAT2 = 2

SPLK #03,*+ ; STAT3 = 3

SPLK #04,*+ ; STAT4 = 4

SPLK #05,*+ ; STAT5 = 5

SPRA451

34 Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller

;Initialize NEW_BYTE_FLAG

LDP #NEW_BYTE_FLAG

SPLK #01h, NEW_BYTE_FLAG

SPLK #0, COPIED

;Initialize RX and TX buffers

LDP #DATA_IN_PTR

SPLK #DATA_IN, DATA_IN_PTR ;Reset RX buffer ptr

SPLK #DATA_OUT, DATA_OUT_PTR ;Reset TX bfr ptr

SPLK #0FFH, DATA_OUT ;Init default TX byte = ACK

The final system initialization involves enabling core interrupt #5
that is used by the SPI interrupts and clearing the interrupt flag
register.

;Initialize DSP for interrupts

LAR AR6,#IMR

LAR AR7,#IFR

MAR *,AR6

LACL #010h

SACL *,AR7 ; Enable int 5 only, SPI low

; priority

LACL * ; Clear IFR by reading & writing

SACL *,AR6 ;contents

SPI Initialization

The SPI is initialized with a call to INIT_SPI. It is set up to be in
slave mode, to use its low priority interrupt, and to have a
character length of 8 bits.

INIT_SPI: ; initialize SPI in slave mode

LDP #DP_PF1

SPLK #00C7h,SPICCR ; Reset SPI, write 1 to SWRST

SPLK #0000h,SPICTL ; Disable ints & TALK, normal

;clock, SLAVE

SPLK #0040h,SPIPRI ; Set SPI int to low priority.

SPLK #0000h,SPISTS ; Clear the SPI int status bits

SPLK #0013h,SPICTL ; Enable TALK, ena SPI int, CLK

SPRA451

Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller 35

;ph 0, slave

SPLK #0002h,SPIPC1

SPLK #0022h,SPIPC2 ; Set SIMO & SOMI function to

;serial I/O

SPLK #0047h,SPICCR ; Release SWRST, clock polarity

;1, 8 bits

RET ; Return to MAIN routine.

Main Program

Once the system and the SPI have been initialized, the final step
before entering the main loop is to unmask the global interrupt
mask bit. With this bit cleared, the SPI interrupts are completely
enabled and a continuous loop is started at the label MAIN. This
loop continues until the NEW_BYTE_FLAG is reset to zero by the
SPI_ISR, indicating that a new byte has been received and
requires processing.

;Initialize DSP interrupts globally

CLRC INTM ; Enable DSP interrupts

MAIN:

LDP #NEW_BYTE_FLAG

MAR *, AR5

LAR AR5, NEW_BYTE_FLAG ;Update AR5

BANZ MAIN,*

Message Read Function

When a new byte has been received, the code at the label
RD_MSG is executed (see Figure 10). RD_MSG begins by
resetting the NEW_BYTE_FLAG. SPI interrupts are not allowed at
this time to prevent the SPI ISR from attempting to reset the flag
because it has already been reset from the previous SPI ISR.
Therefore, the SPI ISR is disabled until the flag is set.

RD_MSG:

LDP #IMR/128

LACL IMR ; Mask SPI int to avoid changes

AND #0FFEFh ;to DATA_IN_PTR. NEW_BYTE_FLAG is

SACL IMR ;a handshake with SPI_ISR & RD_MSG.

LDP #NEW_BYTE_FLAG

SPLK #1, NEW_BYTE_FLAG

LDP #IMR/128

SPRA451

36 Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller

LACL IMR ; Unmask SPI interrupt

OR #010h

SACL IMR

The first task the RD_MSG code completes is to find out if the
received byte is a CHECKSUM_RQST (#08). This byte is sent
repeatedly by the master until the result of the checksum
comparison is sent. Therefore, it does not require processing and
RD_MSG discards it and resets the received buffer (DATA_IN).

CHECKSUM_RQST:

LDP #DATA_IN ; Is 1st byte a Checksum Request

LACC DATA_IN ;msg from the Master SPI? If so,

SUB #CHKSM_RQST_MSG ;then no processing is

;required, reset rcv

BCND RESET_RCV_BFR, EQ ;buffer and return.

If the master is requesting status information from the slave,
indicated by bit #1 being set in the message type byte, then status
information will be copied into the DATA_OUT buffer. The code
used in this example uses 5 bytes to represent the status
information. Any number of bytes can be used.

STATUS_INFO_RQST: ; Is status info requested?

BIT RCV_MSG_TYPE, BIT1 ;Yes if bit #1 is set in

;the first rcvd byte,

BCND STATUS_RQST, NTC ;the msg-type byte. If

;status info is requested

;then copy it to
DATA_OUT.

COPY_STATUS_INFO:

BIT COPIED, BIT0

BCND MSG_COMPLETE, TC

LDP #IMR/128

LACL IMR ; Mask SPI interrupt until DATA_OUT

AND #0FFEFh ;has been updated.

SACL IMR

LDP #DATA_OUT_PTR

MAR *, AR6

LAR AR6, DATA_OUT_PTR

SPRA451

Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller 37

ADRK #01

SAR AR6, DATA_OUT_PTR

LDP #STATUS_INFO

RPT #(STATUS_INFO_BYTES - 1)

BLDD #STATUS_INFO, *+

SBRK #1

SAR AR6, DATA_OUT_PTR

SPLK #01, COPIED ; Set flag to copy only once

LDP #IMR/128

LACL IMR ; Unmask SPI interrupt

OR #010h

SACL IMR

STATUS_RQST:

LDP #DATA_IN ; Is this 1st byte a Status Request

LACC DATA_IN ;msg from the Master SPI? If so,

SUB #STATUS_RQST_MSG ;then no further processing

;is required, reset rcv

BCND RESET_RCV_BFR, EQ;buffer and return.

After the status information has been completed, two checks are
made before further processing of the message can take place. If
the message is not complete as defined by the RCV_BYTE_NO,
byte #2 in the received message, the routine returns. This byte
consists of the total number of bytes in the message, from byte #1
(message type) to the last byte (checksum). The purpose of this
check is to verify that all of the parameter bytes and the checksum
byte are received.

The second check verifies that the DATA_OUT buffer is empty. All
transmission must be completed before the checksum comparison
results can be saved to the DATA_OUT buffer. In addition, the
COPIED flag is reset to allow new status information to be copied
to the now empty DATA_OUT buffer.

SPRA451

38 Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller

MSG_COMPLETE:

LDP #DATA_IN_PTR

LACC DATA_IN_PTR ; Have all bytes been rcvd?

SUB #DATA_IN ;If not, then do not process.

SUB #04h ; Min bytes in msg = 4,

BCND MAIN, LT ; excluding ChksumRqst.

LACC DATA_IN_PTR

SUB #DATA_IN

LAR AR6, #RCV_BYTE_NO

MAR *, AR6

SUB *

BCND MAIN, LT

DATA_OUT_EMPTY:

LACC DATA_OUT_PTR ; DATA_OUT buffer empty?

SUB #DATA_OUT ;If not, then do not process.

BCND MAIN, NEQ

SPLK #0, COPIED ; Reset flag for next status

;rqst msg

Now that all of the bytes have been received, the checksum is
calculated and compared to the received checksum. The results of
this comparison are stored in the DATA_OUT buffer in one byte.
Bit #3 of this byte is used to indicate whether the result was valid
or invalid: VALID_CHKSUM (#00) or INVALID_CHKSUM (#04).

VERIFY_CHECKSUM:

LACL *- ; Calc checksum & compare w/ rcvd

SUB #02H ;value. Chksum is calc'd by adding all

SACL VAR1 ;rcvd bytes except the rcvd checksum.

LACC #0 ;Only the LSB of the result is used.

RPT VAR1

ADD *+

AND #0FFh

SACL VAR1

SUB *

BCND STORE_CHECKSUM, EQ

LACL #INVALID_CHKSUM

SPRA451

Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller 39

STORE_CHECKSUM: ; Store chksum comparison

LAR AR6, DATA_OUT_PTR;into DATA_OUT buffer.

ADRK #01h

SAR AR6, DATA_OUT_PTR

SACL *+

If the message type indicates that the message contains
parameters being sent from the master, they are stored into
memory. The received parameters have been received without
errors since the checksum was verified in the earlier step.

PARAMS_RQST: ; Were new parameters downloaded?

BIT RCV_MSG_TYPE, BIT0 ;If so, transfer from

BCND RESET_RCV_BFR, NTC ; DATA_OUT buffer.

STORE_PARAMS:

LACL RCV_BYTE_NO ;Get # of data bytes

SUB #04H

SACL VAR1

LAR AR6, #RCV_DATA_START ;Point to 1st data byte

RPT VAR1 ;Copy data bytes to mem PARAMS

BLDD *+, #PARAMS

SPRA451

40 Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller

Figure 10. Flow Chart for Read Message Function

Star t : RD_MSG

Is message type
request ing status

info?

Is message type
status info only?

Is message complete
 AND

Is DATA_OUT empty?

Calculate checksum, compare wi th received, and
store compar ison resul ts into DATA_OUT.

Is
message type sending

parameters?
Store parameters

Copy status info
to DATA_OUT

Reset DATA_IN buf fer

Return

Is message type
checksum request?

No

No

No

Yes

No

Yes

Yes

Yes

Yes

No

SPRA451

Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller 41

The SPI ISR is designed to complete the required tasks quickly to
enable the use of the highest baud rate possible. After the context
save, the SPIDAT is loaded with the next transmit byte, which is
the one DATA_OUT_PTR points to. This is the first task since the
SPI is essentially a shift register. Once the SPIDAT is updated
with the next transmit byte, the slave's SPI is ready to receive the
first bit of the next byte from the master.

SPI_ISR:

SST #0, ST0_TEMP ; Context save, auto page-0 DP

SST #1, ST1_TEMP

LDP #CONTEXT_MEM_PTR

SACL CONTEXT_MEM_PTR

SACH CONTEXT_MEM_PTR+1

SAR AR7, CONTEXT_MEM_PTR+2

SAR AR6, CONTEXT_MEM_PTR+3

LDP #IMR/128

LACL IMR

LDP #CONTEXT_MEM_PTR

SACL CONTEXT_MEM_PTR+4

OVER_RUN: ; Overrun?

LDP #DP_PF1 ; Page DP_PF1 includes SPI

BIT SPISTS, 8 ;Overrun flag (SPISTS.7) set?

BCND CLEAR_FLAG, TC ;If set, clear & return

NEXT_TX: ; Send next TX byte

LDP #DATA_OUT_PTR

LAR AR6, DATA_OUT_PTR

MAR *,AR6

LACL *- ; ACC = next byte out

LDP #DP_PF1

SACL SPIDAT ; Send next byte out, ACK is default

LDP #DATA_OUT_PTR

LACC #DATA_OUT ; If the TX pointer is not at

SUB DATA_OUT_PTR ;the start pos, then point

BCND READ_SPI, EQ ;it at next byte to be sent.

SPRA451

42 Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller

SAR AR6, DATA_OUT_PTR;Save TX pointer back to

;memory

Once the SPI is ready to receive the next byte, the received byte
is then read from SPIBUF and stored in the DATA_IN buffer. The
NEW_BYTE_FLAG is reset to zero to trigger the RD_MSG routine
to process this new byte. The last task for the SPI ISR is to do a
context restore.

READ_SPI:

LDP #DP_PF1 ; Page DP_PF1 includes SPI

LACC SPIBUF

LDP #DATA_IN_PTR

LAR AR7, DATA_IN_PTR ; Update RX ptr

MAR *, AR7

SACL *+

SAR AR7,DATA_IN_PTR ; Set RX ptr to next entry

LDP #NEW_BYTE_FLAG ; Trigger RD_MSG

SPLK #0, NEW_BYTE_FLAG

SPI_DONE:

LDP #CONTEXT_MEM_PTR ; Context restore

LACL CONTEXT_MEM_PTR+4

LDP #IMR/128

SACL IMR

LDP #CONTEXT_MEM_PTR

LAR AR6, CONTEXT_MEM_PTR+3

LAR AR7, CONTEXT_MEM_PTR+2

LACC CONTEXT_MEM_PTR+1,16

ADDS CONTEXT_MEM_PTR

LDP #0

LST #1, ST1_TEMP

LST #0, ST0_TEMP

CLRC INTM

RET

SPRA451

Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller 43

Assemble and Link Options

dspcl -v2xx -i%x -gk -alsx spi.asm -z spi.cmd

%x = project directory

’F240 Master Test Code

The ’F240 master test code is based on the slave code. External
interrupt-1 (XINT1) is added to manually trigger the master to
send the next byte in the TEST_MSG to the slave. At the
beginning of the code TEST_MSG is initialized with the message
that is being tested. This message can be changed directly from
the debugger interface with a Memory window located at memory
location TEST_MSG.

; initialize TEST_MSG

LAR AR1,#TEST_MSG ; AR1 <= TEST_MSG start address

MAR *,AR1

SPLK #03h,*+

SPLK #06h,*+

SPLK #02h,*+

SPLK #03h,*+

SPLK #01h,*+

SPLK #0Fh,*+

MAR *-

LDP #TEST_MSG_END

SAR AR1, TEST_MSG_END

LAR AR1, #TEST_MSG_PTR

SPLK #TEST_MSG, *

LDP #NEW_BYTE_FLAG

SPLK #1, NEW_BYTE_FLAG

SPRA451

44 Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller

SPI Initialization

The SPI is initialized with call to INIT_SPI. It is setup to be in
master mode, to use its low priority interrupt, and to have a
character length of 8 bits.

INIT_SPI: ; initialize SPI in slave mode

LDP #DP_PF1

SPLK #00C7h,SPICCR ; Reset SPI, write 1 to SWRST

SPLK #0004h,SPICTL ; Disable ints & TALK, normal

;clock, SLAVE

SPLK #0040h,SPIPRI ; Set SPI int to low priority.

SPLK #0000h,SPISTS ; Clear the SPI int status bits

SPLK #007Fh,SPIBRR ; Slow baud rate to test code

SPLK #0017h,SPICTL ; Enable TALK, ena SPI int, CLK

;ph 0, master

SPLK #0002h,SPIPC1

SPLK #0022h,SPIPC2 ; Set SIMO & SOMI function to

;serial I/O

SPLK #0047h,SPICCR ; Release SWRST, clock polarity

;1, 8 bits

RET ; Return to MAIN routine.

The order of initializing the SPI control registers can be important
in master mode. Transitions on the SPICLK pin of the master SPI
can be interpreted by the slave SPI as a valid clock cycle.
Unwanted transitions on the master SPICLK pin can be avoided
by initializing the SPI registers in the order shown in Table 8.

Table 8. Master Mode SPI Register Initialization Sequence for Falling Edge

Action SPICLK
Direction

SPICLKOutput
State

1. Device reset input x

2. Configure SPICLK for inactive state (0xC7 => SPICCR) input Inactive High

3. Configure SPICLK as an serial clock (0x02 => SPIPC1) output Inactive High

4. Maintain SPICLK inactive state when SPI reset is released
(0x47 => SPICCR)

output Inactive High

SPRA451

Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller 45

The first write to the SPI configuration control register (SPICCR)
must set the CLOCK POLARITY bit so that the SPICLK is in the
appropriate inactive state for the clocking scheme used. The first
write is required to initiate SPI software reset. Once the
appropriate state has been set the SPICLK function can be
selected.

In master mode, selecting the SPICLK function immediately
configures the SPICLK pin as an output. The CLOCK POLARITY
bit determines the state. The second write to SPICCR releases
the SPI software reset condition and maintains the appropriate
inactive state on SPICLK.

XINT1 External Interrupt Service Routine (TX begin)

After the context save of the XINT1 ISR loads SPIDAT with the
byte pointed to by TEST_MSG_PTR. The XINT1 input is then
debounced to eliminate multiple XINT1 interrupts.

SEND_TEST_MSG:

LDP #TEST_MSG

LAR AR0, TEST_MSG_END

LAR AR6, TEST_MSG_PTR

MAR *, AR6

LACL *+

SAR AR6, TEST_MSG_PTR

LDP #DP_PF1

SACL SPIDAT

CMPR 2 ;Compare AR6 and AR0

BCND DEBOUNCE_SW, NTC ;PTR WITHIN RANGE?

LDP #TEST_MSG

LAR AR6, #TEST_MSG;RESET IT IF NOT

SAR AR6, TEST_MSG_PTR

DEBOUNCE_SW

LAR AR0, #0100h

DELAY2

LAR AR6, #03FFFh

MAR *, AR6

DELAY1

SPRA451

46 Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller

BANZ DELAY1

MAR *, AR0

BANZ DELAY2

LDP #DP_PF1

WAIT

BIT XINT1CR, BIT6

BCND HIGH, TC

B WAIT ;Wait for XINT1 pin to goto a logic 0

HIGH

LDP #0 ;Debounce switch, clear pending ints

LACL #01

SACL IFR

LDP #DP_PF1

SPLK #001h, XINT1CR;Clear transition detect

’C167 Master Test Code

The ’C167 C-source code developed for this application report
implements a simple test routine to verify the three message types
supported by the ’F240 slave implementation. The function of
each software module is described in the following sections. The
entire program is contained within three files:

q spi.c

This file contains the declarations for the entire program and
contains the following functions:

Function Description
main Initializes variables, calls system initialization, and

performs 3 message transmit/receive sequences.

tx_isr Services the SSC transmit interrupts by loading the
next byte to be transmitted into the SSC transmit
buffer register, SSCTB

start_tx Begins message transmit/receive sequence by
loading the first byte into the SSC transmit buffer
register, SSCTB

rx_isr Services the SSC receive interrupts by reading the
received byte from the SSC receive buffer register,
SSCRB, into the status buffer, STATUS_BUF.

q spi.h

Defines constants used by the program.

SPRA451

Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller 47

q sys_init.c

The file contains the code that initializes the SSC module of
the ’C167 for operation as the SPI master for the ’F240. The
receive and transmit interrupts are enabled for normal interrupt
processing. The port 3 pins P3.8 (MRST), P3.9 (MTSR) and
P3.13 (SCLK) are configured for their alternate functions as
SSC pins, with SCLK and MTSR set as outputs, and MRST
set as an input. The operating mode of the SSC is set for 8-
bits in master mode with transmissions beginning on the falling
edge of SCLK with no delay, MSB first.

Figure 11 shows the actions of the master, including the clock and
data signals generated by the master code.

Figure 11. ’C167 Master Event Time Line for Three Message Sequence

SCLK

MTSR

1st Message
9 Bytes

2nd Message
9 Bytes

3rd Message
8 bytes

START_TX()

TX_ISR()

RX_ISR()

The main task of the program is to initiate message sequences for
each of the three message types: (1) send new parameters and
receive status update; (2) send new parameters; (3) receive status
update. Within each sequence, the following actions are
performed.

1) Start transmission sequence

2) Service transmit interrupt, refilling the transmit buffer register
(performed once per byte).

SPRA451

48 Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller

3) Service receive interrupt, storing data from the receive buffer
register (performed once per byte).

Figure 11 shows these three actions at their approximate
execution time.

When the message from the Master is shorter than the Slave's
message, send "08" (Checksum Request) until all bytes have
been sent by the Slave. The Master knows that all bytes have
been sent when it receives "FF" (ACK).

When messages from Slave are shorter than messages from the
Master, the Slave will send "FF" until the Master message has
been received completely. The Slave then verifies the checksum
of the received message and sends “00” (Checksum Match) if the
checksum matches, or “04” (Invalid Checksum) if the checksum
does not match. The Master sends "08" three times to get this
result.

Each byte in a parameter update message sent by the master is
defined as follows:

Byte Description

1 Message type

2 Message length, which is 3+n bytes long, where n is the
number of parameters

3 to n+2 n data parameters

n+3 Checksum of bytes 1 through n + 2

n+4 Checksum request

n+5 Checksum request

n+6 Checksum request

Each byte in a status update message received by the master is
defined as follows:

Byte Description

1 and 2 Dummy byte, value is ignored

3 to m+2 m status bytes

m+3 Checksum status byte, 0x00, indicates slave received all
master data bytes correctly

m+4 Slave acknowledge, 0xff, indicates slave has sent all
status bytes

For a status only data transfer from the slave to the master, each
byte in the message sent by the master is defined as follows:

Byte Description

1 Message type

2 to m+3 checksum request byte, 0x08 (m is the # of status bytes)

SPRA451

Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller 49

In the case of parameter update only is transferred, each byte in
the message received by the master is defined as follows:

Byte Description

1 to n+4 dummy bytes, value is ignored (n is # of parameters)

n+5 checksum status byte, 0x00, indicates slave received all
master data bytes correctly

n+6 slave acknowledge, 0xff, indicates slave has sent all
status bytes

Compile, Assemble and Link Options

The C166 compiler options are as follows:

q Command Line Options String:

SB CD DB M167 WL(3) DF(MCB167)

q Listings:

Warnings - Level 3.

q Object:

n Include debug information

n Optimization: level 6

n Emphasis: favor fast code

q Memory:

n Small memory model

n Initialize variables

n Save DPP on interrupt entry

n Alias checking on pointer access

n User stack accessed with DPP2

n Far threshold: 6

n Default location: near

The A166 assembler options are as follows:

q Enable macro processor

q Define 80C166 SFR’s

q Set SMALL

SPRA451

50 Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller

The L166 linker options are as follows:

q Linking:

n Generate Interrupt Vector Table

n Warnings: level 2

n Command Line Options String:

IX(NOLIBRARIES) CL(NCODE (0H - 0EFFFH) /* no on-
chip RAM here! */,NDATA (10000H - 13FFFH),NCONST (0
- 03FFFH),ICODE (0H - 0EFFFH) /* no on-chip RAM here!
/,NDATA0 (0F600H - 0F700H) / on-chip here */) &

SE(?C_INITSEC (200H) /* must be somewhere in ROM
*/) &

RE(8H-0BH, 88H - 8BH /* for MCB167 */) &

n Object Debug Information:

Include comments, line numbers, public/local symbols, and
type information.

q Sections:

Section 1: ?C_INITSEC (200H)

q Location:

Reserve 1: 08H-0BH, 88H-8BH

q Classes:

n Class 1: NCODE (0H - 0EFFFH)

n Class 1: NDATA (10000H - 13FFFH)

n Class 1: NCONST (0H - 03FFFH)

n Class 1: ICODE (0H - 0EFFFH)

n Class 5: NDATA0 (0F600H - 0F700H)

The dScope debugger options are as follows:

q dScope command file: MCB167.ini

Running the Programs

Each program was downloaded to the target processor from the
host PC using the standard debugger/emulation tool included with
the respective development boards.

SPRA451

Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller 51

Implementing Point-to-Point Communication between Two ’F240
EVMs

The following procedure describes how to implement point-to-
point communication between two ’F240 EVMs:

1) While both boards are powered down, make connections as
described in Table 6.

2) Apply power to both boards.

3) Start the slave ’F240 debugger and load object file/configure
debugger by executing a “take” command on file spi1.tak.

4) Start the master ’F240 debugger and load object file/configure
debugger by executing a “take” command on file spi1.tak.

5) Run slave code by executing a “run” command in the slave
’F240 debugger.

6) Run master code by executing a “run” command in the master
’F240 debugger.

7) Wait several seconds for the program to execute.

8) Stop both programs in their respective debuggers.

The program runs correctly when the contents of the ’F240 master
DARAM block 1 and external memory at 0x8000 are as shown in
Figure 12. From left to right, the memory windows display
DATA_IN (0x325), DATA_OUT (0x336), STATUS_INFO (0x320),
and PARAMS (0x326).

Figure 12. Memory Image of ’F240 Master after Successful Program Run

SPRA451

52 Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller

Implementing Point-to-Point Communication between the ’F240 and
’C167

The following procedure describes how to implement point-to-
point communication between the ’F240 and ’C167:

1) While both boards are powered down, make connections as
described in Table 7.

2) Apply power to both boards.

3) Start the ’F240 debugger and load object file/configure
debugger by executing a “take” command on file spi1.tak.

4) Start the ’C167 debugger.

5) Run slave code by executing a “run” command in the ’F240
debugger.

6) Run master code by executing a “go” command in the ’C167
debugger.

7) Wait several seconds for the program to execute.

8) Stop both programs in their respective debuggers.

The program runs correctly when the ’C167 variable,
ERROR_TYPE, equals 0x00, and the status buffer,
STATUS_BUF, contains the values shown in Table 9.

Table 9. Expected Results for All Three Message Types

Send PARAMs and
Receive STATUS Send PARAMs Receive STATUS

PARAM_BUF STATUS_BUF PARAM_BUF STATUS_BUF PARAM_BUF STATUS_BUF

0x03 0x00 0x01 0xff 0x2 0xff

0x06 0xff 0x06 0xff 0x08 0xff

0x02 0x05 0x07 0xff 0x08 0x05

0x03 0x04 0x05 0xff 0x08 0x04

0x01 0x03 0x04 0xff 0x08 0x03

0x0f 0x02 0x17 0xff 0x08 0x02

0x08 0x01 0x08 0xff 0x08 0x01

0x08 0x00 0x08 0x00 0x08 0xff

0x08 0xff 0x08 0xff

On the slave side, the contents of DARAM block 1 and external
memory at 0x8000 will be as shown in Figure 13.

SPRA451

Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller 53

Figure 13. Memory Image of ’F240 Slave after Successful Program Run

SPRA451

54 Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller

Appendix A. FAQ Summary of SPI Features

This appendix offers a summary of SPI features in FAQ
(frequently asked questions) format. The summary reinforces
important topics from the previous sections describing the SPI, the
interface between the CPU, and the interrupt structure.

The FAQ consists of the following questions (the answers to each
are found on the following page):

1) Name the four (4) signal pins used by the SPI.

2) The SPI can transmit data characters that are __ to __ bits in
length.

3) Which bit is transmitted first, LSB or MSB?

4) Who originates the transmission?

5) What is the function of the SPISTE pin when in slave mode?
In master mode?

6) Which feature of the SPI would be used only during debug
using an emulator?

SPRA451

Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller 55

Name the Four (4) Signal Pins Used by the SPI.

1) SPISIMO (SPI slave in, master out)

2) SPISOMI (SPI slave out, master in)

3) SPICLK (SPI clock)

4) SPISTE (SPI slave transmit enable)

The SPI can transmit data characters that are __ to __ bits in length.

One to eight

Which bit is transmitted first, LSB or MSB? Who originates the
transmission?

The Master and Slave's MSBs are both transmitted first.

The Master originates the transmission by writing to the SPIDAT
register. If the Slave has data to transmit, it must already be
loaded into its SPIDAT register before the SPICLK is received
from the Master.

What is the function of the SPISTE pin when in slave mode? In master
mode?

When in slave mode, the SPISTE pin can operate as either a
general purpose I/O pin or as the slave transmit enable. The mode
is determined by the value of the SPISTE FUNCTION bit
(SPIPC1.5). When the SPISTE pin operates as the slave transmit
enable, an active low signal on the SPISTE pin enables the SPI to
transmit. Conversely, an active high signal on the SPISTE pin
disables transmission.

When in master mode, the SPISTE pin always operates as a
general purpose I/O pin. The value of the SPISTE FUNCTION bit
(SPIPC1.5) is ignored when the SPI is in master mode.

Which feature of the SPI is used only during debug using an emulator?

The emulator suspend enable bit provides the option of either
completing the current SPI transmit/receive sequence or freezing
the state of the SPI at the point when the emulator suspends
device operation.

SPRA451

56 Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller

Appendix B. ’C167 Master Mode Program Files

SPI.C
/**

* File Name: spi.c (File revision 0.1) *

* Project: SPI Point-to-Point Application Report *

* Originator: J.Crankshaw (Texas Instruments) *

* *

* Target Sys: Keil MCB167 *

* *

* Description: main program for SPI master. *

* *

* Status: runs ok *

* *

* Last Update: 23 Jan 98 *

* __*

* Date of Mod | DESCRIPTION *

* ------------|---*

* | *

* | *

* | *

**/

#include <reg167.h> /* special function register 80C167 */

#include <intrins.h>

#include "spi.h" /* definitions */

extern void SYS_INIT (void); /* use external routine for system intialization
*/

void START_TX (void); /* prototype def */

unsigned int idata ERROR_TYPE; /* MSG_TYPE that caused an eror condition */

unsigned int idata MSG_QUEUED; /* status of msg in progress */

unsigned int idata TX_TOTAL; /* the number of bytes to transfer */

unsigned int idata TX_BYTE_NO; /* holds the number of bytes transferred */

unsigned int idata RX_BYTE_NO; /* holds the number of bytes transferred */

unsigned int idata STATUS_BUF [4 + MSG_LENGTH]; /* buffer for status*/

unsigned int idata PARAM_BUF [4 + MSG_LENGTH]; /* buffer for new parameters */

SPRA451

Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller 57

void main (void)

{

int i,j,MSG_TYPE;

 /* initialize the serial interface */

#ifndef MCB167 /* do not initialize if you use Monitor-166 */

 P3 |= 0x0400; /* SET PORT 3.10 OUTPUT LATCH (TXD) */

 DP3 |= 0x0400; /* SET PORT 3.10 DIRECTION CONTROL (TXD OUTPUT)*/

 DP3 &= 0xF7FF; /* RESET PORT 3.11 DIRECTION CONTROL(RXD INPUT)*/

 S0TIC = 0x80; /* SET TRANSMIT INTERRUPT FLAG */

 S0RIC = 0x00; /* DELETE RECEIVE INTERRUPT FLAG */

 S0BG = 0x40; /* SET BAUDRATE TO 9600 BAUD */

 S0CON = 0x8011; /* SET SERIAL MODE */

#endif

j = 0;

for (i = 1; i <=(MSG_LENGTH + 2); i++)

{

STATUS_BUF[i] = 0;

}

TX_TOTAL = 0x00; /* reset no. of bytes to transmit to zero */

TX_BYTE_NO = 0x00; /* reset no. of bytes transferred to zero */

RX_BYTE_NO = 0x00; /* reset no. of bytes received to zero */

SYS_INIT (); /* initialize all devices needed for the demo program */

for (MSG_TYPE = 0; MSG_TYPE <= 2; MSG_TYPE++) /* do 3 times */

{

if (MSG_TYPE == 0)

{

PARAM_BUF[0] = 0x03;

PARAM_BUF[1] = 0x06;

PARAM_BUF[2] = 0x02;

PARAM_BUF[3] = 0x03;

PARAM_BUF[4] = 0x01;

PARAM_BUF[5] = 0x0F;

PARAM_BUF[6] = 0x08;

SPRA451

58 Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller

PARAM_BUF[7] = 0x08;

PARAM_BUF[8] = 0x08;

TX_TOTAL = 9;

}

else if (MSG_TYPE == 1)

{

PARAM_BUF[0] = 0x01;

PARAM_BUF[1] = 0x06;

PARAM_BUF[2] = 0x07;

PARAM_BUF[3] = 0x05;

PARAM_BUF[4] = 0x04;

PARAM_BUF[5] = 0x17;

PARAM_BUF[6] = 0x08;

PARAM_BUF[7] = 0x08;

PARAM_BUF[8] = 0x08;

TX_TOTAL = 9;

}

else if (MSG_TYPE == 2)

{

PARAM_BUF[0] = 0x02;

PARAM_BUF[1] = 0x08;

PARAM_BUF[2] = 0x08;

PARAM_BUF[3] = 0x08;

PARAM_BUF[4] = 0x08;

PARAM_BUF[5] = 0x08;

PARAM_BUF[6] = 0x08;

PARAM_BUF[7] = 0x08;

TX_TOTAL = 8;

}

MSG_QUEUED = 1;

START_TX (); /* start SSC msg transmit/receive sequence */

while (MSG_QUEUED) /* loop until msg has been sent/received */

{

j = 0;

for (i = 1; i <=10; i++)

SPRA451

Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller 59

j = j +1;

}

if ((STATUS_BUF[TX_TOTAL-2] != 0) & (MSG_TYPE < 2))

{

ERROR_TYPE = MSG_TYPE;

MSG_TYPE = 3;

}

}

 while (1) /* testing done, loop forever */

 {

j = 0;

for (i = 1; i <=10; i++)

j = j +1;

}

}

void TX_ISR (void) interrupt txintno

{

if ((TX_BYTE_NO >= 0) & (TX_BYTE_NO < TX_TOTAL))

{

bfld (P3, 0x0001, 0x0000); /* switch Slave Transmit Ena low */

SSCTB = PARAM_BUF[TX_BYTE_NO]; /* Begin TX */

TX_BYTE_NO = TX_BYTE_NO + 1; /* increment TX byte counter */

bfld (P3, 0x0001, 0x0001); /* switch Slave Transmit Ena high */

}

else if (TX_BYTE_NO == TX_TOTAL)

{

TX_BYTE_NO = 0; /* reset TX byte counter */

}

}

void START_TX (void)

{

SSCTB = PARAM_BUF[TX_BYTE_NO]; /* Begin TX */

TX_BYTE_NO = TX_BYTE_NO + 1; /* increment TX byte counter */

SPRA451

60 Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller

}

void RX_ISR (void) interrupt rxintno

{

if (RX_BYTE_NO < TX_TOTAL - 1)

{

STATUS_BUF[RX_BYTE_NO] = SSCRB;

RX_BYTE_NO = RX_BYTE_NO + 1; /* increment RX byte counter */

}

else if (RX_BYTE_NO == TX_TOTAL -1)

{

STATUS_BUF[RX_BYTE_NO] = SSCRB;

MSG_QUEUED = 0;

RX_BYTE_NO = 0;

}

}

SPI.H
/**

* File Name: spi.h (File revision 0.1) *

* Project: SPI Point-to-Point Application Report *

* Originator: J.Crankshaw (Texas Instruments) *

* *

* Target Sys: Keil MCB167 *

* *

* Description: header file for SPI master program. *

* *

* Status: runs ok *

* *

* Last Update: 23 Jan 98 *

* __*

* Date of Mod | DESCRIPTION *

* ------------|---*

* | *

* | *

* | *

SPRA451

Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller 61

**/

#define rxintno 0x2E /* hardware interrupt # of SSC receive */

#define txintno 0x2D /* hardware interrupt # of SSC transmit */

#define SSC_TXINT 0x40 + 4 * 0x08 + 0x01

#define SSC_RXINT 0x40 + 4 * 0x07 + 0x02

#define MSG_LENGTH 6 /* # of bytes transferred in base master message */

#define ENABLE_SSC 0x8000 /* set SSC enable bit, SSCCON.15 */

#define MASTER 0x4000 /* set SSC Master mode bit, SSCCON.14 */

#define BIT8_FNDLY_MSB 0x0057 /* set SSC MSB first, falling edge no delay, 8
bits data ea. TX/RX */

#define fCPU 20000000 /* system clock frequency */

#define BAUDssc 115200 /* SSC baud rate, or ~8.5us bit clock */

#define RELOAD_VALUE (fCPU/(2*BAUDssc)) - 1 /* 0x55 is the reload value */

SYS_INIT.C
/**

* File Name: sys_init.c (File revision 0.1) *

* Project: SPI Point-to-Point Application Report *

* Originator: J.Crankshaw (Texas Instruments) *

* *

* Target Sys: Keil MCB167 *

* *

* Description:’C167 CPU initialization function. *

* *

* Status: runs ok *

* *

* Last Update: 23 Jan 98 *

* __*

* Date of Mod | DESCRIPTION *

* ------------|---*

* | *

* | *

* | *

**/

#include <reg167.h> /* register definitions */

#include <intrins.h>

SPRA451

62 Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller

#include "spi.h" /* int # definitions */

void SYS_INIT (void)

{

bfld (SSCRIC, 0xFF, SSC_RXINT); /* set SSC rx interrupt priority */

/* & group level */

bfld (SSCTIC, 0xFF, SSC_TXINT); /* set SSC tx interrupt priority */

/* & group level */

SSCCON = 0; /* reset SSC */

SSCBR = RELOAD_VALUE; /* constant defined in spi.h */

bfld (P3, 0x2300, 0x2300); /* set P3.8 (MRST), P3.9 (MTSR) */

/* and P3.13 (SCLK) */

bfld (DP3, 0x2301, 0x2201); /* switch P3.0 to output mode */

/* switch MRST to input; MTSR and SCLK to output mode */

SSCCON = ENABLE_SSC | MASTER | BIT8_FNDLY_MSB;

}

SPRA451

Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller 63

Appendix C. ’F240 Master Mode Program Files

Example ’C2xx Debugger Command Line Options

The following example command line options invoke the ’C2xx
debugger with XDS510 and XDS511:

Emu2xxwm.exe -n cpu_a -f board.dat -t’F240evm.cmd -p 240

Where

-n cpu_a provides the name of the processor

-f board.dat describes the devices on the scan path, in this case,
just the ’F240.

-t ’F240evm.cmd is a user-customized version of the emuinit.cmd
file included with the debugger.

-p 240 specifies the port address of the XDS510 controller card.
This option is determined by your specific hardware setup. (See
the XDS51x Emulator Installation Guide for more details.)

Emulator Initialization Command File – ’F240evm.cmd
echo’F240evm.CMD for’F240 EVM

;Reset Memory Map

mr

;DATA MEMORY

ma 0x00000,1,0x0060,ram ;MMRs

ma 0x00060,1,0x0020,ram ;On-Chip RAM B2

ma 0x00200,1,0x0100,ram ;On-Chip RAM B0 if CNF=0

ma 0x00300,1,0x0100,ram ;On-Chip RAM B1

ma 0x07010,1,0x0010,ioport ;Peripheral - System Config & Control

ma 0x07020,1,0x0010,ioport ;Peripheral - WDT / RTI

ma 0x07030,1,0x0010,ioport ;Peripheral - ADC

ma 0x07040,1,0x0010,ioport ;Peripheral - SPI

ma 0x07050,1,0x0010,ioport ;Peripheral - SCI

ma 0x07070,1,0x0010,ioport ;Peripheral - Ext Ints

ma 0x07090,1,0x0010,ioport ;Peripheral - Digital I/O

ma 0x07400,1,0x000D,ioport ;Peripheral - Event Mgr GPT

ma 0x07411,1,0x000C,ioport ;Peripheral - Event Mgr CMP,PWM

ma 0x07420,1,0x0007,ioport ;Peripheral - Event Mgr CAP,QEP

SPRA451

64 Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller

ma 0x0742C,1,0x0009,ioport ;Peripheral - Event Mgr Int Cntl

; for EVM, external RAM is in memory map

ma 0x08000,1,0x08000,ram ;Ext SRAM

;PROGRAM MEMORY

ma 0x00000,0,0x04000,RAM ;Internal Program memory - FLASH

ma 0x04000,0,0x0BE00,RAM ;External Program memory - SRAM

ma 0x0FE00,0,0x00100,RAM ;Available if CNF=1 i.e. B0

;I/O MEMORY

;~~~~~~~~~~

ma 0x0000,2,0x0008,WOM ;I/O Memory Mapped DAC Registers

ma 0x0008,2,0x0004,ROM ;I/O Memory Mapped DIP Switches

ma 0x000C,2,0x0004,WOM ;I/O Memory Mapped LEDs

mem 0x0200

mem1 0x0300

mem2 0x0060

wa (ST0&(0x03ff))>>9,INTM,d ;INTM Int Mode Bit

wa (ST0&0x0f),DP,x

; SPI application note programs

;--

take c:\dspcode\x240\f240evm\SPI_app\master\spi1.tak ; final version - working

echo ‘F240evm.CMD HAS BEEN LOADED

SPRA451

Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller 65

SPI.ASM
 ;***

 ;*

 ;* DESCRIPTION: SPI Code Example for Point-to-Point Communication

 ;*

 ;* AUTHOR: Jeff Stafford

 ;*

;***

;---

; Debug directives

;---

.def STATUS_INFO ;General purpose registers.

.def DATA_IN

.def DATA_OUT

.include "..\..\f240regs.h"

; 1st Data Page of peripheral registers (7000h/80h)

DP_PF1 .set 224

BAD_CHKSUM .set 004h

DATA_IN_LEN .set 010h

DATA_OUT_LEN .set 010h

STATUS_INFO_BYTES .set 005h

CONTEXT_MEM_PTR_BYTES .set 020h

SLAVE_SEND .set 0FEh

.bss CONTEXT_MEM_PTR, CONTEXT_MEM_PTR_BYTES

.bss STATUS_INFO, STATUS_INFO_BYTES

.bss DATA_IN_PTR,1

.bss DATA_IN, DATA_IN_LEN

.bss DATA_OUT_PTR,1

.bss DATA_OUT, DATA_OUT_LEN

TEST_MSG_BYTES .set 20h

.bss TEST_MSG_PTR,1

.bss TEST_MSG, TEST_MSG_BYTES

.bss TEST_MSG_END,1

SPRA451

66 Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller

.bss NEW_BYTE_FLAG, 1

RCV_MSG_TYPE .set DATA_IN

RCV_BYTE_NO .set DATA_IN + 1

RCV_DATA_START .set DATA_IN + 2

PARAMS .usect "VARS", 020h

.bss VAR1, 1 ;Scratchpad

.data

ST0_TEMP .word 0

ST1_TEMP .word 0

KICK_DOG .macro

LDP #00E0H

SPLK #055H, WDKEY

SPLK #0AAH, WDKEY

LDP #DATA_IN_PTR

.endm

.text

START: CLRC SXM ; Clear Sign Extension Mode

CLRC OVM ; Reset Overflow Mode

; Set Data Page pointer to page 1 of the peripheral frame

LDP #DP_PF1 ; Page DP_PF1 includes WET through EINT frames

; initialize WDT registers

SPLK #06Fh, WDCR ; clear WDFLAG, Disable WDT, set WDT for 1 second

 ; overflow (max)

SPLK #07h, RTICR ; clear RTI Flag, set RTI for 1 second

 ; overflow (max)

; EVM 10MHz oscillator settings. (XTAL2 open, OSCBYP_=GND)

SPLK #00B1h,CKCR1 ; CLKIN(OSC)=10MHz, Mult by 2, Div by 1.

SPLK #00C3h,CKCR0 ; CLKMD=PLL Enable,SYSCLK=CPUCLK/2,

SPRA451

Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller 67

; Clear reset flag bits in SYSSR (PORRST, PLLRST, ILLRST, SWRST, WDRST)

LACL SYSSR ; ACCL <= SYSSR

AND #00FFh ; Clear upper 8 bits of SYSSR

SACL SYSSR ; Load new value into SYSSR

; initialize B1 RAM to zero's.

LAR AR1,#B1_SADDR ; AR1 <= B1 start address

MAR *,AR1 ; use B1 start address for next indirect

ZAC ; ACC <= 0

RPT #(CONTEXT_MEM_PTR_BYTES+STATUS_INFO_BYTES+DATA_OUT_LEN+DATA_IN_LEN+2)

; set repeat counter for sizeof(.bss)-1 loops

SACL *+ ; write zeros to B1 RAM

; initialize B2 RAM to zero's.

LAR AR1,#B2_SADDR ; AR1 <= B2 start address

MAR *,AR1 ; use B2 start address for next indirect

ZAC ; ACC <= 0

RPT #1fh ; set repeat counter for 1fh+1=20h or 32 loops

SACL *+ ; write zeros to B2 RAM

; initialize STATUS_INFO

LAR AR1,#STATUS_INFO ; AR1 <= STATUS_INFO start address

 MAR *,AR1 ;

SPLK #01,*+ ; STAT1 = 1

SPLK #02,*+ ; STAT2 = 2

SPLK #03,*+ ; STAT3 = 3

SPLK #04,*+ ; STAT4 = 4

SPLK #05,*+ ; STAT5 = 5

; initialize TEST_MSG

LAR AR1,#TEST_MSG ; AR1 <= TEST_MSG start address

 MAR *,AR1

SPLK #03h,*+

SPLK #06h,*+

SPLK #02h,*+

SPLK #03h,*+

SPLK #01h,*+

SPLK #0Fh,*+

MAR *-

SPRA451

68 Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller

LDP #TEST_MSG_END

SAR AR1, TEST_MSG_END

LAR AR1, #TEST_MSG_PTR

SPLK #TEST_MSG, *

LDP #NEW_BYTE_FLAG

SPLK #1, NEW_BYTE_FLAG

;Initialize DSP for interrupts

LAR AR6,#IMR ;

LAR AR7,#IFR ;

MAR *,AR6

LACL #011h ;Enable INT1 also! XINT1 high pri

SACL *,AR7 ; Enable interrupt 5 only (SPI low priority)

LACL * ; Clear IFR by reading and

SACL *,AR6 ; writing contents back into itself

; call SPI initialization routine

CALL INIT_SPI

LDP #DATA_IN_PTR

;Initialize RX and TX buffers

SPLK #DATA_IN, DATA_IN_PTR ;Reset RX buffer pointer

SPLK #DATA_OUT, DATA_OUT_PTR;Reset TX buffer pointer

SPLK #0FFH, DATA_OUT ;Initialize default TX byte = ACKnowledge

;Initialize and enable XINT1

LDP #DP_PF1

SPLK #01h, XINT1CR;Enable XINT1, high pri, falling edge

;Enable DSP interrupts

CLRC INTM

MAIN:

LDP #NEW_BYTE_FLAG

MAR *, AR5

LAR AR5, NEW_BYTE_FLAG ;UPDATE AR5

BANZ MAIN,*

SPRA451

Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller 69

RD_MSG: ;Check if "send status info" bit is set in 1st rcvd byte (msg type).

LDP #NEW_BYTE_FLAG

SPLK #1, NEW_BYTE_FLAG ;UPDATE FLAG, NEW BYTE HAS BEEN READ

RESET_RCV_BFR:

B MAIN

 ;***

 ;*

 ;** INIT_SPI

 ;*

 ;* REGISTER USAGE: assumes DP = 224 (addresses 0x7000 - 0x707f

 ;*

 ;* DESCRIPTION: SPI initialization subroutine. This SR initializes

 ;* the SPI for data stream transfer to a master SPI.

 ;* The '240 SPI is configured for 8-bit transfers as a slave.

 ;*

 ;***

INIT_SPI:

; initialize SPI in slave mode

LDP #DP_PF1

SPLK #008Fh,SPICCR; Reset SPI by writing 1 to SWRST

SPLK #0004h,SPICTL ; Disable ints & TALK, normal clock, MASTER mode

SPLK #007Fh, SPIBRR ;Slowest baud rate for testing code

SPLK #0002h,SPIPC1

SPLK #0022h,SPIPC2 ; Set SIMO & SOMI functions to serial I/O

SPLK #0040h,SPIPRI ; Set SPI interrupt to low priority.

; For emulation purposes, allow the SPI

; to continue after an XDS suspension.

; HAS NO EFFECT ON THE ACTUAL DEVICE.

SPLK #0000h,SPISTS; Clear the SPI interrupt status bits

; falling edge with No delay

SPLK #0047h,SPICCR; Release SWRST, clock polarity 1, 8 bits

SPLK #0017h,SPICTL ; Enable TALK, ena SPI int, CLK ph 0, MASTER mode

RET ; Return to MAIN routine.

SPRA451

70 Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller

 ;***

 ;*

 ;** XINT1_ISR

 ;*

 ;* REGISTER USAGE:

 ;*

 ;* DESCRIPTION: XINT1 interrupt service routine.

 ;*

 ;* History:

 ;* 12/15/97 created

 ;***

XINT1_ISR:

SST #0, ST0_TEMP ;Auto page-0 DP

SST #1, ST1_TEMP

LDP #CONTEXT_MEM_PTR

SACL CONTEXT_MEM_PTR

SACH CONTEXT_MEM_PTR+1

SAR AR0, CONTEXT_MEM_PTR+2

SAR AR6, CONTEXT_MEM_PTR+3

LDP #0

LACL IMR

LDP #CONTEXT_MEM_PTR

SACL CONTEXT_MEM_PTR+4

SEND_TEST_MSG

;Send data

LDP #TEST_MSG

LAR AR0, TEST_MSG_END ;END OF MEM

LAR AR6, TEST_MSG_PTR

MAR *, AR6

LACL *+

SAR AR6, TEST_MSG_PTR

LDP #DP_PF1

SACL SPIDAT

CMPR 2 ;Compare AR6 and AR0

BCND DEBOUNCE_SW, NTC ;PTR WITHIN RANGE?

SPRA451

Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller 71

LDP #TEST_MSG

LAR AR6, #TEST_MSG ;RESET IT IF NOT

SAR AR6, TEST_MSG_PTR

DEBOUNCE_SW

LAR AR0, #0100h

DELAY2 LAR AR6, #03FFFh

MAR *, AR6

DELAY1 BANZ DELAY1

MAR *, AR0

BANZ DELAY2

LDP #DP_PF1

WAIT BIT XINT1CR, BIT6

BCND HIGH, TC

B WAIT ;Wait for XINT1 pin to goto a logic 0

HIGH LDP #0 ;Debounce switch by clearing pending ints

LACL #01

SACL IFR

LDP #DP_PF1

SPLK #001h, XINT1CR ;Clear transition detect

LDP #CONTEXT_MEM_PTR

LACL CONTEXT_MEM_PTR+4

LDP #0

SACL IMR

LDP #CONTEXT_MEM_PTR

LAR AR6, CONTEXT_MEM_PTR+3

LAR AR0, CONTEXT_MEM_PTR+2

LACC CONTEXT_MEM_PTR+1,16

ADDS CONTEXT_MEM_PTR

LDP #0

LST #1, ST1_TEMP

LST #0, ST0_TEMP

CLRC INTM

RET

 ;***

SPRA451

72 Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller

 ;*

 ;** SPI_ISR

 ;*

 ;* REGISTER USAGE: ST0, ST1, ACC, AR6, AR7

 ;*

 ;* DESCRIPTION: SPI interrupt service routine.

 ;*

;***

SPI_ISR:

SST #0, ST0_TEMP ;Auto page-0 DP

SST #1, ST1_TEMP

LDP #CONTEXT_MEM_PTR

SACL CONTEXT_MEM_PTR

SACH CONTEXT_MEM_PTR+1

SAR AR7, CONTEXT_MEM_PTR+2

SAR AR6, CONTEXT_MEM_PTR+3

LDP #0

LACL IMR

LDP #CONTEXT_MEM_PTR

SACL CONTEXT_MEM_PTR+4

OVER_RUN:

LDP #DP_PF1 ; Page DP_PF1 includes SPI

BIT SPISTS, 8 ;Overrun flag (SPISTS.7) set?

BCND CLEAR_FLAG, TC ;If set, clear & return

READ_SPI:

LDP #DP_PF1 ; Page DP_PF1 includes SPI

LACC SPIBUF ;Load rcvd byte into ACC

LDP #DATA_IN_PTR ; Set data page pointer to B1 page

LAR AR7, DATA_IN_PTR ; update RX ptr

MAR *, AR7

SACL *+

SAR AR7, DATA_IN_PTR ;Set RX pointer to next entry

;****** DEBUG CODE ******

LDP #NEW_BYTE_FLAG

SPLK #0, NEW_BYTE_FLAG

SPRA451

Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller 73

;************************

SPI_DONE:

LDP #CONTEXT_MEM_PTR

LACL CONTEXT_MEM_PTR+4

LDP #0

SACL IMR

LDP #CONTEXT_MEM_PTR

LAR AR6, CONTEXT_MEM_PTR+3

LAR AR7, CONTEXT_MEM_PTR+2

LACC CONTEXT_MEM_PTR+1,16

ADDS CONTEXT_MEM_PTR

LDP #0

LST #1, ST1_TEMP

LST #0, ST0_TEMP

CLRC INTM

RET

CLEAR_FLAG:

SPLK #0H, SPISTS

B SPI_DONE

 ;***

 ;*

 ;** Interrupt Vectors

 ;*

 ;* DESCRIPTION: Used by linker to place this section at the reset vector
location.

 ;*

 ;***

.sect "vectors"

B START ;reset

B XINT1_ISR ;Int level 1, high priority ext int

B START ;Int level 2 not used

B START ;Int level 3 not used

SPRA451

74 Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller

B START ;Int level 4 not used

B SPI_ISR ;Int level 5, low priority SPI

SPI.CMD

MEMORY

{

 PAGE 0: /* Program Memory Map for’F240EVM in MP mode */

 VECS: org=0h, len=40h /* external */

 EXT_PROG: org=40h, len=0FDC0h /* external */

 PAGE 1: /* Data Memory Map for’F240EVM */

 B2: org=60h , len=20h /* internal DARAM */

 B0: org=0200h, len=100h /* internal DARAM */

 B1: org=0300h, len=100h /* internal DARAM */

 EXT_SRAM: org=08000h, len=08000h /* external SRAM */

}

SECTIONS

{

 .text: > EXT_PROG PAGE 0

 .data: > B2 PAGE 1

 .bss: > B1 PAGE 1

 vectors > VECS PAGE 0

 VARS > EXT_SRAM PAGE 1

}

SPI1.TAK
cd c:\dspcode\x240\f240evm\spi_app

load spi.out

;Serial Peripheral Interface (SPI) Registers

;~~~

wa *0x07040, SPICCR ;SPI Config Control Reg

wa *0x07041, SPICTL ;SPI Operation Control Reg

wa *0x07042, SPISTS ;SPI Status Reg

wa *0x07044, SPIBRR ;SPI Baud rate control reg

SPRA451

Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller 75

wa *0x07046, SPIEMU ;SPI Emulation buffer reg

wa *0x07047, SPIBUF ;SPI Serial Input buffer reg

wa *0x07049, SPIDAT ;SPI Serial Data reg

wa *0x0704D, SPIPC1 ;SPI Port control reg1

wa *0x0704E, SPIPC2 ;SPI Port control reg2

wa *0x0704F, SPIPRI ;SPI Priority control reg

wa *0x07070, XINT1CR ;XINT1 Control Register

wa *0x0701A, SYSSR ;System Status Register

wa (ST0&(0x03ff))>>9,INTM,x ;INTM Int Mode Bit

wa (ST0&0x0f),DP,x

wa (ST0&0x0f)*128,Base,x

wa (ST0>>13),ARP,x

WA TEST_MSG,,x

WA *TEST_MSG_PTR,,x

WA *TEST_MSG_END,,x

WA DATA_IN,,x

WA DATA_IN_PTR,,x

WA *DATA_IN_PTR,,x

WA DATA_OUT,,x

WA DATA_OUT_PTR,,x

WA *DATA_OUT_PTR,,x

WA STATUS_INFO,,x

WA *STATUS_INFO,,x

WA *VAR1,,x

WA *NEW_BYTE_FLAG,,x

;ba XINT1_ISR

;ba SPI_ISR

ba RD_MSG

;BA VERIFY_CHECKSUM

MEM DATA_IN_PTR

MEM1 DATA_OUT_PTR

SPRA451

76 Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller

MEM2 TEST_MSG

MEM3 STATUS_INFO

bl

F240REGS.H
;***

; File Name: f240regs.h

; Originator: Texas Instruments

;

; Description: F240 Header file containing all peripheral register

; declarations as well as other useful definitions.

;

; Last Updated: 27 May 1997

;

;***

;---

; On Chip Periperal Register Definitions (All registers mapped into data

; space unless otherwise noted)

;---

;C2xx Core Registers

;~~~~~~~~~~~~~~~~~~~~

IMR .set 0004h ;Interrupt Mask Register

GREG .set 0005h ;Global memory allocation Register

IFR .set 0006h ;Interrupt Flag Register

;System Module Registers

;~~~~~~~~~~~~~~~~~~~~~~~

SYSCR .set 07018h ;System Module Control Register

SYSSR .set 0701Ah ;System Module Status Register

SYSIVR .set 0701Eh ;System Interrupt Vector Register

;Watch-Dog(WD) / Real Time Int(RTI) / Phase Lock Loop(PLL) Registers

;~~~

RTICNTR .set 07021h ;RTI Counter Register

WDCNTR .set 07023h ;WD Counter Register

SPRA451

Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller 77

WDKEY .set 07025h ;WD Key Register

RTICR .set 07027h ;RTI Control Register

WDCR .set 07029h ;WD Control Register

CKCR0 .set 0702Bh ;Clock Control Register 0

CKCR1 .set 0702Dh ;Clock Control Register 1

;Analog-to-Digital Converter(ADC) registers

;~~

ADCTRL1 .set 07032h ;ADC Control Register 1

ADCTRL2 .set 07034h ;ADC Control Register 2

ADCFIFO1 .set 07036h ;ADC Data Register FIFO1

ADCFIFO2 .set 07038h ;ADC Data Register FIFO2

;Serial Peripheral Interface (SPI) Registers

;~~~

SPICCR .set 07040h ;SPI Configuration Control Register

SPICTL .set 07041h ;SPI Operation Control Register

SPISTS .set 07042h ;SPI Status Register

SPIBRR .set 07044h ;SPI Baud Rate Register

SPIEMU .set 07046h ;SPI Emulation buffer Register

SPIBUF .set 07047h ;SPI Serial Input Buffer Register

SPIDAT .set 07049h ;SPI Serial Data Register

SPIPC1 .set 0704Dh ;SPI Port Control Register 1

SPIPC2 .set 0704Eh ;SPI Port Control Register 2

SPIPRI .set 0704Fh ;SPI Priority control Register

;Serial Communications Interface (SCI) Registers

;~~~

SCICCR .set 07050h ;SCI Communication Control Register

SCICTL1 .set 07051h ;SCI Control Register 1

SCIHBAUD .set 07052h ;SCI Baud Select register, high bits

SCILBAUD .set 07053h ;SCI Baud Select register, high bits

SCICTL2 .set 07054h ;SCI Control Register 2

SCIRXST .set 07055h ;SCI Receive Status Register

SCIRXEMU .set 07056h ;SCI Emulation data buffer Register

SCIRXBUF .set 07057h ;SCI Receiver data buffer Register

SCITXBUF .set 07059h ;SCI Transmit data buffer Register

SCIPC2 .set 0705Eh ;SCI Port Control Register 2

SCIPRI .set 0705Fh ;SCI Priority Control Register

SPRA451

78 Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller

;External Interrupt Registers

;~~~~~~~~~~~~~~~~~~~~~~~~~~~~

XINT1CR .set 07070h ;Interrupt 1 Control Register

NMICR .set 07072h ;Non-maskable Interrupt Control Register

XINT2CR .set 07078h ;Interrupt 2 Control Register

XINT3CR .set 0707Ah ;Interrupt 3 Control Register

;Digital I/O

;~~~~~~~~~~~

OCRA .set 07090h ;Output Control Reg A

OCRB .set 07092h ;Output Control Reg B

PADATDIR .set 07098h ;I/O port A Data & Direction reg.

PBDATDIR .set 0709Ah ;I/O port B Data & Direction reg.

PCDATDIR .set 0709Ch ;I/O port C Data & Direction reg.

;General Purpose Timer Registers - Event Manager (EV)

;~~

GPTCON .set 7400h ;General Purpose Timer Control Register

T1CNT .set 7401h ;GP Timer 1 Counter Register

T1CMPR .set 7402h ;GP Timer 1 Compare Register

T1PR .set 7403h ;GP Timer 1 Period Register

T1CON .set 7404h ;GP Timer 1 Control Register

T2CNT .set 7405h ;GP Timer 2 Counter Register

T2CMPR .set 7406h ;GP Timer 2 Compare Register

T2PR .set 7407h ;GP Timer 2 Period Register

T2CON .set 7408h ;GP Timer 2 Control Register

T3CNT .set 7409h ;GP Timer 3 Counter Register

T3CMPR .set 740Ah ;GP Timer 3 Compare Register

T3PR .set 740Bh ;GP Timer 3 Period Register

T3CON .set 740Ch ;GP Timer 3 Control Register

;Full & Simple Compare Unit Registers - Event Manager (EV)

;~~~

COMCON .set 7411h ;Compare Control Register

ACTR .set 7413h ;Full Compare Action Control Register

SACTR .set 7414h ;Simple Compare Action Control Register

DBTCON .set 7415h ;Dead-band Timer Control Register

CMPR1 .set 7417h ;Full Compare Unit 1 Compare Register

SPRA451

Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller 79

CMPR2 .set 7418h ;Full Compare Unit 2 Compare Register

CMPR3 .set 7419h ;Full Compare Unit 3 Compare Register

SCMPR1 .set 741Ah ;Simple Compare Unit 1 Compare Register

SCMPR2 .set 741Bh ;Simple Compare Unit 2 Compare Register

SCMPR3 .set 741Ch ;Simple Compare Unit 3 Compare Register

;Capture & QEP Registers - Event Manager (EV)

;~~

CAPCON .set 7420h ;Capture Control Register

CAPFIFO .set 7422h ;Capture FIFO Status Register

CAP1FIFO .set 7423h ;Capture 1 Two-level deep FIFO Register

CAP2FIFO .set 7424h ;Capture 2 Two-level deep FIFO Register

CAP3FIFO .set 7425h ;Capture 3 Two-level deep FIFO Register

CAP4FIFO .set 7426h ;Capture 4 Two-level deep FIFO Register

;Interrupt Registers - Event Manager (EV)

;~~

EVIMRA .set 742Ch ;EV Interrupt Mask Register A

EVIMRB .set 742Dh ;EV Interrupt Mask Register B

EVIMRC .set 742Eh ;EV Interrupt Mask Register C

EVIFRA .set 742Fh ;EV Interrupt Flag Register A

EVIFRB .set 7430h ;EV Interrupt Flag Register B

EVIFRC .set 7431h ;EV Interrupt Flag Register C

EVIVRA .set 7432h ;EV Interrupt Vector Register A

EVIVRB .set 7433h ;EV Interrupt Vector Register B

EVIVRC .set 7434h ;EV Interrupt Vector Register C

;Wait State Generator Registers (mapped into I/O space)

;~~

WSGR .set 0FFFFh ;Wait State Generator Register

;---

; Constant Definitions

;---

;Data Memory Boundary Addresses

;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

B0_SADDR .set 00200h ;Block B0 start address

B0_EADDR .set 002FFh ;Block B0 end address

SPRA451

80 Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller

B1_SADDR .set 00300h ;Block B1 start address

B1_EADDR .set 003FFh ;Block B1 end address

B2_SADDR .set 00060h ;Block B2 start address

B2_EADDR .set 0007Fh ;Block B2 end address

XDATA_SADDR .set 08000h ;External Data Space start address

XDATA_EADDR .set 09FFFh ;External Data Space end address

;Frequently Used Data Pages

;~~~~~~~~~~~~~~~~~~~~~~~~~~

DP_0 .set 0 ;page 0 of data space

DP_PF1 .set 224 ;page 1 of peripheral file (7000h/80h)

DP_PF2 .set 225 ;page 2 of peripheral file (7080h/80h)

DP_PF3 .set 226 ;page 3 of peripheral file (7100h/80h)

DP_EV .set 232 ;page 1 of EV reg file (7400h/80h)

;Bit codes for Test Bit instruction (BIT)

;~~

BIT15 .set 0000h ;Bit Code for 15

BIT14 .set 0001h ;Bit Code for 14

BIT13 .set 0002h ;Bit Code for 13

BIT12 .set 0003h ;Bit Code for 12

BIT11 .set 0004h ;Bit Code for 11

BIT10 .set 0005h ;Bit Code for 10

BIT9 .set 0006h ;Bit Code for 9

BIT8 .set 0007h ;Bit Code for 8

BIT7 .set 0008h ;Bit Code for 7

BIT6 .set 0009h ;Bit Code for 6

BIT5 .set 000Ah ;Bit Code for 5

BIT4 .set 000Bh ;Bit Code for 4

BIT3 .set 000Ch ;Bit Code for 3

BIT2 .set 000Dh ;Bit Code for 2

BIT1 .set 000Eh ;Bit Code for 1

BIT0 .set 000Fh ;Bit Code for 0

;Bit masks used by the CBIT & SBIT Macros

;~~

B15_MSK .set 8000h ;Bit Mask for 15

B14_MSK .set 4000h ;Bit Mask for 14

B13_MSK .set 2000h ;Bit Mask for 13

SPRA451

Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller 81

B12_MSK .set 1000h ;Bit Mask for 12

B11_MSK .set 0800h ;Bit Mask for 11

B10_MSK .set 0400h ;Bit Mask for 10

B9_MSK .set 0200h ;Bit Mask for 9

B8_MSK .set 0100h ;Bit Mask for 8

B7_MSK .set 0080h ;Bit Mask for 7

B6_MSK .set 0040h ;Bit Mask for 6

B5_MSK .set 0020h ;Bit Mask for 5

B4_MSK .set 0010h ;Bit Mask for 4

B3_MSK .set 0008h ;Bit Mask for 3

B2_MSK .set 0004h ;Bit Mask for 2

B1_MSK .set 0002h ;Bit Mask for 1

B0_MSK .set 0001h ;Bit Mask for 0

;---

; M A C R O - Definitions

;---

CBIT .macro DMA, MASK ;Clear bit Macro

LACC DMA

AND #(0FFFFh-MASK)

SACL DMA

.endm

SBIT .macro DMA, MASK ;Set bit Macro

LACC DMA

OR #(MASK)

SACL DMA

.endm

KICK_DOG .macro ;Watchdog reset macro

LDP #00E0h ;DP-->7000h-707Fh

SPLK #055h, WDKEY ;WDCNTR is enabled to be reset by next AAh

SPLK #0AAh, WDKEY ;WDCNTR is reset

LDP #0h ;DP-->0000h-007Fh

.endm

SPRA451

82 Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller

Appendix D. ’F240 Slave Mode Program Files

SPI.ASM

 ;***

 ;*

 ;* DESCRIPTION: SPI Slave Code for Point-to-Point Communication

 ;*

 ;* AUTHOR: Jeff Stafford

 ;*

;***

;---

; Debug directives

;---

.include "..\..\f240regs.h"

; 1st Data Page of peripheral registers (7000h/80h)

DP_PF1 .set 224

;BAD_CHKSUM .set 004h

INVALID_CHKSUM .set 004h

VALID_CHKSUM .set 000h

DATA_IN_LEN .set 010h

DATA_OUT_LEN .set 010h

STATUS_INFO_BYTES .set 005h

CONTEXT_MEM_PTR_BYTES .set 020h

CHKSM_RQST_MSG .set 008h

STATUS_RQST_MSG .set 002h

.bss CONTEXT_MEM_PTR, CONTEXT_MEM_PTR_BYTES

.bss STATUS_INFO, STATUS_INFO_BYTES

.bss DATA_IN_PTR,1

.bss DATA_IN, DATA_IN_LEN

.bss DATA_OUT_PTR,1

.bss DATA_OUT, DATA_OUT_LEN

RCV_MSG_TYPE .set DATA_IN

SPRA451

Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller 83

RCV_BYTE_NO .set DATA_IN + 1

RCV_DATA_START .set DATA_IN + 2

PARAMS .usect "VARS", 020h

.bss VAR1, 1 ;Scratchpad

.bss NEW_BYTE_FLAG, 1

.bss COPIED, 1

.data

ST0_TEMP .word 0

ST1_TEMP .word 0

KICK_DOG .macro

LDP #00E0H

SPLK #055H, WDKEY

SPLK #0AAH, WDKEY

LDP #DATA_IN_PTR

.endm

.text

START: CLRC SXM ; Clear Sign Extension Mode

CLRC OVM ; Reset Overflow Mode

; Set Data Page pointer to page 1 of the peripheral frame

LDP #DP_PF1 ; Page DP_PF1 includes WET through EINT frames

; initialize WDT registers

 SPLK #06Fh, WDCR ; clear WDFLAG, Disable WDT, set WDT for 1 second

 ; overflow (max)

SPLK #07h, RTICR ; clear RTI Flag, set RTI for 1 second

 ; overflow (max)

; EVM 10MHz oscillator settings. (XTAL2 open, OSCBYP_=GND)

SPLK #00B1h,CKCR1 ; CLKIN(OSC)=10MHz, Mult by 2, Div by 1.

SPLK #00C3h,CKCR0 ; CLKMD=PLL Enable,SYSCLK=CPUCLK/2,

; Clear reset flag bits in SYSSR (PORRST, PLLRST, ILLRST, SWRST, WDRST)

LACL SYSSR ; ACCL <= SYSSR

SPRA451

84 Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller

AND #00FFh ; Clear upper 8 bits of SYSSR

SACL SYSSR ; Load new value into SYSSR

; initialize B1 RAM to zero's.

LAR AR1,#B1_SADDR ; AR1 <= B1 start address

MAR *,AR1 ; use B1 start address for next indirect

ZAC ; ACC <= 0

RPT #(CONTEXT_MEM_PTR_BYTES+STATUS_INFO_BYTES+DATA_OUT_LEN+DATA_IN_LEN+2)

; set repeat counter for sizeof(.bss)-1 loops

SACL *+ ; write zeros to B1 RAM

; initialize B2 RAM to zero's.

LAR AR1,#B2_SADDR ; AR1 <= B2 start address

MAR *,AR1 ; use B2 start address for next indirect

ZAC ; ACC <= 0

RPT #1fh ; set repeat counter for 1fh+1=20h or 32 loops

SACL *+ ; write zeros to B2 RAM

; initialize STATUS_INFO

LAR AR1,#STATUS_INFO ; AR1 <= STATUS_INFO start address

 MAR *,AR1 ;

SPLK #01,*+ ; STAT1 = 1

SPLK #02,*+ ; STAT2 = 2

SPLK #03,*+ ; STAT3 = 3

SPLK #04,*+ ; STAT4 = 4

SPLK #05,*+ ; STAT5 = 5

;Initialize NEW_BYTE_FLAG

LDP #NEW_BYTE_FLAG

SPLK #01h, NEW_BYTE_FLAG

SPLK #0, COPIED

;Initialize DSP for interrupts

LAR AR6,#IMR ;

LAR AR7,#IFR ;

MAR *,AR6

LACL #010h ;

SACL *,AR7 ; Enable interrupt 5 only (SPI low priority)

LACL * ; Clear IFR by reading and

SPRA451

Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller 85

SACL *,AR6 ; writing contents back into itself

; call SPI initialization routine

CALL INIT_SPI

LDP #DATA_IN_PTR

;Initialize RX and TX buffers

SPLK #DATA_IN, DATA_IN_PTR ;Reset RX buffer pointer

SPLK #DATA_OUT, DATA_OUT_PTR;Reset TX buffer pointer

SPLK #0FFH, DATA_OUT ;Initialize default TX byte = ACKnowledge

CLRC INTM ; Enable DSP interrupts

MAIN:

LDP #NEW_BYTE_FLAG

MAR *, AR5

LAR AR5, NEW_BYTE_FLAG ;UPDATE AR5

BANZ MAIN,*

RD_MSG:

LDP #IMR/128

LACL IMR ; Mask SPI interrupt to avoid changes

AND #0FFEFh ;to DATA_IN_PTR. NEW_BYTE_FLAG is used

SACL IMR ;as a handshake between SPI_ISR & RD_MSG.

LDP #NEW_BYTE_FLAG

SPLK #1, NEW_BYTE_FLAG ;UPDATE FLAG, NEW BYTE HAS BEEN READ

LDP #IMR/128

LACL IMR ; Unmask SPI interrupt to avoid changes

OR #010h ;to DATA_IN_PTR

SACL IMR

CHECKSUM_RQST:

LDP #DATA_IN

LACC DATA_IN ; Is this 1st byte a Checksum Request

SUB #CHKSM_RQST_MSG ;message from the Master SPI? If so,

BCND RESET_RCV_BFR, EQ ;then no processing is required, reset

;receive buffer and return.

SPRA451

86 Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller

STATUS_INFO_RQST: ; Is status info requested? It is if

BIT RCV_MSG_TYPE, BIT1 ;bit #1 is set in the first rcvd byte,

BCND STATUS_RQST, NTC ;the msg-type byte. If status info is

;requested then copy it into DATA_OUT.

COPY_STATUS_INFO:

BIT COPIED, BIT0

BCND MSG_COMPLETE, TC ;Don't copy if it was copied before

LDP #IMR/128

LACL IMR ; Mask SPI interrupt until DATA_OUT

AND #0FFEFh ;has been updated.

SACL IMR

LDP #DATA_OUT_PTR ;Copy status info into DATA_OUT buffer.

MAR *, AR6

LAR AR6, DATA_OUT_PTR

ADRK #01

SAR AR6, DATA_OUT_PTR

LDP #STATUS_INFO

RPT #(STATUS_INFO_BYTES - 1)

BLDD #STATUS_INFO, *+

SBRK #1

SAR AR6, DATA_OUT_PTR

SPLK #01, COPIED ;Set flag to copy only once

LDP #IMR/128

LACL IMR ;Unmask SPI interrupt

OR #010h

SACL IMR

STATUS_RQST:

LDP #DATA_IN

LACC DATA_IN ; Is this 1st byte a Status Request

SUB #STATUS_RQST_MSG ;message from the Master SPI? If so,

BCND RESET_RCV_BFR, EQ ;then no further processing is required,

;reset receive buffer and return.

MSG_COMPLETE:

LDP #DATA_IN_PTR

SPRA451

Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller 87

LACC DATA_IN_PTR ;Are all bytes rcvd for the current msg?

SUB #DATA_IN ;If not, then do not process. Min bytes in

SUB #04h ;message = 4, excluding ChksumRqst.

BCND MAIN, LT

LACC DATA_IN_PTR

SUB #DATA_IN

LAR AR6, #RCV_BYTE_NO

MAR *, AR6

SUB *

BCND MAIN, LT

DATA_OUT_EMPTY:

LACC DATA_OUT_PTR ; Is the DATA_OUT buffer empty?

SUB #DATA_OUT ;If not, then do not process.

BCND MAIN, NEQ

SPLK #0, COPIED ;Reset COPIED flag for next status rqst msg

VERIFY_CHECKSUM:

LACL *- ; Calculate checksum and compare with received

SUB #02H ;value. Checksum is calculated by adding all

SACL VAR1 ;received bytes except the received checksum.

LACC #0 ;Only the LSB of the result is used.

RPT VAR1

ADD *+

AND #0FFh

SACL VAR1

SUB *

BCND STORE_CHECKSUM, EQ

LACL #INVALID_CHKSUM

STORE_CHECKSUM: ; Store result of checksum comparison into

LAR AR6, DATA_OUT_PTR ;DATA_OUT buffer.

ADRK #01h

SAR AR6, DATA_OUT_PTR

SACL *+

PARAMS_RQST: ; Were new parameters downloaded?

BIT RCV_MSG_TYPE, BIT0 ;If so, transfer them from DATA_OUT buffer

BCND RESET_RCV_BFR, NTC ;to memory.

SPRA451

88 Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller

STORE_PARAMS:

LACL RCV_BYTE_NO ;Get # of data bytes

SUB #04H

SACL VAR1

LAR AR6, #RCV_DATA_START ;Point to 1st data byte

RPT VAR1 ;Copy data bytes to mem location PARAMS

BLDD *+, #PARAMS

RESET_RCV_BFR:

LDP #DATA_IN

SPLK #DATA_IN, DATA_IN_PTR ;Reset rcv buffer pointer

B MAIN

 ;***

 ;*

 ;** INIT_SPI

 ;*

 ;* REGISTER USAGE: assumes DP = 224 (addresses 0x7000 - 0x707f)

 ;*

 ;* DESCRIPTION: SPI initialization subroutine. This SR initializes

 ;* the SPI for data stream transfer to a master SPI.

 ;* The '240 SPI is configured for 8-bit transfers as a slave.

 ;*

 ;***

INIT_SPI:

; initialize SPI in slave mode

LDP #DP_PF1

SPLK #00C7h,SPICCR; Reset SPI by writing 1 to SWRST

SPLK #0000h,SPICTL ; Disable ints & TALK, normal clock, SLAVE mode

SPLK #0040h,SPIPRI ; Set SPI interrupt to low priority.

 ; For emulation purposes, allow the SPI

 ; to continue after an XDS suspension.

 ; HAS NO EFFECT ON THE ACTUAL DEVICE.

SPLK #0000h,SPISTS; Clear the SPI interrupt status bits

; falling edge with No delay

SPLK #0013h,SPICTL ; Enable TALK, ena SPI int, CLK ph 0, slave mode

SPLK #0002h,SPIPC1

SPRA451

Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller 89

SPLK #0022h,SPIPC2 ; Set SIMO & SOMI functions to serial I/O

SPLK #0047h,SPICCR; Release SWRST, clock polarity 1, 8 bits

RET ; Return to MAIN routine.

 ;***

 ;*

 ;** SPI_ISR

 ;*

 ;* REGISTER USAGE: ST0, ST1, ACC, AR6, AR7

 ;*

 ;* DESCRIPTION: SPI interrupt service routine.

 ;*

;***

SPI_ISR:

SST #0, ST0_TEMP ;Auto page-0 DP

SST #1, ST1_TEMP

LDP #CONTEXT_MEM_PTR

SACL CONTEXT_MEM_PTR

SACH CONTEXT_MEM_PTR+1

SAR AR7, CONTEXT_MEM_PTR+2

SAR AR6, CONTEXT_MEM_PTR+3

LDP #IMR/128

LACL IMR

LDP #CONTEXT_MEM_PTR

SACL CONTEXT_MEM_PTR+4

OVER_RUN:

LDP #DP_PF1 ; Page DP_PF1 includes SPI

BIT SPISTS, 8 ;Overrun flag (SPISTS.7) set?

BCND CLEAR_FLAG, TC ;If set, clear & return

;Send next TX byte

NEXT_TX:

LDP #DATA_OUT_PTR

LAR AR6, DATA_OUT_PTR

MAR *,AR6

SPRA451

90 Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller

LACL *- ;ACC = next byte out

LDP #DP_PF1

SACL SPIDAT ;Send next byte out, ACK is default

LDP #DATA_OUT_PTR

LACC #DATA_OUT ;If the TX pointer is not at the start pos.

SUB DATA_OUT_PTR ; then point it at next byte to be send.

BCND READ_SPI, EQ

SAR AR6, DATA_OUT_PTR ;Save TX pointer back to memory

READ_SPI:

LDP #DP_PF1 ; Page DP_PF1 includes SPI

LACC SPIBUF ;load rcvd data into ACC

LDP #DATA_IN_PTR ; Set data page pointer to B1 page

LAR AR7, DATA_IN_PTR ; update RX ptr

MAR *, AR7

SACL *+

SAR AR7, DATA_IN_PTR ;Set RX pointer to next entry

LDP #NEW_BYTE_FLAG ;Trigger RD_MSG

SPLK #0, NEW_BYTE_FLAG

SPI_DONE:

LDP #CONTEXT_MEM_PTR

LACL CONTEXT_MEM_PTR+4

LDP #IMR/128

SACL IMR

LDP #CONTEXT_MEM_PTR

LAR AR6, CONTEXT_MEM_PTR+3

LAR AR7, CONTEXT_MEM_PTR+2

LACC CONTEXT_MEM_PTR+1,16

ADDS CONTEXT_MEM_PTR

LDP #0

LST #1, ST1_TEMP

LST #0, ST0_TEMP

CLRC INTM

SPRA451

Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller 91

RET

CLEAR_FLAG:

SPLK #0H, SPISTS

B SPI_DONE

 ;***

 ;*

 ;** Interrupt Vectors

 ;*

 ;* DESCRIPTION: Used by linker to place this section at the reset vector
location.

 ;*

 ;***

.sect "vectors"

B START ;reset

B START ;Int level 1 not used

B START ;Int level 2 not used

B START ;Int level 3 not used

B START ;Int level 4 not used

B SPI_ISR ;Int level 5, low priority SPI

SPI1.TAK
cd c:\dspcode\x240\f240evm\spi_app\slave

load spi.out

WA TEST_MSG,,x

WA *TEST_MSG_PTR,,x

WA *TEST_MSG_END,,x

WA DATA_IN,,x

WA DATA_IN_PTR,,x

WA *DATA_IN_PTR,,x

WA DATA_OUT,,x

SPRA451

92 Point-to-Point Serial Communications Using the SPI Module of the TMS320F240 DSP Controller

WA DATA_OUT_PTR,,x

WA *DATA_OUT_PTR,,x

WA STATUS_INFO,,x

WA *STATUS_INFO,,x

WA *VAR1,,x

WA *NEW_BYTE_FLAG,,x

WA *COPIED

;ba XINT1_ISR

;ba SPI_ISR

;ba RD_MSG

BA VERIFY_CHECKSUM

MEM DATA_IN_PTR

MEM1 DATA_OUT_PTR

;MEM2 TEST_MSG

MEM2 PARAMS

MEM3 STATUS_INFO

bl

	IMPORTANT NOTICE
	TRADEMARKS
	CONTACT INFORMATION
	Contents
	Figures
	Tables
	Abstract
	Product Support
	Related Documentation
	World Wide Web
	Email

	Introduction
	SPI Overview
	Internal Interface between the SPI Module and ’C2xx CPU
	System Clock
	SPI Register Accesses

	SPI Interrupt
	TMS320x240 Interrupt Architecture Overview
	SPI Interrupt Conditions
	SPI Priority Bit
	Transmit/Receive Interrupt
	Receiver Overrun Interrupt

	Reading the Interrupt Vector
	Putting It All Together
	Interrupt Initialization
	General Interrupt Service Routine (GISR)
	Specific Interrupt Service Routine (SISR)

	Interface Topologies
	Point-to-Point
	Addressed Multi-Node
	Chip-Enabled Multi-Node

	Implementation
	Hardware Description
	Software Description
	F240 Slave Code
	System Initialization
	SPI Initialization
	Main Program
	Message Read Function
	Assemble and Link Options

	F240 Master Test Code
	SPI Initialization
	XINT1 External Interrupt Service Routine (TX begin)

	C167 Master Test Code
	Compile, Assemble and Link Options

	Running the Programs
	Implementing Point-to-Point Communication between Two ’F240 EVMs
	Implementing Point-to-Point Communication between the •F240 and ’C167

	FAQ Summary of SPI Features
	 •C167 Master Mode Program Files
	SPI.C
	SPI.H
	SYS_INIT.C

	 •F240 Master Mode Program Files
	Example •C2xx Debugger Command Line Options
	Emulator Initialization Command File • •F240evm.cmd
	SPI.ASM
	SPI.CMD
	SPI1.TAK
	F240REGS.H

	 •F240 Slave Mode Program Files
	SPI.ASM
	SPI1.TAK

