ABSTRACT

The transmission of video sequences is enabled by compressing the video content with different video encoding algorithms at the source and decoding the stream at the destination. The compression process discards part of the original information and decreases the video quality of the decoded stream.

Measuring the video quality is measuring how close the decoded stream is to the original stream.

Objective Video Quality — The most common metric to measure the video quality objectively is the peak signal to noise ratio (PSNR). This application report shows how to use the DaVinci EVM digital video evaluation module (DVEVM) and SDK digital video software development kit (DVSDK) to measure the quality of video sequences using the PSNR metric.

Subjective Video Quality — People have different perceptions of the same video sequence; therefore, there is a subjective perspective to the video quality. Subjective video quality involves groups of people viewing the sequences and grading the quality.

This application report contains project code that can be downloaded from this link. http://www-s.ti.com/sc/techlit/spraak1.zip

Contents

1 Video Quality Measuring Methodology ... 2
2 The Digital Video Test Bench (DVTB) ... 3
3 Computing the PSNR ... 4
4 Example of Measuring the Video Quality With the DVSDK 5
5 Other Tools for Measuring Video Quality .. 7
6 Conclusion ... 7
7 References ... 7

List of Figures

1 Generation of the Reconstructed Video Sequences .. 2
2 PSNR Computation .. 2
3 PSNR Utility Input Parameters ... 5
4 Sequence #1, H.264 – MPEG4 PSNR Measurements 6
5 Sequence #2, H.264 – MPEG4 PSNR Measurements 6
6 Sequence #3, H.264 – MPEG4 PSNR Measurements 7

List of Tables

1 PSNR Measurements – MPEG4 SP, D1, 30 fps ... 5
2 PSNR Measurements – H.264 BP, D1, 30 fps ... 6
1 Video Quality Measuring Methodology
The video quality measuring method proposed in this report presents two steps:
- Generate the reconstructed (decoded) video sequences.
- Compute the PSNR between the original and the reconstructed video sequences.

Before using the digital video test bench (DVTB), the DaVinci DVEVM and DVSDK environment must be set up.

For more information about setting up the DaVinci environment, refer to the DVEVM Hardware Setup and the DVEVM Software Setup chapters in the DVEVM Getting Started Guide (SPRUE66).

1.1 Generating the Reconstructed Video Sequences
The methodology for generating the reconstructed video sequence is presented in Figure 1. The DVTB is used to generate the encoded sequences. The DVTB utility is described in more detail in the following sections of this application report. Because it is not possible to access the reconstructed frames after the encoding process, it is necessary to decode the sequences and generate the reconstructed (decoded) sequences.

![Figure 1. Generation of the Reconstructed Video Sequences](image)

1.2 Computing the PSNR
The PSNR is computed by using a simple DOS utility that takes the original and reconstructed video sequences as input. The output generated is an excel spreadsheet that contains the PSNR values for the Y, Cb, Cr components for each frame.

![Figure 2. PSNR Computation](image)
2 The Digital Video Test Bench (DVTB)

The DVTB is a Linux® utility that was developed to execute end to end data flows using the DaVinci DVSDK. The DVTB uses the codec engine VISA APIs and Linux driver peripheral APIs to encode/decode audio and video streams.

The user can configure the codecs and/or peripherals before starting a data flow. This enables the user to exercise different use case scenarios and evaluate the system by configuring the codecs and/or peripherals as required.

Before using the DVTB, the DaVinci (DVEVM and DVSDK) environment must be set up.

2.1 Installation

For more information about setting up the DaVinci environment, refer to the DVEVM Hardware Setup and the DVEVM Software Setup chapters in the DVEVM Getting Started Guide (SPRUE66).

The DVTB is installed in a $(DVEVM_INSTALL_ROOT)/dvtb folder during the installation of the dvsdk_setuplinux_#_##_##_##.bin file.

For more information about installing the DVTB, refer to the DVSDK Setup chapter in the DVSDK Getting Started Guide (SPRUEG8).

2.2 Using the DVTB to Generate Reconstructed Video Sequences

This section provides a short overview of using the DVTB. For more information, see the DVTB documentation located in:

$(DVEVM_INSTALL_ROOT)/dvtb/docs/DVTB-User-Guide.pdf

The following steps are to be performed in the HyperTerminal comm session window.

1. Mount the hard disk drive

 root@158.218.33.135:~# mount /dev/hdal /mnt/disk

2. Copy a yuv video sequence, video.yuv to the hard disk drive. The video encoders from Texas Instruments accept 422 interleaved, little endian and 420 planar format.

3. Go to the folder where the dvtb utility is located.

 root@158.218.33.135:~# cd /opt/dvevm

4. Load the kernel driver modules (ignore error messages)

 root@158.218.33.135:/opt/dvevm# ./cfg-dvtb.sh

5. Create the following script that includes the dvtb commands that are used to configure the encoder. In this example the H.264_E is used. Save the script as script.cfg for example.

   ```bash
   setp engine name encode
   setp videnc codec h264enc
   setp videnc inputChromaFormat 1
   setp videnc maxFrameRate 25000
   setp videnc refFrameRate 25000
   setp videnc targetFrameRate 25000
   setp videnc intraFrameInterval 25
   setp videnc maxHeight 480
   setp videnc maxWidth 720
   setp videnc inputHeight 480
   setp videnc inputWidth 720
   setp videnc numframes 252
   setp videnc numframes 252
   setp videnc targetBitRate 2000000
   func videnc -s /mnt/disk/video.yuv -t /mnt/disk/video.h264
   ```

6. Run the script with the dvtb

 root@158.218.33.135:/opt/dvevm# ./dvtb -s script.cfg
Computing the PSNR

7. Create the following script that includes the dvtb commands used to configure the decoder used.
   ```
   setp engine name decode
   setp viddec codec h264dec
   setp viddec maxHeight 720
   setp viddec maxWidth 480
   func viddec -s /mnt/disk/video.h264 -t /mnt/disk/video_recon.yuv
   ```

8. The reconstructed sequence is available in the file /mnt/disk/video_recon.yuv

3 Computing the PSNR

3.1 Definition of the PSNR

The PSNR is a common measure of the quality of a reconstructed video sequence. After generating the reconstructed video sequence, the quality is analyzed using the PSNR measure.

A logarithmic scale is used to compute the PSNR because the signals have a wide dynamic range.

The PSNR formula is as follows:

$$PSNR = 10 \log_{10} \left(\frac{2^b - 1}{MSE} \right) dB$$

Where \(b \) denotes the number of bits used to represent the pixel. The mean square error (MSE) of two images of \(H \times W \) pixels is defined as:

$$MSE = \frac{1}{H \times W} \sum_{i=0}^{H-1} \sum_{j=0}^{W-1} (Orig(i,j) - Recon(i,j))^2$$

\(Orig(i,j) \) is the original pixel value and \(Recon(i,j) \) is the reconstructed pixel value. The higher the pixel value the better the quality of the reconstructed image.

An image has the YCbCr components. \(Y \) is the luma component and the \(Cb, Cr \) are the blue and red chroma components. The PSNR can be computed for each component, however the luma component \(Y \) is the dominant one and usually it is sufficient to compute the PSNR for the luma component \(Y \).
3.2 **Using the PSNR Utility**

A PSNR utility is provided with this application report to compute the PSNR using the original and reconstructed video sequences. The following steps show how to use the utility:

1. Open a DOS command prompt
2. Type `psnr` to display the required input parameters. The output is similar to that shown in [Figure 3](#).

![Command Prompt](image)

Figure 3. PSNR Utility Input Parameters

The output produced by this utility is a spreadsheet that contains the PSNR values for the Y, Cb, Cr components for every image in the video sequence. The average PSNR also is provided.

4 **Example of Measuring the Video Quality With the DVSDK**

This section provides the practical application of the previous steps to measure the video quality for three different video sequences encoded with the H.264 BP and MPEG4 SP encoders.

Each sequence has specific characteristics (e.g., motion, texture) that influence the performance of the codecs. For example, sequence number 2 has a high motion content, and the performance of the codecs is the worst for this sequence. The sequences have D1 (720x480) resolution.

Measurements have been taken at different bit-rates with 30 fps frame rate. The measurements are summarized in [Table 1](#) and [Table 2](#).

<table>
<thead>
<tr>
<th>Bit-Rate (Mbps)</th>
<th>PSNR (dB) Sequence Number 1</th>
<th>PSNR (dB) Sequence Number 2</th>
<th>PSNR (dB) Sequence Number 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>29.05</td>
<td>22.53</td>
<td>27.06</td>
</tr>
<tr>
<td>1.5</td>
<td>31.13</td>
<td>24.7</td>
<td>29.28</td>
</tr>
<tr>
<td>2</td>
<td>32.44</td>
<td>25.85</td>
<td>30.64</td>
</tr>
<tr>
<td>3</td>
<td>34.15</td>
<td>27.46</td>
<td>32.47</td>
</tr>
<tr>
<td>4</td>
<td>35.33</td>
<td>28.66</td>
<td>33.68</td>
</tr>
<tr>
<td>5</td>
<td>36.21</td>
<td>29.7</td>
<td>34.61</td>
</tr>
</tbody>
</table>

SPRAAK1—May 2007
Submit Documentation Feedback
Table 2. PSNR Measurements – H.264 BP, D1, 30 fps

<table>
<thead>
<tr>
<th>Bit-Rate (Mbps)</th>
<th>PSNR (dB) Sequence Number 1</th>
<th>PSNR (dB) Sequence Number 2</th>
<th>PSNR (dB) Sequence Number 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30.78</td>
<td>25.02</td>
<td>30.43</td>
</tr>
<tr>
<td>1.5</td>
<td>33.82</td>
<td>26.74</td>
<td>32.66</td>
</tr>
<tr>
<td>2</td>
<td>35.14</td>
<td>27.88</td>
<td>33.88</td>
</tr>
<tr>
<td>3</td>
<td>36.70</td>
<td>29.5</td>
<td>35.37</td>
</tr>
<tr>
<td>4</td>
<td>37.59</td>
<td>30.65</td>
<td>36.2</td>
</tr>
<tr>
<td>5</td>
<td>38.24</td>
<td>31.58</td>
<td>36.8</td>
</tr>
</tbody>
</table>

After performing these measurements it is interesting to compare the performance of the H.264 BP and MPEG4 SP encoders for these sequences. Figure 4, Figure 5 and Figure 6 compare the PSNR performance for the encoders for the three sequences.

The difference between the two codecs is about 1.5 dB. These numbers have been measured for the codec releases included in the DVSDK v. 1.1.

Figure 4. Sequence #1, H.264 – MPEG4 PSNR Measurements

Figure 5. Sequence #2, H.264 – MPEG4 PSNR Measurements
5 Other Tools for Measuring Video Quality

This section provides a list of other tools that are useful for evaluating video quality.

5.1 YUV Viewer

A YUV viewer tool is indispensable for viewing raw YUV video sequences. Several are available on the web.

A good YUV viewer should have the following features:

- Wide selection for type input (YUV, RGB)
- Capability to step frame by frame
- Zooming capability

5.2 Byte-Extracting Utility

Sometimes it is necessary to study only a frame, or a subset of frames from a larger sequence.

To accomplish this, a byte-extracting utility is necessary. Such a utility can be found on the web or can be written.

6 Conclusion

This application report has shown how to use the DVSDK to measure the video quality of video sequences compressed with the encoders included in the DVSDK. The results provided in this application report apply only to codecs available in the DVSDK v. 1.1. Texas Instruments is working continually to improve the quality of its codecs.

7 References

- DVEVM Getting Started Guide (SPRUE66)
- DVSDK Getting Started Guide (SPRUEG8)
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or “enhanced plastic.” Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer’s risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Audio</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Automotive</td>
</tr>
<tr>
<td>DSP</td>
<td>Broadband</td>
</tr>
<tr>
<td>Interface</td>
<td>Digital Control</td>
</tr>
<tr>
<td>Logic</td>
<td>Military</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Optical Networking</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Security</td>
</tr>
<tr>
<td>Low Power</td>
<td>Telephony</td>
</tr>
<tr>
<td>Wireless</td>
<td>Video & Imaging</td>
</tr>
<tr>
<td></td>
<td>Wireless</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated