**TAS5825M** JAJSFK6H - OCTOBER 2019 - REVISED JANUARY 2023 # TAS5825M 192kHz の拡張オーディオ処理機能搭載、4.5V~26.4V、38W ステレ オ、インダクタ不要、デジタル入力、閉ループ Class-D オーディオ・アンプ # 1 特長 - 柔軟なオーディオ I/O: - 32、44.1、48、88.2、96、192kHz のサンプル・レ ートをサポート - I<sup>2</sup>S、LJ、RJ、または TDM - SDOUT によるオーディオ・モニタ、サブチャネル、 エコー・キャンセル - 3線式のデジタル・オーディオ・インターフェイスを サポート (MCLK 不要) - 高効率の Class-D 動作 - 90% を超える電力効率、90mΩ の R<sub>DS(on)</sub> - 低い静止電流:PVDD = 12V で 20mA 未満 - 複数の出力構成をサポート - 1.0 モードで 1 × 53W (4Ω、22V、THD+N = 1%) - 1.0 モードで 1 × 65W (4Ω、22V、THD+N = 10%) - 2.0 モードで 2 × 30W (8Ω、24V、THD+N = 1%) - 2.0 モードで 2 × 38W (8Ω、24V、THD+N = 10%) - 優れたオーディオ性能: - THD+N $\leq$ 0.03% (1W, 1kHz, PVDD = 12V) - SNR ≥ 110dB (A-weighted), ICN ≤ 35µVRMS - 柔軟な処理機能 - 3 バンドの高度な DRC + AGL、2 × 15 BQ - SFS (Sound Field Spatializer)、レベル・メータ - 96kHz、192kHz のプロセッサ・サンプリング - 動的 EQ、低音強調およびスピーカーの熱 / エクス カーション保護 - 柔軟な電源構成 - PVDD:4.5V∼26.4V - DVDD および I/O:1.8V または 3.3V - 優れた自己保護機能を内蔵 - 過電流エラー (OCE) - サイクル単位の電流制限 - 過熱警告 (OTW) - 過熱エラー (OTE) - 低電圧 / 過電圧誤動作防止 (UVLO/OVLO) - システム統合が簡単 - I<sup>2</sup>C ソフトウェア制御 - ソリューション・サイズの低減 - 5 × 5mm の小型パッケージ - 開ループ・デバイスと比べて少ない受動部品数 - ほとんどのアプリケーションでは、大きな電解コ ンデンサや大型のインダクタが不要 # 2 アプリケーション - スマート・スピーカー (音声アシスタント付き) - ワイヤレス、Bluetooth スピーカー - DTV、HDTV、UHD、および汎用モニタ - サウンドバーおよびサブウーファー、ノートブック、PC スピーカー # 3 概要 TAS5825M は、内蔵オーディオ・プロセッサを搭載し、最 高 192kHz をサポートする、高性能の閉ループ Class-D ステレオ・アンプです。 この強力なオーディオ DSP コアは、2 × 15 BQ、3 バンド DRC、フルバンド AGL (自動ゲイン・リミッタ)、スマート・ア ンプ・アルゴリズム (熱およびエクスカーション保護)、低音 強調、スペーシャライザ、THD マネージャ、PVDD トラッキ ング、サーマル・フォールドバックなどの高度なオーディオ 処理をサポートしています。TAS5825M は、入力サンプ ル・レートを検出して入力サンプルを DSP ターゲット・サン プル・レートに自動変換するとともに、オーディオ・アーティ ファクトを回避できる、内蔵 SRC (サンプル・レート・コンバ ータ) が搭載された、48kHz または 96kHz アーキテクチ ャを備えています。 # デバイス情報 | 部品番号 | パッケージ <sup>(1)</sup> | 本体サイズ (公称) | |----------|----------------------|-----------------| | TAS5825M | VQFN (32) RHB | 5.00mm × 5.00mm | 利用可能なパッケージについては、このデータシートの末尾にあ る注文情報を参照してください。 # **Table of Contents** | 1 特長 | 1 | 9.3 Feature Description | 28 | |--------------------------------------|---------|---------------------------------------------------|----------------------| | 2 アプリケーション | | 9.4 Device Functional Modes | | | - | | 9.5 Programming and Control | 39 | | 4 Revision History | | 9.6 Register Maps | 44 | | 5 Device Comparison Table | | 10 Application and Implementation | 84 | | 6 Pin Configuration and Functions | | 10.1 Application Information | 84 | | 7 Specifications | | 10.2 Typical Applications | 86 | | 7.1 Absolute Maximum Ratings | | 10.3 Power Supply Recommendations | 92 | | 7.2 ESD Ratings | | 10.4 Layout | | | 7.3 Recommended Operating Conditions | | 11 Device and Documentation Support | <mark>98</mark> | | 7.4 Thermal Information | | 11.1 Device Support | 98 | | 7.5 Electrical Characteristics | | 11.2 Receiving Notification of Documentation Upda | ates <mark>98</mark> | | 7.6 Timing Requirements | | 11.3 サポート・リソース | 98 | | 7.7 Typical Characteristics | | 11.4 Trademarks | <mark>99</mark> | | 8 Parameter Measurement Information | | 11.5 静電気放電に関する注意事項 | 99 | | 9 Detailed Description | | 11.6 用語集 | 99 | | 9.1 Overview | | 12 Mechanical, Packaging, and Orderable | | | 9.2 Functional Block Diagram | | Information | 99 | | | | | | | 4 Revision History | | | | | 資料番号末尾の英字は改訂を表しています。その | ) 浙江屠麻) | + 苦 | | | Changes from Revision G (July 2020) to Revision H (January 2023) | Page | |----------------------------------------------------------------------------------------------------------|------| | • SPI に言及している場合、すべての旧式の用語をコントローラおよびペリフェラルに変更 | 1 | | • SPI に言及している場合、すべての旧式の用語を POCI および PICO に変更 | 1 | | Changed figures in <i>Typical Characteristics</i> section | 11 | | Changes from Revision F (October 2019) to Revision G (July 2020) | Page | | • Changed capacitor values from 0.22 μF to 0.47 μF in the <i>Bootstrap Capacitors</i> section | 85 | | Changes from Revision E (October 2019) to Revision F (November 2019) | Page | | <ul><li>・「特長」と「アプリケーション」を 1 列に収めるために先頭ページの体裁を変更</li></ul> | 1 | | Changes from Revision D (December 2018) to Revision E (October 2019) | Page | | Added section: Class D Loop Bandwidth and Switching Frequency Setting | 33 | | Added NOTE to the Overcurrent Limit (Cycle-By-Cycle) section | | | Added register: SAP_CTRL3 Register (Offset = 35h) [reset = 0x11] | | | • Changed capacitor values of C6, C9, C10, and C13 from 0.22 $\mu F$ to 0.47 $\mu F$ in $\boxtimes$ 10-1 | 86 | | Changes from Revision C (September 2018) to Revision D (December 2018) | Page | | Added the Thermal Foldback section | 35 | | Added 図 9-14 | 42 | | Added 図 9-15 | 43 | | Changed the Inductor Selections section | | | Changes from Revision B (August 2018) to Revision C (September 2018) | Page | | • Deleted 001: 260K from 表 9-9 | 44 | # Changes from Revision A (June 2018) to Revision B (August 2018) Page - デバイスのステータスを「事前情報」から「量産データ」に変更......1 # **5 Device Comparison Table** | DEVICE NAME | R <sub>DS(on)</sub> | DSP Audio Process Flows | |-------------|---------------------|------------------------------| | TAS5825M | 90 mΩ | Flexible Audio Process Flows | | TAS5805M | 180 mΩ | ROM Fixed Process Flows | # **6 Pin Configuration and Functions** 図 6-1. RHB Package 32-Pin VQFN 表 6-1. Pin Functions Table | PIN | ı | - TYPE <sup>(1)</sup> | DESCRIPTION | | |---------------------|-----|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | NAME | NO. | ITPE | DESCRIPTION | | | DGND | 5 | Р | Digital ground | | | DVDD | 6 | Р | 3.3-V or 1.8-V digital power supply | | | VR_DIG | 7 | Р | nternally regulated 1.5-V digital supply voltage. This pin must not be used to drive external devices | | | ADR | 8 | Al | A table of resistor value (Pull down to GND) decides device I2C address. See 表 9-5. | | | GPIO0 | 9 | DI/O | General-purpose input/output, function of this pin can be programmed by register (Register Address 0x60h and 0x61h). Can be configured to be CMOS output or Open drain output (WARNZ or FAULTZ) | | | GPIO1 | 10 | DI/O | ieneral-purpose input/output, function of this pin can be programmed by register (Register Address 0x60h and x62h). Can be configured to be CMOS output or Open drain output (WARNZ or FAULTZ) | | | GPIO2 | 11 | DI/O | General-purpose input/output, function of this pin can be programmed by register (Register Address 0x60h and 0x63h). Can be configured to be CMOS output or Open drain output (WARNZ or FAULTZ) | | | LRCLK | 12 | DI | Word select clock for the digital signal that is active on the serial port's input data line. In 12S, LJ and RJ, this corresponds to the left channel and right channel boundary. In TDM mode, this corresponds to the frame sync boundary. | | | SCLK <sup>(2)</sup> | 13 | DI | Bit clock for the digital signal that is active on the input data line of the serial data port. Sometimes, this pin also be written as "bit clock (BCLK)" | | | SDIN | 14 | DI | Data line to the serial data port | | | SDA | 15 | DI/O | I2C serial control data interface input/output | | | SCL | 16 | DI | I2C serial control clock input | | | PDN | 17 | DI | Power down, active-low. PDN place the amplifier in Shutdown, turn off all internal regulators. | | Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated # 表 6-1. Pin Functions Table (continued) | PIN | | - TYPE <sup>(1)</sup> | DESCRIPTION | |-----------|-----|-----------------------|------------------------------------------------------------------------------------------------------------------------------------| | NAME | NO. | 1 TPE | DESCRIPTION | | GVDD | 18 | Р | Gate drive internal regulator output. This pin must not be used to drive external devices | | AVDD | 19 | Р | Internally regulated 5-V analog supply voltage. This pin must not be used to drive external devices | | AGND | 20 | Р | Analog ground | | | 3 | Р | | | PVDD | 4 | Р | PVDD voltage input | | PVDD | 21 | Р | - PVDD Vollage Input | | | 22 | Р | | | | 25 | Р | | | DCND | 26 | Р | Ground reference for power device circuitry. Connect this pin to system ground. | | PGND | 31 | Р | - Ground reference for power device circulary. Confinect this pirr to system ground. | | | 32 | Р | | | OUT_B+ | 23 | 0 | Positive pin for differential speaker amplifier output B | | BST_B+ | 24 | Р | Connection point for the OUT_B+ bootstrap capacitor which is used to create a power supply for the high-side gate drive for OUT_B+ | | OUT_B- | 27 | 0 | Negative pin for differential speaker amplifier output B | | BST_B- | 28 | Р | Connection point for the OUT_B- bootstrap capacitor which is used to create a power supply for the high-side gate drive for OUT_B- | | BST_A- | 29 | Р | Connection point for the OUT_A- bootstrap capacitor which is used to create a power supply for the high-side gate drive for OUT_A- | | OUT_A- | 30 | 0 | Negative pin for differential speaker amplifier output A | | BST_A+ | 1 | Р | Connection point for the OUT_A+ bootstrap capacitor which is used to create a power supply for the high-side gate drive for OUT_A+ | | OUT_A+ | 2 | 0 | Positive pin for differential speaker amplifier output A | | PowerPAD™ | | Р | Connect to the system Ground | <sup>(1)</sup> Al = Analog input, AO = Analog output, DI = Digital Input, DO = Digital Output, DI/O = Digital Bi-directional (input and output), P = Power, G = Ground (0 V) <sup>(2)</sup> Typically written "bit clock (BCLK)" in some audio codecs. # 7 Specifications # 7.1 Absolute Maximum Ratings Free-air room temperature 25°C (unless otherwise noted) (1) | | | MIN | MAX | UNIT | |---------------------------|-----------------------------------------------|------|-------------------------|------| | DVDD | Low-voltage digital supply | -0.3 | 3.9 | V | | PVDD | PVDD supply | -0.3 | 30 | V | | V <sub>I(DigIn)</sub> | DVDD referenced digital inputs <sup>(2)</sup> | -0.5 | V <sub>DVDD</sub> + 0.5 | V | | V <sub>I(SPK_OUTxx)</sub> | Voltage at speaker output pins | -0.3 | 32 | V | | T <sub>A</sub> | Ambient operating temperature, | -25 | 85 | °C | | T <sub>stg</sub> | Storage temperature | -40 | 125 | °C | <sup>(1)</sup> Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. (2) DVDD referenced digital pins include: ADR, GPIO0, GPIO1, GPIO2, LRCLK, SCLK, SDIN, SCL, SDA, PDN # 7.2 ESD Ratings | | | | VALUE | UNIT | |--------------------|-------------------------|--------------------------------------------------------------------------------|-------|------| | V | Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 <sup>(1)</sup> | ±2000 | V | | V <sub>(ESD)</sub> | Liectiostatic discharge | Charged-device model (CDM), per JEDEC specification JESD22-C101 <sup>(2)</sup> | ±500 | V | <sup>(1)</sup> JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. # 7.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) | | J 1 | <b>3</b> \ | | | | | |---------------------------------------|-------------------------------------------------------------------|------------|------|-----|------|------| | | | | MIN | NOM | MAX | UNIT | | V Deverage and the instant | | DVDD | 1.62 | | 3.63 | ., | | V <sub>(POWER)</sub> | Power supply inputs | PVDD | 4.5 | | 26.4 | ľ | | | BTL Mode | 3.2 | 4 | | Ω | | | R <sub>SPK</sub> Minimum speaker load | | PBTL Mode | 1.6 | 2 | | Ω | | L <sub>OUT</sub> | Minimum inductor value in LC filter under short-circuit condition | | 1 | 4.7 | | μH | # 7.4 Thermal Information | THERMAL METRIC(1) | | | TAS5825M<br>VQFN (RHB)<br>32 PINS | | | | | |-----------------------|----------------------------------------------|-----|-----------------------------------|------------------------------|------|--|--| | | HERMAL METRO | | JEDEC<br>STANDARD<br>4-LAYER PCB | TAS5825MEVM-4<br>4-LAYER PCB | UNIT | | | | $R_{\theta JA}$ | Junction-to-ambient thermal resistance | N/A | 30.0 | 24.1 | °C/W | | | | R <sub>0JC(top)</sub> | Junction-to-case (top) thermal resistance | N/A | 19.1 | 19.1 | °C/W | | | | R <sub>θJB</sub> | Junction-to-board thermal resistance | N/A | 9.9 | 9.9 | °C/W | | | | ΨЈТ | Junction-to-top characterization parameter | N/A | 0.2 | 0.9 | °C/W | | | | ΨЈВ | Junction-to-board characterization parameter | N/A | 10.5 | 8.8 | °C/W | | | | R <sub>θJC(bot)</sub> | Junction-to-case (bottom) thermal resistance | N/A | N/A | N/A | °C/W | | | <sup>(1)</sup> For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. Product Folder Links: TAS5825M <sup>(2)</sup> JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. # 7.5 Electrical Characteristics Free-air room temperature 25°C (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | TYP MAX | UNIT | |--------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----|---------|----------------| | DIGITAL I/O | | | | | | | шн | Input logic high current level for DVDD referenced digital input pins | $V_{IN(DigIn)} = V_{DVDD}$ | | 10 | μA | | IIIL | Input logic low current level for DVDD referenced digital input pins | V <sub>IN(DigIn)</sub> = 0 V | | -10 | μΑ | | $V_{IH(Digin)}$ | Input logic high threshold for DVDD referenced digital inputs | | 70% | | $V_{DVDD}$ | | V <sub>IL(Digin)</sub> | Input logic low threshold for DVDD referenced digital inputs | | | 30% | $V_{DVDD}$ | | V <sub>OH(Digin)</sub> | Output logic high voltage level | I <sub>OH</sub> = 4 mA | 80% | | $V_{DVDD}$ | | V <sub>OL(Digin)</sub> | Output logic low voltage level | I <sub>OH</sub> = -4 mA | | 20% | $V_{DVDD}$ | | I <sup>2</sup> C CONTROL | PORT | | | | | | C <sub>L(I2C)</sub> | Allowable load capacitance for each I <sup>2</sup> C Line | | | 400 | pF | | f <sub>SCL(fast)</sub> | Support SCL frequency | No wait states, fast mode | | 400 | kHz | | f <sub>SCL(slow)</sub> | Support SCL frequency | No wait states, slow mode | | 100 | kHz | | SERIAL AUDIO | O PORT | | | | | | t <sub>DLY</sub> | Required LRCK/FS to SCLK rising edge delay | | 5 | | ns | | D <sub>SCLK</sub> | Allowable SCLK duty cycle | | 40% | 60% | | | f <sub>S</sub> | Supported input sample rates | | 32 | 192 | kHz | | f <sub>SCLK</sub> | Supported SCLK frequencies | | 32 | 64 | f <sub>S</sub> | | f <sub>SCLK</sub> | SCLK frequency | | | 24.576 | MHz | | SPEAKER AM | IPLIFIER (ALL OUTPUT CONFIGURA | ATIONS) | | | | | t <sub>off</sub> | Turn-off Time | Excluding volume ramp | | 10 | ms | | I <sub>cc</sub> | Quiescent supply current of DVDD | PDN=2V,DVDD=3.3V, Play mode, General Audio Process flow with full DSP running | | 25.5 | mA | | I <sub>cc</sub> | Quiescent supply current of DVDD | PDN = 2 V,DVDD = 3.3 V, Play mode, Smart Amp<br>Process Flows based on 48 kHz or 96 kHz | | 17.5 | mA | | I <sub>CC</sub> | Quiescent supply current of DVDD | PDN = 2 V, DVDD = 3.3 V, Play mode, Audio<br>Process flow with Housekeeping mode, 192 kHz<br>sample rate | | 24.8 | mA | | I <sub>cc</sub> | Quiescent supply current of DVDD | PDN = 2 V, DVDD = 3.3 V, Play mode, Audio<br>Process flow with Housekeeping mode, 96 kHz<br>sample rate | | 19.3 | mA | | I <sub>cc</sub> | Quiescent supply current of DVDD | PDN=2V,DVDD=3.3V, Play mode, Audio Process flow with Housekeeping mode, 48 kHz sample rate | | 14.8 | mA | | I <sub>cc</sub> | Quiescent supply current of DVDD | PDN = 2 V, DVDD = 3.3 V, Sleep mode | | 0.87 | mA | | I <sub>CC</sub> | Quiescent supply current of DVDD | PDN = 2 V, DVDD = 3.3 V, Deep Sleep mode | | 0.82 | mA | | I <sub>cc</sub> | Quiescent supply current of DVDD | PDN = 0.8 V, DVDD = 3.3 V, Shutdown mode | | 7.4 | μΑ | | Icc | Quiescent supply current of PVDD | PDN = 2 V, PVDD = 13.5 V, No Load, LC filter = 10 uH + 0.68 uF, Fsw = 384 kHz, Hybrid Modulation, Play Mode | | 29.5 | mA | | I <sub>cc</sub> | Quiescent supply current of PVDD | PDN = 2 V, PVDD = 13.5 V, No Load, LC filter = 22 uH + 0.68 uF, Fsw = 384 kHz, Hybrid Modulation, Play Mode | | 20.5 | mA | | I <sub>CC</sub> | Quiescent supply current of PVDD | PDN = 2 V, PVDD = 13.5 V, No Load, LC filter = 10 uH + 0.68 uF, Fsw = 384 kHz, Output Hiz Mode | | 10.7 | mA | | I <sub>cc</sub> | Quiescent supply current of PVDD | PDN = 2 V, PVDD = 13.5 V, No Load, LC filter = 10 uH + 0.68 uF, Fsw = 384 kHz, Sleep Mode | | 7.26 | mA | # 7.5 Electrical Characteristics (continued) Free-air room temperature 25°C (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |---------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|----------|------------| | I <sub>cc</sub> | Quiescent supply current of PVDD | PDN = 2 V, PVDD = 13.5 V, No Load, LC filter = 10 uH + 0.68 uF, Fsw = 384 kHz, Deep Sleep Mode | | 12.01 | | μΑ | | lcc | Quiescent supply current of PVDD | PDN = 0.8 V, PVDD = 13.5 V, No Load, LC filter = 10 uH + 0.68 uF,Fsw = 384 kHz, Shutdown Mode | | 7.8 | | μΑ | | A <sub>V(SPK_AMP)</sub> | Programmable Gain | Value represents the <i>peak voltage</i> disregarding clipping due to lower PVDD). Measured at 0 dB input (1FS) | 4.87 | | 29.5 | V | | ΔA <sub>V(SPK_AMP)</sub> | Amplifier gain error | Gain = 29.5 Vp | | 0.5 | | dB | | f <sub>SPK_AMP</sub> | Switching frequency of the speaker amplifier | | | 384<br>768 | | kHz<br>kHz | | R <sub>DS(on)</sub> | Drain-to-source on resistance of the individual output MOSFETs | FET + Metallization. | | 90 | | mΩ | | | Over-Current Error Threshold | Any short to supply, ground, or other channels | | 7.5 | | Α | | OCE <sub>THRES</sub> | Over-Current cycle-by-cycle limit | | | 6.5 | | Α | | OVE <sub>THRES(PVDD</sub> | PVDD over voltage error threshold | | | 28 | | V | | UVE <sub>THRES(PVDD</sub> | PVDD under voltage error threshold | | | 4.2 | | V | | OTE <sub>THRES</sub> | Over temperature error threshold | | | 160 | | °C | | OTE <sub>Hystersis</sub> | Over temperature error hysteresis | | | 10 | | °C | | OTW <sub>THRES</sub> | Over temperature warning level 1 | Read by register 0x73 bit0 | | 112 | | °C | | OTW <sub>THRES</sub> | Over temperature warning level 2 | Read by register 0x73 bit1 | | 122 | | °C | | OTW <sub>THRES</sub> | Over temperature warning level 3 | Read by register 0x73 bit2 | | 134 | | °C | | OTW <sub>THRES</sub> | Over temperature warning level 4 | Read by register 0x73 bit3 | | 146 | | °C | | SPEAKER AMPL | IFIER (STEREO BTL) | | | | <u> </u> | | | V <sub>OS</sub> | Amplifier offset voltage | Measured differentially with zero input data, programmable gain configured with 29.5 Vp gain, V <sub>PVDD</sub> = 16 V | -7.5 | | 7.5 | mV | | | | $V_{PVDD}$ = 14.4 V, SPK_GAIN = 29.5 Vp, R <sub>SPK</sub> = 6 $\Omega$ , f = 1 kHz THD+N = 10% | | 17.8 | | W | | | | $V_{PVDD}$ = 14.4 V, SPK_GAIN = 29.5 Vp, R <sub>SPK</sub> = 6 $\Omega$ , f = 1 kHz THD+N = 1% | | 14.5 | | W | | P <sub>O(SPK)</sub> | Output Power (Per Channel) | $\begin{array}{l} V_{PVDD} = 24 \text{ V, SPK\_GAIN} = 29.5 \text{ Vp, R}_{SPK} = 8 \Omega, \text{ f} \\ = 1 \text{ kHz THD+N} = 10\% \text{ (Instantaneous Output Power)} \end{array}$ | | 38 | | W | | | | $V_{PVDD}$ = 24 V, SPK_GAIN = 29.5 Vp, R <sub>SPK</sub> = 8 Ω, f = 1 kHz THD+N = 1% (Continuous Output Power) | | 30 | | W | | | Total harmonic distortion and | V <sub>PVDD</sub> = 12 V, SPK_GAIN = 20.9 Vp, LC-filter | | 0.03% | | | | THD+N <sub>SPK</sub> | noise $(P_O = 1 \text{ W}, f = 1 \text{ kHz}, R_{SPK} = 6 \Omega)$ | V <sub>PVDD</sub> = 24 V, SPK_GAIN = 29.5 Vp, LC-filter | | 0.03% | | | | I <sub>CN(SPK)</sub> | | $V_{PVDD}$ = 12 V, LC-filter, Load = 6 $\Omega$ , Hybrid Modulation | | 32 | | | | I <sub>CN(SPK)</sub> | Idle channel noise (A- | $V_{PVDD}$ = 12 V, LC-filter, Load = 6 Ω, BD Modulation | | 40 | | μVrms | | I <sub>CN(SPK)</sub> | weighted, AES17) | $V_{PVDD}$ = 24 V, LC-filter ,Load = 6 Ω, Hybrid Modulation | | 35 | | μνιιιο | | I <sub>CN(SPK)</sub> | | $V_{PVDD}$ = 24 V, LC-filter ,Load = 6 Ω, BD Modulation | | 45 | | | | DR | Dynamic range | A-Weighted, -60 dBFS method. P <sub>VDD</sub> = 24 V,<br>SPK_GAIN = 29.5 Vp | | 111 | | dB | | | , | SPK_GAIN = 29.5 Vp | | * | | | Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated # 7.5 Electrical Characteristics (continued) Free-air room temperature 25°C (unless otherwise noted) | PARAMETER | | TEST CONDITIONS | MIN TYP | MAX | UNIT | |--------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------|-----|------| | SNR | Signal-to-noise ratio | A-Weighted, referenced to 1% THD+N Output<br>Level, PVDD = 24 V | 111 | | dB | | SIVIX | Signal-to-Hoise Fatto | A-Weighted, referenced to 1% THD+N Output Level, PVDD = 14.4 V | 108 | | dB | | K <sub>SVR</sub> | Power supply rejection ratio | Injected Noise = 1 kHz, 1 V <sub>rms</sub> , P <sub>VDD</sub> = 14.4 V, input audio signal = digital zero | 72 | | dB | | Crosstalk <sub>SPK</sub> | Crosstalk (worst case between left-to-right and right-to-left coupling) | f = 1 kHz | -100 | | | | SPEAKER AMP | LIFIER (MONO PBTL) | | | | | | P <sub>O(SPK)</sub> | Output Power | $V_{PVDD}$ = 19 V, SPK_GAIN = 29.5 Vp, R <sub>SPK</sub> = 3 $\Omega$ , f = 1 kHz, THD+N = 1% | 50 | | W | | | | $V_{PVDD}$ = 19 V, SPK_GAIN = 29.5 Vp, R <sub>SPK</sub> = 3 $\Omega$ , f = 1 kHz, THD+N = 10% | 60 | | W | | | | $V_{PVDD}$ = 22 V, SPK_GAIN = 29.5 Vp, R <sub>SPK</sub> = 4 $\Omega$ , f = 1 kHz, THD+N = 1% | 53 | | W | | | | $V_{PVDD}$ = 22 V, SPK_GAIN = 29.5 Vp, R <sub>SPK</sub> = 4 $\Omega$ , f = 1 kHz, THD+N = 10% | 65 | | W | | THD+N <sub>SPK</sub> | Total harmonic distortion and noise (P <sub>O</sub> = 1 W, f = 1 kHz | $V_{PVDD}$ = 19 V, SPK_GAIN = 20.9 Vp, LC-filter R <sub>SPK</sub> = 3 $\Omega$ ) | 0.03% | | | | | | $V_{PVDD}$ = 24 V, SPK_GAIN = 29.5 Vp, LC-filter R <sub>SPK</sub> = 4 $\Omega$ ) | 0.03% | | | | DR | Dynamic range | A-Weighted, -60 dBFS method, PVDD=19V | 109 | | dB | | SNR | Signal-to-noise ratio | A-Weighted, referenced to 1% THD+N Output<br>Level, PVDD = 19 V | 109 | | dB | | | | A-Weighted, referenced to 1% THD+N Output Level, PVDD = 24 V | 111 | | dB | # 7.6 Timing Requirements | | | MIN | NOM MAX | UNIT | |-----------------------|---------------------------------------------------------------------------------------|------------------------|---------|------| | Serial Aud | io Port Timing – Target Mode | | | | | SCLK | SCLK frequency | 1.024 | | MHz | | SCLK | SCLK period | 40 | | ns | | SCLKL | SCLK pulse width, low | 16 | | ns | | SCLKH | SCLK pulse width, high | 16 | | ns | | SL | SCLK rising to LRCK/FS edge | 8 | | ns | | LS | LRCK/FS Edge to SCLK rising edge | 8 | | ns | | SU | Data setup time, before SCLK rising edge | 8 | | ns | | DH | Data hold time, after SCLK rising edge | 8 | | ns | | DFS | Data delay time from SCLK falling edge | | 15 | ns | | <sup>2</sup> C Bus Ti | ming – Standard | | | ns | | SCL | SCL clock frequency | | 100 | kHz | | BUF | Bus free time between a STOP and START condition | 4.7 | | μs | | LOW | Low period of the SCL clock | 4.7 | | μs | | HI | High period of the SCL clock | 4 | | μs | | RS-SU | Setup time for (repeated) START condition | 4.7 | | μs | | S-HD | Hold time for (repeated) START condition | 4 | | μs | | D-SU | Data setup time | 250 | | ns | | D-HD | Data hold time | 0 | 900 | ns | | SCL-R | Rise time of SCL signal | 20 + 0.1C <sub>B</sub> | 1000 | ns | | SCL-R1 | Rise time of SCL signal after a repeated START condition and after an acknowledge bit | 20 + 0.1C <sub>B</sub> | 1000 | ns | | SCL-F | Fall time of SCL signal | 20 + 0.1C <sub>B</sub> | 1000 | ns | | SDA-R | Rise time of SDA signal | 20 + 0.1C <sub>B</sub> | 1000 | ns | | SDA-F | Fall time of SDA signal | 20 + 0.1C <sub>B</sub> | 1000 | ns | | P-SU | Setup time for STOP condition | 4 | | μs | | | ming – Fast | | | | | SCL | SCL clock frequency | | 400 | kHz | | BUF | Bus free time between a STOP and START condition | 1.3 | | μs | | LOW | Low period of the SCL clock | 1.3 | | μs | | HI | High period of the SCL clock | 600 | | ns | | RS-SU | Setup time for (repeated)START condition | 600 | | ns | | RS-HD | Hold time for (repeated)START condition | 600 | | ns | | D-SU | Data setup time | 100 | | ns | | D-HD | Data hold time | 0 | 900 | ns | | SCL-R | Rise time of SCL signal | 20 + 0.1C <sub>B</sub> | 300 | ns | | SCL-R1 | Rise time of SCL signal after a repeated START condition and after an acknowledge bit | 20 + 0.1C <sub>B</sub> | 300 | ns | | SCL-F | Fall time of SCL signal | 20 + 0.1C <sub>B</sub> | 300 | ns | | SDA-R | Rise time of SDA signal | 20 + 0.1C <sub>B</sub> | 300 | ns | | SDA-F | Fall time of SDA signal | 20 + 0.1C <sub>B</sub> | 300 | ns | | P-SU | Setup time for STOP condition | 600 | | ns | | P-50<br>SP | Pulse width of spike suppressed | | 50 | ns | # 7.7 Typical Characteristics ## 7.7.1 Bridge Tied Load (BTL) Configuration Curves with Hybrid Modulation # 7.7.2 Parallel Bridge Tied Load (PBTL) Configuration With Hybrid Modulation Free-air room temperature 25°C (unless otherwise noted) Measurements were made using TAS5825MEVM board and Audio Precision System 2722 with Analog Analyzer filter set to 20-kHz brickwall filter. All measurements taken with audio frequency set to 1 kHz and device PWM frequency set to 384 kHz, the LC filter used was 10 $\mu$ H / 0.68 $\mu$ F (Pre-Filter PBTL, the merging of the two output channels in this device can be done before the inductor portion of the output filter, see connect method in t = t = t = t (Pre-Filter PBTL), unless otherwise noted. # 7.7.2 Parallel Bridge Tied Load (PBTL) Configuration With Hybrid Modulation (continued) Free-air room temperature 25°C (unless otherwise noted) Measurements were made using TAS5825MEVM board and Audio Precision System 2722 with Analog Analyzer filter set to 20-kHz brickwall filter. All measurements taken with audio frequency set to 1 kHz and device PWM frequency set to 384 kHz, the LC filter used was 10 $\mu$ H / 0.68 $\mu$ F (Pre-Filter PBTL, the merging of the two output channels in this device can be done before the inductor portion of the output filter, see connect method in t = t = t = t (Pre-Filter PBTL), unless otherwise noted. # 7.7.2 Parallel Bridge Tied Load (PBTL) Configuration With Hybrid Modulation (continued) Free-air room temperature 25°C (unless otherwise noted) Measurements were made using TAS5825MEVM board and Audio Precision System 2722 with Analog Analyzer filter set to 20-kHz brickwall filter. All measurements taken with audio frequency set to 1 kHz and device PWM frequency set to 384 kHz, the LC filter used was 10 $\mu$ H / 0.68 $\mu$ F (Pre-Filter PBTL, the merging of the two output channels in this device can be done before the inductor portion of the output filter, see connect method in $\forall \nu \neq 0.00$ $\forall \nu \neq 0.00$ , unless otherwise noted. # 7.7.4 Parallel Bridge Tied Load (PBTL) Configuration With BD Modulation Free-air room temperature 25°C (unless otherwise noted) Measurements were made using TAS5825MEVM board and Audio Precision System 2722 with Analog Analyzer filter set to 20-kHz brickwall filter. All measurements taken with audio frequency set to 1 kHz and device PWM frequency set to 768 kHz, the LC filter used was 4.7 μH / 0.68 μF (Pre-Filter PBTL, the merging of the two output channels in this device can be done before the inductor portion of the output filter, see details in $t = \sqrt{2} \times 10.2.5$ , unless otherwise noted. # 7.7.4 Parallel Bridge Tied Load (PBTL) Configuration With BD Modulation (continued) Free-air room temperature 25°C (unless otherwise noted) Measurements were made using TAS5825MEVM board and Audio Precision System 2722 with Analog Analyzer filter set to 20-kHz brickwall filter. All measurements taken with audio frequency set to 1 kHz and device PWM frequency set to 768 kHz, the LC filter used was 4.7 μH / 0.68 μF (Pre-Filter PBTL, the merging of the two output channels in this device can be done before the inductor portion of the output filter, see details in $t = \sqrt{2} \times 10.2.5$ , unless otherwise noted. # 7.7.4 Parallel Bridge Tied Load (PBTL) Configuration With BD Modulation (continued) Free-air room temperature 25°C (unless otherwise noted) Measurements were made using TAS5825MEVM board and Audio Precision System 2722 with Analog Analyzer filter set to 20-kHz brickwall filter. All measurements taken with audio frequency set to 1 kHz and device PWM frequency set to 768 kHz, the LC filter used was 4.7 $\mu$ H / 0.68 $\mu$ F (Pre-Filter PBTL, the merging of the two output channels in this device can be done before the inductor portion of the output filter, see details in $\forall 2.000 \text{ M} = 10.200 \text{ M}$ , unless otherwise noted. # **8 Parameter Measurement Information** 図 8-1. Serial Audio Port Timing in Target Mode 図 8-2. I<sup>2</sup>C Communication Port Timing Diagram # 9 Detailed Description # 9.1 Overview The TAS5825M device combines 4 main building blocks into a single cohesive device that maximizes sound quality, flexibility, and ease of use. The 4 main building blocks are listed as follows: - · A stereo digital to PWM modulator. - · An Audio DSP subsystem. - A flexible close-loop amplifier capable of operating in stereo or mono, at several different switching frequencies, and with a variety of output voltages and loads. - An I<sup>2</sup>C control port for communication with the device The device requires only two power supplies for proper operation. A DVDD supply is required to power the low voltage digital circuitry. Another supply, called PVDD, is required to provide power to the output stage of the audio amplifier. Two internal LDOs convert PVDD to 5 V for GVDD and AVDD and to 1.5V for DVDD respectively. # 9.2 Functional Block Diagram # 9.3 Feature Description ## 9.3.1 Power Supplies For system design, TAS5825M needs a 3.3-V or 1.8-V supply in addition to the (typical) 12 V or 24 V powerstage supply. Two internal voltage regulators provide good voltage levels for the gate drive circuitry and internal circuitry. The external pins are provided only as a connection point for off-chip bypass capacitors to filter the supply. Connecting external circuitry to these regulator outputs can result in reduced performance and damage to the device. Additionally, all circuitry requiring a floating voltage supply, that is, the high-side gate drive, is accommodated by built-in bootstrap circuitry requiring only a few external capacitors. To provide good electrical and acoustical characteristics, the PWM signal path for the output stage is designed as identical, independent half-bridges. For this reason, each half-bridge has separate bootstrap pins (BST\_x). The gate drive voltages (GVDD) are derived from the PVDD voltage. Special attention needs to be paid to placing all decoupling capacitors as close to their associated pins as possible. In general, inductance between the power-supply pins and decoupling capacitors must be avoided. For a properly functioning bootstrap circuit, a small ceramic capacitor must be connected from each bootstrap pin (BST x) to the power-stage output pin (OUT x). When the power-stage output is low, the bootstrap capacitor is charged through an internal diode connected between the gate-drive regulator output pin (GVDD) and the bootstrap pin. When the power-stage output is high, the bootstrap capacitor potential is shifted above the output potential and thus provides a good voltage supply for the high-side gate driver. # 9.3.2 Device Clocking The TAS5825M devices have flexible systems for clocking. Internally, the device requires a number of clocks, mostly at related clock rates to function correctly. All of these clocks can be derived from the Serial Audio Interface. 図 9-1. Audio Flow with Respective Clocks The Serial Audio Interface typically has 3 connection pins which are listed as follows: - SCLK (Bit Clock) - LRCLK/FS (Left/Right Word Clock or Frame Sync) - SDIN (Input Data) The device has an internal PLL that is used to take SCLK and create the higher rate clocks required by the DSP and the DAC clock. The TAS5825M device has an audio sampling rate detection circuit that automatically senses which frequency the sampling rate is operating. Common audio sampling frequencies of 32 kHz, 44.1kHz – 48 kHz, 88.2 kHz – 96 kHz, 176.4 kHz – 192 kHz are supported. The sampling frequency detector sets the clock for DAC and DSP automatically. If the input LRCLK/SCLK stopped during music playing, the TAS5825M DSP switches to sleep state and waiting for the clock recovery (Class D output switches to Hiz automatically ), once LRCLK/SCLK recovered, TAS5825M auto recovers to the play mode. There is no need to reload the DSP code. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated #### 9.3.3 Serial Audio Port - Clock Rates The serial audio interface port is a 3-wire serial port with the signals LRCLK/FS , SCLK , and SDIN. SCLK is the serial audio bit clock, used to clock the serial data present on SDIN into the serial shift register of the audio interface. Serial data is clocked into the TAS5825M device with SCLK. The LRCLK/FS pin is the serial audio left/ right word clock or frame sync when the device is operated in TDM Mode. | 2 9-1. Addio Data Formats, bit Deptins and Clock Rates | | | | | | |--------------------------------------------------------|----------------|----------------------------------|-----------------------------|--|--| | FORMAT | DATA BITS | MAXIMUM LRCLK/FS FREQUENCY (kHz) | SCLK RATE (f <sub>S</sub> ) | | | | I <sup>2</sup> S/LJ/RJ | 32, 24, 20, 16 | 32 to 192 | 64, 32 | | | | | 32, 24, 20, 16 | 32 | 128 | | | | TDM | | 44.1,48 | 128,256,512 | | | | IDM | | 96 | 128,256 | | | | | | 192 | 128 | | | 表 9-1. Audio Data Formats, Bit Depths and Clock Rates When Clock halt, non-supported SCLK to LRCLK(FS) ratio is detected, the device reports Clock Error in Register 113 (Register Address 0x71). ### 9.3.4 Clock Halt Auto-Recovery Some of host processor halts the I<sup>2</sup>S clock when there is no audio playing. When Clock halt, the device puts all channels into the Hi-Z state and reports Clock Error in Register 113 (Register Address 0x71). After the audio clock recovery, the device automatically returns to the previous state. ### 9.3.5 Sample Rate on the Fly Change TAS5825M supports LRCLK(FS) rate on the fly change. For example, change LCRLK from 32kHz to 48kHz or 96kHz or 192kHz, Host processor needs to put the LRCLK(FS)/SCLK to Halt state at least 100us before changing to the new sample rate. # 9.3.6 Serial Audio Port - Data Formats and Bit Depths The device supports industry-standard audio data formats, including standard I2S, left-justified, right-justified and TDM/DSP data. Data formats are selected via Register (Register Address 0x33h -D[5:4]). If the high width of LRCLK/FS in TDM/DSP mode is less than 8 cycles of SCK, then the register (Register Address 0x33h -D[3:2]) sets to 01. All formats require binary two's complement, MSB-first audio data; up to 32-bit audio data is accepted. All the data formats, word length and clock rate supported by this device are shown in Table 1. The data formats are detailed in $\boxtimes$ 9-2 through $\boxtimes$ 9-6. The word length are selected via Register (Register Address 0x33h -D[7]) and Register (Register Address 0x33h -D[7]). Default setting is I2S and 24 bit word length. 図 9-2. Left Justified Audio Data Format I<sup>2</sup>S Data Format; L-channel = LOW, R-channel = HIGH I<sup>2</sup>S Data Format; L-channel = LOW, R-channel = HIGH 図 9-3. I<sup>2</sup>S Audio Data Format Right-Justified Data Format; L-channel = HIGH, R-channel = LOW Right Justified Data Format; L-channel = HIGH, R-channel = LOW 図 9-4. Right Justified Audio Data Format TDM Data Format with OFFSET = 0 In TDM Modes, Duty Cycle of LRCK/FS must be 1x SCLK at minimum. Rising edge is considered frame start. 図 9-5. TDM 1 Audio Data Format TDM Data Format with OFFSET = 1 In TDM Modes, Duty Cycle of LRCK/FS must be 1x SCLK at minimum. Rising edge is considered frame start. 図 9-6. TDM 2 Audio Data Format #### 9.3.7 Digital Audio Processing TAS5825M DSP has flexible process flows which support Multi-Band DRC, Post AGL,FIR filter, 2\*15 BQs, Spatializer (stereo widening),Dynamic Biquad, Smart Speaker Excursion control, Smart Thermal and Smart Bass Control for different applications, refer to application note: TAS5825M Process Flows for details. Based on integrated PVDD sense ADC and 4 level temperature sensor, TAS5825M DSP also support PVDD tracking(Dynamic Headroom tracking),advanced thermal foldback and Hybrid modulation(Low power dissipation to extend battery life time), refer to application note:TAS5825M Advanced Features. # 9.3.8 Class D Audio Amplifier Following the digital clipper, the interpolated audio data is next sent to the Closed Loop Class-D amplifier, and the first stage is Digital to PWM Conversion (DPC) block. In this block, the stereo audio data is translated into two pairs of complimentary pulse width modulated (PWM) signals which are used to drive the outputs of the speaker amplifier. Feedback loops around the DPC provide for constant gain across supply voltages, reduce distortion, and increase immunity to power supply injected noise and distortion. The analog gain is also applied in the Class-D amplifier section of the device. The gain structures are discussed in detail below for both 図 9-7 and 表 9-2. The switching rate of the amplifier is configurable by register (Register Address 0x02h -D[6:4]) # 9.3.8.1 Speaker Amplifier Gain Select A combination of digital gain and analog gain is used to provide the overall gain of the speaker amplifier. As seen in 🗵 9-7, the audio path of the TAS5825M consists of a digital audio input port, a digital audio path, a digital to PWM converter (DPC), a gate driver stage, a Class D power stage, and a feedback loop which feeds the output information back into the DPC block to correct for distortion sensed on the output pins. The total amplifier gain is comprised of digital gain, shown in the digital audio path and the analog gain from the input of the analog modulator to the output of the speaker amplifier power stage. 図 9-7. Speaker Amplifier Gain As shown in $\boxtimes$ 9-7, the first gain stage for the speaker amplifier is present in the digital audio path. The first gain stage consists of the volume control and the digital boost block. The volume control is set to 0 dB by default and does not change. For all settings of the register 0x54, AGAIN[4:0], the digital boost block remains at 0 dB. These gain settings make sure that the output signal is not clipping at different PVDD levels. 0dBFS output is 29.5-V peak output voltage 表 9-2. Analog Gain Setting | AGAIN <4:0> | GAIN (dBFS) | AMPLIFIER OUTPUT PEAK VOLTAGE (V) | | | | |-------------|-------------|-----------------------------------|--|--|--| | 00000 | 0 | 29.5 | | | | | 00001 | -0.5 | 27.85 | | | | | | | | | | | | 11111 | -15.5 | 4.95 | | | | #### 9.3.8.2 Class D Loop Bandwidth and Switching Frequency Setting TAS5825M closed loop structure provides Loop bandwidth setting option (Setting by register 83 -Register address 0x53h-D[6-5]) to co-work with different switching frequency (Setting by register 2 -Register address 0x02h-D[6-4]). 表 9-3 shows recommended settings for the Loop Bandwidth and Switching Frequency selection. Same Fsw, Better THD+N performance with higher BW. 表 9-3. Loop Bandwidth and Switching Frequency Setting | Modulation<br>Scheme | Fsw | BW (Loop Band Width) | Notes | | | |----------------------|---------|-----------------------------------|---------------------------------------------------|--|--| | | 384 kHz | 80 kHz | | | | | Hybrid, 1SPW | 480 kHz | 80 kHz, 100 kHz | Principle: Fsw (Switching Frequency) ≥ 4.2 × Loop | | | | Tiybiid, 13FVV | 576 kHz | 80 kHz, 100 kHz, 120 kHz | Bandwidth | | | | | 768 kHz | 80 kHz, 100 kHz, 120 kHz, 175 kHz | | | | | | 384 kHz | 80 kHz, 100 kHz, 120 kHz | | | | | BD | 480 kHz | 80 kHz, 100 kHz, 120 kHz | Principle: Fsw (Switching Frequency) ≥ 3 × Loop | | | | 60 | 576 kHz | 80 kHz, 100 kHz, 120 kHz, 175 kHz | Bandwidth | | | | | 768 kHz | 80 kHz, 100 kHz, 120 kHz, 175 kHz | | | | ## 9.4 Device Functional Modes #### 9.4.1 Software Control The TAS5825M device is configured via an I<sup>2</sup> C communication port. The I2C Communication Protocol is detailed in the I $^2$ C Communication Port section. The I $^2$ C timing requirements are described in the I $^2$ C Bus Timing – Standard and I $^2$ C Bus Timing – Fast sections. There are two methods to program TAS5825M DSP memory. - Loading with I<sup>2</sup>C Communication Port by host processor. This method is recommend for most of applications. - Fast loading from external EEPROM with SPI communication Port. This method can be used in some applications which need fast loading to save initialization time or release the Host Controller's loading. TAS5825M supports to load the DSP memory data from external EEPROM via SPI. The GPIOs can be configured as SI,SO and SCK for EEPROM via Register (0x60,0x61,0x62,0x63,0x64). The chip selection CS of EEPROM is controlled by the Host Processor. See AppNote: Load TAS5825M Configurations from EEPROM via SPI. # 9.4.2 Speaker Amplifier Operating Modes The TAS5825M device can be used with two different amplifier configurations, can be configured by Register 0x02h -D[2]: - BTL Mode - PBTL Mode #### 9.4.2.1 BTL Mode In BTL mode, the TAS5825M amplifies two independent signals, which represent the left and right portions of a stereo signal. The amplified left signal is presented on differential output pair shown as OUT\_A+ and OUT\_A-, the amplified right signal is presented on differential output pair shown as OUT\_B+ and OUT\_B-. #### 9.4.2.2 PBTL Mode The PBTL mode of operation is used to describe operation in which the two outputs of the device are placed in parallel with one another to increase the power sourcing capabilities of the device. On the output side of the TAS5825M device, the summation of the devices can be done before the filter in a configuration called Pre-Filter Parallel Bridge Tied Load (PBTL). However, the two outputs can be required to merge together after the inductor portion of the output filter. Doing so does require two additional inductors, but allows smaller, less expensive inductors to be used because the current is divided between the two inductors. The process is called Post-Filter PBTL. On the input side of the TAS5825M device, the input signal to the PBTL amplifier is left frame of I2S or TDM data. #### 9.4.3 Low EMI Modes TAS5825M employs several modes to minimize EMI during playing audio, and can be used based on different applications. # 9.4.3.1 Spread Spectrum Spread spectrum is used in some inductor free cases to minimize EMI noise. The TAS5825M supports Spread Spectrum with triangle mode. User needs to configure register SS\_CTRL0 (0x6B) to enable triangle mode and enable spread spectrum, select spread spectrum frequency and range with SS\_CTRL1 (0x6C). For 384 kHz $F_{SW}$ , which is configured by DEVICE\_CTRL1 (0x02), the spread spectrum frequency and range are described in $\frac{1}{5}$ 9-4. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated 表 9-4. Triangle Mode Spread Spectrum Frequency and Range Selection | 20 m mangio mono opiona opositam i rodusmo, ama mango osiosnom | | | | | | | | | |----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----| | SS_TRI_CTRL[3:0] | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | Triangle Freq | 24k | | | | 48k | | | | | Spread Spectrum<br>Range | 5% | 10% | 20% | 25% | 5% | 10% | 20% | 25% | User Application example: Central Switching Frequency is 384 kHz, Triangle Frequency is 24 kHz. Register 0x6b = 0x03 // Enable Spread Spectrum Register 0x6c = 0x03 // SS\_CTRL[3:0]=0011, Triangle Frequency = 24 kHz, Spread Spectrum Range must be 25% (336 kHz through 432 kHz) ## 9.4.3.2 Channel to Channel Phase Shift This device supports channel to channel 180-degree PWM phase shift to minimize the EMI. Bit 0 of Register 0x53 can be used to disable or enable the phase shift. # 9.4.3.3 Multi-Devices PWM Phase Synchronization TAS5825M support up to 4 phases selection for the multi devices application system. For example, when a system integrated 4 TAS5825MM devices, user can select phase0/1/2/3 for each device by register PHASE\_CTRL(0x6A), which means there is a 45 degree phase shift between each device to minimize the EMI. There are two methods for Multi-Device PWM phase synchronization. Phase Synchronization With I<sup>2</sup>S Clock In Startup Phase or Phase Synchronization With GPIO. # 9.4.3.3.1 Phase Synchronization With I<sup>2</sup>S Clock In Startup Phase - 1. Step 1: Halt I<sup>2</sup>S clock. - 2. Step 2: Configure each device phase selection and enable the phase synchronization. For example: Register 0x6A=0x03 for device 0; Register 0x6A=0x07 for device 1; Register 0x6A=0x0B for device 2; Register 0x6A=0x0F for device 3. - 3. Step 3: Configure each device into HIZ mode. - 4. Step 4: Provide I<sup>2</sup>S to each device. Phase synchronization for all 4 devices is automatically done by internal sequence. - 5. Step 5: Initialize the DSP code (This step can be skipped if only need to do the Phase Synchronization). - 6. Step 6: Device to Device PWM phase shift must be fixed with 45 degree. ## 9.4.3.3.2 Phase Synchronization With GPIO - 1. Step 1: Connect GPIOx pin of each device to SOC's GPIO pin on PCB. - 2. Step 2: Configure each device GPIOx as phase sync input usage by registers GPIO\_CTRL (0X60) and GPIO\_INPUT\_SEL (0x64). - 3. Step 3: Select different phase for each device and enable phase synchronization by register PHASE\_CTRL (0x6A). - 4. Step 4: Configure each device into PLAY mode by register DEVICE\_CTRL2 (0x03) and monitor the POWER\_STATE register (0x68) until device changed to HIZ state. - 5. Step 5: Give a 0 to 1 toggle on SOC GPIO. Then all 4 devices enter into PLAY mode and device to Device PWM phase shift must be fixed with 45 degrees. - 6. Step 6: Phase Synchronization has been finished. Configure the GPIOx pin to other function based on the application. # 9.4.4 Thermal Foldback The Thermal Foldback (TFB), is designed to protect TAS5825M from excessive die temperature increases, in case the device operates beyond the recommended temperature/power limit, or with a weaker thermal system design than recommended. The TFB allows the TAS5825M to play as loud as possible without triggering unexpected thermal shutdown. When the die temperature triggers the over-temperature warning (OTW) level, (TAS5825M has four different temperature threshold, each threshold is indicated in I<sup>2</sup>C register 0x73 bits 0,1,2 and 3), an internal AGL (Automatic Gain Limiter) reduces the digital gain gradually, lower value of OTW, smaller Copyright © 2023 Texas Instruments Incorporated attenuation added, with the OTW warning goes higher, more attenuation added. Once the die temperature drops below the OTW, the device's digital gain gradually returns to the former setting. Both the attenuation gain and adjustable rate are programmable. The TFB gain regulation speed (attack rate and release rate) settings are the same as a regular AGL, which is also configurable with TAS5825M App in PurePath<sup>TM</sup> Console3. #### 9.4.5 Device State Control Except Shutdown Mode, TAS5825M has other 4 states for different power dissipation which listed in セクション 7.5. - Deep Sleep Mode. Register 0x03h -D[1:0]=00, Device stays in Deep Sleep Mode. In this mode, I<sup>2</sup> C block keep works. This mode can be used to extend the battery life time in some portable speaker application case, once the host processor stopped playing audio for a long time, TAS5825M can be set to Deep Sleep Mode to minimize power dissipation until host processor start playing audio again. Device returns back to Play Mode by setting Register 0x03h -D[1:0] to 11. Compare with Shutdown Mode (Pull PDN Low), enter or exit Deep Sleep Mode. DSP keeps active. - Sleep Mode. Register 0x03h -D[1:0]=01, Device stays in Sleep Mode. In this mode, I<sup>2</sup> C block, Digital core, DSP Memory, 5 V Analog LDO keep works. Compare with Shutdown Mode (Pull PDN Low), enter or exit Sleep Mode, DSP keeps active. - Output Hiz Mode. Register 0x03h -D[1:0]=10, Device stays in Hiz Mode. In this mode, Only output driver set to be Hiz state, all other block work normally. - Play Mode. Register 0x03h -D[1:0]=11, Device stays in Play Mode. #### 9.4.6 Device Modulation TAS5825M has 3 modulation schemes: BD modulation, 1SPW modulation and Hybrid modulation. Select modulation schemes for TAS5825M with Register 0x02 [1:0]-DAMP MOD. #### 9.4.6.1 BD Modulation This is a modulation scheme that allows operation without the classic LC reconstruction filter when the amp is driving an inductive load with short speaker wires. Each output is switching from 0 volts to the supply voltage. The OUTPx and OUTNx are in phase with each other with no input so that there is little or no current in the speaker. The duty cycle of OUTPx is greater than 50% and OUTNx is less than 50% for positive output voltages. The duty cycle of OUTPx is less than 50% and OUTNx is greater than 50% for negative output voltages. The voltage across the load sits at 0 V throughout most of the switching period, reducing the switching current, which reduces any I<sup>2</sup>R losses in the load. Product Folder Links: TAS5825M ### 9.4.6.2 1SPW Modulation The 1SPW mode alters the normal modulation scheme to achieve higher efficiency with a slight penalty in THD degradation and more attention required in the output filter selection. In Low Idle Current mode, the outputs operate at approximately 17% modulation during idle conditions. When an audio signal is applied, one output decreases and one increases. The decreasing output signal rails to GND. At this point all the audio modulation takes place through the rising output. The result is that only one output is switching during a majority of the audio cycle. Efficiency is improved in this mode due to the reduction of switching losses. #### 9.4.6.3 Hybrid Modulation Hybrid Modulation is designed for minimized power loss without compromising the THD+N performance, and is optimized for battery-powered applications. With Hybrid modulation, TAS5825M detects the input signal level and adjust PWM duty cycle dynamically based on PVDD. Hybrid modulation achieves ultra low idle current and maintains the same audio performance level as the BD Modulation. 注 As Hybrid Modulation need the internal DSP to detect the input signal level and adjust PWM duty cycle dynamically. To use the Hybrid Modulation, users need to select the corresponding process flows which support Hybrid Modulation in TAS5825M PPC3 App. Look intoTAS5825M PPC3 App for more information about TAS5825M flexible audio process flows. ## 9.5 Programming and Control ## 9.5.1 I<sup>2</sup> C Serial Communication Bus The device has a bidirectional serial control interface that is compatible with $I^2C$ bus protocol and supports 100 and 400-kHz data transfer rates for random and sequential write and read operations as a target device. Because the TAS5825M register map and DSP memory spans multi pages, the user must change from page to page before writing individual register or DSP memory. Changing from page to page is accomplished via register 0 on each page. This register value selects the page address, from 0 to 255. All registers are listed in the TAS5825M data sheet and is in Page 0. #### 9.5.2 l<sup>2</sup> C Target Address The TAS5825M device has 7 bits for the target address. The first five bits (MSBs) of the target address are factory preset to 10011(0x9x). The next two bits of address byte are the device select bits which can be user-defined by ADR pin in $\frac{1}{5}$ 9-5. | 2 0 0.1 G larget Address Comigaration | | | | | | | | | | |---------------------------------------|---|------|---|---|---|---|---------------------|------|--| | ADR PIN Configuration | | MSBs | | | | | MSBs User Define LS | | | | 0 Ω to GND | 1 | 0 | 0 | 1 | 1 | 0 | 0 | R/ ₩ | | | 1 kΩ to GND | 1 | 0 | 0 | 1 | 1 | 0 | 1 | R/ ₩ | | | 4.7 kΩ to GND | 1 | 0 | 0 | 1 | 1 | 1 | 0 | R/ ₩ | | | 15 kΩ to GND | 1 | 0 | 0 | 1 | 1 | 1 | 1 | R/ ₩ | | 表 9-5. I<sup>2</sup> C Target Address Configuration #### 9.5.2.1 Random Write As shown in $\boxtimes$ 9-10, a single-byte data-write transfer begins with the controller device transmitting a start condition followed by the I<sup>2</sup>C device address and the read/write bit. The read/write bit determines the direction of the data transfer. For a write data transfer, the read/write bit is a 0. After receiving the correct I<sup>2</sup>C device address and the read/write bit, the device responds with an acknowledge bit. Next, the controller transmits the address byte corresponding to the internal memory address being accessed. After receiving the address byte, the device again responds with an acknowledge bit. Next, the controller device transmits the data byte to be written to the memory address being accessed. After receiving the data byte, the device again responds with an acknowledge bit. Finally, the controller device transmits a stop condition to complete the single-byte data-write transfer. 図 9-10. Random Write Transfer #### 9.5.2.2 Sequential Write A sequential data-write transfer is identical to a single-byte data-write transfer except that multiple data bytes are transmitted by the controller to the device as shown in $\boxtimes$ 9-11. After receiving each data byte, the device responds with an acknowledge bit and the $I^2$ subaddress is automatically incremented by one. 図 9-11. Sequential Write Transfer #### 9.5.2.3 Random Read As shown in $\boxtimes$ 9-12, a single-byte data-read transfer begins with the controller device transmitting a start condition followed by the I<sup>2</sup>C device address and the read/write bit. For the data-read transfer, both a write followed by a read are actually done. Initially, a write is done to transfer the address byte of the internal memory address to be read. As a result, the read/write bit is a 0. After receiving the address and the read/write bit, the device responds with an acknowledge bit. In addition, after sending the internal memory address byte, the controller device transmits another start condition followed by the address and the read/write bit again. This time the read/write bit is a 1, indicating a read transfer. After receiving the address and the read/write bit, the device again responds with an acknowledge bit. Next, the device transmits the data byte from the memory address being read. After receiving the data byte, the controller device transmits a not-acknowledge followed by a stop condition to complete the single-byte data-read transfer. 図 9-12. Random Read Transfer #### 9.5.2.4 Sequential Read A sequential data-read transfer is identical to a single-byte data-read transfer except that multiple data bytes are transmitted by the device to the controller device as shown in $\boxtimes$ 9-13. Except for the last data byte, the controller device responds with an acknowledge bit after receiving each data byte and automatically increments the I<sup>2</sup>C sub address by one. After receiving the last data byte, the controller device transmits a not-acknowledge followed by a stop condition to complete the transfer. 図 9-13. Sequential Read Transfer Submit Document Feedback ## 9.5.2.5 DSP Memory Book, Page and BQ update On Page 0x00 of each book, Register 0x7f is used to change the book. Register 0x00 of each page is used to change the page. To change a Page first write 0x00 to Register 0x00 to switch to Page 0 then write the book number to Register 0x7f on Page 0. To switch between pages in a book, simply write the page number to register 0x00. All the Biquad Filters coefficients are addressed in book 0xAA. The five coefficients of every Biquad Filter must be written entirely and sequentially from the lowest address to the highest address. The address of all Biquad Filters can be found in セクション 9.6. All DSP/Audio Process Flow Related Register are listed in Application Note, TAS5825M Process Flows. #### 9.5.2.6 Checksum This device supports two different check sum schemes, a cyclic redundancy check (CRC) checksum, and an Exclusive (XOR) checksum. Register reads do not change checksum, but writes so that even nonexistent registers change the checksum. Both checksums are 8-bit checksums and both are available together simultaneously. The checksums can be reset by writing a starting value (eg. 0x 00 00 00 00) to their respective 4-byte register locations. #### 9.5.2.6.1 Cyclic Redundancy Check (CRC) Checksum The 8-bit CRC checksum used is the 0x7 polynomial (CRC-8-CCITT I.432.1; ATM HEC, ISDN HEC and cell delineation, (1 + x1 + x2 + x8)). A major advantage of the CRC checksum is that the input order is sensitive. The CRC supports all I<sup>2</sup>C transactions, excluding book and page switching. The CRC checksum is read from register 0x7E on page0 of any book (B\_x, Page\_0, Reg\_126). The CRC checksum can be reset by writing 0x00 to the same register locations where the CRC checksum is valid. #### 9.5.2.6.2 Exclusive or (XOR) Checksum The XOR Checksum is a simpler checksum scheme. The scheme performs sequential XOR of each register byte write with the previous 8-bit checksum register value. XOR supports only Book 0x8C, and excludes page switching and all registers in Page 0x00 of Book 0x8C. XOR checksum is read from location register 0x7D on page 0x00 of book 0x8C (B\_140, Page\_0, Reg\_125). The XOR Checksum can be reset by writing 0x00 to the same register location where the XOR Checksum is read. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback #### 9.5.3 Control via Software - · Startup Procedures - · Shutdown Procedures #### 9.5.3.1 Startup Procedures - 1. Configure ADR pin with proper setting for I<sup>2</sup>C device address. - 2. Bring up power supplies (it does not matter if PVDD or DVDD comes up first). - 3. Once power supplies are stable, bring up PDN to High and wait 5 ms at least, then start SCLK, LRCLK. - 4. Once I<sup>2</sup>S clock are stable, set the device into HiZ state and enable DSP via the I<sup>2</sup>C control port. - 5. Wait 5 ms at least. Then initialize the DSP Coefficient, then set the device to Play state. - 6. The device is now in normal operation. 図 9-14. Start-Up Sequence Submit Document Feedback #### 9.5.3.2 Shutdown Procedures - 1. The device is in normal operation. - 2. Configure the Register 0x03h -D[1:0]=10 (Hiz) via the I<sup>2</sup>C control port or Pull PDN low. - 3. Wait at least 6 ms (this time depends on the LRCLK rate, digital volume and digital volume ramp down rate). - 4. Bring down power supplies. - 5. The device is now fully shutdown and powered off. - Before PVDD/DVDD power down, Class D Output driver needs to be disabled by PDN or by I<sup>2</sup>C. - At least 6ms delay needed based on LRCLK (Fs) = 48kHz, Digital volume ramp down update every sample period, decreased by 0.5dB for each update, digital volume =24dB. Change the value of register 0x4C and 0x4E or change the LRCLK rate, the delay changes. #### ☑ 9-15. Power-Down Sequence #### 9.5.3.3 Protection and Monitoring ### 9.5.3.3.1 Overcurrent Limit (Cycle-By-Cycle) The CBC current-limiting circuit terminates each PWM pulse limit the output current flow to the average current limit (I<sub>LIM</sub>) threshold. The overall effect on the audio in the case of a current overload is quite similar a voltage-clipping event, temporarily limiting power at the peaks of the music signal and normal operation continues without disruption on removal of the overload. 注 CBC (Cycle-By-Cycle) current-limiting only allows in BTL mode, not allowed under PBTL. #### 9.5.3.3.2 Overcurrent Shutdown (OCSD) Under severe short-circuit event, such as a short to PVDD or ground, the device uses a peak-current detector, and the affected channel shuts down in < 100 ns if the peak current are enough. The shutdown speed depends on a number of factors, such as the impedance of the short circuit, supply voltage, and switching frequency. The user can restart the affected channel via I<sup>2</sup>C. An OCSD event activates the fault pin, and the I<sup>2</sup> fault register saves a record. If the supply or ground short is strong enough to exceed the peak current threshold but not severe enough to trigger the OCSD, the peak current limiter prevents excess current from damaging the output FETs, and operation returns to normal after the short is removed. #### 9.5.3.3.3 DC Detect If the TAS5825M device measures a DC offset in the output voltage, the FAULTZ line is pulled low and the OUTxx outputs transition to high impedance, signifying a fault. ## 9.6 Register Maps ## 9.6.1 CONTROL PORT Registers $\frac{1}{2}$ 9-6 lists the memory-mapped registers for the CONTROL PORT. All register offset addresses not listed in $\frac{1}{2}$ 9-6 must be considered as reserved locations and the register contents must not be modified. 表 9-6. CONTROL PORT Registers | Offset | Acronym | Register Name | Section | |--------|--------------------|---------------|----------------| | 1h | RESET_CTRL | Register 1 | セクション 9.6.1.2 | | 2h | DEVICE_CTRL_1 | Register 2 | セクション 9.6.1.3 | | 3h | DEVICE_CTRL2 | Register 3 | セクション 9.6.1.4 | | Fh | I2C_PAGE_AUTO_INC | Register 15 | セクション 9.6.1.5 | | 28h | SIG_CH_CTRL | Register 40 | セクション 9.6.1.6 | | 29h | CLOCK_DET_CTRL | Register 41 | セクション 9.6.1.7 | | 30h | SDOUT_SEL | Register 48 | セクション 9.6.1.8 | | 31h | I2S_CTRL | Register 49 | セクション 9.6.1.9 | | 33h | SAP_CTRL1 | Register 51 | セクション 9.6.1.10 | | 34h | SAP_CTRL2 | Register 52 | セクション 9.6.1.11 | | 35h | SAP_CTRL3 | Register 53 | セクション 9.6.1.12 | | 37h | FS_MON | Register 55 | セクション 9.6.1.13 | | 38h | BCK (SCLK)_MON | Register 56 | セクション 9.6.1.14 | | 39h | CLKDET_STATUS | Register 57 | セクション 9.6.1.15 | | 40h | DSP_PGM_MODE | Register 64 | セクション 9.6.1.16 | | 46h | DSP_CTRL | Register 70 | セクション 9.6.1.17 | | 4Ch | DIG_VOL | Register 76 | セクション 9.6.1.18 | | 4Eh | DIG_VOL_CTRL1 | Register 78 | セクション 9.6.1.19 | | 4Fh | DIG_VOL_CTRL2 | Register 79 | セクション 9.6.1.20 | | 50h | AUTO_MUTE_CTRL | Register 80 | セクション 9.6.1.21 | | 51h | AUTO_MUTE_TIME | Register 81 | セクション 9.6.1.22 | | 53h | ANA_CTRL | Register 83 | セクション 9.6.1.23 | | 54h | AGAIN | Register 84 | セクション 9.6.1.24 | | 55h | SPI_CLK | Register 85 | セクション 9.6.1.25 | | 56h | EEPROM_CTRL0 | Register 86 | セクション 9.6.1.26 | | 57h | EEPROM_RD_CMD | Register 87 | セクション 9.6.1.27 | | 58h | EEPROM_ADDR_START0 | Register 88 | セクション 9.6.1.28 | | 59h | EEPROM_ADDR_START1 | Register 89 | セクション 9.6.1.29 | | 5Ah | EEPROM_ADDR_START2 | Register 90 | セクション 9.6.1.30 | | 5Bh | EEPROM_BOOT_STATUS | Register 91 | セクション 9.6.1.31 | | 5Ch | BQ_WR_CTRL1 | Register 92 | セクション 9.6.1.32 | | 5Eh | PVDD_ADC | Register 94 | セクション 9.6.1.33 | | 60h | GPIO_CTRL | Register 96 | セクション 9.6.1.34 | | 61h | GPIO0_SEL | Register 97 | セクション 9.6.1.35 | | 62h | GPIO1_SEL | Register 98 | セクション 9.6.1.36 | | 63h | GPIO2_SEL | Register 99 | セクション 9.6.1.37 | | 64h | GPIO_INPUT_SEL | Register 100 | セクション 9.6.1.38 | | 65h | GPIO_OUT | Register 101 | セクション 9.6.1.39 | | | | | | Submit Document Feedback 表 9-6. CONTROL PORT Registers (continued) | 66h GPIO_OUT_INV Register 102 67h DIE_ID Register 103 68h POWER_STATE Register 104 69h AUTOMUTE_STATE Register 105 6Ah PHASE_CTRL Register 106 6Bh SS_CTRL0 Register 107 6Ch SS_CTRL1 Register 108 6Dh SS_CTRL2 Register 109 6Eh SS_CTRL3 Register 110 6Fh SS_CTRL4 Register 111 | Section | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------| | 68h POWER_STATE Register 104 69h AUTOMUTE_STATE Register 105 6Ah PHASE_CTRL Register 106 6Bh SS_CTRL0 Register 107 6Ch SS_CTRL1 Register 108 6Dh SS_CTRL2 Register 109 6Eh SS_CTRL3 Register 110 | セクション 9.6.1.40 | | 69h AUTOMUTE_STATE Register 105 6Ah PHASE_CTRL Register 106 6Bh SS_CTRL0 Register 107 6Ch SS_CTRL1 Register 108 6Dh SS_CTRL2 Register 109 6Eh SS_CTRL3 Register 110 | セクション 9.6.1.41 | | 6Ah PHASE_CTRL Register 106 6Bh SS_CTRL0 Register 107 6Ch SS_CTRL1 Register 108 6Dh SS_CTRL2 Register 109 6Eh SS_CTRL3 Register 110 | セクション 9.6.1.42 | | 6Bh SS_CTRL0 Register 107 6Ch SS_CTRL1 Register 108 6Dh SS_CTRL2 Register 109 6Eh SS_CTRL3 Register 110 | セクション 9.6.1.43 | | 6Ch SS_CTRL1 Register 108 6Dh SS_CTRL2 Register 109 6Eh SS_CTRL3 Register 110 | セクション 9.6.1.44 | | 6Dh SS_CTRL2 Register 109 6Eh SS_CTRL3 Register 110 | セクション 9.6.1.45 | | 6Eh SS_CTRL3 Register 110 | セクション 9.6.1.46 | | | セクション 9.6.1.47 | | 6Fh SS CTRL4 Register 111 | セクション 9.6.1.48 | | Tregister III | セクション 9.6.1.49 | | 70h CHAN_FAULT Register 112 | セクション 9.6.1.50 | | 71h GLOBAL_FAULT1 Register 113 | セクション 9.6.1.51 | | 72h GLOBAL_FAULT2 Register 114 | セクション 9.6.1.52 | | 73h WARNING Register 115 | セクション 9.6.1.53 | | 74h PIN_CONTROL1 Register 116 | セクション 9.6.1.54 | | 75h PIN_CONTROL2 Register 117 | セクション 9.6.1.55 | | 76h MISC_CONTROL Register 118 | セクション 9.6.1.56 | | 77h CBC_CONTROL Register 119 | セクション 9.6.1.57 | | 78h FAULT_CLEAR Register 120 | セクション 9.6.1.58 | Complex bit access types are encoded to fit into small table cells. $\frac{1}{2}$ 9-7 shows the codes that are used for access types in this section. 表 9-7. CONTROL PORT Access Type Codes | Access Type | Code | Description | | | |------------------------|------|----------------------------------------|--|--| | Read Type | | | | | | R | R | Read | | | | Write Type | | | | | | W | W | Write | | | | Reset or Default Value | | | | | | -n | | Value after reset or the default value | | | ## 9.6.1.1 RESET\_CTRL Register (Offset = 1h) [reset = 0x00] RESET\_CTRL is shown in 図 9-12 and described in 表 9-8. Return to 表 9-6. ## 図 9-16. RESET\_CTRL Register ## 表 9-8. RESET\_CTRL Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|--------------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 7-5 | RESERVED | R/W | 000 | This bit is reserved | | 4 | RST_DIG_CORE | W | 0 | WRITE CLEAR BIT Reset DIG_CORE WRITE CLEAR BIT Reset Full Digital Core. This bit resets the Full Digital Signal Path (Include DSP coefficient RAM and I2C Control Port Registers), Since the DSP is also reset, the coefficient RAM content is also cleared by the DSP. 0: Normal 1: Reset Full Digital Signal Path | | 3-1 | RESERVED | R | 000 | This bit is reserved | | 0 | RST_REG | W | 0 | WRITE CLEAR BIT Reset Registers This bit resets the mode registers back to their initial values. Only reset Control Port Registers, The RAM content is not cleared. 0: Normal 1: Reset I <sup>2</sup> C Control Port Registers | Product Folder Links: TAS5825M ## 9.6.1.2 DEVICE\_CTRL\_1 Register (Offset = 2h) [reset = 0x00] DEVICE\_CTRL\_1 is shown in 図 9-13 and described in 表 9-9. Return to 表 9-6. ## 図 9-17. DEVICE\_CTRL\_1 Register ## 表 9-9. DEVICE\_CTRL\_1 Register Field Descriptions | Bit | Field | Туре | Reset | Description | | | |-----|-----------|------|-------|---------------------------------------------------------------------------------------|--|--| | 7 | RESERVED | R/W | 0 | This bit is reserved | | | | 6-4 | FSW_SEL | R/W | 000 | SELECT FSW 000:384K 010:480K 011:576K 100:768K 001:Reserved 101:Reserved 111:Reserved | | | | 3 | RESERVED | R/W | 0 | This bit is reserved | | | | 2 | DAMP_PBTL | R/W | 0 | 0: SET DAMP TO BTL MODE<br>1:SET DAMP TO PBTL MODE | | | | 1-0 | DAMP_MOD | R/W | 00 | 00:BD MODE 01:1SPW MODE 10:HYBRID MODE | | | ## 9.6.1.3 DEVICE\_CTRL2 Register (Offset = 3h) [reset = 00x10] DEVICE\_CTRL2 is shown in 図 9-14 and described in 表 9-10. Return to 表 9-6. ## 図 9-18. DEVICE\_CTRL2 Register ## 表 9-10. DEVICE\_CTRL2 Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|------------|----------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 7-5 | RESERVED | R/W 000 | | This bit is reserved | | 4 | DIS_DSP | R/W | 1 | DSP reset When the bit is made 0, DSP starts powering up and send out data. This needs to be made 0 only after all the input clocks are settled so that DMA channels do not go out of sync. 0: Normal operation 1: Reset the DSP | | 3 | MUTE | This bit issues soft mute reques | | | | 2 | RESERVED | R/W | 0 | This bit is reserved | | 1-0 | CTRL_STATE | R/W | 00 | device state control register 00: Deep Sleep 01: Sleep 10: Hiz, 11: PLAY | Product Folder Links: TAS5825M ## 9.6.1.4 I2C\_PAGE\_AUTO\_INC Register (Offset = Fh) [reset = 0x00] I2C\_PAGE\_AUTO\_INC is shown in 図 9-15 and described in 表 9-11. Return to 表 9-6. ## 図 9-19. I2C\_PAGE\_AUTO\_INC Register #### 表 9-11. I2C\_PAGE\_AUTO\_INC Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|------------------|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 7-4 | RESERVED | R/W | 0000 | This bit is reserved | | 3 | PAGE_AUTOINC_REG | R/W | 0 | Page auto increment disable Disable page auto increment mode for non -zero books. When end of page is reached, the page goes back to 8th address location of next page when this bit is 0. When this bit is 1 the page goes to the 0th location of current page itself. 0: Enable Page auto increment 1: Disable Page auto increment | | 2-0 | RESERVED | R/W | 000 | This bit is reserved | ## 9.6.1.5 SIG\_CH\_CTRL Register (Offset = 28h) [reset = 0x00] SIG\_CH\_CTRL is shown in 図 9-16 and described in 表 9-12. Return to 表 9-6. ## 図 9-20. SIG\_CH\_CTRL Register | 7 6 5 4 3 | 2 1 0 | | | |-----------------------------|----------|--|--| | SCLK_RATIO_CONFIGURE FSMODE | RESERVED | | | | R/W R/W | R/W | | | ## 表 9-12. SIG\_CH\_CTRL Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|--------------------------|------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 7-4 | SCLK_RATIO_CONFIGU<br>RE | R/W | 0000 | These bits indicate the configured SCLK ratio, the number of SCLK clocks in one audio frame. Device sets this ratio automatically. 4'b0011:32FS 4'b0101:64FS 4'b0111:128FS 4'b1001:256FS 4'b1011:512FS | | 3 | FSMODE | R/W | 0 | FS Speed Mode: These bits select the FS operation mode, which must be set according to the current audio sampling rate and is set manually. If the input Fs is 44.1 kHz/88.2 kHz/176.4 kHz. 4 'b0000 Auto detection 4 'b0100 Reserved 4 'b0110 32 KHz 4 'b1000 44.1 KHz 4 'b1001 48 KHz 4 'b1011 96 KHz 4 'b1011 96 KHz 4 'b1101 192 KHz Others Reserved | Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback # 表 9-12. SIG\_CH\_CTRL Register Field Descriptions (continued) | Bit | Field | Туре | Reset | Description | |-----|----------|------|-------|----------------------| | 2-0 | RESERVED | R/W | 000 | This bit is reserved | ## 9.6.1.6 CLOCK\_DET\_CTRL Register (Offset = 29h) [reset = 0x00] CLOCK\_DET\_CTRL is shown in 図 9-17 and described in 表 9-13. Return to 表 9-6. # 図 9-21. CLOCK\_DET\_CTRL Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |----------|-------------|------------------------|------------|------------------|--------------|----------|----------| | RESERVED | DIS_DET_PLL | DIS_DET_SCL<br>K_RANGE | DIS_DET_FS | DIS_DET_SCL<br>K | DIS_DET_MISS | RESERVED | RESERVED | | R/W ## 表 9-13. CLOCK\_DET\_CTRL Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|--------------------|-------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 7 | RESERVED | R/W | 0 | This bit is reserved | | 6 | DIS_DET_PLL | PLL must be slow than 150 MHz or an error is re | | This bit controls whether to ignore the PLL overrate detection. The PLL must be slow than 150 MHz or an error is reported. When ignored, a PLL overrate error does not cause a clock error. 0: Regard PLL overrate detection | | 5 | DIS_DET_SCLK_RANGE | R/W | 0 | Ignore BCK Range Detection This bit controls whether to ignore the SCLK range detection. The SCLK must be stable between 256 KHz and 50 MHz or an error is reported. When ignored, a SCLK range error does not cause a clock error. 0: Regard BCK Range detection 1: Ignore BCK Range detection | | 4 | DIS_DET_FS | R/W | 0 | Ignore FS Error Detection This bit controls whether to ignore the FS Error detection. When ignored, FS error does not cause a clock error. But CLKDET_STATUS reports fs error. 0: Regard FS detection 1: Ignore FS detection | | 3 | DIS_DET_SCLK | R/W | 0 | Ignore SCLK Detection This bit controls whether to ignore the SCLK detection against LRCK. The SCLK must be stable between 32 FS and 512 FS inclusive or an error is reported. When ignored, a SCLK error does not cause a clock error. 0: Regard SCLK detection 1: Ignore SCLK detection | | 2 | DIS_DET_MISS | R/W | 0 | Ignore SCLK Missing Detection This bit controls whether to ignore the SCLK missing detection. When ignored an SCLK missing does not cause a clock error. 0: Regard SCLK missing detection 1: Ignore SCLK missing detection | | 1 | RESERVED | R/W | 0 | This bit is reserved | | 0 | RESERVED | R/W | 0 | This bit is reserved | Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback ## 9.6.1.7 SDOUT\_SEL Register (Offset = 30h) [reset = 0x00] SDOUT\_SEL is shown in 図 9-19 and described in 表 9-14. Return to 表 9-6. ## 図 9-22. SDOUT\_SEL Register ## 表 9-14. SDOUT\_SEL Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|-----------|------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------| | 7-1 | RESERVED | R/W | 0000000 | These bits are reserved | | 0 | SDOUT_SEL | R/W | | SDOUT Select. This bit selects what is being output as SDOUT pin. 0: SDOUT is the DSP output (post-processing) 1: SDOUT is the DSP input (pre-processing) | Product Folder Links: TAS5825M ## 9.6.1.8 I2S\_CTRL Register (Offset = 31h) [reset = 0x00] I2S\_CTRL is shown in 図 9-19 and described in 表 9-15. Return to 表 9-6. ## 図 9-23. I2S\_CTRL Register ## 表 9-15. I2S\_CTRL Register Field Descriptions | Bit | Field | Туре | Description | | | |-----|----------|-----------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | 7-6 | RESERVED | R/W 00 This bit | | This bit is reserved | | | 5 | SCLK_INV | R/W | 0 | SCLK Polarity This bit sets the inverted SCLK mode. In inverted SCLK mode, the DAC assumes that the LRCK and DIN edges are aligned to the rising edge of the SCLK. Normally the edges are assumed to be aligned to the falling edge of the SCLK 0: Normal SCLK mode 1: Inverted SCLK mode | | | 4 | RESERVED | R/W | 0 | This bit is reserved | | | 3 | RESERVED | R | 0 | This bit is reserved | | | 2-1 | RESERVED | R | 00 | These bits are reserved | | | 0 | RESERVED | R/W | 0 | This bit is reserved | | ## 9.6.1.9 SAP\_CTRL1 Register (Offset = 33h) [reset = 0x02] SAP\_CTRL1 is shown in 図 9-20 and described in 表 9-16. Return to 表 9-6. ## 図 9-24. SAP\_CTRL1 Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | |-------------------|----------|-------------|-----|----------|---------|-------------|---|--| | I2S_SHIFT_MS<br>B | RESERVED | DATA_FORMAT | | I2S_LRCL | K_PULSE | WORD_LENGTH | | | | R/W | R/W | | R/W | | /W | R/W | | | 表 9-16. SAP\_CTRL1 Register Field Descriptions | Bit | Field | Туре | Reset | Description | | | |-----|-----------------|--------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--| | 7 | I2S_SHIFT_MSB | R/W | 0 | I2S Shift MSB | | | | 6 | RESERVED | R/W | 0 | This bit is reserved | | | | 5-4 | DATA_FORMAT | R/W 00 I2S Data Format These bits control both input and output DAC operation. 00: I2S 01: TDM/DSP 10: RTJ 11: LTJ | | These bits control both input and output audio interface formats for DAC operation. 00: I2S 01: TDM/DSP 10: RTJ | | | | 3-2 | I2S_LRCLK_PULSE | R/W | 00 | 01: LRCLK pulse < 8 SCLK | | | | 1-0 | WORD_LENGTH | R/W | 10 | I2S Word Length These bits control both input and output audio interface sample word lengths for DAC operation. 00: 16 bits 01: 20 bits 10: 24 bits 11: 32 bits | | | ## 9.6.1.10 SAP\_CTRL2 Register (Offset = 34h) [reset = 0x00] SAP\_CTRL2 is shown in 図 9-21 and described in 表 9-17. Return to 表 9-6. ## 図 9-25. SAP\_CTRL2 Register ## 表 9-17. SAP\_CTRL2 Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|-----------|------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 7-0 | I2S_SHIFT | R/W | 0000000 | I2S Shift LSB These bits control the offset of audio data in the audio frame for both input and output. The offset is defined as the number of SCLK from the starting (MSB) of audio frame to the starting of the desired audio sample. MSB [8] locates in セクション 9.6.1.10 000000000: offset = 0 SCLK (no offset) 000000001: offset = 1 SCLK 000000010: offset = 2 SCLKs and 111111111: offset = 512 SCLKs | Product Folder Links: TAS5825M ## 9.6.1.11 SAP\_CTRL3 Register (Offset = 35h) [reset = 0x11] SAP\_CTRL3 is shown in 図 9-22 and described in 表 9-18. Return to 表 9-6. ## 図 9-26. SAP\_CTRL3 Register ## 表 9-18. SAP\_CTRL3 Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|-----------------|------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 7-6 | RESERVED | VED R/W 00 These bits are reserved | | These bits are reserved | | 5-4 | LEFT_DAC_DPATH | R/W | 01 | Left DAC Data Path. These bits control the left channel audio data path connection. 00: Zero data (mute) 01: Left channel data 10: Right channel data 11: Reserved (do not set) | | 3-2 | RESERVED | R/W | 00 | These bits are reserved | | 1-0 | RIGHT_DAC_DPATH | R/W | 01 | Right DAC Data Path. These bits control the right channel audio data path connection. 00: Zero data (mute) 01: Right channel data 10: Left channel data 11: Reserved (do not set) | ## 9.6.1.12 FS\_MON Register (Offset = 37h) [reset = 0x00] FS\_MON is shown in 図 9-23 and described in 表 9-19. Return to 表 9-6. ## 図 9-27. FS\_MON Register ## 表 9-19. FS\_MON Register Field Descriptions | Bit | Field | Type Reset Description | | Description | |-----|-----------------|------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 7-6 | RESERVED | R/W | 00 | This bit is reserved | | 5-4 | SCLK_RATIO_HIGH | R | 00 | 2 msbs of detected SCLK ratio | | 3-0 | FS | R | 0000 | These bits indicate the currently detected audio sampling rate. 4 'b0000 FS Error 4 'b0100 16 KHz 4 'b0110 32 KHz 4 'b1000 Reserved 4 'b1001 48 KHz 4 'b1011 96 KHz 4 'b1101 192 KHz Others Reserved | ## 9.6.1.13 BCK (SCLK)\_MON Register (Offset = 38h) [reset = 0x00] BCK\_MON is shown in 図 9-24 and described in 表 9-20. Return to 表 9-6. #### 図 9-28. BCK (SCLK)\_MON Register ## 表 9-20. BCK\_MON Register Field Descriptions | Bit | Field | Туре | Type Reset Description | | |-----|--------------------------|------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------| | 7-0 | BCLK<br>(SCLK)_RATIO_LOW | R | | These bits indicate the currently detected BCK (SCLK) ratio, the number of BCK (SCLK) clocks in one audio frame. BCK (SCLK) = 32 FS - 512 FS | Submit Document Feedback ## 9.6.1.14 CLKDET\_STATUS Register (Offset = 39h) [reset = 0x00] CLKDET\_STATUS is shown in 図 9-25 and described in 表 9-21. Return to 表 9-6. ## 図 9-29. CLKDET\_STATUS Register ## 表 9-21. CLKDET\_STATUS Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|------------|------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 7-6 | RESERVED | R/W | 00 | This bit is reserved | | 5-0 | DET_STATUS | R | 00 | bit0: In auto detection mode(reg_fsmode=0),this bit indicated whether the audio sampling rate is valid or not. In non auto detection mode(reg_fsmode!=0), Fs error indicates that configured fs is different with detected fs. Even FS Error Detection Ignore is set, this flag is also asserted. bit1: This bit indicates whether the SCLK is valid or not. The SCLK ratio must be stable and in the range of 32-512FS to be valid. bit2: This bit indicates whether the SCLK is missing or not. bit3:This bit indicates whether the PLL is locked or not. The PLL is reported as unlocked when the PLL is disabled. bits4:This bit indicates whether the PLL is overrate bits5:This bit indicates whether the SCLK is overrate or underrate | ## 9.6.1.15 DSP\_PGM\_MODE Register (Offset = 40h) [reset = 0x01] DSP\_PGM\_MODE is shown in 図 9-26 and described in 表 9-22. Return to 表 9-6. #### 図 9-30. DSP\_PGM\_MODE Register #### 表 9-22. DSP\_PGM\_MODE Register Field Descriptions | Bit | Field | Туре | Description | | | | | | | | |-----|----------------|------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--| | 7-5 | 7-5 RESERVED F | | 000 | This bit is reserved | | | | | | | | 2-0 | MODE_SEL | R/W | 00001 | DSP Program Selection These bits select the DSP program to use for audio processing. 00000 => ram mode 00001 => rom mode 1 00010 => rom mode 2 00011 => rom mode 3 | | | | | | | ## 9.6.1.16 DSP\_CTRL Register (Offset = 46h) [reset = 0x01] DSP\_CTRL is shown in 図 9-27 and described in 表 9-23. Return to 表 9-6. ## 図 9-31. DSP\_CTRL Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |-----|----------|---|-----------------------|---|----------|--------------------|---------------------| | | RESERVED | | USER_DEFINED_<br>_RAT | • | RESERVED | BOOT_FROM_I<br>RAM | USE_DEFAULT _COEFFS | | R/W | | | R/W | I | R | R/W | R/W | #### 表 9-23. DSP\_CTRL Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|----------------------------------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 7-5 | RESERVED | R/W | 000 | This bit is reserved | | 4-3 | USER_DEFINED_PROCE<br>SSING_RATE | R/W | 00 | 00:input<br>01:48k<br>10:96k<br>11:192k | | 2 | RESERVED | R | 0 | This bit is reserved | | 1 | RESERVED | R | 0 | This bit is reserved | | 0 | USE_DEFAULT_COEFFS | R/W | 1 | Use default coefficients from ZROM this bit controls whether to use default coefficients from ZROM or use the non-default coefficients downloaded to device by the Host 0 : don't use default coefficients from ZROM 1 : use default coefficients from ZROM | # 9.6.1.17 DIG\_VOL Register (Offset = 4Ch) [reset = 30h] DIG\_VOL is shown in 図 9-28 and described in 表 9-24. Return to 表 9-6. ## 図 9-32. DIG\_VOL Register ## 図 9-32. DIG VOL Register (continued) | PGA_LEFT | • | |----------|---| | R/W | | ## 表 9-24. DIG\_VOL Register Field Descriptions | Bit | Field | Туре | Reset | Description | | | | | |-----|-------|------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--| | 7-0 | PGA | R/W | 00110000 | Digital Volume These bits control both left and right channel digital volume. The digital volume is 24 dB to -103 dB in -0.5 dB step. 00000000: +24.0 dB 00000001: +23.5 dB and 00101111: +0.5 dB 00110000: 0.0 dB 00110001: -0.5 dB 11111110: -103 dB 11111111: Mute | | | | | ## 9.6.1.18 DIG\_VOL\_CTRL1 Register (Offset = 4Eh) [reset = 0x33] DIG\_VOL\_CTRL1 is shown in 図 9-29 and described in 表 9-25. Return to 表 9-6. ## 図 9-33. DIG\_VOL\_CTRL1 Register ### 表 9-25. DIG\_VOL\_CTRL1 Register Field Descriptions | <b>D</b> " | 1 | | | tegister riela bescriptions | |------------|-------------------------|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Bit | Field | Туре | Reset | Description | | 7-6 | PGA_RAMP_DOWN_SPE<br>ED | R/W | 00 | Digital Volume Normal Ramp Down Frequency These bits control the frequency of the digital volume updates when the volume is ramping down. 00: Update every 1 FS period 01: Update every 2 FS periods 10: Update every 4 FS periods 11: Directly set the volume to zero (Instant mute) | | 5-4 | PGA_RAMP_DOWN_STE<br>P | R/W | 11 | Digital Volume Normal Ramp Down Step These bits control the step of the digital volume updates when the volume is ramping down. 00: Decrement by 4 dB for each update 01: Decrement by 2 dB for each update 10: Decrement by 1 dB for each update 11: Decrement by 0.5 dB for each update | | 3-2 | PGA_RAMP_UP_SPEED | R/W | 00 | Digital Volume Normal Ramp Up Frequency These bits control the frequency of the digital volume updates when the volume is ramping up. 00: Update every 1 FS period 01: Update every 2 FS periods 10: Update every 4 FS periods 11: Directly restore the volume (Instant unmute) | | 1-0 | PGA_RAMP_UP_STEP | R/W | 11 | Digital Volume Normal Ramp Up Step These bits control the step of the digital volume updates when the volume is ramping up. 00: Increment by 4 dB for each update 01: Increment by 2 dB for each update 10: Increment by 1 dB for each update 11: Increment by 0.5 dB for each update | Product Folder Links: TAS5825M Submit Document Feedback ## 9.6.1.19 DIG\_VOL\_CTRL2 Register (Offset = 4Fh) [reset = 0x30] DIG\_VOL\_CTRL2 is shown in 図 9-30 and described in 表 9-26. Return to 表 9-6. ## 図 9-34. DIG\_VOL\_CTRL2 Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | |-------------|---|-----|----------|-----|---|---|---|--| | FAST_RAMP_D | | | RESERVED | | | | | | | R/W | | R/W | | R/W | | | | | #### 表 9-26. DIG\_VOL\_CTRL2 Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|--------------------------|------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 7-6 | FAST_RAMP_DOWN_SP<br>EED | R/W | 00 | Digital Volume Emergency Ramp Down Frequency These bits control the frequency of the digital volume updates when the volume is ramping down due to clock error or power outage, which usually needs faster ramp down compared to normal soft mute. 00: Update every 1 FS period 01: Update every 2 FS periods 10: Update every 4 FS periods 11: Directly set the volume to zero (Instant mute) | | 5-4 | FAST_RAMP_DOWN_ST<br>EP | R/W | 11 | Digital Volume Emergency Ramp Down Step These bits control the step of the digital volume updates when the volume is ramping down due to clock error or power outage, which usually needs faster ramp down compared to normal soft mute. 00: Decrement by 4 dB for each update 01: Decrement by 2 dB for each update 10: Decrement by 1 dB for each update 11: Decrement by 0.5 dB for each update | | 3-0 | RESERVED | R/W | 0000 | This bit is reserved | ## 9.6.1.20 AUTO\_MUTE\_CTRL Register (Offset = 50h) [reset = 0x07] AUTO\_MUTE\_CTRL is shown in 図 9-31 and described in 表 9-27. Return to 表 9-6. #### 図 9-35. AUTO\_MUTE\_CTRL Register ## 表 9-27. AUTO\_MUTE\_CTRL Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|-------------------|------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 7-3 | RESERVED | R/W | 00000 | This bit is reserved | | 2-0 | REG_AUTO_MUTE_CTR | R/W | 111 | bit0: 0: Disable left channel auto mute 1: Enable left channel auto mute bit1: 0: Disable right channel auto mute 1: Enable right channel auto mute 1: Enable right channel auto mute bit2: 0: Auto mute left channel and right channel independently. 1: Auto mute left and right channels only when both channels are about to be auto muted. | ## 9.6.1.21 AUTO\_MUTE\_TIME Register (Offset = 51h) [reset = 0x00] AUTO\_MUTE\_TIME is shown in 図 9-32 and described in 表 9-28. Return to 表 9-6. ## 図 9-36. AUTO\_MUTE\_TIME Register ### 表 9-28. AUTO\_MUTE\_TIME Register Field Descriptions | | & 0-20. Ac to_more_time. Register Field Descriptions | | | | | | | | | |-----|------------------------------------------------------|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--| | Bit | Field | Туре | Reset | Description | | | | | | | 7 | RESERVED | R/W | 0 | This bit is reserved | | | | | | | 6-4 | AUTOMUTE_TIME_LEFT | R/W | 000 | Auto Mute Time for Left Channel These bits specify the length of consecutive zero samples at left channel before the channel can be auto muted. The times shown are for 96 kHz sampling rate and scale with other rates. 000: 11.5 ms 001: 53 ms 010: 106.5 ms 011: 266.5 ms 100: 0.535 sec 101: 1.065 sec 110: 2.665 sec 111: 5.33 sec | | | | | | | 3 | RESERVED | R/W | 0 | This bit is reserved | | | | | | | 2-0 | AUTOMUTE_TIME_RIGH<br>T | R/W | 000 | Auto Mute Time for Right Channel These bits specify the length of consecutive zero samples at right channel before the channel can be auto muted. The times shown are for 96 kHz sampling rate and scale with other rates. 000: 11.5 ms 001: 53 ms 010: 106.5 ms 011: 266.5 ms 100: 0.535 sec 101: 1.065 sec 110: 2.665 sec 111: 5.33 sec | | | | | | Product Folder Links: TAS5825M ## 9.6.1.22 ANA\_CTRL Register (Offset = 53h) [reset = 0h] ANA\_CTRL is shown in 図 9-33 and described in 表 9-29 Return to 表 9-6 ## 図 9-37. ANA\_CTRL Register # 表 9-29. ANA\_CTRL Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|----------------------------------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 7 | RESERVED | R/W | 0 | This bit is reserved | | 6-5 | Class D bandwidth control | R/W | 00 | 00: 100 kHz 01: 80 kHz 10: 120 kHz 11:175 kHz With Fsw = 384 kHz, 100 kHz bandwidth is selected for high audio performance. With Fsw = 768 kHz, 175 kHz bandwidth is selected for high audio performance. | | 4-1 | RESERVED | R/W | 0000 | These bits are reserved | | 0 | L and R PWM output phase control | R/W | 0 | 0: out of phase<br>1: in phase | ## 9.6.1.23 AGAIN Register (Offset = 54h) [reset = 0x00] AGAIN is shown in 図 9-34 and described in 表 9-30. Return to 表 9-6. ## 図 9-38. AGAIN Register #### 表 9-30. AGAIN Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|----------|------|--------------------------|----------------------------------------------------------------------------------------------------------------------| | 7-5 | RESERVED | R/W | 000 This bit is reserved | | | 4-0 | ANA_GAIN | R/W | | Analog Gain Control This bit controls the analog gain. 00000: 0 dB (29.5V peak voltage) 00001:-0.5db 11111: -15.5 dB | ## 9.6.1.24 SPI\_CLK Register (Offset = 55h) [reset = 0x00] SPI\_CLK is shown in 図 9-35 and described in 表 9-31. Return to 表 9-6. #### 図 9-39. SPI\_CLK Register #### 表 9-31. SPI\_CLK Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|-------------|------|-------|----------------------------------------| | 7-4 | RESERVED | R/W | 0000 | This bit is reserved | | 3-0 | SPI_CLK_SEL | R/W | 0000 | 00:1.25M<br>01:2.5M<br>10:5M<br>11:10M | Product Folder Links: TAS5825M Submit Document Feedback ## 9.6.1.25 EEPROM\_CTRL0 Register (Offset = 56h) [reset = 0x00] EEPROM\_CTRL0 is shown in 図 9-36 and described in 表 9-32. Return to 表 9-6. #### 図 9-40. EEPROM\_CTRL0 Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|-----------------------------------|---------|-------|-------------------|-------------|-----------------------| | RESE | RVED | EEPROM_ADD<br>R_24BITS_ENA<br>BLE | SPI_CLK | _RATE | SPI_INV_POLA<br>R | SPI_MST_LSB | LOAD_EEPRO<br>M_START | | R/ | W | R/W | RΛ | V | R/W | R/W | R/W | #### 表 9-32. EEPROM CTRL0 Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|-------------------------------|------|-------|---------------------------------------------------------------------------------------------------------------| | 7-6 | RESERVED | R/W | 00 | This bit is reserved | | 5 | EEPROM_ADDR_24BITS<br>_ENABLE | R/W | 0 | enable 24 bits mode for EEPROM address | | 4-3 | SPI_CLK_RATE | R/W | 00 | 0: spi clock rate = 1.25 MHz 1: spi clock rate = 2.5 MHz 2: spi clock rate = 5 MHz 3: spi clock rate = 10 MHz | | 2 | SPI_INV_POLAR | R/W | 0 | 0: spi serial data change at post edge SCK 1: spi serial data change at neg edge SCK | | 1 | SPI_MST_LSB | R/W | 0 | 0: msb first 1: lsb first | | 0 | LOAD_EEPROM_START | R/W | 0 | 0: dsp coefficients read from host<br>1: dsp coefficients read from EEPROM | ## 9.6.1.26 EEPROM\_RD\_CMD Register (Offset = 57h) [reset = 0x03] EEPROM\_RD\_CMD is shown in 図 9-37 and described in 表 9-33. Return to 表 9-6. ### 図 9-41. EEPROM\_RD\_CMD Register ### 表 9-33. EEPROM\_RD\_CMD Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|---------------|------|----------|---------------------| | 7-0 | EEPROM_RD_CMD | R/W | 00000011 | EEPROM read command | ## 9.6.1.27 EEPROM\_ADDR\_START0 Register (Offset = 58h) [reset = 0x00] EEPROM\_ADDR\_START0 is shown in 図 9-38 and described in 表 9-34. Return to 表 9-6. #### 図 9-42. EEPROM\_ADDR\_START0 Register #### 表 9-34. EEPROM\_ADDR\_START0 Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|----------------------------|------|----------|-------------------------------------------------------| | 7-0 | EEPROM_ADDR_START<br>_HIGH | R/W | 00000000 | 8 msb of EEPROM read starting address for coefficient | ## 9.6.1.28 EEPROM\_ADDR\_START1 Register (Offset = 59h) [reset = 0x00] EEPROM ADDR START1 is shown in 図 9-39 and described in 表 9-35. Return to 表 9-6. #### 図 9-43. EEPROM\_ADDR\_START1 Register #### 表 9-35, EEPROM ADDR START1 Register Field Descriptions | | <b></b> | _: ::••: <u>_</u> : : | | in the ground in the angle of the control co | |-----|------------------------------|-----------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Bit | Field | Туре | Reset | Description | | 7-0 | EEPROM_ADDR_START<br>_MIDDLE | R/W | 00000000 | 8 middle of EEPROM read starting address for coefficients | #### 9.6.1.29 EEPROM\_ADDR\_START2 Register (Offset = 5Ah) [reset = 0h] EEPROM\_ADDR\_START2 is shown in 図 9-40 and described in 表 9-36. Return to 表 9-6. #### 図 9-44. EEPROM\_ADDR\_START2 Register #### 表 9-36. EEPROM\_ADDR\_START2 Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|---------------------------|------|----------|--------------------------------------------------------| | 7-0 | EEPROM_ADDR_START<br>_LOW | R/W | 00000000 | 8 lsb of EEPROM read starting address for coefficients | Submit Document Feedback ## 9.6.1.30 EEPROM\_BOOT\_STATUS Register (Offset = 5Bh) [reset = 0x00] EEPROM\_BOOT\_STATUS is shown in 図 9-41 and described in 表 9-37. Return to 表 9-6. #### 図 9-45. EEPROM\_BOOT\_STATUS Register ## 表 9-37. EEPROM\_BOOT\_STATUS Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|---------------------------|------|--------|--------------------------------------------------------------------------| | 7-2 | RESERVED | R | 000000 | This bit is reserved | | 1 | LOAD_EEPROM_CRC_E<br>RROR | R | 0 | 0: CRC pass for EEPROM boot load 1: CRC don't pass for EEPROM boot load. | | 0 | LOAD_EEPROM_DONE | R | 0 | Indicate that the EEPROM boot load has been finished. | #### 9.6.1.31 BQ\_WR\_CTRL1 Register (Offset = 5Ch) [reset = 0x000] BQ WR CTRL1 is shown in 図 9-42 and described in 表 9-38. Return to 表 9-6. ## 図 9-46. BQ\_WR\_CTRL1 Register ## 表 9-38. BQ\_WR\_CTRL1 Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|------------------|------|---------|--------------------------------------------------------------| | 7-1 | RESERVED | R/W | 0000000 | This bit is reserved | | 0 | BQ_WR_FIRST_COEF | R/W | 0 | Indicate the first coefficient of a BQ is starting to write. | #### 9.6.1.32 PVDD\_ADC Register (Offset = 5Eh) [reset = 0h] PVDD\_ADC is shown in 図 9-43 and described in 表 9-39. Return to 表 9-6. #### 図 9-47. PVDD\_ADC Register 表 9-39. PVDD\_ADC Register Field Descriptions | | | | _ | • | |-----|---------------|------|----------|------------------------------------------| | Bit | Field | Туре | Reset | Description | | 7-0 | PVDD_ADC[7:0] | R | 00000000 | PVDD Voltage = PVDD_ADC[7:0] / 8.428 (V) | | | | | | 223: 26.45V | | | | | | 222: 26.34V | | | | | | 221:26.22V | | | | | | | | | | | | 39: 4.63V | | | | | | 38: 4.51V | | | | | | 37: 4.39V | | | | | | | ## 9.6.1.33 GPIO\_CTRL Register (Offset = 60h) [reset = 0x00] GPIO\_CTRL is shown in $\boxtimes$ 9-44 and described in $\not\equiv$ 9-40. Return to 表 9-6. ## 図 9-48. GPIO\_CTRL Register ## 表 9-40. GPIO\_CTRL Register Field Descriptions | | | | | 1 | |-----|----------|------|-------|--------------------------------------------------------------------------------------------------------| | Bit | Field | Туре | Reset | Description | | 7-3 | RESERVED | R/W | 0000 | This bit is reserved | | 2 | GPIO2_OE | R/W | 0 | GPIO2 Output Enable. This bit sets the direction of the GPIO2 pin 0: GPIO2 is input 1: GPIO2 is output | | 1 | GPIO1_OE | R/W | 0 | GPIO1 Output Enable This bit sets the direction of the GPIO1 pin 0: GPIO1 is input 1: GPIO1 is output | | 0 | GPIO0_OE | R/W | 0 | GPIO0 Output Enable This bit sets the direction of the GPIO0 pin 0: GPIO0 is input 1: GPIO0 is output | Product Folder Links: TAS5825M ## 9.6.1.34 GPIO0\_SEL Register (Offset = 61h) [reset = 0x00] GPIO0\_SEL is shown in 図 9-45 and described in 表 9-41. Return to 表 9-6. ## 図 9-49. GPIO0\_SEL Register ### 表 9-41. GPIO0\_SEL Register Field Descriptions | | | | | , | |-----|-----------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Bit | Field | Туре | Reset | Description | | 7-4 | RESERVED | R/W | 0000 | This bit is reserved | | 3-0 | GPIO0_SEL | R/W | 0000 | 0000: off (low) 0001: Reserved 0010: GPIO output value programmed by User in セクション 9.6.1.39 0011: Auto mute flag (asserted when both L and R channels are auto muted) 0100: Auto mute flag for left channel 0101: Auto mute flag for right channel 0110: Clock invalid flag (clock error or clock missing) 0111: Reserved 1000: GPIO0 as WARNZ output 1001: Serial audio interface data output (SDOUT) 1011: GPIO0 as FAULTZ output 1100: GPIO0 as SPI CLK 1101: GPIO0 as SPI_PICO 1110: Reserved | ## 9.6.1.35 GPIO1\_SEL Register (Offset = 62h) [reset = 0x00] GPIO1\_SEL is shown in 図 9-46 and described in 表 9-42. Return to 表 9-6. #### 図 9-50. GPIO1\_SEL Register ## 表 9-42. GPIO1\_SEL Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|----------|------|-------|----------------------| | 7-4 | RESERVED | R/W | 0000 | This bit is reserved | # 表 9-42. GPIO1\_SEL Register Field Descriptions (continued) | Bit | Field | Туре | Reset | Description | |-----|-----------|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 3-0 | GPIO1_SEL | R/W | 0000 | 0000: off (low) 0001: Reserved 0010: GPIO output value programmed by User in セクション 9.6.1.39 0011: Auto mute flag (asserted when both L and R channels are auto muted) 0100: Auto mute flag for left channel 0101: Auto mute flag for right channel 0101: Auto mute flag (clock error or clock missing) 0111: Reserved 1000: GPIO1 as WARNZ output 1001: Serial audio interface data output (SDOUT) 1011: GPIO1 as FAULTZ output 1100: GPIO1 as SPI_CLK 1101: GPIO1 as SPI_PICO 1110: Reserved 1111: Reserved | ## 9.6.1.36 GPIO2\_SEL Register (Offset = 63h) [reset = 0x00] GPIO2\_SEL is shown in 図 9-47 and described in 表 9-43. Return to 表 9-6. ## 図 9-51. GPIO2\_SEL Register ### 表 9-43. GPIO2\_SEL Register Field Descriptions | 2 0 401 01 101_011 1 101d Docomptions | | | | | | |---------------------------------------|-----------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | Bit | Field | Туре | Reset | Description | | | 7-4 | RESERVED | R/W | 0000 | This bit is reserved | | | 3-0 | GPIO2_SEL | R/W | 0000 | 0000: off (low) 0001: Reserved 0010: GPIO output value programmed by User in セクション 9.6.1.39 0011: Auto mute flag (asserted when both L and R channels are auto muted) 0100: Auto mute flag for left channel 0101: Auto mute flag for right channel 0110: Clock invalid flag (clock error or clock missing) 0111: Reserved 1000: GPIO2 as WARNZ output 1001: Serial audio interface data output (SDOUT) 1011: GPIO2 as FAULTZ output 1100: GPIO2 as SPI CLK 1101: GPIO2 as SPI_PICO 1110: Reserved | | ## 9.6.1.37 GPIO\_INPUT\_SEL Register (Offset = 64h) [reset = 0x00] GPIO\_INPUT\_SEL is shown in 図 9-48 and described in 表 9-44. Return to 表 9-6. ## 図 9-52. GPIO\_INPUT\_SEL Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |---------------|-----|------------|------------|----------|----------|----------------|---| | GPIO_SPI_POCI | SEL | GPIO_PHASE | E_SYNC_SEL | GPIO_RES | SETZ_SEL | GPIO_MUTEZ_SEL | | | R/W | · | R/ | W | R/ | W | R/W | | ## 表 9-44. GPIO\_INPUT\_SEL Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|-------------------------|------|-------|---------------------------------------------------------------------| | 7-6 | GPIO_SPI_POCI_SEL | R/W | 00 | 00: N/A<br>01: GPIO0<br>10: GPIO1<br>11: GPIO2 | | 5-4 | GPIO_PHASE_SYNC_SE<br>L | R/W | 00 | 00: N/A<br>01: GPIO0<br>10: GPIO1<br>11: GPIO2 | | 3-2 | GPIO_RESETZ_SEL | R/W | 00 | 00: N/A 01: GPIO0 10: GPIO1 11: GPIO2 cannot be reset by GPIO reset | ## 表 9-44. GPIO\_INPUT\_SEL Register Field Descriptions (continued) | | | | _ | • , , | |-----|----------------|------|-------|--------------------------------------------------------------------------------------------------------------| | Bit | Field | Туре | Reset | Description | | 1-0 | GPIO_MUTEZ_SEL | R/W | | 00: N/A 01: GPI00 10: GPI01 11: GPI02 MUTEZ pin active-low, output driver sets to HiZ state, the output stop | | | | | | switching of the Class D amplifier. | ## 9.6.1.38 GPIO\_OUT Register (Offset = 65h) [reset = 0x00] GPIO\_OUT is shown in 図 9-49 and described in 表 9-45. Return to 表 9-6. ## 図 9-53. GPIO\_OUT Register ## 表 9-45. GPIO\_OUT Register Field Descriptions | Bit | Field | Туре | Reset | Description | | | |-----|----------|----------------|-------|----------------------------------------------------------------|--|--| | 7-3 | RESERVED | RVED R/W 00000 | | This bit is reserved | | | | 2-0 | GPIO_OUT | R/W | | bit0: GPIO0 output<br>bit1: GPIO1 output<br>bit2: GPIO2 output | | | ## 9.6.1.39 GPIO\_OUT\_INV Register (Offset = 66h) [reset = 0x00] GPIO\_OUT\_INV is shown in 図 9-50 and described in 表 9-46. Return to 表 9-6. ## 図 9-54. GPIO\_OUT\_INV Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |---|-----|----------|----------|---|---|-----|---| | | | RESERVED | GPIO_OUT | | | | | | | R/W | | | | | R/W | | ## 表 9-46. GPIO\_OUT\_INV Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|----------|------|-------|-------------------------------------------------------------------------------------| | 7-3 | RESERVED | R/W | 00000 | This bit is reserved | | 2-0 | GPIO_OUT | R/W | 000 | bit0: GPIO0 output invert<br>bit1: GPIO1 output invert<br>bit2: GPIO2 output invert | ## 9.6.1.40 DIE\_ID Register (Offset = 67h) [reset = 95h] DIE\_ID is shown in 図 9-51 and described in 表 9-47. Return to 表 9-6. ### 図 9-55. DIE\_ID Register ### 表 9-47. DIE\_ID Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|--------|------|----------|-------------| | 7-0 | DIE_ID | R | 10010101 | DIE ID | Copyright © 2023 Texas Instruments Incorporated ## 9.6.1.41 POWER\_STATE Register (Offset = 68h) [reset = 0x00] POWER\_STATE is shown in 図 9-52 and described in 表 9-48. Return to 表 9-6. ## 図 9-56. POWER\_STATE Register ## 表 9-48. POWER\_STATE Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|-----------|------|----------|------------------| | 7-0 | STATE_RPT | R | 00000000 | 0: Deep sleep | | | | | | 1: Seep | | | | | | 2: HIZ | | | | | | 3: Play | | | | | | Others: reserved | Product Folder Links: TAS5825M ## 9.6.1.42 AUTOMUTE\_STATE Register (Offset = 69h) [reset = 0x00] AUTOMUTE\_STATE is shown in 図 9-53 and described in 表 9-49. Return to 表 9-6. ### 図 9-57. AUTOMUTE\_STATE Register ## 表 9-49. AUTOMUTE\_STATE Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|----------------|------|--------|----------------------------------------------------------------------------------------------| | 7-2 | RESERVED | R | 000000 | This bit is reserved | | 1 | ZERO_RIGHT_MON | R | 0 | This bit indicates the auto mute status for right channel. 0: Not auto muted 1: Auto muted | | 0 | ZERO_LEFT_MON | R | 0 | This bit indicates the auto mute status for left channel. 0: Not auto muted 1: Auto muted | ## 9.6.1.43 PHASE\_CTRL Register (Offset = 6Ah) [reset = 0] PHASE\_CTRL is shown in 図 9-54 and described in 表 9-50. Return to 表 9-6. ### 図 9-58. PHASE\_CTRL Register ## 表 9-50. PHASE\_CTRL Register Field Descriptions | | | | | - | | | |-----|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------|--|--| | Bit | Field | Туре | Reset | Description | | | | 7-4 | RESERVED | R/W | 0000 | This bit is reserved | | | | 3-2 | RAMP_PHASE_SEL | system to reduce EMI and peak supply peak of set all devices the same RAMP frequency and spectrum and must be set before driving device this feature is needed. 2'b00: phase 0 2'b01: phase 1 2'b10: phase 2 | | 2'b00: phase 0<br>2'b01: phase 1 | | | | 1 | PHASE_SYNC_SEL | R/W | 0 | ramp phase sync sel, 0: is GPIO sync; 1: internal sync | | | | 0 | PHASE_SYNC_EN | R/W | 0 | ramp phase sync enable | | | ## 9.6.1.44 RAMP\_SS\_CTRL0 Register (Offset = 6Bh) [reset = 0x00] RAMP\_SS\_CTRL0 is shown in 図 9-55 and described in 表 9-51. Return to 表 9-6. ## 図 9-59. SS\_CTRL0 Register ## 表 9-51. RAMP\_SS\_CTRL0 Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|----------------|------|------------------------|----------------------------------------------------------| | 7 | RESERVED | R/W | 0 | This bit is reserved | | 6 | RESERVED | R/W | 0 This bit is reserved | | | 5 | SS_PRE_DIV_SEL | R/W | 0 | Select pll clock divide 2 as source clock in manual mode | | 4 | SS_MANUAL_MODE | R/W | 0 | Set ramp ss controller to manual mode | | 3-2 | RESERVED | R/W | 00 | This bit is reserved | | 1 | SS_RDM_EN | R/W | 0 | Random SS enable | | 0 | SS_TRI_EN | R/W | 0 | Triangle SS enable | ## 9.6.1.45 SS\_CTRL1 Register (Offset = 6Ch) [reset = 0x00] SS\_CTRL1 is shown in 図 9-56 and described in 表 9-52. Return to 表 9-6. ### 図 9-60. SS CTRL1 Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | |----------|-------------|---|---|-------------|----|---|---|--| | RESERVED | SS_RDM_CTRL | | | SS_TRI_CTRL | | | | | | R/W | R/W | | | | R/ | W | | | ### 表 9-52. SS\_CTRL1 Register Field Descriptions | Bit | Field | Туре | Reset | Description | | |-----|-------------|------|-------|-----------------------------------------|--| | 7 | RESERVED | R/W | 0 | This bit is reserved | | | 6-4 | SS_RDM_CTRL | R/W | 000 | Add Dither | | | 3-0 | SS_TRI_CTRL | R/W | 0000 | Triangle SS frequency and range control | | Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated ## 9.6.1.46 SS\_CTRL2 Register (Offset = 6Dh) [reset = 0xA0] SS\_CTRL2 is shown in 図 9-57 and described in 表 9-53. Return to 表 9-6. ### 図 9-61. SS\_CTRL2 Register ## 表 9-53. SS\_CTRL2 Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|--------------|------|----------|-----------------------------------------------------| | 7-0 | TM_FREQ_CTRL | R/W | 10100000 | Control ramp frequency in manual mode, F=61440000/N | ## 9.6.1.47 SS\_CTRL3 Register (Offset = 6Eh) [reset = 0x11] SS\_CTRL3 is shown in 図 9-58 and described in 表 9-54. Return to 表 9-6. ### 図 9-62. SS\_CTRL3 Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |---|--------|---------|---|---|--------|---------|---| | | TM_DST | EP_CTRL | | | TM_UST | EP_CTRL | | | | R | /W | | | R | W | | ## 表 9-54. SS\_CTRL3 Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|------------------|------|-------|------------------------------------------------------------------------| | 7-4 | SS_TM_DSTEP_CTRL | R/W | 0001 | Control triangle mode spread spectrum fall step in ramp ss manual mode | | 3-0 | SS_TM_USTEP_CTRL | R/W | 0001 | Control triangle mode spread spectrum rise step in ramp ss manual mode | ## 9.6.1.48 SS\_CTRL4 Register (Offset = 6Fh) [reset = 0x24] SS\_CTRL4 is shown in $ext{ <math> ext{ } }$ Return to 表 9-6. #### 図 9-63. SS CTRL4 Register | | | | | | = | | | |----------|--------|--------|---|-------|--------------|------|---| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | RESERVED | TM_AMF | P_CTRL | | SS_TI | M_PERIOD_BOU | NDRY | | | R/W | R/ | W | | | R/W | | | ## 表 9-55. SS\_CTRL4 Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|--------------------------|------|-------|-----------------------------------------------------------------------| | 7 | RESERVED | R/W | 0 | This bit is reserved | | 6-5 | TM_AMP_CTRL | R/W | 01 | Control ramp amp ctrl in ramp ss manual model | | 4-0 | SS_TM_PERIOD_BOUND<br>RY | R/W | 00100 | Control triangle mode spread spectrum boundary in ramp ss manual mode | Copyright © 2023 Texas Instruments Incorporated ## 9.6.1.49 CHAN\_FAULT Register (Offset = 70h) [reset = 0x00] CHAN\_FAULT is shown in 図 9-60 and described in 表 9-56. Return to 表 9-6. ### 図 9-64. CHAN\_FAULT Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |----------|---|---|---|----------|----------|----------|----------| | RESERVED | | | | CH1_DC_1 | CH2_DC_1 | CH1_OC_I | CH2_OC_I | | | R | | | | R | R | R | ## 表 9-56. CHAN\_FAULT Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|----------|------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 7-4 | RESERVED | R | 0000 | This bit is reserved | | 3 | CH1_DC_1 | R | 0 | Left channel DC fault. Once there is a DC fault, this bit sets to be 1. Class D output sets to Hi-Z. Report by FAULT pin (GPIO). Clear this fault by setting bit 7 of セクション 9.6.1.58 to 1 or this bit keeps 1. | | 2 | CH2_DC_1 | R | 0 | Right channel DC fault. Once there is a DC fault, this bit sets to be 1. Class D output sets to Hi-Z. Report by FAULT pin (GPIO). Clear this fault by setting bit 7 of セクション 9.6.1.58 to 1 or this bit keeps 1. | | 1 | CH1_OC_I | R | 0 | Left channel over current fault. Once there is an OC fault, this bit sets to be 1. Class D output sets to Hi-Z. Report by FAULT pin (GPIO). Clear this fault by setting bit 7 of セクション 9.6.1.58 to 1 or this bit keeps 1. | | 0 | CH2_OC_I | R | 0 | Right channel over current fault. Once there is an OC fault, this bit sets to be 1. Class D output sets to Hi-Z. Report by FAULT pin (GPIO). Clear this fault by setting bit 7 of セクション 9.6.1.58 to 1 or this bit keeps 1. | ## 9.6.1.50 GLOBAL\_FAULT1 Register (Offset = 71h) [reset = 0h] GLOBAL\_FAULT1 is shown in 図 9-61 and described in 表 9-57. Return to 表 9-6. ## 図 9-65. GLOBAL\_FAULT1 Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |-------------------|-----------------|-----------------------|----------|----------|-------------|-----------|-----------| | OTP_CRC_ER<br>ROR | BQ_WR_ERRO<br>R | LOAD_EEPRO<br>M_ERROR | RESERVED | RESERVED | CLK_FAULT_I | PVDD_OV_I | PVDD_UV_I | | R | R | R | R | R | R | R | R | ## 表 9-57. GLOBAL\_FAULT1 Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|-------------------|------|-------|-------------------------------------------------------------------------------------| | 7 | OTP_CRC_ERROR | R | 0 | Indicate OTP CRC check error. | | 6 | BQ_WR_ERROR | R | 0 | The recent BQ is written failed | | 5 | LOAD_EEPROM_ERROR | R | 0 | EEPROM boot load was done successfully EEPROM boot load was done unsuccessfully | | 4 | RESERVED | R | 0 | This bit is reserved | | 3 | RESERVED | R | 0 | This bit is reserved | Product Folder Links: TAS5825M Submit Document Feedback 表 9-57. GLOBAL\_FAULT1 Register Field Descriptions (continued) | Bit | Field | Туре | Reset | Description | |-----|-------------|------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 2 | CLK_FAULT_I | R | 0 | Clock fault. Once there is a Clock fault, this bit sets to be 1. Class D output sets to Hi-Z. Report by FAULT pin (GPIO). Clock fault works with an auto-recovery mode, once the clock error removes, device automatically returns to the previous state. Clear this fault by setting bit 7 of セクション 9.6.1.58 to 1 or this bit keeps 1. | | 1 | PVDD_OV_I | R | 0 | PVDD OV fault. Once there is an OV fault, this bit sets to be 1. Class D output sets to Hi-Z. Report by FAULT pin (GPIO). OV fault works with an auto-recovery mode, once the OV error removes, device automatically returns to the previous state. Clear this fault by setting bit 7 of セクション 9.6.1.58 to 1 or this bit keeps 1. | | 0 | PVDD_UV_I | R | 0 | PVDD UV fault. Once there is an UV fault, this bit sets to be 1. Class D output sets to Hi-Z. Report by FAULT pin (GPIO). OV fault works with an auto-recovery mode, once the OV error removes, device automatically returns to the previous state. Clear this fault by setting bit 7 of セクション 9.6.1.58 to 1 or this bit keeps 1. | ## 9.6.1.51 GLOBAL\_FAULT2 Register (Offset = 72h) [reset = 0h] GLOBAL\_FAULT2 is shown in 図 9-62 and described in 表 9-58. Return to 表 9-6. ## 図 9-66. GLOBAL\_FAULT2 Register ### 表 9-58. GLOBAL\_FAULT2 Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|-----------------|-----------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 7-3 | RESERVED | ED R 0000 This bit is reserved | | This bit is reserved | | 2 | CBC_FAULT_CH2_I | R 0 Right channel cycle by cycle over current fault | | Right channel cycle by cycle over current fault | | 1 | CBC_FAULT_CH1_I | R | 0 | Left channel cycle by cycle over current fault | | 0 | OTSD_I | R | 0 | Over temperature shut down fault. Once there is a OT fault, this bit sets to be 1. Class D output sets to Hi-Z. Report by FAULT pin (GPIO). OV fault works with an autorecovery mode, once the OV error removes, device automatically returns to the previous state. Clear this fault by setting bit 7 of セクション 9.6.1.58 to 1 or this bit keeps 1. | ## 9.6.1.52 WARNING Register (Offset = 73h) [reset = 0x00] WARNING is shown in 図 9-63 and described in 表 9-59. Return to 表 9-6. ## 図 9-67. WARNING Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |--------|----|------------|------------|-------------|-------------|-------------|-------------| | RESERV | ED | CBCW_CH1_I | CBCW_CH2_I | OTW_LEVEL4_ | OTW_LEVEL3_ | OTW_LEVEL2_ | OTW_LEVEL1_ | | | | | | l | I | ı | I | | R | | R | R | R | R | R | R | ### 表 9-59. WARNING Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|--------------|------|-------|---------------------------------------------------| | 7-6 | RESERVED | R | 0 | This bit is reserved | | 5 | CBCW_CH1_I | R | 0 | Left channel cycle by cycle over current warning | | 4 | CBCW_CH2_I | R | 0 | Right channel cycle by cycle over current warning | | 3 | OTW_LEVEL4_I | R | 0 | Over temperature warning leve4, 146C | | 2 | OTW_LEVEL3_I | R | 0 | Over temperature warning leve3, 134C | | 1 | OTW_LEVEL2_I | R | 0 | Over temperature warning leve2, 122C | | 0 | OTW_LEVEL1_I | R | 0 | Over temperature warning leve1, 112C | Product Folder Links: TAS5825M ## 9.6.1.53 PIN\_CONTROL1 Register (Offset = 74h) [reset = 0x00] PIN\_CONTROL1 is shown in 図 9-64 and described in 表 9-60. Return to 表 9-6. ## 図 9-68. PIN\_CONTROL1 Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |-----------|------------------|------------------|--------------------|----------|------------------|---------|---------| | MASK_OTSD | MASK_DVDD_<br>UV | MASK_DVDD_<br>OV | MASK_CLK_FA<br>ULT | RESERVED | MASK_PVDD_<br>UV | MASK_DC | MASK_OC | | R/W | R/W | R/W | R/W | R | R/W | R/W | R/W | ## 表 9-60. PIN\_CONTROL1 Register Field Descriptions | Bit | Field | Туре | Reset | Description | | | | |-----|----------------|------|-------|-----------------------------------------------------|--|--|--| | 7 | MASK_OTSD | R/W | 0 | Mask OTSD fault report | | | | | 6 | MASK_DVDD_UV | R/W | 0 | Mask DVDD UV fault report | | | | | 5 | MASK_DVDD_OV | R/W | 0 | Mask DVDD OV fault report | | | | | 4 | MASK_CLK_FAULT | R/W | 0 | Mask clock fault report | | | | | 3 | RESERVED | R | 0 | This bit is reserved | | | | | 2 | MASK_PVDD_UV | R/W | 0 | Mask PVDD UV fault report mask PVDD OV fault report | | | | | 1 | MASK_DC | R/W | 0 | Mask DC fault report | | | | | 0 | MASK_OC | R/W | 0 | Mask OC fault report | | | | ## 9.6.1.54 PIN\_CONTROL2 Register (Offset = 75h) [reset = 0xF8] PIN\_CONTROL2 is shown in 図 9-65 and described in 表 9-61. Return to 表 9-6. ## 図 9-69. PIN\_CONTROL2 Register | | | | _ | | | | | |------------------------|-----------------------|---------------------|-------------------|------------------|----------|-----------|--------------------| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | CBC_FAULT_L<br>ATCH_EN | CBC_WARN_L<br>ATCH_EN | CLKFLT_LATC<br>H_EN | OTSD_LATCH_<br>EN | OTW_LATCH_<br>EN | MASK_OTW | MASK_CBCW | MASK_CBC_F<br>AULT | | R/W ## 表 9-61. PIN\_CONTROL2 Register Field Descriptions | Bit | Field | Туре | Reset | Description | | | | |-----|--------------------|------|-------|---------------------------------------------------|--|--|--| | 7 | CBC_FAULT_LATCH_EN | R/W | 1 | Enable CBC fault latch by setting this bit to 1 | | | | | 6 | CBC_WARN_LATCH_EN | R/W | 1 | Enable CBC warning latch by setting this bit to 1 | | | | | 5 | CLKFLT_LATCH_EN | R/W | 1 | Enable clock fault latch by setting this bit to 1 | | | | | 4 | OTSD_LATCH_EN | R/W | 1 | Enable OTSD fault latch by setting this bit to 1 | | | | | 3 | OTW_LATCH_EN | R/W | 1 | Enable OT warning latch by setting this bit to 1 | | | | | 2 | MASK_OTW | R/W | 0 | Mask OT warning report by setting this bit to 1 | | | | | 1 | MASK_CBCW | R/W | 0 | Mask CBC warning report by setting this bit to 1 | | | | | 0 | MASK_CBC_FAULT | R/W | 0 | Mask CBC fault report by setting this bit to 1 | | | | ## 9.6.1.55 MISC\_CONTROL Register (Offset = 76h) [reset = 0x00] MISC\_CONTROL is shown in 図 9-66 and described in 表 9-62. Return to 表 9-6. ## 図 9-70. MISC\_CONTROL Register ## 表 9-62. MISC\_CONTROL Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|------------------|------|-------|--------------------------------------| | 7 | DET_STATUS_LATCH | R/W | 0 | 1:Latch clock detection status | | | | | | 0:Don't latch clock detection status | | 6-5 | RESERVED | R/W | 00 | These bits are reserved | | 4 | OTSD_AUTO_REC_EN | R/W | 0 | OTSD auto recovery enable | | 3-0 | RESERVED | R/W | 0000 | This bit is reserved | ## 9.6.1.56 CBC\_CONTROL Register (Offset = 77h) [reset = 0x00] CBC\_CONTROL is shown in 図 9-67 and described in 表 9-63. Return to 表 9-6. ## 図 9-71. CBC\_CONTROL Register ### 表 9-63. CBC\_CONTROL Register Field Descriptions | Bit | Field | Туре | Reset | Description | | | | | |-----|--------------|------|-------|-------------------------|--|--|--|--| | 7-3 | RESERVED | R/W | 00000 | These bits are reserved | | | | | | 2 | CBC_EN | R/W | 0 | Enable CBC function | | | | | | 1 | CBC_WARN_EN | R/W | 0 | Enable CBC warning | | | | | | 0 | CBC_FAULT_EN | R/W | 0 | Enable CBC fault | | | | | Submit Document Feedback ## 9.6.1.57 FAULT\_CLEAR Register (Offset = 78h) [reset = 0x00] FAULT\_CLEAR is shown in 図 9-68 and described in 表 9-64. Return to 表 9-6. ## 図 9-72. FAULT\_CLEAR Register ## 表 9-64. FAULT\_CLEAR Register Field Descriptions | Bit | Field | Туре | Reset | Description | | | | |-----|--------------------|------|---------|----------------------------------------------------------------------|--|--|--| | 7 | ANALOG_FAULT_CLEAR | W | 0 | WRITE CLEAR BIT once write this bit to 1, device clears analog fault | | | | | 6-0 | RESERVED | R/W | 0000000 | This bit is reserved | | | | Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback ## 10 Application and Implementation 注 以下のアプリケーション情報は、TIの製品仕様に含まれるものではなく、TIではその正確性または完全性を保証いたしません。個々の目的に対する製品の適合性については、お客様の責任で判断していただくことになります。お客様は自身の設計実装を検証しテストすることで、システムの機能を確認する必要があります。 ### 10.1 Application Information This section details the information required to configure the device for several popular configurations and provides guidance on integrating the TAS5825M device into the larger system. #### 10.1.1 Inductor Selections TI requires that the peak current is smaller than the OCP (Over Current Protection) value which is 7.5 A, there are 3 cases which cause high peak current flow through inductor. 1. During power up (idle state, no audio input), the duty cycle increases from 0 to $\theta$ . $$I_{peak\_power\_up} \approx PVDD \times \sqrt{C/L} \times \sin(1/\sqrt{L \times C} \times \theta/F_{sw})$$ (1) 注 θ=0.5 (BD Modulation), 0.14 (1SPW Modulation), 0.14 (Hybrid Modulation) 2. During music playing, some audio burst signal (high frequency) with very hard PVDD clipping causes PWM duty cycle increase dramatically. This is the worst case and rarely happens. $$I_{peak\_clipping} \approx PVDD \times (1-\theta)/(F_{sw} \times L)$$ (2) 3. Peak current due to Max output power. Ignore the ripple current flow through capacitor here. $$I_{peak\_output\_power} \approx \sqrt{2 \times Max\_Output\_Power / R_{spea \, ker\_Load}}$$ (3) TI suggests that inductor saturation current $I_{sat}$ , is larger than the amplifier peak current during power-up and play audio. $$I_{SAT} \ge \max(I_{peak\_power\_up}, I_{peak\_clipping}, I_{peak\_output\_power}) \tag{4}$$ #### 表 10-1. Inductor Requirements | PVDD (V) | Switching Frequency (kHz) | Minimum Inductance (L) (μH) | |----------|---------------------------|-----------------------------| | ≤ 12 | 384 | 4.7 | | > 12 | 384 | 10 | For higher switching frequencies (Fsw), select the inductors with minimum inductance to be 384 kHz / Fsw × L. Same PVDD and switching frequency, larger inductance means smaller idle current for lower power dissipation. #### 10.1.2 Bootstrap Capacitors The output stage of the TAS5825M uses a high-side NMOS driver, rather than a PMOS driver. To generate the gate driver voltage for the high-side NMOS, a bootstrap capacitor for each output terminal acts as a floating power supply for the switching cycle. Use 0.47-µF capacitors to connect the appropriate output pin (OUT\_X) to the bootstrap pin (BST\_X). For example, connect a 0.47-µF capacitor between OUT\_A and BST\_A for bootstrapping the A channel. Similarly, connect another 0.47-µF capacitor between the OUT\_B and BST\_B pins for the B channel inverting output. #### 10.1.3 Power Supply Decoupling To make sure of high efficiency, low THD, and high PSRR, proper power supply decoupling is necessary. Noise transients on the power supply lines are short duration voltage spikes. These spikes can contain frequency components that extend into the hundreds of megahertz. The power supply input must be decoupled with some good quality, low ESL, Low ESR capacitors larger than 22 $\mu$ F. These capacitors bypasses low frequency noise to the ground plane. For high frequency decoupling, place 1- $\mu$ F or 0.1- $\mu$ F capacitors as close as possible to the PVDD pins of the device. ### 10.1.4 Output EMI Filtering The TAS5825M device is often used with a low-pass filter, which is used to filter out the carrier frequency of the PWM modulated output. This filter is frequently referred to as the L-C Filter, due to the presence of an inductive element L and a capacitive element C to make up the 2-pole filter. The L-C filter removes the carrier frequency, reducing electromagnetic emissions and smoothing the current waveform which is drawn from the power supply. The presence and size of the L-C filter is determined by several system level constraints. In some low-power use cases that have no other circuits which are sensitive to EMI, a simple ferrite bead or a ferrite bead plus a capacitor can replace the tradition large inductor and capacitor that are commonly used. In other high-power applications, large toroid inductors are required for maximum power and film capacitors can be used due to audio characteristics. Refer to the application report Class-D LC Filter Design (SLOA119) for a detailed description on the proper component selection and design of an L-C filter based upon the desired load and response. For EMI performance and EMI Design consideration, reference to application report: TAS5825M Design Considerations for EMC. ## 10.2 Typical Applications ## 10.2.1 2.0 (Stereo BTL) System In the 2.0 system, two channels are presented to the amplifier via the digital input signal. These two channels are amplified and then sent to two separate speakers. In some cases, the amplified signal is further separated based upon frequency by a passive crossover network after the L-C filter. Even so, the application is considered 2.0. Most commonly, the two channels are a pair of signals called a stereo pair, with one channel containing the audio for the left channel and the other channel containing the audio for the right channel. While certainly the two channels can contain any two audio channels, such as two surround channels of a multi-channel speaker system, the most popular occurrence in two channels systems is a stereo pair. 図 10-1. 2.0 (Stereo BTL) System Application Schematic Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated ### 10.2.2 Design Requirements - · Power supplies: - 3.3-V supply - 5-V to 24-V supply - Communication: host processor serving as I<sup>2</sup>C compliant controller - External memory (such as EEPROM and FLASH) used for coefficients. The requirements for the supporting components for the TAS5825M device in a Stereo 2.0 (BTL) system is provide in $\frac{1}{2}$ 10-2. 表 10-2. Supporting Component Requirements for Stereo 2.0 (BTL) Systems | REFERENCE<br>DESIGNATOR | VALUE | SIZE | DETAILED DESCRIPTION | |-------------------------|---------|------|----------------------------------------------------------------------------------------| | C1, C16 | 0.1 µF | 0402 | CAP, CERM, 0.1 μF, 50 V, ±10%, X7R, 0402 | | C2, C17, C37, C38 | 22 µF | 0805 | CAP, CERM, 22 μF, 35 V, ±20%, JB, 0805 | | C3 | 4.7 µF | 0603 | CAP, CERM, 4.7 μF, 10 V, ±10%, X5R, 0603 | | C4 | 0.1 µF | 0603 | CAP, CERM, 0.1 μF, 16 V, ±10%, X7R, 0603 | | C5, C14, C15 | 1 μF | 0603 | CAP, CERM, 1 µF, 16 V, ±10%, X5R, 0603 | | C6, C9, C10, C13 | 0.47 µF | 0603 | CAP, CERM, 0.47 μF, 16 V, ±10%, X7R, 0603 | | C41, C42, C43, C44 | 0.68 µF | 0805 | CAP, CERM, 0.68 μF, 50 V, ±10%, X7R, 0805 | | L1, L2, L3, L4 | 10 µH | | Inductor, Shielded, Ferrite, 10 $\mu$ H, 4.4 A, 0.0304 $\Omega$ , SMD 1274AS-H-100M=P3 | | R1 | 0 Ω | 0402 | RES, 0, 5%, 0.063 W, 0402 | | R20, R21, R22, R23 | 10 kΩ | 0402 | RES, 10.0 k, 1%, 0.063 W, 0402 | #### 10.2.3 Detailed Design procedures This Design procedures can be used for both Stereo 2.0, Advanced 2.1 and Mono Mode. #### 10.2.3.1 Step One: Hardware Integration - Using the Typical Application Schematic as a guide, integrate the hardware into the system schematic. - Following the recommended component placement, board layout, and routing given in the example layout above, integrate the device and the supporting components into the system PCB file. - The most critical sections of the circuit are the power supply inputs, the amplifier output signals, and the high-frequency signals, all of which go to the serial audio port. Constructing these signals to make sure the signals are given precedent as design trade-offs are made is recommended. - For questions and support go to the E2E forums (e2e.ti.com). If deviating from the recommended layout is necessary, go to the E2E forum to request a layout review. ### 10.2.3.2 Step Two: Hardware Integration Using the TAS5825MEVM evaluation module and the PPC3 app to configure the desired device settings. #### 10.2.3.3 Step Three: Software Integration - Using the End System Integration feature of the PPC3 app to generate a baseline configuration file. - Generate additional configuration files based upon operating modes of the end-equipment and integrate static configuration information into initialization files. - Integrate dynamic controls (such as volume controls, mute commands, and mode-based EQ curves) into the main system program. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback ### 10.2.4 Application Curves ## 10.2.5 MONO (PBTL) Systems In MONO mode, TAS5825M can be used as PBTL mode to drive sub-woofer with more output power. 図 10-8. Sub-woofer (PBTL) Application Schematic # 表 10-3. Supporting Component Requirements for Sub-woofer (PBTL) Systems | REFERENCE<br>DESIGNATOR | VALUE | SIZE | DETAILED DESCRIPTION | |-------------------------|---------|-----------|-----------------------------------------------| | C1, C2 | 390uF | 10mmx10mm | CAP, AL, 390 µF, 35 V, +/- 20%, 0.08 ohm, SMD | | C4, C5 | 0.1 μF | 0402 | CAP, CERM, 0.1 μF, 50 V, ±10%, X7R, 0402 | | C3, C6 | 22 μF | 0805 | CAP, CERM, 22 μF, 35 V, ±20%, JB, 0805 | | C7 | 4.7 μF | 0603 | CAP, CERM, 4.7 μF, 10 V, ±10%, X5R, 0603 | | C8 | 0.1 μF | 0603 | CAP, CERM, 0.1 μF, 16 V, ±10%, X7R, 0603 | | C9,C10,C11 | 1 μF | 0603 | CAP, CERM, 1 µF, 16 V, ±10%, X5R, 0603 | | C12,C13,C16,C17 | 0.47 μF | 0603 | CAP, CERM, 0.47 µF, 16 V, ±10%, X7R, 0603 | | C14,C15 | 0.68 μF | 0805 | CAP, CERM, 0.68 μF, 50 V, ±10%, X7R, 0805 | | L1,L2 | 4.7 μH | | Inductor, Shielded, 4.7 μH, 8.7 A | | R2 | 1 kΩ | 0402 | RES, 0, 5%, 0.063 W, 0402 | | R3,R4,R5,R6 | 10 kΩ | 0402 | RES, 10.0 k, 1%, 0.063 W, 0402 | ### 10.2.6 Advanced 2.1 System (Two TAS5825M Devices) In higher performance systems, the subwoofer output can be enhanced using digital audio processing as was done in the high-frequency channels. To accomplish this, two TAS5825M devices are used - one for the high frequency left and right speakers and one for the mono subwoofer speaker. In this system, the audio signal can be sent from the TAS5825M device through the SDOUT pin. Alternatively, the subwoofer amplifier can accept the same digital input as the stereo, which might come from a central systems processor. 10-9 shows the 2.1 (Stereo BTL with Two TAS5825M devices) system application. 図 10-9. 2.1 (2.1 CH with Two TAS5825M Devices) Application Schematic ### 10.2.7 Application Curves ### 10.3 Power Supply Recommendations The TAS5825M device requires two power supplies for proper operation. A high-voltage supply calls PVDD is required to power the output stage of the speaker amplifier and the associated circuitry. Additionally, one low-voltage power supply which is calls DVDD is required to power the various low-power portions of the device. The allowable voltage range for both PVDD and DVDD supply are listed in the *Recommended Operating Conditions* table. The two power supplies do not have a required powerup sequence. The power supplies can be powered on in any order. 図 10-12. Power Supply Function Block Diagram #### 10.3.1 DVDD Supply Some portions of the device also require a separate power supply that is a lower voltage than the DVDD supply. To simplify the power supply requirements for the system, the TAS5825M device includes an integrated low dropout (LDO) linear regulator to create this supply. This linear regulator is internally connected to the DVDD supply and the output is presented on the DVDD\_REG pin, providing a connection point for an external bypass capacitor. Note that the linear regulator integrated in the device has only been designed to support the current requirements of the internal circuitry, and must not be used to power any additional external circuity. Additional loading on this pin can cause the voltage to sag, negatively affecting the performance and operation of the device. #### 10.3.2 PVDD Supply The output stage of the speaker amplifier drives the load using the PVDD supply. This is the power supply which provides the drive current to the load during playback. Proper connection, routing, and decoupling techniques are highlighted in the TAS5825MEVM and must be followed as closely as possible for proper operation and performance. Due to the high-voltage switching of the output stage, properly decoupling the output power stages in the manner described in the TAS5825M device \$\frac{\pi/\geta\color{\pi}}{2} \times 10\$ is important. Lack of proper decoupling, like that shown in the \$\frac{\pi/\geta\color{\pi}}{2} \times 10\$, results in voltage spikes which can damage the device. A separate power supply is required to drive the gates of the MOSFETs used in the output stage of the speaker amplifier. This power supply is derived from the PVDD supply via an integrated linear regulator. A GVDD pin is provided for the attachment of decoupling capacitor for the gate drive voltage regulator. Note that the linear regulator integrated in the device has only been designed to support the current requirements of the internal circuitry, and must not be used to power any additional external circuitry. Additional loading on this pin can cause the voltage to sag, negatively affecting the performance and operation of the device. Another separate power supply is derived from the PVDD supply via an integrated linear regulator is AVDD. AVDD pin is provided for the attachment of decoupling capacitor for the TAS5825M internal circuitry. Note that the linear regulator integrated in the device has only been designed to support the current requirements of the internal circuitry, and must not be used to power any additional external circuitry. Additional loading on this pin can cause the voltage to sag, negatively affecting the performance and operation of the device. #### 10.4 Layout ### 10.4.1 Layout Guidelines #### 10.4.1.1 General Guidelines for Audio Amplifiers Audio amplifiers which incorporate switching output stages must have special attention paid to their layout and the layout of the supporting components used around them. The system level performance metrics, including thermal performance, electromagnetic compliance (EMC), device reliability, and audio performance are all affected by the device and supporting component layout. The guidance provided in the applications section with regard to device and component selection can be followed by precise adherence to the layout guidance shown in $torespace{10.4.2}$ . These examples represent exemplary baseline balance of the engineering trade-offs involved with lying out the device. These designs can be modified slightly as needed to meet the needs of a given application. In some applications, for instance, solution size can be compromised to improve thermal performance through the use of additional contiguous copper neat the device. Conversely, EMI performance can be prioritized over thermal performance by routing on internal traces and incorporating a via picket-fence and additional filtering components. In all cases, TI recommends to start from the guidance shown in $torespace{10.4.2}$ and work with TI field application engineers or through the E2E community to modify the example based upon the application specific goals. ### 10.4.1.2 Importance of PVDD Bypass Capacitor Placement on PVDD Network Placing the bypassing and decoupling capacitors close to supply has long been understood in the industry. This applies to DVDD, AVDD, GVDD and PVDD. However, the capacitors on the PVDD net for the TAS5825M device deserve special attention. The small bypass capacitors on the PVDD lines of the DUT must be placed as close to the PVDD pins as possible. Not only dose placing these device far away from the pins increase the electromagnetic interference in the system, but doing so can also negatively affect the reliability of the device. Placement of these components too far from the TAS5825M device can cause ringing on the output pins that can cause the voltage on the output pin to exceed the maximum allowable ratings shown in the *Absolute Maximum Ratings* table, damaging the deice. For that reason, the capacitors on the PVDD net must be no further away from their associated PVDD pins than what is shown in the example layouts in the \$\frac{\tau}{2} \times 10.4.2 \text{ section}. ## 10.4.1.3 Optimizing Thermal Performance Follow the layout example shown in the 🗵 10-13 to achieve the best balance of solution size, thermal, audio, and electromagnetic performance. In some cases, deviation from this guidance can be required due to design constraints which cannot be avoided. In these instances, the system designer must make sure that the heat can get out of the device and into the ambient air surrounding the device. Fortunately, the heat created in the device naturally travels away from the device and into the lower temperature structures around the device. #### 10.4.1.3.1 Device, Copper, and Component Layout Primarily, the goal of the PCB design is to minimize the thermal impedance in the path to those cooler structures. These tips must be followed to achieve that goal: - Avoid placing other heat producing components or structures near the amplifier (including above or below in the end equipment). - If possible, use a higher layer count PCB to provide more heat sinking capability for the TAS5825M device and to prevent traces and copper signal and power planes from breaking up the contiguous copper on the top and bottom layer. - Place the TAS5825M device away from the edge of the PCB when possible to make sure that the heat can travel away from the device on all four sides. - Avoid cutting off the flow of heat from the TAS5825M device to the surrounding areas with traces or via strings. Instead, route traces perpendicular to the device and line up vias in columns which are perpendicular to the device. - Unless the area between two pads of a passive component is large enough to allow copper to flow in between the two pads, orient the pads so that the narrow end of the passive component is facing the TAS5825M device. - Because the ground pins are the best conductors of heat in the package, maintain a contiguous ground plane from the ground pins to the PCB area surrounding the device for as many of the ground pins as possible. ### 10.4.1.3.2 Stencil Pattern The recommended drawings for the TAS5825M device PCB foot print and associated stencil pattern are shown at the end of this document in the package addendum. Additionally, baseline recommendations for the via arrangement under and around the device are given as a starting point for the PCB design. This guidance is provided to be an excellent choice for the majority of manufacturing capabilities in the industry and prioritizes manufacturability over all other performance criteria. In elevated ambient temperature or under high-power dissipation use-cases, this guidance can be too conservative and advanced PCB design techniques can be used to improve thermal performance of the system. 注 The customer must verify that deviation from the guidance shown in the package addendum, including the deviation explained in this section, meets the customer's quality, reliability, and manufacturability goals. #### 10.4.1.3.2.1 PCB footprint and Via Arrangement The PCB footprint (also known as a symbol or land pattern) communicates to the PCB fabrication vendor the shape and position of the copper patterns to which the TAS5825M device is soldered. This footprint can be followed directly from the guidance in the package addendum at the end of this data sheet. TI recommends to make sure that the thermal pad, which connects electrically and thermally to the PowerPAD $^{\text{TM}}$ of the TAS5825M device, be made no smaller than what is specified in the package addendum. This method makes sure that the TAS5825M device has the largest interface possible to move heat from the device to the board. The via pattern shown in the package addendum provides an improved interface to carry the heat from the device through to the layers of the PCB, because small diameter plated vias (with minimally-sized annular rings) present a low thermal-impedance path from the device into the PCB. Once into the PCB, the heat travels away from the device and into the surrounding structures and air. By increasing the number of vias, as shown in 200 10.4.2, this interface can benefit from improved thermal performance. 注 Vias can obstruct heat flow if the vias are not constructed properly. More notes on the construction and placement of vias are as follows: - Remove thermal reliefs on thermal vias, because the thermal reliefs impede the flow of heat through the via. - Vias filled with thermally conductive material are best, but a simple plated via can be used to avoid the additional cost of filled vias. - The diameter of the drill must be 8 mm or less. Also, the distance between the via barrel and the surrounding planes must be minimized to help heat flow from the via into the surrounding copper material. In all cases, minimum spacing must be determined by the voltages present on the planes surrounding the via and minimized wherever possible. - Vias must be arranged in columns, which extend in a line radially from the heat source to the surrounding area. This arrangement is shown in セクション 10.4.2. - Make sure that vias do not cut off power current flow from the power supply through the planes on internal layers. If needed, remove some vias that are farthest from the TAS5825M device to open up the current path to and from the device. #### 10.4.1.3.2.2 Solder Stencil During the PCB assembly process, a piece of metal called a stencil on top of the PCB and deposits solder paste on the PCB wherever there is an opening (called an aperture) in the stencil. The stencil determines the quantity and the location of solder paste that is applied to the PCB in the electronic manufacturing process. In most cases, the aperture for each of the component pads is almost the same size as the pad itself. However, the thermal pad on the PCB is large and depositing a large, single deposition of solder paste leads to manufacturing issues. Instead, the solder is applied to the board in multiple apertures, to allow the solder paste to outgas during the assembly process and reduce the risk of solder bridging under the device. This structure is called an aperture array, and is shown in the the total area of the aperture array (the area of all of the small apertures combined) covers between 70% and 80% of the area of the thermal pad itself. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback ## 10.4.2 Layout Example 図 10-13. 2.0 (Stereo BTL) 3-D View 図 10-14. 2.0 (Stereo BTL) Top Copper View ## 11 Device and Documentation Support ## 11.1 Device Support #### 11.1.1 Device Nomenclature The glossary listed in セクション 11 and is a general glossary with commonly used acronyms and words which are defined in accordance with a broad TI initiative to comply with industry standards such as JEDEC, IPC, IEEE, and others. The glossary provided in this section defines words, phrases, and acronyms that are unique to this product and documentation, collateral, or support tools and software used with this product. For any additional questions regarding definitions and terminology, please see the e2e Audio Amplifier Forum. **Bridge tied load (BTL)** is an output configuration in which one terminal of the speaker is connected to one half-bridge and the other terminal is connected to another half-bridge. **DUT** refers to a *device under test* to differentiate one device from another. **Closed-loop architecture** describes a topology in which the amplifier monitors the output terminals, comparing the output signal to the input signal and attempts to correct for non-linearities in the output. **Dynamic controls** are those which are changed during normal use by either the system or the end-user. **GPIO** is a general purpose input/output pin and is a highly configurable, bi-directional digital pin, which can perform many functions as required by the system. Host processor (also known as System Processor, Scalar, Host, or System Controller) refers to a device, which serves as a central system controller, providing control information to devices connected as well as gathering audio source data from devices upstream and distributing to other devices. This device often configures the controls of the audio processing devices (like the TAS5825M) in the audio path to optimize the audio output of a loudspeaker based on frequency response, time alignment, target sound pressure level, safe operating area of the system, and user preference. **Hybrid Flow** uses components which are built in RAM and components which are built in ROM to make a configurable device that is easier to use than a fully-programmable device while remaining flexible enough to be used in several applications **Maximum continuous output power** refers to the maximum output power that the amplifier can continuously deliver without shutting down when operated in a 25°C ambient temperature. Testing is performed for the period of time required that their temperatures reach thermal equilibrium and are no longer increasing **Parallel bridge tied load (PBTL)** is an output configuration in which one terminal of the speaker is connected to two half-bridges which have been placed in parallel and the other terminal is connected to another pair of half bridges placed in parallel **R**<sub>DS(on)</sub> is a measure of the on-resistance of the MOSFETs used in the output stage of the amplifier. Static controls/Static configurations are controls which do not change while the system is in normal use. Vias are copper-plated through-hole in a PCB. ### 11.1.2 Development Support For RDGUI software, please consult your local field support engineer. ### 11.2 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. ### 11.3 サポート・リソース TI E2E™ サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。 www.tij.co.jp リンクされているコンテンツは、該当する貢献者により、現状のまま提供されるものです。これらは TI の仕様を構成するも のではなく、必ずしも TI の見解を反映したものではありません。TI の使用条件を参照してください。 ## 11.4 Trademarks PowerPAD™ and TI E2E™ are trademarks of Texas Instruments. すべての商標は、それぞれの所有者に帰属します。 ### 11.5 静電気放電に関する注意事項 この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うこと を推奨します。正しい取り扱いおよび設置手順に従わない場合、デバイスを破損するおそれがあります。 ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずか に変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。 ### 11.6 用語集 テキサス・インスツルメンツ用語集 この用語集には、用語や略語の一覧および定義が記載されています。 ## 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback www.ti.com 23-May-2025 #### PACKAGING INFORMATION | Orderable part number | Status | Material type | Package Pins | Package qty Carrier | RoHS | Lead finish/<br>Ball material | MSL rating/<br>Peak reflow | Op temp (°C) | Part marking (6) | |-----------------------|--------|---------------|-----------------|-----------------------|------|-------------------------------|----------------------------|--------------|------------------| | | | | | | | (4) | (5) | | | | TAS5825MRHBR | Active | Production | VQFN (RHB) 32 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -25 to 85 | 5825M | | TAS5825MRHBR.A | Active | Production | VQFN (RHB) 32 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -25 to 85 | 5825M | | TAS5825MRHBT | Active | Production | VQFN (RHB) 32 | 250 SMALL T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -25 to 85 | 5825M | | TAS5825MRHBT.A | Active | Production | VQFN (RHB) 32 | 250 SMALL T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -25 to 85 | 5825M | <sup>(1)</sup> Status: For more details on status, see our product life cycle. Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. <sup>(2)</sup> Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind. <sup>(3)</sup> RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition. <sup>(4)</sup> Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. <sup>(5)</sup> MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board. <sup>(6)</sup> Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part. # **PACKAGE MATERIALS INFORMATION** www.ti.com 17-Apr-2023 ## TAPE AND REEL INFORMATION | A0 | Dimension designed to accommodate the component width | |----|-----------------------------------------------------------| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | ### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### \*All dimensions are nominal | Device | _ | Package<br>Drawing | | SPQ | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant | |--------------|------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | TAS5825MRHBR | VQFN | RHB | 32 | 3000 | 330.0 | 12.4 | 5.3 | 5.3 | 1.1 | 8.0 | 12.0 | Q2 | | TAS5825MRHBT | VQFN | RHB | 32 | 250 | 180.0 | 12.4 | 5.3 | 5.3 | 1.1 | 8.0 | 12.0 | Q2 | www.ti.com 17-Apr-2023 ## \*All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |--------------|--------------|-----------------|------|------|-------------|------------|-------------| | TAS5825MRHBR | VQFN | RHB | 32 | 3000 | 367.0 | 367.0 | 35.0 | | TAS5825MRHBT | VQFN | RHB | 32 | 250 | 210.0 | 185.0 | 35.0 | 5 x 5, 0.5 mm pitch PLASTIC QUAD FLATPACK - NO LEAD Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details. 4224745/A PLASTIC QUAD FLATPACK - NO LEAD ### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. - 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance. PLASTIC QUAD FLATPACK - NO LEAD NOTES: (continued) - 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271). - Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented. PLASTIC QUAD FLATPACK - NO LEAD NOTES: (continued) 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. ### 重要なお知らせと免責事項 テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。 これらのリソースは、 テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。 上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている テキサス・インスツルメンツ製品を使用するアプリケーションの開発の目的でのみ、 テキサス・インスツルメンツはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。 テキサス・インスツルメンツや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、 テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、 テキサス・インスツルメンツは一切の責任を拒否します。 テキサス・インスツルメンツの製品は、 テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。 テキサス・インスツルメンツがこれらのリソ 一スを提供することは、適用される テキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありません。 お客様がいかなる追加条項または代替条項を提案した場合でも、 テキサス・インスツルメンツはそれらに異議を唱え、拒否します。 郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated