

参考資料

DLP7000

JAJSHI5G – AUGUST 2012 – REVISED APRIL 2023

DLP7000 DLP® 0.7 XGA 2x LVDS タイプ A DMD

1 特長

- 対角 0.7 インチのマイクロミラー・アレイ
 - マイクロメートル・サイズの AI ミラーの 1024 × 768 のアレイ
 - マイクロミラー・ピッチ:13.68µm
 - マイクロミラー傾斜角:±12°(フラット状態に対して)
 - コーナー・イルミネーション (対角照射)対応
- 可視光 (400nm~700nm) で使用
 - ウィンドウ透過率 97% (シングル・パス、ウィンドウ表面を 2 回通過)
 - マイクロミラーの反射率 88%
 - アレイの回折効率 86%
 - アレイの充填率 92%
- 2 つの 16 ビット、低電圧差動信号 (LVDS) のダブル・ データ・レート (DDR) 入力データ・バス
- 最高 400MHz の入力データ・クロック速度
- 40.64mm × 31.75mm × 6.0mm のパッケージ
- 気密パッケージ

2 アプリケーション

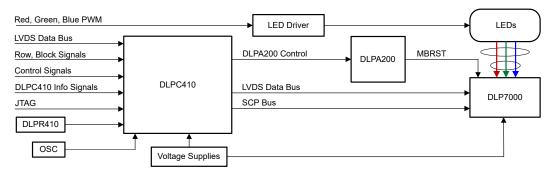
- 産業用
 - デジタル・イメージング・リソグラフィー
 - レーザー・マーキング
 - LCD および OLED のリペア
 - コンピュータ・トゥ・プレート・プリンタ
 - SLA 3D プリンタ
 - マシン・ビジョンおよびファクトリ・オートメーション用の3Dスキャナ
 - フラット・パネル・リソグラフィー
- 医療用
 - 光線療法機器
 - 眼科用
 - ダイレクト・マニュファクチャリング
 - ハイパースペクトル画像処理
 - 3D 生体認証
 - 共焦点顕微鏡

- ディスプレイ
 - 3D 画像処理顕微鏡
 - 適応型照明
 - 拡張現実および情報オーバーレイ

3 概要

DLP7000 XGA チップセットは、DLP® Discovery™ 4100 プラットフォームの一部であり、高分解能で高性能の空間光変調を実現します。DLP7000 は、0.7 XGA チップセットに欠かせないデジタル・マイクロミラー・デバイス (DMD)であり、現在のところ DLP カタログ・ポートフォリオで最速のパターン速度をサポートしています。また、DLP Discovery 4100 プラットフォームでは、個別のマイクロミラーについて最高レベルの制御を実現でき、オプションとしてランダムな行アドレッシングも使用できます。気密パッケージと相まって、DLP7000 が備える独自の能力と価値は、広範な産業用、医療用、および高度なディスプレイ・アプリケーションをサポートするのに最適です。

0.7 XGA チップセットには、**DLP7000 DMD** に加えて次のコンポーネントが含まれます。


- 32000Hz (1 ビット・バイナリ) および 4000Hz (8 ビット・グレー) を超える高速パターン・レート用の専用 DLPC410 コントローラ
- 1 ユニットの DLPR410 (DLP Discovery 4100 構成 PROM)
- 1 ユニットの DLPA200 (DMD マイクロミラー・ドライバ)

デバイス情報(1)

部品番号	パッケージ	本体サイズ (公称)
DLP7000	FLP (203)	40.64mm × 31.75mm

(1) 利用可能なすべてのパッケージについては、データシートの末尾 にある注文情報を参照してください。

簡素化されたアプリケーション

Table of Contents

1 特長	8.5 Optical Interface and System Image Quality Considerations34
2 アプリケーション1	8.6 Micromirror Array Temperature Calculation
3 概要	8.7 Micromirror Landed-On/Landed-Off Duty Cycle 38
4 Revision History	9 Application and Implementation41
5 概要 (続き)5	9.1 Application Information
6 Pin Configuration and Functions5	9.2 Typical Application
7 Specifications	10 Power Supply Recommendations45
7.1 Absolute Maximum Ratings	10.1 DMD Power-Up and Power-Down Procedures45
7.2 Storage Conditions	11 Layout
7.3 ESD Ratings	11.1 Layout Guidelines
7.4 Recommended Operating Conditions14	11.2 Layout Example
7.5 Thermal Information	12 Device and Documentation Support
7.6 Electrical Characteristics	12.1 Device Support
7.7 LVDS Timing Requirements17	12.2 サード・パーティ製品に関する免責事項49
7.8 LVDS Waveform Requirements	12.2 y 「イン・フィ表品に関する元貞事項45 12.3 Documentation Support49
7.9 Serial Control Bus Timing Requirements17	· ·
7.10 Systems Mounting Interface Loads20	12.4 ドキュメントの更新通知を受け取る方法
7.11 Micromirror Array Physical Characteristics 21	12.5 サポート・リソース50
7.12 Micromirror Array Optical Characteristics22	12.6 静電気放電に関する注意事項50
7.13 Window Characteristics	12.7 Export Control Notice50
7.14 Chipset Component Usage Specification 23	12.8 用語集50
8 Detailed Description24	12.9 Related Links50
8.1 Overview24	12.10 Trademarks50
8.2 Functional Block Diagram24	13 Mechanical, Packaging, and Orderable
8.3 Feature Description26	Information50
8.4 Device Functional Modes31	

4 Revision History

資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。

Changes from Revision F (June 2019) to Revision G (April 2023)

Page

Changed Micromirror switching time typical value from 13 µs to 12.5 µs and removed 22 µs Max value. 22

С	hanges from Revision E (May 2017) to Revision F (June 2019)	Page
•	「ブロードバンド」を削除	1
	高速パターン・レートの値を変更	
	パッケージ・タイプを FLP (203) に変更	
•	Changed package type to FLP; deleted reference to LCCC	5
•	Changed FLP package figure "bottom view"	5
•	Changed "Case temperature" to "Array temperature"	
•	Changed "Case temperature" to "Array temperature"	13
•	Changed "Device temperature gradient - operational" to "Absolute temperature delta between the wind test points (TP2, TP3) and the ceramic test point TP1"	
•	Deleted "RH" after "%"	
•	Changed "Applicable before the DMD is installed in the final product" to "Applicable for the DMD as a component or non-operating system"	13
•	Changed ", non-condensing" to "(non-condensing)"	
•	Changed "JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard control process." to "JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with standard ESD control process. Manufacturing with less than 500-V HBM is possible if necessary precause taken."	d ESD a autions
•	Changed Table "Recommended Operating Conditions"	14

•	Added "RH" under "Environmental"	14
•	Added cross reference to table note at row "ILL _{VIS} "	
•	Changed Array temperature, Long-term operational MAX from "30" to "40"	14
•	Changed package type to FLP in table "THERMAL METRIC"	
•	Added "or the combined loads of the thermal and electrical areas reduced"	
•	Deleted row "Window artifact size" in table "Window Characteristics"	23
•	Changed mirror pitch to 13.68 µm	26
•	Changed figure "DLPC410 Data Flow" to correct signals of LVDS BUS B out	27
•	Changed "Window Characteristics and Optics" to "Optical Interface and System Image Quality	
	Considerations"	34
•	Changed "a Thermal Test Point locations 1 and 2" to "thermal test points TP1, TP2, and TP3"	35
•	Added "(typically used for display applications)" to "Micromirror Array Temperature Calculation - Lumens	
	based"	37
•	Deleted Subsection "Fiducials"	46
_		
C	hanges from Revision D (November 2015) to Revision E (May 2017)	Page
•	Clarified T _{GRADIENT} footnote	13
•	Changed TC2 to TP1 to follow latest thermal test point nomenclature convention in セクション 7.5	
•	Changed Micromirror active border from 10 to correct value of 6	
•	Changed micromirror crossover to mean transition time and renamed previous crossover to micromirror	
	switching time typical micromirror crossover time typo (16 µs to 13 µs)	
•	Added typical micromirror switching time - 13 µs.	
•	Changed "Micromirror switching time" to "Array switching time" for clarity	
•	Added clarification to Micromirror switching time at 400 MHz with global reset	
•	Changed references to D4100 Discovery to DPC410	
•	Changed Thermal Test Point Location drawing to current numbering convention	
•	Changed Micromirror Array Temperature Calculations to indicate that it is based on lumens	
•	Added Micromirror Array Temperature Calculation based on power	
	Updated 🗵 12-1	
	Removed link to DLP Discovery 4100 chipset datasheet	
•	Added DLPR410 to Related Links table	
C	hanges from Revision C (April 2014) to Revision D (November 2015)	Page
•	Updated ⊠ 12-1 and graphic for Device Marking	

5 概要 (続き)

DLP7000 の機能と動作の信頼性を確保するには、チップセットの他の部品と組み合わせて使用する必要があります。専用のチップセットにより、開発者は DMD へ簡単にアクセスでき、マイクロミラーを高速に独立して制御できます。

DLP7000 は、デジタル制御のマイクロ電気機械システム (MEMS) 空間光変調器 (SLM) です。 適切な光学系と組み合わせることで、DLP7000 を使用して受信光の振幅、方向、位相を変調できます。

DLP7000 は、電気的には 1 ビット CMOS メモリ・セルの 2 次元配列から成り、1024 列 × 768 行の格子状に構成されています。この CMOS メモリ・アレイは、2 つの 16 ビット低電圧差動信号 (LVDS) ダブル・データ・レート (DDR) バスを使用して、行単位でアドレス指定します。アドレス指定は、シリアル制御バスを介して処理されます。 特定の CMOS メモリ・アクセス・プロトコルは、DLPC410 デジタル・コントローラによって処理されます。

6 Pin Configuration and Functions

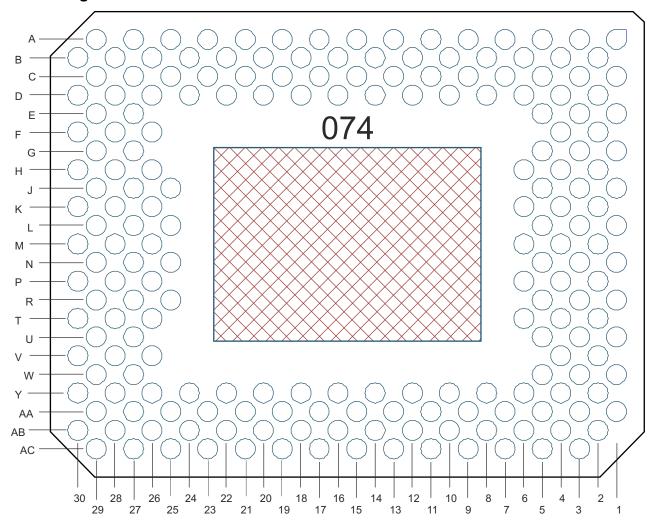


図 6-1. FLP Package 203-Pin CLGA Bottom View

表 6-1. Pin Functions

PIN	(1)	TYPE	oles: 1	DATA	INTERNAL	01 0014	DECODINE	TDAGE
NAME	NO.	(I/O/P)	SIGNAL	RATE ⁽²⁾	TERM ⁽³⁾	CLOCK	DESCRIPTION	TRACE
DATA INPUT								
D_AN(0)	B10	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_A		368.72
D_AN(1)	A13	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_A		424.61
D_AN(2)	D16	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_A		433.87
D_AN(3)	C17	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_A		391.39
D_AN(4)	B18	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_A		438.57
D_AN(5)	A17	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_A		391.13
D_AN(6)	A25	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_A		563.26
D_AN(7)	D22	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_A		411.62
D_AN(8)	C29	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_A	Input data bus	595.11
D_AN(9)	D28	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_A	A (2x LVDS)	543.07
D_AN(10)	E27	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_A		455.98
D_AN(11)	F26	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_A		359.5
D_AN(12)	G29	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_A		542.67
D_AN(13)	H28	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_A		551.51
D_AN(14)	J27	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_A		528.04
D_AN(15)	K26	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_A		484.38
D_AP(0)	B12	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_A		366.99
D_AP(1)	A11	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_A		417.47

PIN ⁽¹⁾		TYPE	SIGNAL DATA		INTERNAL			
NAME	NO.	(I/O/P)	SIGNAL	RATE ⁽²⁾	TERM ⁽³⁾	CLOCK	DESCRIPTION	TRACE
D_AP(2)	D14	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_A		434.89
D_AP(3)	C15	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_A		394.67
D_AP(4)	B16	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_A		437.3
D_AP(5)	A19	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_A		389.01
D_AP(6)	A23	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_A		562.92
D_AP(7)	D20	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_A		410.34
D_AP(8)	A29	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_A	Input data bus A - continued	594.61
D_AP(9)	B28	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_A	(2x LVDS)	539.88
D_AP(10)	C27	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_A		456.78
D_AP(11)	D26	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_A		360.68
D_AP(12)	F30	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_A		543.97
D_AP(13)	H30	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_A		570.85
D_AP(14)	J29	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_A		527.18
D_AP(15)	K28	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_A		481.02

PIN ⁽¹)	TYPE	SIGNAL	DATA	INTERNAL	СГОСК	DESCRIPTION	TRACE
NAME	NO.	(I/O/P)	SIGNAL	RATE ⁽²⁾	TERM ⁽³⁾	CLOCK	DESCRIPTION	IRACE
D_BN(0)	AB10	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_B		368.72
D_BN(1)	AC13	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_B		424.61
D_BN(2)	Y16	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_B	Input data bus B (2x LVDS)	433.87
D_BN(3)	AA17	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_B		391.39
D_BN(4)	AB18	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_B		438.57

	-(4)		(continued	continued)				
PIN NAME	NO.	TYPE (I/O/P)	SIGNAL	DATA RATE ⁽²⁾	INTERNAL TERM ⁽³⁾	СГОСК	DESCRIPTION	TRACE
D_BN(5)	AC17	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_B		391.13
D_BN(6)	AC25	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_B		563.26
D_BN(7)	Y22	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_B		411.62
D_BN(8)	AA29	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_B		595.11
D_BN(9)	Y28	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_B		543.07
D_BN(10)	W27	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_B		455.98
D_BN(11)	V26	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_B		360.94
D_BN(12)	Т30	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_B		575.85
D_BN(13)	R29	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_B	B Input data bus	519.37
D_BN(14)	R27	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_B		532.59
D_BN(15)	N27	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_B		441.14
D_BP(0)	AB12	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_B		366.99
D_BP(1)	AC11	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_B		417.47
D_BP(2)	Y14	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_B		434.89
D_BP(3)	AA15	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_B		394.67
D_BP(4)	AB16	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_B		437.3
D_BP(5)	AC19	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_B		389.01
D_BP(6)	AC23	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_B		562.92
D_BP(7)	Y20	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_B		410.34

PIN ⁽	(1)	TYPE	6101111	DATA	INTERNAL	01.00:1	DEGCE!D=:C:	TD (
NAME	NO.	(I/O/P)	SIGNAL	RATE ⁽²⁾	TERM ⁽³⁾	CLOCK	DESCRIPTION	TRACE
D_BP(8)	AC29	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_B		594.61
D_BP(9)	AB28	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_B		539.88
D_BP(10)	AA27	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_B		456.78
D_BP(11)	Y26	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_B	Input data bus B - continued	360.68
D_BP(12)	U29	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_B	(2x LVDS)	578.46
D_BP(13)	T28	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_B		509.74
D_BP(14)	P28	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_B		534.59
D_BP(15)	P26	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_B		440
DATA CLOCK	1		1			1		
DCLK_AN	B22	Input	LVCMOS	_	Differential Terminated - 100 Ω	_	DCLK for data bus A (2x	477.1
DCLK_AP	B24	Input	LVCMOS	_	Differential Terminated - 100 Ω	_	LVDS)	477.14
DCLK_BN	AB22	Input	LVCMOS	_	Differential Terminated - 100 Ω	_	DCLK for data	477.07
DCLK_BP	AB24	Input	LVCMOS	_	Differential Terminated - 100 Ω	_	bus B (2x LVDS)	477.14
DATA CONTRO	L INPUTS							
SCTRL_AN	C21	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_A	Serial control for data bus A	477.07
SCTRL_AP	C23	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_A	(2x LVDS)	477.14
SCTRL_BN	AA21	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_B	Serial control for data bus B	477.07
SCTRL_BP	AA23	Input	LVCMOS	DDR	Differential Terminated - 100 Ω	DCLK_B	(2x LVDS)	477.14
SERIAL COMM	UNICATION A	AND CONFIGUR	ATION					
SCPCLK	E3	Input	LVCMOS	_	Pull-down	_	Serial port clock	379.29
SCPDO	B2	Output	LVCMOS	_	_	SCPCLK	Serial port output	480.91

PIN	(1)	TYPE	衣 6-1. PIN I	DATA	INTERNAL			
NAME	NO.	(I/O/P)	SIGNAL	RATE ⁽²⁾	TERM ⁽³⁾	CLOCK	DESCRIPTION	TRACE
SCPDI	F4	Input	LVCMOS	_	Pull-down	SCPCLK	Serial port input	323.56
SCPENZ	D4	Input	LVCMOS	_	Pull-down	SCPCLK	Serial port enable	326.99
PWRDNZ	C3	Input	LVCMOS	-	Pull-down	_	Device Reset	406.28
MODE_A	D8	Input	LVCMOS	_	Pull-down	_	Data bandwidth mode select A	396.05
MODE_B	C11	Input	LVCMOS	_	Pull-down	_	Data bandwidth mode select B	208.86
MICROMIRRO	R BIAS CLOC	KING PULSE		•			•	
MBRST(0)	P2	Input	Analog	_	_	_		
MBRST(1)	AB4	Input	Analog	_	_	_	1	
MBRST(2)	AA7	Input	Analog	_	-	_	1	
MBRST(3)	N3	Input	Analog	_	_	_	1	
MBRST(4)	M4	Input	Analog	_	_	_	Micromirror	
MBRST(5)	AB6	Input	Analog	_	_	_	Bias Clocking	
MBRST(6)	AA5	Input	Analog	_	_	_	Pulse "MBRST"	
MBRST(7)	L3	Input	Analog	_	-	_	signals "clock" micromirrors	
MBRST(8)	Y6	Input	Analog	_	_	_	into state of	
MBRST(9)	K4	Input	Analog	_	_	_	LVCMOS memory cell	
MBRST(10)	L5	Input	Analog	_	_	_	associated with	
MBRST(11)	AC5	Input	Analog	_	_	_	each mirror.	
MBRST(12)	Y8	Input	Analog	_	-	_		
MBRST(13)	J5	Input	Analog	_	_	_		
MBRST(14)	K6	Input	Analog	_	_	_		
MBRST(15)	AC7	Input	Analog	_	_	_		
POWER			1			I		
V _{CC}	A7, A15, C1, E1, U1, W1, AB2, AC9, AC15	Power	Analog	_	-	-	Power for LVCMOS Logic	-
V _{CC1}	A21, A27, D30, M30, Y30, AC21, AC27	Power	Analog	_	-	-	Power supply for LVDS Interface	_
V _{CC2}	G1, J1, L1, N1, R1	Power	Analog	_	_	_	Power for High Voltage CMOS Logic	-

PIN ⁽¹)	TYPE	表 6-1. Pin F	DATA	INTERNAL			
NAME	NO.	(I/O/P)	SIGNAL	RATE ⁽²⁾	TERM(3)	CLOCK	DESCRIPTION	TRACE
Vss	A1, A3, A5, A9, B4, B8, B14, B20, B26, B30, C7, C13, C19, C25, D6, D12, D18, D24, E29, F2, F28, G3, G27, H2, H4, H26, J3, J25, K2, K30, L25, L27, L29, M2, M6, M26, M28, N5, N25, N29, P4, P30, R3, R5, R25, T2, T26, U27, V28, V30, W5, W29, Y4, Y12, Y18, Y24, AA3, AA9, AA13, AA19, AA25, AB8, AB14, AB20, AB30	Power	Analog	_	_	_	Common return for all power inputs	_
RESERVED SIG	MALS (NOT	FOR USE IN SYS		T			1	I
RESERVED_AA 1	AA1	Input	LVCMOS	_	Pull-down	_	Pins should be connected to VSS	_
RESERVED_B6	В6	Input	LVCMOS	-	Pull-down	_	_	_
RESERVED_T4	T4	Input	LVCMOS	_	Pull-down	_	_	_
RESERVED_U5	U5	Input	LVCMOS	_	Pull-down	_	_	_
NO_CONNECT	AA11, AC3, C5, C9, D10, D2, E5, G5, H6, P6, T6, U3, V2, V4, W3, Y10, Y2	-	_	-	-	-	Do not connect	-

- (1) The following power supplies are required to operate the DMD: VCC, VCC1, VCC2. VSS must also be connected.
- (2) DDR = Double Data Rate. SDR = Single Data Rate. Refer to the LVDS Timing Requirements for specifications and relationships.
- (3) Refer to *Electrical Characteristics* for differential termination specification.

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT
ELECTRICAL					
V _{CC}	Voltage applied to V _{CC} ^{(2) (3)}		-0.5	4	V
V _{CCI}	Voltage applied to V _{CCI} ^{(2) (3)}		-0.5	4	V
V _{CC2}	Voltage applied to V _{VCC2} (2) (3) (4)		-0.5	8	V
V _{MBRST}	Micromirror Clocking Pulse Wavefo Input Pins (supplied by DLPA200)	rm Voltage applied to MBRST[15:0]	-28	28	V
V _{CC} - V _{CCI}	Supply voltage delta (absolute value		0.3	V	
	Voltage applied to all other input pir	ns ⁽²⁾	-0.5	V _{CC} + 0.3	V
V _{ID}		Maximum differential voltage, damage can occur to internal termination resistor if exceeded, see LVDS Waveform Requirements		700	mV
I _{OH}	Current required from a high-level output	V _{OH} = 2.4 V		-20	mA
I _{OL}	Current required from a low-level output	V _{OL} = 0.4 V		15	mA
ENVIRONMENT	AL				
т	Array temperature: operational ⁽⁵⁾		10	65	°C
T _{ARRAY}	Array temperature: non-operational	(5)	-40	80	°C
T _{DELTA}	Absolute temperature delta betwee and the ceramic test point TP1 ⁽⁶⁾	n the window test points (TP2, TP3)		10	°C
RH	Operating relative humidity (non-co	ndensing)	0	95	%

- (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) All voltages referenced to V_{SS} (ground).
- (3) VOFFSET supply transients must fall within specified max voltages.
- (4) To prevent excess current, the supply voltage delta |V_{CC} V_{CC|} must be less than specified limit.
- (5) DMD Temperature is the worst-case of any test point shown in Thermal Test Point Location, or the active array as calculated by the *Micromirror Array Temperature Calculation*.
- (6) As either measured, predicted, or both between any two points -- measured on the exterior of the package, or as predicted at any point inside the micromirror array cavity. Refer to *Thermal Information* and *Micromirror Array Temperature Calculation*.

7.2 Storage Conditions

Applicable for the DMD as a component or non-operating in a system

		MIN	MAX	UNIT
_	Storage temperature	-40	80	°C
I sto	Storage humidity (non-condensing)		95	%

7.3 ESD Ratings

				VALUE	UNIT
\/		ESDA/JEDEC JS-001(1)	All pins except MBRST[15:0]	±2000	V
V _{(E}	^{SD)} discharge		Pins MBRST[15:0]	±250	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible if necessary precautions are taken.

7.4 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)

		MIN	NOM	MAX	UNIT
ELECTRICA	L (2) (3)				
V _{CC}	Supply voltage for LVCMOS core logic	3.0	3.3	3.6	V
V _{CC1}	Supply voltage for LVDS receivers	3.0	3.3	3.6	V
V _{CC2}	Mirror electrode and HVCMOS supply voltage	7.25	7.5	7.75	V
VMBRST	Clocking Pulse Waveform Voltage applied to MBRST[29:0] Input Pins (supplied by DLPA200s)	-27		26.5	V
VCCI-VCC	Supply voltage delta (absolute value) (4)			0.3	V
ENVIRONME	NTAL			'	
RH	Operating relative humidity (non-condensing)			95	%
ENVIRONME	NTAL ⁽⁵⁾ For Illumination Source Between 420 nm and 700 nm			'	
T _{ARRAY}	Array temperature, Short–term operational (12) (7) (9)	0		10	°C
T _{WINDOW}	Window Temperature test points TP2 and TP3, Long-term operational ⁽⁸⁾	10		65	°C
T _{DELTA}	Absolute Temperature delta between the window test points (TP2, TP3) and the ceramic test point TP1. ⁽¹¹⁾			10	°C
ILL _{VIS}	Illumination ⁽¹⁰⁾			Thermally limited	W/cm ²
ENVIRONME	NTAL ⁽⁵⁾ For Illumination Source Between 400 nm and 420 nm			-	
T _{ARRAY}	Array temperature, Long–term operational (12) (7) (6) (8)	20		30	°C
T _{WINDOW}	Window Temperature test points TP2 and TP3, Long-term operational ⁽⁸⁾			30	°C
T _{DELTA}	Absolute Temperature delta between the window test points (TP2, TP3) and the ceramic test point TP1. ⁽¹¹⁾			10	°C
	Illumination ⁽¹⁰⁾			11	W/cm ²
ILL	Illumination(10)			16.2	W
ENVIRONME	NTAL ⁽⁵⁾ For Illumination Source <400 nm and >700 nm				
	Array temperature, Long-term operational (12) (7) (6) (8)	20		40 (13)	°C
T _{ARRAY}	Array temperature, Short–term operational Micromirror Array Temperature Calculation (7) (9)	0		20	
T _{WINDOW}	Window Temperature test points TP2 and TP3, Long-term operational ⁽⁸⁾	10		65	°C
ILL	Illumination ⁽¹⁰⁾			10	mW/cm ²

- The functional performance of the device specified in this data sheet is achieved when operating the device within the limits defined by the Recommended Operating Conditions. No level of performance is implied when operating the device above or below the Recommended Operating Conditions limits.
- Voltages V_{CC}, V_{CC1}, and V_{CC2} are required for proper DMD operation. V_{SS} must also be connected.
- All voltages are referenced to common ground V_{SS}. (3)
- Exceeding the recommended allowable absolute voltage difference between V_{CC} and V_{CC1} may result in excess current draw. The difference between VCC and V_{CC1} , $|V_{CC} - V_{CC1}|$, should be less than the specified limit.
- Optimal, long-term performance and optical efficiency of the Digital Micromirror Device (DMD) can be affected by various application parameters, including illumination spectrum, illumination power density, micromirror landed duty-cycle, ambient temperature (storage and operating), DMD temperature, ambient humidity (storage and operating), and power on or off duty cycle. TI recommends that application-specific effects be considered as early as possible in the design cycle.
- Simultaneous exposure of the DMD to the maximum Recommended Operating Conditions. for temperature and UV illumination will reduce device lifetime.
- The array temperature cannot be measured directly and must be computed analytically from the temperature measured at test point 1 (7) (TP1) shown in 🗵 8-10 and the package thermal resistance in *Thermal Information* using Micromirror Array Temperature Calculation.
- Long-term is defined as the usable life of the device.
- Array temperatures beyond those specified as long-term are recommended for short-term conditions only (power-up). Short-term is defined as cumulative time over the usable life of the device and is less than 500 hours.
- (10) Total integrated illumination power density, above or below the indicated wavelength threshold or in the indicated wavelength range.
- (11) The temperature delta is the highest difference between the ceramic test point (TP1) and window test points (TP2) and (TP3) in Thermal Test Point Location.
- (12) In some applications, the total DMD heat load can be dominated by the amount of incident light energy absorbed. See Micromirror Array Temperature Calculation for further details.
- (13) Per 🗵 7-1, the maximum operational case temperature should be derated based on the micromirror landed duty cycle that the DMD experiences in the end application. Refer to Micromirror Landed-On/Landed-Off Duty Cycle for a definition of micromirror landed duty cycle.

Product Folder Links: DLP7000

Copyright © 2023 Texas Instruments Incorporated

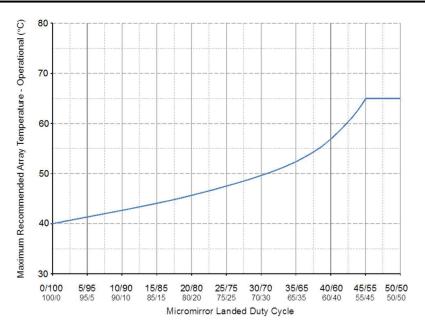


図 7-1. Max Recommended DMD Temperature – Derating Curve

7.5 Thermal Information

	DLP7000	
THERMAL METRIC	FLP (Package)	UNIT
	203 PINS	
Thermal resistance, active area to TP1 ⁽¹⁾	0.90	°C/W

(1) The DMD is designed to conduct absorbed and dissipated heat to the back of the package where it can be removed by an appropriate heat sink. The heat sink and cooling system must be capable of maintaining the package within the temperature range specified in the *Recommended Operating Conditions*. The total heat load on the DMD is largely driven by the incident light absorbed by the active area; although other contributions include light energy absorbed by the window aperture and electrical power dissipation of the array. Optical systems should be designed to minimize the light energy falling outside the window clear aperture since any additional thermal load in this area can significantly degrade the reliability of the device.

7.6 Electrical Characteristics

over the range of recommended supply voltage and recommended case operating temperature (unless otherwise noted).

	PARAMETERS	TEST CONDITIONS	MIN	NOM	MAX	UNIT
V _{OH}	High-level output voltage ⁽¹⁾ , See ☑ 8-3	$V_{CC} = 3.0 \text{ V}, I_{OH} = -20 \text{ mA}$	2.4			V
V _{OL}	Low-level output voltage ⁽¹⁾ , See ⊠ 8-3	V _{CC} = 3.6 V, I _{OH} = 15 mA			0.4	V
V _{MBRST}	Clocking Pulse Waveform applied to MBRST[29:0] Input Pins (supplied by DLPA200)		-27		26.5	V
loz	High impedance output current ⁽¹⁾	V _{CC} = 3.6 V			10	μA
	High-level output current ⁽¹⁾	V_{OH} = 2.4 V, $V_{CC} \ge 3$ V			-20	m 1
I _{OH}	High-level output current	V _{OH} = 1.7 V, V _{CC} ≥ 2.25 V			-15	mA
I _{OL}	Low-level output current ⁽¹⁾	V _{OL} = 0.4 V, V _{CC} ≥ 3 V			15	mA
	Low-level output current	V _{OL} = 0.4 V, V _{CC} ≥ 2.25 V			14	IIIA
V _{IH}	High-level input voltage ⁽¹⁾		1.7		VCC + .3	V
V _{IL}	Low-level input voltage ⁽¹⁾		-0.3		0.7	V
I _{IL}	Low-level input current ⁽¹⁾	V _{CC} = 3.6 V, V _I = 0 V			-60	μA
I _{IH}	High-level input current ⁽¹⁾	$V_{CC} = 3.6 \text{ V}, V_{I} = V_{CC}$			200	μΑ
I _{CC}	Current into V _{CC} pin	V _{CC} = 3.6 V			1475	mA
I _{CCI}	Current into V _{CCI} pin ⁽²⁾	V _{CCI} = 3.6 V			450	mA
I _{CC2}	Current into V _{CC2} pin	V _{CC2} = 8.75 V			25	mA
Z _{IN}	Internal Differential Impedance		95		105	Ω
Z _{LINE}	Line Differential Impedance (PWB, Trace)		90	100	110	Ω
Cı	Input capacitance ⁽¹⁾	f = 1 MHz			10	pF
Co	Output capacitance ⁽¹⁾	f = 1 MHz			10	pF
C _{IM}	Input capacitance for MBRST[29:0] pins	f = 1 MHz	220		270	pF

⁽¹⁾ Applies to LVCMOS pins only.

⁽²⁾ Exceeding the maximum allowable absolute voltage difference between V_{CC} and V_{CCI} may result in excess current draw. See the Absolute Maximum Ratings for details.

7.7 LVDS Timing Requirements

over operating free-air temperature range (unless otherwise noted). See ⊠ 7-2

		MIN	NOM	MAX	UNIT
f _{DCLK_*}	DCLK_* clock frequency {where * = [A, or B]}	200		400	MHz
t _c	Clock Cycle - DLCK_*	2.5			ns
t _w	Pulse Width - DLCK_*		1.25		ns
t _s	Setup Time - D_*[15:0] and SCTRL_* before DCLK_*	0.35			ns
t _h	Hold Time, D_*[15:0] and SCTRL_* after DCLK_*	0.35			ns
t _{skew}	Skew between bus A and B	-1.25		1.25	ns

7.8 LVDS Waveform Requirements

over operating free-air temperature range (unless otherwise noted). See 🗵 7-3

		MIN	NOM	MAX	UNIT
V _{ID}	Input Differential Voltage (absolute difference)	100	400	600	mV
V _{CM}	Common Mode Voltage		1200		mV
V _{LVDS}	LVDS Voltage	0		2000	mV
t _r	Rise Time (20% to 80%)	100		400	ps
t _r	Fall Time (80% to 20%)	100		400	ps

7.9 Serial Control Bus Timing Requirements

over operating free-air temperature range (unless otherwise noted). See \boxtimes 7-4 and \boxtimes 7-5

		MIN	NOM MAX	UNIT
f _{SCP_CLK}	SCP Clock Frequency	50	500	kHz
t _{SCP_SKEW}	Time between valid SCP_DI and rising edge of SCP_CLK	-300	300	ns
t _{SCP_DELAY}	Time between valid SCP_DO and rising edge of SCP_CLK		960	ns
t _{SCP_EN}	Time between falling edge of SCP_EN and the first rising edge of SCP_CLK	30		ns
t_SCP	Rise time for SCP signals		200	ns
t _{f_SCP}	Fall time for SCP signals		200	ns

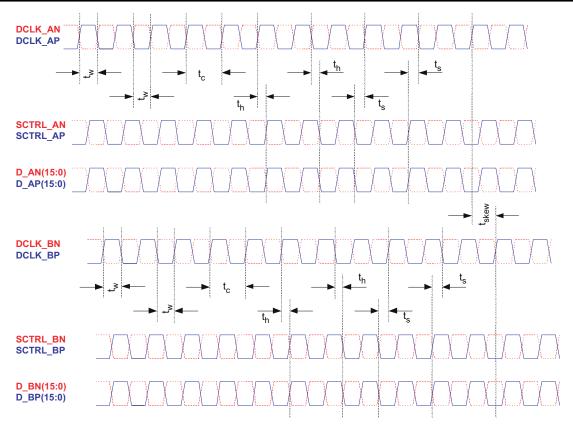
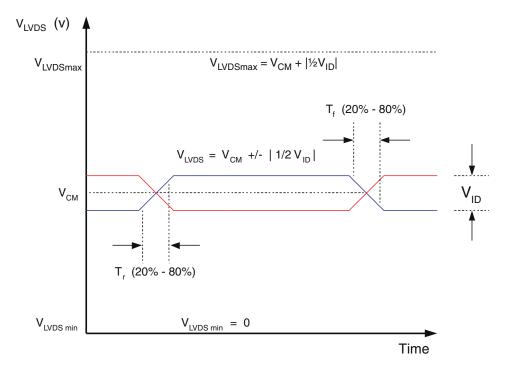



図 7-2. LVDS Timing Waveforms

☑ 7-3. LVDS Waveform Requirements

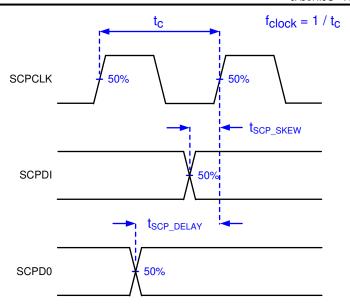


図 7-4. Serial Communications Bus Timing Parameters

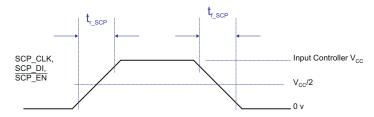
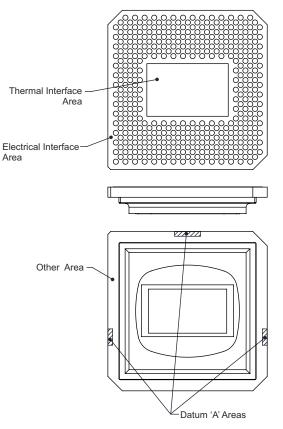


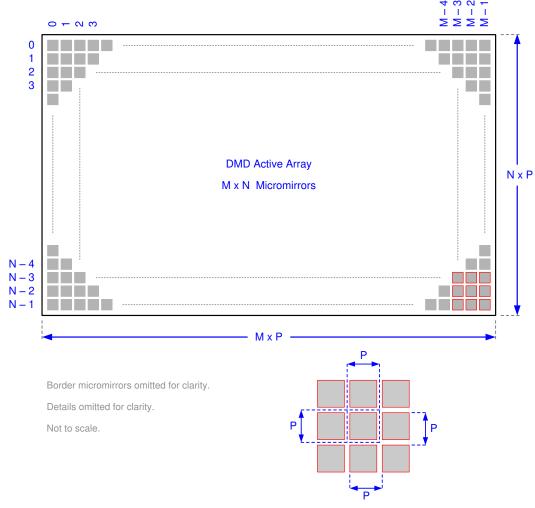
図 7-5. Serial Communications Bus Waveform Requirements

7.10 Systems Mounting Interface Loads

			MIN	NOM	MAX	UNIT
Maximum system mounting interface	Thermal Interface area	(See 🗵 7-6)			111	N
load to be applied to the:	Electrical Interface area				423	N
	Datum "A" Interface area ⁽¹⁾				400	N

(1) Combined loads of the thermal and electrical interface areas in excess of Datum "A" load shall be evenly distributed outside the Datum "A" area (425 + 111 – Datum "A"), or the combined loads of the thermal and electrical areas reduced.




図 7-6. System Interface Loads

7.11 Micromirror Array Physical Characteristics

	PARAMETER			VALUE	UNIT
М	Number of active columns			1024	micromirrors
N	Number of active rows			768	micromirrors
Р	Micromirror (pixel) pitch		See 🗵 7-7	13.68	μm
	Micromirror active array width	M×P		14.008	mm
	Micromirror active array height	N×P		10.506	mm
	Micromirror active border	Pond of micromirror (POM) ⁽¹⁾		6	micromirrors/side

(1) The structure and qualities of the border around the active array includes a band of partially functional micromirrors called the POM. These micromirrors are structurally and/or electrically prevented from tilting toward the bright or ON state, but still require an electrical bias to tilt toward OFF.

Refer to Micromirror Array Physical Characteristics table for M, N, and P specifications.

図 7-7. Micromirror Array Physical Characteristics

7.12 Micromirror Array Optical Characteristics

TI assumes no responsibility for end-equipment optical performance. Achieving the desired end-equipment optical performance involves making trade-offs between numerous component and system design parameters.

	PARAMETER	CONDITIONS	MIN	NOM	MAX	UNIT
	Micromirror tilt angle	DMD "parked" state ⁽¹⁾ (2) (3), see 🗵 8-5		0		dograda
а		DMD "landed" state ⁽¹⁾ (4) (5) see ⊠ 8-5		12		degrees
β	Micromirror tilt angle tolerance ⁽¹⁾ (4) (6) (7) (8)	See 図 8-5	-1		1	degrees
	Micromirror crossover time ⁽⁹⁾			4		μs
	Micromirror switching time ⁽¹⁰⁾			12.5		μs
	Array switching time at 400 MHz with global reset ⁽¹¹⁾		43			μs
	Non energing migramirrors (12)	Non-adjacent micromirrors			10	micromirrors
	Non-operating micromirrors ⁽¹²⁾	adjacent micromirrors			0	microminors
	Orientation of the micromirror axis-of-rotation ⁽¹³⁾	See 図 8-4	44	45	46	degrees
	Micromirror array optical efficiency ⁽¹⁴⁾ (15)	400 nm to 700 nm, with all micromirrors in the ON state		68%		

- (1) Measured relative to the plane formed by the overall micromirror array.
- (2) "Parking" the micromirror array returns all of the micromirrors to an essentially flat (0°) state (as measured relative to the plane formed by the overall micromirror array).
- (3) When the micromirror array is "parked", the tilt angle of each individual micromirror is uncontrolled.
- (4) Additional variation exists between the micromirror array and the package datums, as shown in the *Mechanical, Packaging, and Orderable Information*.
- (5) When the micromirror array is "landed", the tilt angle of each individual micromirror is dictated by the binary contents of the CMOS memory cell associated with each individual micromirror. A binary value of "1" will result in a micromirror "landing" in an nominal angular position of "+12°". A binary value of 0 results in a micromirror "landing" in an nominal angular position of "-12°".
- (6) Represents the "landed" tilt angle variation relative to the Nominal "landed" tilt angle.
- (7) Represents the variation that can occur between any two individual micromirrors, located on the same device or located on different devices.
- (8) For some applications, it is critical to account for the micromirror tilt angle variation in the overall System Optical Design. With some System Optical Designs, the micromirror tilt angle variation within a device may result in perceivable non-uniformities in the light field reflected from the micromirror array. With some System Optical Designs, the micromirror tilt angle variation between devices may result in colorimetry variations and/or system contrast variations.
- (9) Micromirror crossover time is primarily a function of the natural response time of the micromirrors and is the time it takes for the micromirror to crossover to the other state, but does not include mechanical settling time.
- (10) Micromirror switching time is the time before a micromirror may be addressed again. Crossover time plus mechanical settling time.
- (11) Array switching is controlled and coordinated by the DLPC410 (DLPS024) and DLPA200 (DLPS015). Nominal Switching time depends on the system implementation and represents the time for the entire micromirror array to be refreshed (array loaded plus reset and mirror settling time).
- (12) Non-operating micromirror is defined as a micromirror that is unable to transition nominally from the -12° position to +12° or vice versa.

Product Folder Links: DLP7000

- (13) Measured relative to the package datums "B" and "C", shown in Mechanical, Packaging, and Orderable Information.
- (14) The minimum or maximum DMD optical efficiency observed depends on numerous application-specific design variables, such as:
 - Illumination wavelength, bandwidth/line-width, degree of coherence
 - · Illumination angle, plus angle tolerance
 - Illumination and projection aperture size, and location in the system optical path
 - · Illumination overfill of the DMD micromirror array
 - Aberrations present in the illumination source and/or path
 - · Aberrations present in the projection path

The specified nominal DMD optical efficiency is based on the following use conditions:

- Visible illumination (400 nm 700 nm)
- Input illumination optical axis oriented at 24° relative to the window normal
- Projection optical axis oriented at 0° relative to the window normal
- f/3.0 illumination aperture
- f/2.4 projection aperture

Copyright © 2023 Texas Instruments Incorporated

Based on these use conditions, the nominal DMD optical efficiency results from the following four components:

- · Micromirror array fill factor: nominally 92%
- · Micromirror array diffraction efficiency: nominally 86%
- Micromirror surface reflectivity: nominally 88%
- Window transmission: nominally 97% (single pass, through two surface transitions)
- (15) Does not account for the effect of micromirror switching duty cycle, which is application dependent. Micromirror switching duty cycle represents the percentage of time that the micromirror is actually reflecting light from the optical illumination path to the optical projection path. This duty cycle depends on the illumination aperture size, the projection aperture size, and the micromirror array update rate.

7.13 Window Characteristics

PARAMETER ⁽¹⁾	CONDITIONS	MIN	TYP	MAX	UNIT
Window material designation	Corning 7056				
Window refractive index	at wavelength 589 nm		1.487		
Window flatness ⁽²⁾	Per 25 mm			4	fringes
Window aperture	See ⁽³⁾				
Illumination overfill	Refer to Illumination Overfill				
	At wavelength 405 nm. Applies to 0° and 24° AOI only.	95%			
Window transmittance, single–pass through both surfaces and glass ⁽⁴⁾	Minimum within the wavelength range 420 nm to 680 nm. Applies to all angles 0° to 30° AOI.	97%			
and glace	Average over the wavelength range 420 nm to 680 nm. Applies to all angles 30° to 45° AOI.	97%			

- (1) See Optical Interface and System Image Quality Considerations for more information.
- (2) At a wavelength of 632.8 nm.
- (3) For details regarding the size and location of the window aperture, see the package mechanical characteristics listed in the Mechanical ICD in the Mechanical, Packaging, and Orderable Information.
- (4) See the TI application report DLPA031, Wavelength Transmittance Considerations for DLP DMD Window.

7.14 Chipset Component Usage Specification

The DLP7000 is a component of one or more DLP chipsets. Reliable function and operation of the DLP7000 requires that it be used in conjunction with the other components of the applicable DLP chipset, including those components that contain or implement TI DMD control technology. TI DMD control technology is the TI technology and devices for operating or controlling a DLP DMD.

8 Detailed Description

8.1 Overview

Optically, the DLP7000 consists of 786,432 highly reflective, digitally switchable, micrometer-sized mirrors ("micromirrors"), organized in a two-dimensional array of 1024 micromirror columns by 768 micromirror rows (\boxtimes 8-4). Each aluminum micromirror is approximately 13.68 microns in size (see the "Micromirror Pitch" in \boxtimes 8-4), and is switchable between two discrete angular positions: –12° and +12°. The angular positions are measured relative to a 0° "flat state", which is parallel to the array plane (see \boxtimes 8-5). The tilt direction is perpendicular to the hinge-axis which is positioned diagonally relative to the overall array. The "On State" landed position is directed towards "Row 0, Column 0" (upper left) corner of the device package (see the "Micromirror Hinge-Axis Orientation" in \boxtimes 8-4). In the field of visual displays, the 1024 by 768 "pixel" resolution is referred to as "XGA".

Each individual micromirror is positioned over a corresponding CMOS memory cell. The angular position of a specific micromirror is determined by the binary state (logic 0 or 1) of the corresponding CMOS memory cell contents, after the micromirror "clocking pulse" is applied. The angular position (–12° or +12°) of the individual micromirrors changes synchronously with a micromirror "clocking pulse", rather than being synchronous with the CMOS memory cell data update. Therefore, writing a logic 1 into a memory cell followed by a micromirror "clocking pulse" will result in the corresponding micromirror switching to a +12° position. Writing a logic 0 into a memory cell followed by a micromirror "clocking pulse" will result in the corresponding micromirror switching to a –12° position.

Updating the angular position of the micromirror array consists of two steps. First, updating the contents of the CMOS memory. Second, application of a Micromirror Clocking Pulse to all or a portion of the micromirror array (depending upon the configuration of the system). Micromirror Clocking Pulses are generated externally by a DLPA200, with application of the pulses being coordinated by the DLPC410 controller.

Around the perimeter of the 1024 by 768 array of micromirrors is a uniform band of "border" micromirrors. The border micromirrors are not user-addressable. The border micromirrors land in the -12° position once power has been applied to the device. There are 10 border micromirrors on each side of the 1024 by 768 active array.

⊠ 8-1 shows a DLPC410 and DLP7000 Chipset Block Diagram. The DLPC410 and DLPA200 control and coordinate the data loading and micromirror switching for reliable DLP7000 operation. The DLPR410 is the programmed PROM required to properly configure the DLPC410 controller. For more information on the chipset components, see *Application and Implementation*. For a typical system application using the DLPC410 chipset including the DLP7000, see \boxtimes 9-1.

8.2 Functional Block Diagram

☑ 8-1 is a simplified system block diagram showing the use of the following components:

 DLPC410 	 Xilinx [XC5VLX30] FPGA configured to provide high-speed DMD data and control, and DLPA200
	timing and control

DLPR410 – [XCF16PFSG48C] serial flash PROM contains startup configuration information (EEPROM)

DLPA200 – DMD micromirror driver for the DLP7000 DMD

DLP7000 – Spatial Light Modulator (DMD)

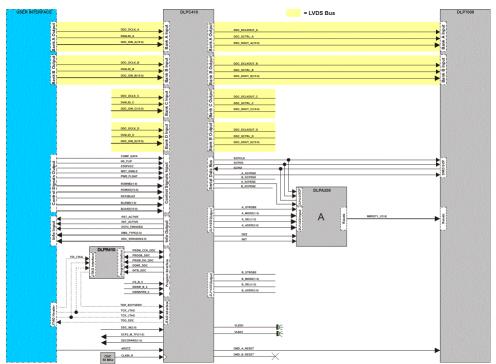


図 8-1. DLPC410 and DLP7000 Chipset Block Diagram

8.3 Feature Description

8.3.1 DLPC410 Chipset DMD Features

表 8-1. DLP7000 Overview

DMD	ARRAY	PATTERNS/s	DATA RATE (Gbps)	MIRROR PITCH
DLP7000 - 0.7"XGA	1024 × 768	32552	25.6	13.68 µm

8.3.1.1 DLPC410 - Digital Controller for DLP Discovery 4100 Chipset

The DLP7000 chipset includes the DLPC410 controller which provides a high-speed LVDS data and control interface for DMD control. This interface is also connected to a second FPGA used to drive applications (not included in the chipset). The DLPC410 generates DMD and DLPA200 initialization and control signals in response to the inputs on the control interface.

For more information, see the DLPC410 data sheet DLPS024.

8.3.1.2 DLPA200 - DMD Micromirror Driver

DLPA200 micromirror driver provides the micromirror clocking pulse driver functions for the DMD. One DLPA200 is required for DLP7000.

For more information on the DLPA200, see the DLPA200 data sheet DLPS015.

8.3.1.3 DLPR410 - PROM for DLP Discovery 4100 Chipset

The DLPC410 is configured at startup from the serial flash PROM. The contents of this PROM can not be altered. For more information, see the DLPR410 data sheet (DLPS027) and the DLPC410 data sheet (DLPS024).

8.3.1.4 DLP7000 - DLP 0.7 XGA 2xLVDS Type-A DMD

8.3.1.4.1 DLP7000 XGA Chip Set Interfaces

This section will describe the interface between the different components included in the chipset. For more information on component interfacing, see *Application and Implementation*.

8.3.1.4.1.1 DLPC410 Interface Description

8.3.1.4.1.1.1 DLPC410 IO

表 8-2 describes the inputs and outputs of the DLPC410 to the user. For more details on these signals, see the DLPC410 data sheet (DLPS024).

表 8-2. Input/Output Description

PIN NAME	DESCRIPTION	I/O
ARST	Asynchronous active low reset	I
CLKIN_R	Reference clock, 50 MHz	1
DIN_[A,B,C,D](15:0)	LVDS DDR input for data bus A,B,C,D (15:0)	I
DCLKIN[A,B,C,D]	LVDS inputs for data clock (200 - 400 MHz) on bus A, B, C, and D	I
DVALID[A,B,C,D]	LVDS input used to start write sequence for bus A, B, C, and D	1
ROWMD(1:0)	DMD row address and row counter control	1
ROWAD(10:0)	DMD row address pointer	1
BLK_AD(3:0)	DMD mirror block address pointer	I
BLK_MD(1:0)	DMD mirror block reset and clear command modes	I
PWR_FLOAT	Used to float DMD mirrors before complete loss of power	1
DMD_TYPE(3:0)	DMD type in use	0
RST_ACTIVE	Indicates DMD mirror reset in progress	0
INIT_ACTIVE	Initialization in progress.	0
VLED0	System "heartbeat" signal	0

Copyright © 2023 Texas Instruments Incorporated

Product Folder Links: *DLP7000*

表 8-2. Input/Output Description (continued)

PIN NAME	DESCRIPTION	I/O
VLED1	Denotes initialization complete	0

8.3.1.4.1.1.2 Initialization

The INIT_ACTIVE (表 8-2) signal indicates that the DLP7000, DLPA200, and DLPC410 are in an initialization state after power is applied. During this initialization period, the DLPC410 is initializing the DLP7000 and DLPA200 by setting all internal registers to their correct states. When this signal goes low, the system has completed initialization. System initialization takes approximately 220 ms to complete. Data and command write cycles should not be asserted during the initialization.

During initialization the user must send a training pattern to the DLPC410 on all data and DVALID lines to correctly align the data inputs to the data clock. For more information about the interface training pattern, see the DLPC410 data sheet (DLPS024).

8.3.1.4.1.1.3 DMD Device Detection

The DLPC410 automatically detects the DMD type and device ID. DMD_TYPE (表 8-2) is an output from the DLPC410 that contains the DMD information. Only DMDs sold with the chipset or kit are recognized by the automatic detection function. All other DMDs do not operate with the DLPC410.

8.3.1.4.1.1.4 Power Down

To ensure long term reliability of the DLP7000, a shutdown procedure must be executed. Prior to power removal, assert the PWR_FLOAT (表 8-2) signal and allow approximately 300 µs for the procedure to complete. This procedure assures the mirrors are in a flat state.

8.3.1.4.2 DLPC410 to DMD Interface

8.3.1.4.2.1 DLPC410 to DMD IO Description

表 8-3 lists the available controls and status pin names and their corresponding signal type, along with a brief functional description.

表 8-3. DLP	C410 to	DMD I/O	Pin	Descriptions
------------	---------	---------	-----	--------------

PIN NAME	DESCRIPTION	I/O
DDC_DOUT_[A,B,C,D](15:0)	LVDS DDR output to DMD data bus A,B,C,D (15:0)	0
DDC_DCLKOUT_[A,B,C,D]	LVDS output to DMD data clock A,B,C,D	0
DDC_SCTRL_[A,B,C,D]	LVDS DDR output to DMD data control A,B,C,D	0

8.3.1.4.2.2 Data Flow

⊠ 8-2 shows the data traffic through the DLPC410. Special considerations are necessary when laying out the DLPC410 to allow best signal flow.

Two LVDS buses transfer the data from the user to the DLPC410. Each bus has its data clock that is input edge aligned with the data (DCLK). Each bus also has its own validation signal that qualifies the data input to the DLPC410 (DVALID).

Output LVDS buses transfer data from the DLPC410 to the DLP7000. Output buses LVDS A and LVDS B are used as highlighted in 🗵 8-2.

8.3.1.4.3 DLPC410 to DLPA200 Interface

8.3.1.4.3.1 DLPA200 Operation

The DLPA200 DMD Micromirror Driver is a mixed-signal Application Specific Integrated Circuit (ASIC) that combines the necessary high-voltage power supply generation and Micromirror Clocking Pulse functions for a family of DMDs. The DLPA200 is programmable and controllable to meet all current and anticipated DMD requirements.

Product Folder Links: DLP7000

The DLPA200 operates from a 12-V power supply input. For more detailed information on the DLPA200, see the DLPA200 data sheet.

8.3.1.4.3.2 DLPC410 to DLPA200 IO Description

The Serial Communications Port (SCP) is a full duplex, synchronous, character-oriented (byte) port that allows exchange of commands from the DLPC410 to the DLPA200. One SCP bus is used for the DLP7000.

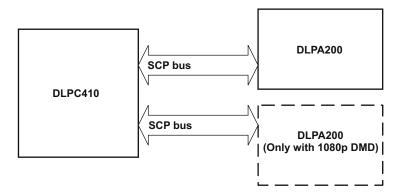


図 8-2. Serial Port System Configuration

There are five signal lines associated with the SCP bus: SCPEN, SCPCK, SCPDI, SCPDO, and IRQ.

表 8-4 lists the available controls and status pin names and their corresponding signal type, along with a brief functional description.

PIN NAME	DESCRIPTION	I/O
A_SCPEN	Active low chip select for DLPA200 serial bus	0
A_STROBE	DLPA200 control signal strobe	0
A_MODE(1:0)	DLPA200 mode control	0
A_SEL(1:0)	DLPA200 select control	0
A_ADDR(3:0)	DLPA200 address control	0
B_SCPEN	Active low chip select for DLPA200 serial bus (2)	0
B_STROBE	DLPA200 control signal strobe (2)	0
B_MODE(1:0)	DLPA200 mode control	0
B_SEL(1:0)	DLPA200 select control	0
B_ADDR(3:0)	DLPA200 address control	0

表 8-4. DLPC410 to DLPA200 I/O Pin Descriptions

The DLPA200 provides a variety of output options to the DMD by selecting logic control inputs: MODE[1:0], SEL[1:0] and reset group address A[3:0] (表 8-4). The MODE[1:0] input determines whether a single output, two outputs, four outputs, or all outputs, will be selected. Output levels (VBIAS, VOFFSET, or VRESET) are selected by SEL[1:0] pins. Selected outputs are tri-stated on the rising edge of the STROBE signal and latched to the selected voltage level after a break-before-make delay. Outputs will remain latched at the last Micromirror Clocking Pulse waveform level until the next Micromirror Clocking Pulse waveform cycle.

8.3.1.4.4 DLPA200 to DLP7000 Interface

8.3.1.4.4.1 DLPA200 to DLP7000 Interface Overview

The DLPA200 generates three voltages: VBIAS, VRESET, and VOFFSET that are supplied to the DMD MBRST lines in various sequences through the Micromirror Clocking Pulse driver function. VOFFSET is also supplied directly to the DMD as DMDVCC2. A fourth DMD power supply, DMDVCC, is supplied directly to the DMD by regulators.

Product Folder Links: DLP7000

Copyright © 2023 Texas Instruments Incorporated

The function of the Micromirror Clocking Pulse driver is to switch selected outputs in patterns between the three voltage levels (VBIAS, VRESET and VOFFSET) to generate one of several Micromirror Clocking Pulse waveforms. The order of these Micromirror Clocking Pulse waveform events is controlled externally by the logic control inputs and timed by the STROBE signal. DLPC410 automatically detects the DMD type and then uses the DMD type to determine the appropriate Micromirror Clocking Pulse waveform.

A direct Micromirror Clocking Pulse operation causes a mirror to transition directly from one latched state to the next. The address must already be set up on the mirror electrodes when the Micromirror Clocking Pulse is initiated. Where the desired mirror display period does not allow for time to set up the address, a Micromirror Clocking Pulse with release can be performed. This operation allows the mirror to go to a relaxed state regardless of the address while a new address is set up, after which the mirror can be driven to a new latched state.

A mirror in the relaxed state typically reflects light into a system collection aperture and can be thought of as "off" although the light is likely to be more than a mirror latched in the "off" state. System designers should carefully evaluate the impact of relaxed mirror conditions on optical performance.

8.3.1.5 Measurement Conditions

The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its transmission line effects must be taken into account. \boxtimes 8-3 shows an equivalent test load circuit for the output under test. The load capacitance value stated is only for characterization and measurement of AC timing signals. This load capacitance value does not indicate the maximum load the device is capable of driving. All rise and fall transition timing parameters are referenced to V_{IL} MAX and V_{IH} MIN for input clocks, V_{OL} MAX and V_{OH} MIN for output clocks.

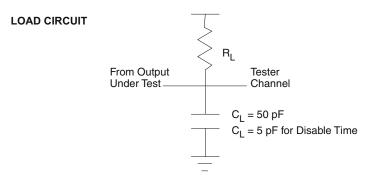


図 8-3. Test Load Circuit for AC Timing Measurements

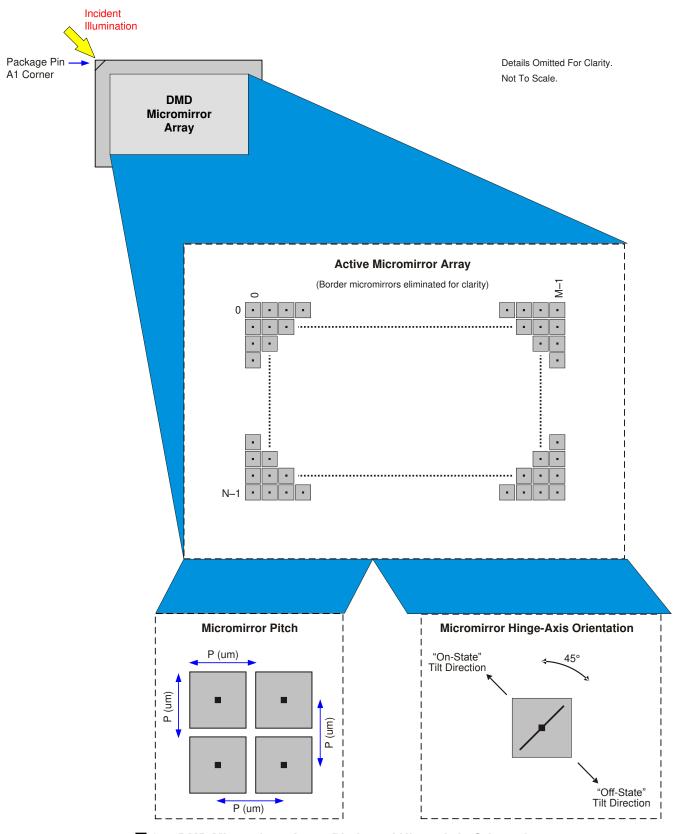


図 8-4. DMD Micromirror Array, Pitch, and Hinge-Axis Orientation

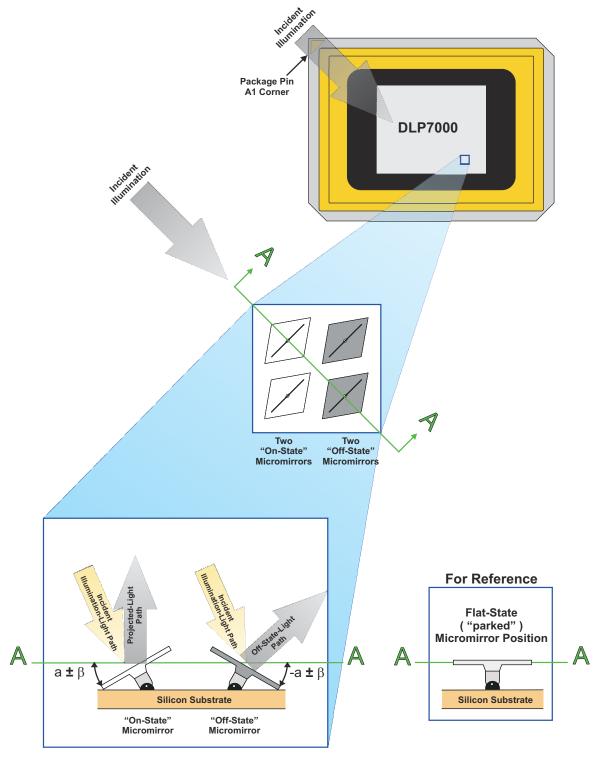


図 8-5. Micromirror Landed Positions and Light Paths

8.4 Device Functional Modes

8.4.1 DMD Operation

The DLP7000 has only one functional mode, it is set to be highly optimized for low latency and high speed in generating mirror clocking pulses and timings.

When operated with the DLPC410 controller in conjunction with the DLPA200 driver, the DLP7000 can be operated in several display modes. The DLP7000 is loaded as 16 blocks of 48 rows each. \boxtimes 8-6, \boxtimes 8-7, \boxtimes 8-8, and \boxtimes 8-9 show how the image is loaded by the different Micromirror Clocking Pulse modes.

There are four Micromirror Clocking Pulse modes that determine which blocks are "reset" when a Micromirror Clocking Pulse command is issued:

- Single block mode
- · Dual block mode
- · Quad block mode
- Global mode

8.4.1.1 Single Block Mode

In single block mode, a single block can be loaded and reset in any order. After a block is loaded, it can be reset to transfer the information to the mechanical state of the mirrors.

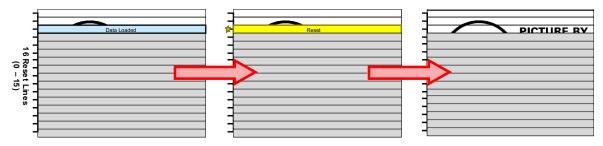


図 8-6. Single Block Mode Diagram

8.4.1.2 Dual Block Mode

In dual block mode, reset blocks are paired together as follows (0-1), (2-3), (4-5) . . . (14-15). These pairs can be reset in any order. After data is loaded a pair can be reset to transfer the information to the mechanical state of the mirrors.

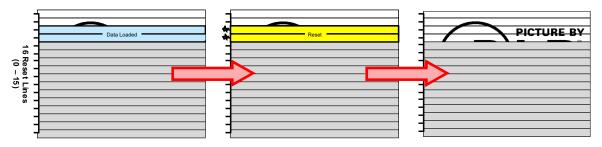


図 8-7. Dual Block Mode Diagram

8.4.1.3 Quad Block Mode

In quad block mode, reset blocks are grouped together in fours as follows (0-3), (4-7), (8-11) and (12-15). Each quad group can be randomly addressed and reset. After a quad group is loaded, it can be reset to transfer the information to the mechanical state of the mirrors.

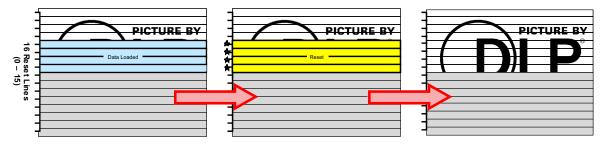


図 8-8. Quad Block Mode Diagram

8.4.1.4 Global Mode

In global mode, all reset blocks are grouped into a single group and reset together. The entire DMD must be loaded with the desired data before issuing a Global Reset to transfer the information to the mechanical state of the mirrors.

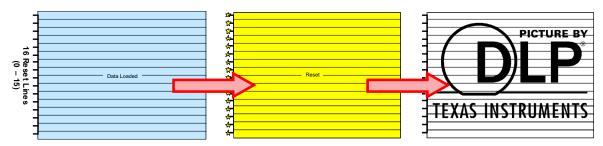


図 8-9. Global Mode Diagram

8.5 Optical Interface and System Image Quality Considerations

注

TI assumes no responsibility for image quality artifacts or DMD failures caused by optical system operating conditions exceeding limits described previously.

8.5.1 Optical Interface and System Image Quality

TI assumes no responsibility for end-equipment optical performance. Achieving the desired end-equipment optical performance involves making trade-offs between numerous component and system design parameters. Optimizing system optical performance and image quality strongly relate to optical system design parameter trades. Although it is not possible to anticipate every conceivable application, projector image quality and optical performance is contingent on compliance to the optical system operating conditions described in the following sections.

8.5.2 Numerical Aperture and Stray Light Control

The angle defined by the numerical aperture of the illumination and projection optics at the DMD optical area should be the same. This angle should not exceed the nominal device mirror tilt angle unless appropriate apertures are added in the illumination and/or projection pupils to block out flat-state and stray light from the projection lens. The mirror tilt angle defines DMD capability to separate the "ON" optical path from any other light path, including undesirable flat-state specular reflections from the DMD window, DMD border structures, or other system surfaces near the DMD such as prism or lens surfaces. If the numerical aperture exceeds the mirror tilt angle, or if the projection numerical aperture angle is more than two degrees larger than the illumination numerical aperture angle, objectionable artifacts in the display's border and/or active area could occur.

8.5.3 Pupil Match

TI recommends the exit pupil of the illumination is nominally centered within 2° of the entrance pupil of the projection optics. Misalignment of pupils can create objectionable artifacts in the display's border and/or active area, which may require additional system apertures to control, especially if the numerical aperture of the system exceeds the pixel tilt angle.

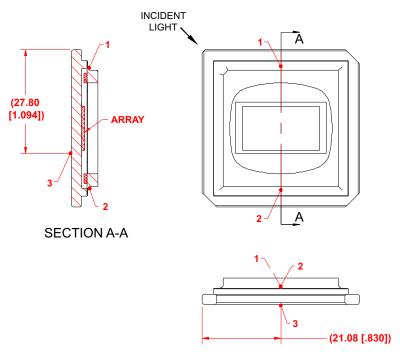
8.5.4 Illumination Overfill

The active area of the device is surrounded by an aperture on the inside DMD window surface that masks structures of the DMD device assembly from normal view. The aperture is sized to anticipate several optical operating conditions. Overfill light illuminating the window aperture can create artifacts from the edge of the window aperture opening and other surface anomalies that may be visible on the screen. The illumination optical system should be designed to limit light flux incident anywhere on the window aperture from exceeding approximately 10% of the average flux level in the active area. Depending on the particular system's optical architecture, overfill light may have to be further reduced below the suggested 10% level in order to be acceptable.

Submit Document Feedback Copyright © 2

8.6 Micromirror Array Temperature Calculation

Achieving optimal DMD performance requires proper management of the maximum DMD case temperature, the maximum temperature of any individual micromirror in the active array, the maximum temperature of the window aperture, and the temperature gradient between case temperature and the predicted micromirror array temperature. (see \boxtimes 8-10).


See the Recommended Operating Conditions for applicable temperature limits.

8.6.1 Package Thermal Resistance

The DMD is designed to conduct absorbed and dissipated heat to the back of the Type A package where it can be removed by an appropriate heat sink. The heat sink and cooling system must be capable of maintaining the package within the specified operational temperatures, refer to \boxtimes 8-10. The total heat load on the DMD is typically driven by the incident light absorbed by the active area; although other contributions include light energy absorbed by the window aperture and electrical power dissipation of the array.

8.6.2 Case Temperature

The temperature of the DMD case can be measured directly. For consistency, thermal test points TP1, TP2, and TP3 are defined, as shown in \boxtimes 8-10.

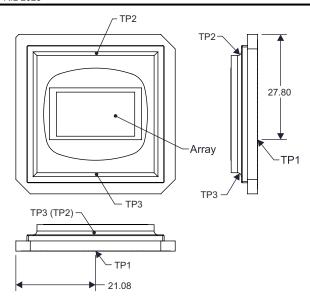


図 8-10. Thermal Test Point Location

8.6.3 Micromirror Array Temperature Calculation - Lumens Based (typically used for display applications)

Micromirror array temperature cannot be measured directly; therefore, it must be computed analytically from:

- the measurement points (
 図 8-10)
- · the package thermal resistance
- the electrical power
- · the illumination heat load

The relationship between micromirror array temperature and the reference ceramic temperature (thermal test point TP1 in \boxtimes 8-10) is provided by the following equations:

```
T_{ARRAY} = T_{CERAMIC} + (Q_{ARRAY} \times R_{ARRAY-TO-CERAMIC})
Q_{ARRAY} = Q_{ELECTRICAL} + Q_{ILLUMINATION}
```

where

- T_{ARRAY} = computed array temperature (°C)
- T_{CERAMIC} = measured ceramic temperature (°C) (TP1 location)
- R_{ARRAY-TO-CERAMIC} = thermal resistance of DMD package (specified in Thermal Information) from array to ceramic TP1 (°C/W)
- Q_{ARRAY} = total power (electrical + absorbed) on the array (Watts)
- Q_{ELECTRICAL} = nominal electrical power (Watts)
- $Q_{ILLUMINATION} = (C_{L2W} \times SL)$ (Watts)
- C_{L2W} = conversion constant for screen lumens to power on DMD (Watts/lumen)
- SL = measured screen lumens

The electrical power dissipation of the DMD is variable and depends on the voltages, data rates, and operating frequencies. A nominal electrical power dissipation to use when calculating array temperature is 4.4 Watts. The absorbed power from the illumination source is variable and depends on the operating state of the micromirrors and the intensity of the light source. The conversion constant C_{L2W} is based on the DMD input illumination characteristics. It assumes a spectral efficiency of 300 lumens/Watt for the projected light and an illumination distribution of 83.7% on the active array and 16.3% on the array border. The equations shown above are valid for a system with a total projection efficiency through the projection lens from the DMD to the projection surface of 87%.

Sample calculation for typical application:

- T_{Ceramic} = 55°C (measured)
- SL = 2000 lm (measured)
- Q_{ELECTRICAL} = 2.0 Watts
- R_{ARRAY-TO-CERAMIC} = 0.9 °C/W
- $C_{1.2W} = 0.00274 \text{ W/Im}$
- Q_{ARRAY} = 2.0 + (0.00274 W/lm × 2000 lm) = 7.48 W
- $T_{ARRAY} = 55^{\circ}C + (7.48 \text{ W x } 0.9 ^{\circ}C) = 61.7 ^{\circ}C$

8.6.4 Micromirror Array Temperature Calculation - Power Density Based

Micromirror array temperature cannot be measured directly; therefore, it must be computed analytically from:

- the measurement points (☒ 8-10)
- · the package thermal resistance
- the electrical power
- · the illumination heat load

The relationship between array temperature and the reference ceramic temperature (thermal test point TP1 in 🗵 8-10) is provided by the following equations:

```
T_{ARRAY} = T_{CERAMIC} + (Q_{ARRAY} \times R_{ARRAY-TO-CERAMIC})
Q_{ARRAY} = Q_{ELECTRICAL} + (0.42 \times Q_{INCIDENT})
```

where

- T_{ARRAY} = computed array temperature (°C)
- T_{CERAMIC} = measured ceramic temperature (°C) (TP1 location)
- R_{ARRAY-TO-CERAMIC} = thermal resistance of DMD package (specified in Thermal Information) from array to ceramic TP1 (°C/W)
- Q_{ARRAY} = total power (electrical + absorbed) on the array (Watts)
- Q_{ELECTRICAL} = nominal electrical power (Watts)
- Q_{INCIDENT} = total incident optical power on DMD (Watts)

The electrical power dissipation of the DMD is variable and depends on the voltages, data rates, and operating frequencies. A nominal electrical power dissipation to use when calculating array temperature is 4.4 watts. The absorbed power from the illumination source is variable and depends on the operating state of the micromirrors and the intensity of the light source. The equations shown above are valid for each DMD chip in a system. It assumes an illumination distribution of 83.7% on the active array and 16.3% on the array border.

8.6.5

Sample Calculation for each DMD in a system with a measured illumination power density:

- T_{Ceramic} = 20°C (measured)
- ILL_{DENSITY} = 11 Watts per cm² (optical power on DMD per unit area) (measured)
- Overfill = 16.3% (optical design)
- Q_{ELECTRICAL} = 2.0 Watts
- R_{ARRAY-TO-CERAMIC} = 0.9 °C/W
- Area of array = $(1.4008 \text{ cm x } 1.0506 \text{ cm}) = 1.4717 \text{ cm}^2$
- ILL_{AREA} = $1.4717 \text{ cm}^2 / (83.7\%) = 1.7583 \text{ cm}^2$
- $Q_{INCIDENT} = 11 \text{ W/cm}^2 \text{ x } 1.7583 \text{ cm}^2 = 19.34 \text{ W}$
- $Q_{ARRAY} = 2.0 \text{ W} + (0.42 \text{ x} 19.34 \text{ W}) = 10.12 \text{ W}$
- T_{ARRAY} = 20°C + (10.12 W x 0.9 °C) = 29.11 °C

8.7 Micromirror Landed-On/Landed-Off Duty Cycle

8.7.1 Definition of Micromirror Landed-On/Landed-Off Duty Cycle

The micromirror landed-on/landed-off duty cycle (landed duty cycle) denotes the amount of time (as a percentage) that an individual micromirror is landed in the On–state versus the amount of time the same micromirror is landed in the Off–state.

As an example, a landed duty cycle of 100/0 indicates that the referenced pixel is in the On-state 100% of the time (and in the Off-state 0% of the time); whereas 0/100 would indicate that the pixel is in the Off-state 100% of the time. Likewise, 50/50 indicates that the pixel is On 50% of the time and Off 50% of the time.

Note that when assessing landed duty cycle, the time spent switching from one state (ON or OFF) to the other state (OFF or ON) is considered negligible and is thus ignored.

Since a micromirror can only be landed in one state or the other (On or Off), the two numbers (percentages) always add to 100.

8.7.2 Landed Duty Cycle and Useful Life of the DMD

Knowing the long-term average landed duty cycle (of the end product or application) is important because subjecting all (or a portion) of the DMD's micromirror array (also called the active array) to an asymmetric landed duty cycle for a prolonged period of time can reduce the DMD's usable life.

Note that it is the symmetry/asymmetry of the landed duty cycle that is of relevance. The symmetry of the landed duty cycle is determined by how close the two numbers (percentages) are to being equal. For example, a landed duty cycle of 50/50 is perfectly symmetrical whereas a landed duty cycle of 100/0 or 0/100 is perfectly asymmetrical.

8.7.3 Landed Duty Cycle and Operational DMD Temperature

Operational DMD Temperature and Landed Duty Cycle interact to affect the DMD's usable life, and this interaction can be exploited to reduce the impact that an asymmetrical Landed Duty Cycle has on the DMD's usable life. This is quantified in the de-rating curve shown in \boxtimes 7-1. The importance of this curve is that:

- · All points along this curve represent the same usable life.
- All points above this curve represent lower usable life (and the further away from the curve, the lower the usable life).
- All points below this curve represent higher usable life (and the further away from the curve, the higher the usable life).

In practice, this curve specifies the Maximum Operating DMD Temperature that the DMD should be operated at for a give long-term average Landed Duty Cycle.

8.7.4 Estimating the Long-Term Average Landed Duty Cycle of a Product or Application

During a given period of time, the Landed Duty Cycle of a given pixel follows from the image content being displayed by that pixel.

For example, in the simplest case, when displaying pure-white on a given pixel for a given time period, that pixel will experience a 100/0 Landed Duty Cycle during that time period. Likewise, when displaying pure-black, the pixel will experience a 0/100 Landed Duty Cycle.

Between the two extremes (ignoring for the moment color and any image processing that may be applied to an incoming image), the Landed Duty Cycle tracks one-to-one with the gray scale value, as shown in $\frac{1}{8}$ 8-5.

GRAYSCALE VALUE	LANDED DUTY CYCLE
0%	0/100
10%	10/90
20%	20/80
30%	30/70
40%	40/60
50%	50/50
60%	60/40
70%	70/30
80%	80/20
90%	90/10
100%	100/0

表 8-5. Grayscale Value and Landed Duty Cycle

Accounting for color rendition (but still ignoring image processing) requires knowing both the color intensity (from 0% to 100%) for each constituent primary color (red, green, and/or blue) for the given pixel as well as the color

cycle time for each primary color, where "color cycle time" is the total percentage of the frame time that a given primary must be displayed in order to achieve the desired white point.

During a given period of time, the landed duty cycle of a given pixel can be calculated as follows:

Landed Duty Cycle = (Red_Cycle_% × Red_Scale_Value) + (Green_Cycle_% × Green_Scale_Value) + (Blue_Cycle_% (1) × Blue_Scale_Value)

where

• Red_Cycle_%, Green_Cycle_%, and Blue_Cycle_%, represent the percentage of the frame time that Red, Green, and Blue are displayed (respectively) to achieve the desired white point.

For example, assume that the red, green and blue color cycle times are 50%, 20%, and 30% respectively (in order to achieve the desired white point), then the Landed Duty Cycle for various combinations of red, green, blue color intensities would be as shown in $\frac{1}{8}$ 8-6.

表 8-6. Example Landed Duty Cycle for Full-Color

20 of Example Landou Buty Gyole for full Color									
RED CYCLE PERCENTAGE 50%	GREEN CYCLE PERCENTAGE 20%	BLUE CYCLE PERCENTAGE 30%	LANDED DUTY CYCLE						
RED SCALE VALUE	GREEN SCALE VALUE	BLUE SCALE VALUE							
0%	0%	0%	0/100						
100%	0%	0%	50/50						
0%	100%	0%	20/80						
0%	0%	100%	30/70						
12%	0%	0%	6/94						
0%	35%	0%	7/93						
0%	0%	60%	18/82						
100%	100%	0%	70/30						
0%	100%	100%	50/50						
100%	0%	100%	80/20						
12%	35%	0%	13/87						
0%	35%	60%	25/75						
12%	0%	60%	24/76						
100%	100%	100%	100/0						

Product Folder Links: DLP7000

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

9 Application and Implementation

注

以下のアプリケーション情報は、TIの製品仕様に含まれるものではなく、TIではその正確性または完全性を保証いたしません。個々の目的に対する製品の適合性については、お客様の責任で判断していただくことになります。お客様は自身の設計実装を検証しテストすることで、システムの機能を確認する必要があります。

9.1 Application Information

The DLP7000 devices require they be coupled with the DLPC410 controller to provide a reliable solution for many different applications. The DMDs are spatial light modulators which reflect incoming light from an illumination source to one of two directions, with the primary direction being into a projection collection optic. Each application is derived primarily from the optical architecture of the system and the format of the data coming into the DLPC410. Applications of interest include 3D measurement systems, lithography, medical systems, and compressive sensing.

9.2 Typical Application

A typical embedded system application using the DLPC410 controller and DLP7000 is shown in 🗵 9-1. In this configuration, the DLPC410 controller supports input from an FPGA. The FPGA sends low-level data to the controller, enabling the system to be highly optimized for low latency and high speed.

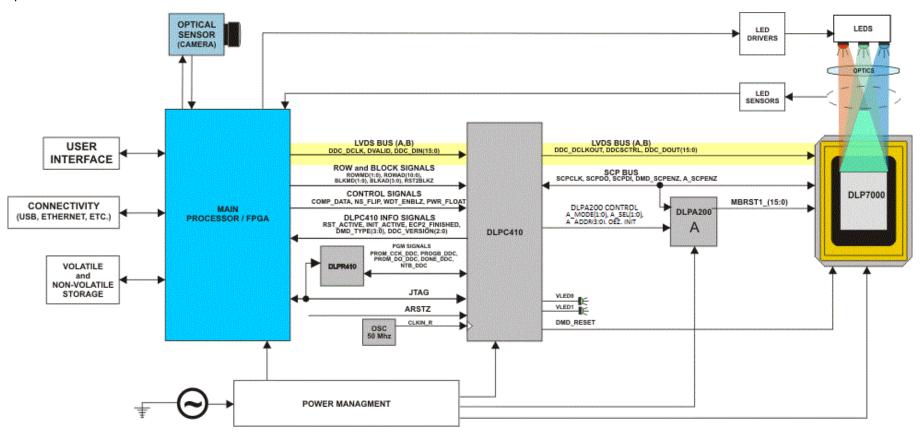


図 9-1. DLPC410 and DLP7000 Embedded Example Block Diagram

9.2.1 Design Requirements

All applications using the DLP7000 XGA chipset require both the controller and the DMD components for operation. The system also requires an external parallel flash memory device loaded with the DLPC410 Configuration and Support Firmware. The chipset has several system interfaces and requires some support circuitry. The following interfaces and support circuitry are required:

- · DLPC410 System Interfaces:
 - Control Interface
 - Trigger Interface
 - Input Data Interface
 - Illumination Interface
 - Reference Clock
- DLP7000 Interfaces:
 - DLPC410 to DLP7000 Digital Data
 - DLPC410 to DLP7000 Control Interface
 - DLPC410 to DLP7000 Micromirror Reset Control Interface
 - DLPC410 to DLPA200 Micromirror Driver
 - DLPA200 to DLP7000 Micromirror Reset

9.2.2 Device Description

The DLP7000 XGA chipset offers developers a convenient way to design a wide variety of industrial, medical, telecom and advanced display applications by delivering maximum flexibility in formatting data, sequencing data, and light patterns.

The DLP7000 XGA chipset includes the following four components: DMD Digital Controller (DLPC410), EEPROM (DLPR410), DMD Micromirror Driver (DLPA200), and a DMD (DLP7000).

DLPC410 Digital Controller for DLP Discovery 4100 chipset

- Provides high speed LVDS data and control interface to the DLP7000.
- Drives mirror clocking pulse and timing information to the DLPA200.
- Supports random row addressing.

DLPR410 PROM for DLP Discovery 4100 chipset

Contains startup configuration information for the DLPC410.

DLPA200 DMD Micromirror Driver

Generates Micromirror Clocking Pulse control (sometimes referred to as a "Reset") of DMD mirrors.

DLP7000 DLP 0.7 XGA 2xLVDS Type-A DMD

• Steers light in two digital positions (+12° and -12°) using 1024 x 768 micromirror array of aluminum mirrors.

表 9-1. DLPC410 Chipset Configuration for 0.7 XGA Chipset

QUANTITY	TI PART	DESCRIPTION
1	DLP7000	DLP 0.7 XGA 2xLVDS Type-A DMD
1	DLPC410	Digital Controller for DLP Discovery 4100 chipset
1	DLPR410	PROM for DLP Discovery 4100 chipset
1	DLPA200	DMD Micromirror Driver

Reliable function and operation of DLP7000 XGA chipsets require the components be used in conjunction with each other. This document describes the proper integration and use of the DLP7000 XGA chipset components.

The DLP7000 XGA chipset can be combined with a user programmable Application FPGA (not included) to create high performance systems.

9.2.3 Detailed Design Procedure

The DLP7000 DMD is well suited for visible light applications requiring fast, spatially programmable light patterns using the micromirror array. See the *Functional Block Diagram* to see the connections between the DLP7000 DMD, the DLPC410 digital controller, the DLPR410 EEPROM, and the DLPA200 DMD micromirror drivers. See the \boxtimes 9-1 for an application example. Follow the *Layout Guidelines* for reliability.

English Data Sheet: DLPS026

10 Power Supply Recommendations

10.1 DMD Power-Up and Power-Down Procedures

Repeated failure to adhere to the prescribed power-up and power-down procedures may affect device reliability. The DLP7000 power-up and power-down procedures are defined by the DLPC410 data sheet (DLPS024). These procedures must be followed to ensure reliable operation of the device.

11 Layout

11.1 Layout Guidelines

The DLP7000 is part of a chipset that is controlled by the DLPC410 in conjunction with the DLPA200. These guidelines are targeted at designing a PCB board with these components.

A target impedance of 50 Ω for single ended signals and 100 Ω between LVDS signals is specified for all signal layers.

11.1.1 Impedance Requirements

Signals should be routed to have a matched impedance of 50 Ω ±10% except for LVDS differential pairs (DMD_DAT_Xnn, DMD_DCKL_Xn, and DMD_SCTRL_Xn), which should be matched to 100 Ω ±10% across each pair.

11.1.2 PCB Signal Routing

When designing a PCB for the DLP7000 controlled by the DLPC410 in conjunction with the DLPA200, the following are recommended:

Signal trace corners should be no sharper than 45°. Adjacent signal layers should have the predominate traces routed orthogonal to each other. TI recommends that critical signals be hand routed in the following order: DDR2 Memory, DMD (LVDS signals), then DLPA200 signals.

TI does not recommend signal routing on power or ground planes.

TI does not recommend ground plane slots.

High speed signal traces should not cross over slots in adjacent power and/or ground planes.

表 11-1. Important Signal Trace Constraints

SIGNAL	CONSTRAINTS
LVDS (DMD_DAT_xnn, DMD_DCKL_xn, and DMD_SCTRL_xn)	P-to-N data, clock, and SCTRL: <10 mils (0.25 mm); Pair-to-pair <10 mils (0.25 mm); Bundle-to-bundle <2000 mils (50 mm, for example DMD_DAT_Ann to DMD_DAT_Bnn) Trace width: 4 mil (0.1 mm) Trace spacing: In ball field – 4 mil (0.11 mm); PCB etch – 14 mil (0.36 mm) Maximum recommended trace length <6 inches (150 mm)

表 11-2. Power Trace Widths and Spacing

SIGNAL NAME	MINIMUM TRACE WIDTH	MINIMUM TRACE SPACING	LAYOUT REQUIREMENTS
GND	Maximize	5 mil (0.13 mm)	Maximize trace width to connecting pin as a minimum
VCC, VCC2	20 mil (0.51 mm)	10 mil (0.25 mm)	
MBRST[15:0]	11 mil (0.23 mm)	15 mil (0.38 mm)	

11.1.3 DMD Interface

The digital interface from the DLPC410 to the DMD are LVDS signals that run at clock rates up to 400 MHz. Data is clocked into the DMD on both the rising and falling edge of the clock, so the data rate is 800 MHz. The LVDS signals should have 100 Ω differential impedance. The differential signals should be matched but kept as short as possible. Parallel termination at the LVDS receiver is in the DMD; therefore, on board termination is not necessary.

11.1.3.1 Trace Length Matching

The DLPC410 DMD data signals require precise length matching. Differential signals should have impedance of 100Ω (with 5% tolerance). It is important that the propagation delays are matched. The maximum differential pair uncoupled length is 100 mils with a relative propagation delay of ±25 mil between the p and n. Matching all signals exactly will maximize the channel margin. The signal path through all boards, flex cables and internal DMD routing must be considered in this calculation.

Submit Document Feedback Copyright C

English Data Sheet: DLPS026

11.1.4 DLP7000 Decoupling

General decoupling capacitors for the DLP7000 should be distributed around the PCB and placed to minimize the distance from IC voltage and ground pads. Each decoupling capacitor (0.1 μ F recommended) should have vias directly to the ground and power planes. Via sharing between components (discreet or integrated) is discouraged. The power and ground pads of the DLP7000 should be tied to the voltage and ground planes with their own vias.

11.1.4.1 Decoupling Capacitors

Decoupling capacitors should be placed to minimize the distance from the decoupling capacitor to the supply and ground pin of the component. It is recommended that the placement of and routing for the decoupling capacitors meet the following guidelines:

- The supply voltage pin of the capacitor should be located close to the device supply voltage pin(s). The
 decoupling capacitor should have vias to ground and voltage planes. The device can be connected directly to
 the decoupling capacitor (no via) if the trace length is less than 0.1 inch. Otherwise, the component should be
 tied to the voltage or ground plane through separate vias.
- The trace lengths of the voltage and ground connections for decoupling capacitors and components should be less than 0.1 inch to minimize inductance.
- The trace width of the power and ground connection to decoupling capacitors and components should be as wide as possible to minimize inductance.
- Connecting decoupling capacitors to ground and power planes through multiple vias can reduce inductance and improve noise performance.
- Decoupling performance can be improved by utilizing low ESR and low ESL capacitors.

11.1.5 VCC and VCC2

The VCC pins of the DMD should be connected directly to the DMD VCC plane. Decoupling for the VCC should be distributed around the DMD and placed to minimize the distance from the voltage and ground pads. Each decoupling capacitor should have vias directly connected to the ground and power planes. The VCC and GND pads of the DMD should be tied to the VCC and ground planes with their own vias.

The VCC2 voltage can be routed to the DMD as a trace. Decoupling capacitors should be placed to minimize the distance from the DMD's VCC2 and ground pads. Using wide etch from the decoupling capacitors to the DMD connection will reduce inductance and improve decoupling performance.

11.1.6 DMD Layout

See the respective sections in this data sheet for package dimensions, timing and pin out information.

11.1.7 DLPA200

The DLPA200 generates the micromirror clocking pulses for the DMD. The DMD-drive outputs from the DLPA200 (MBRST[15:0] should be routed with minimum trace width of 11 mil and a minimum spacing of 15 mil. The VCC and VCC2 traces from the output capacitors to the DLPA200 should also be routed with a minimum trace width and spacing of 11 mil and 15 mil, respectively. See the DLPA200 customer data sheet for mechanical package and layout information.

11.2 Layout Example

For LVDS (and other differential signal) pairs and groups, it is important to match trace lengths. In the area of the dashed lines, 🗵 11-1 shows correct matching of signal pair lengths with serpentine sections to maintain the correct impedance.

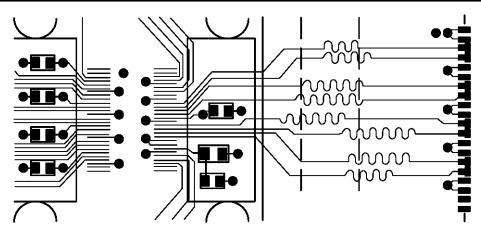


図 11-1. Mitering LVDS Traces to Match Lengths

English Data Sheet: DLPS026

12 Device and Documentation Support

12.1 Device Support

12.1.1 Device Marking

The device marking example consists of the fields shown in \boxtimes 12-1.

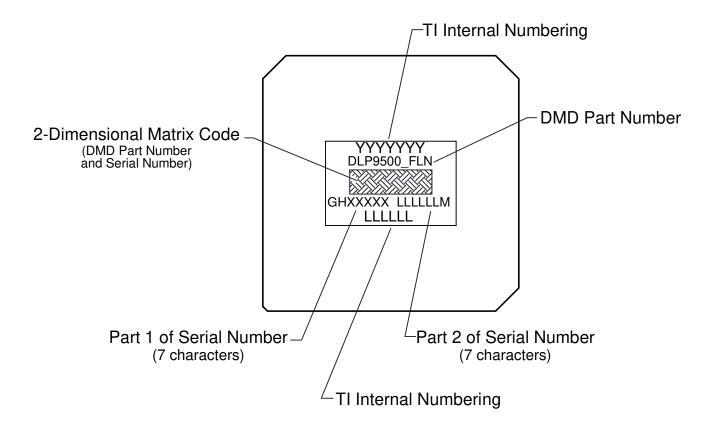


図 12-1. Device Marking

12.2 サード・パーティ製品に関する免責事項

サード・パーティ製品またはサービスに関するテキサス・インスツルメンツの出版物は、単独またはテキサス・インスツルメンツの製品、サービスと一緒に提供される場合に関係なく、サード・パーティ製品またはサービスの適合性に関する是認、サード・パーティ製品またはサービスの是認の表明を意味するものではありません。

12.3 Documentation Support

12.3.1 Related Documents

The following documents contain additional information related to the use of the DLP7000 device:

- DLPC410 Digital Controller for DLP Discovery 4100 chipset data sheet, DLPS024
- DLPA200 DMD Micromirror Driver data sheet, DLPS015
- DLPR410 PROM for DLP Discovery 4100 chipset data sheet, DLPS027

12.4 ドキュメントの更新通知を受け取る方法

ドキュメントの更新についての通知を受け取るには、ti.com のデバイス製品フォルダを開いてください。「更新の通知を受け取る」をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取れます。変更の詳細については、修正されたドキュメントに含まれている改訂履歴をご覧ください。

12.5 サポート・リソース

TI E2E™ サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。

リンクされているコンテンツは、該当する貢献者により、現状のまま提供されるものです。これらは TI の仕様を構成するものではなく、必ずしも TI の見解を反映したものではありません。TI の使用条件を参照してください。

12.6 静電気放電に関する注意事項

この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うことを推奨します。正しい取り扱いおよび設置手順に従わない場合、デバイスを破損するおそれがあります。

ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずかに変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。

12.7 Export Control Notice

Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled product restricted by other applicable national regulations, received from disclosing party under nondisclosure obligations (if any), or any direct product of such technology, to any destination to which such export or re-export is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S. Department of Commerce and other competent Government authorities to the extent required by those laws.

12.8 用語集

テキサス・インスツルメンツ用語集 この用語集には、用語や略語の一覧および定義が記載されています。

12.9 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

TECHNICAL TOOLS & SUPPORT & **PARTS** PRODUCT FOLDER **SAMPLE & BUY DOCUMENTS SOFTWARE** COMMUNITY DLP7000 Click here Click here Click here Click here Click here DLPA200 Click here Click here Click here Click here Click here DLPC410 Click here Click here Click here Click here Click here DLPR410 Click here Click here Click here Click here Click here

表 12-1. Related Links

12.10 Trademarks

Discovery[™] is a trademark of Texas Instruments.

TI E2E[™] is a trademark of Texas Instruments.

Submit Document Feedback

DLP® is a registered trademark of Texas Instruments.

すべての商標は、それぞれの所有者に帰属します。

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 14-Oct-2022

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
DLP7000BFLP	ACTIVE	CLGA	FLP	203	18	RoHS & Green	NI-PD-AU	N / A for Pkg Type	10 to 65		Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

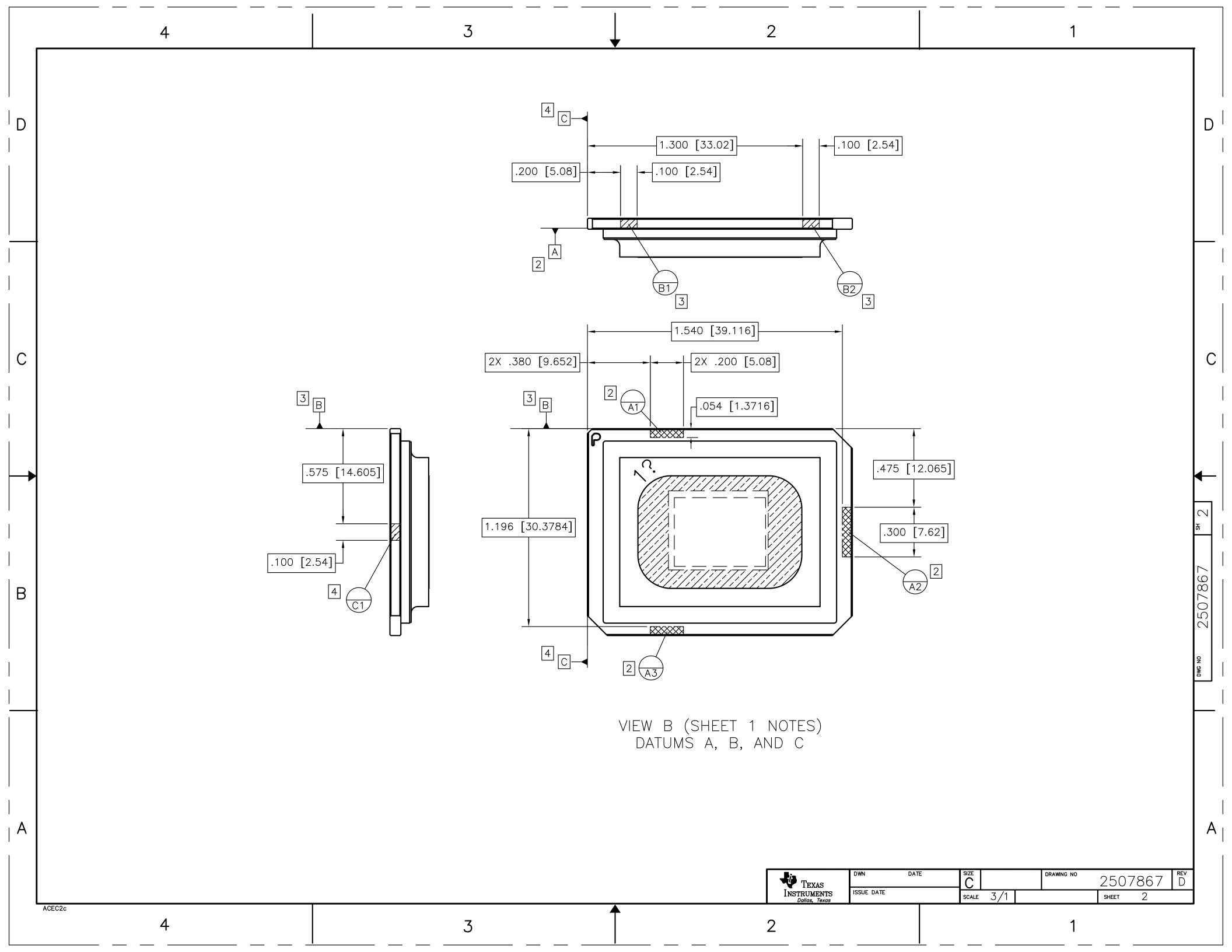
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

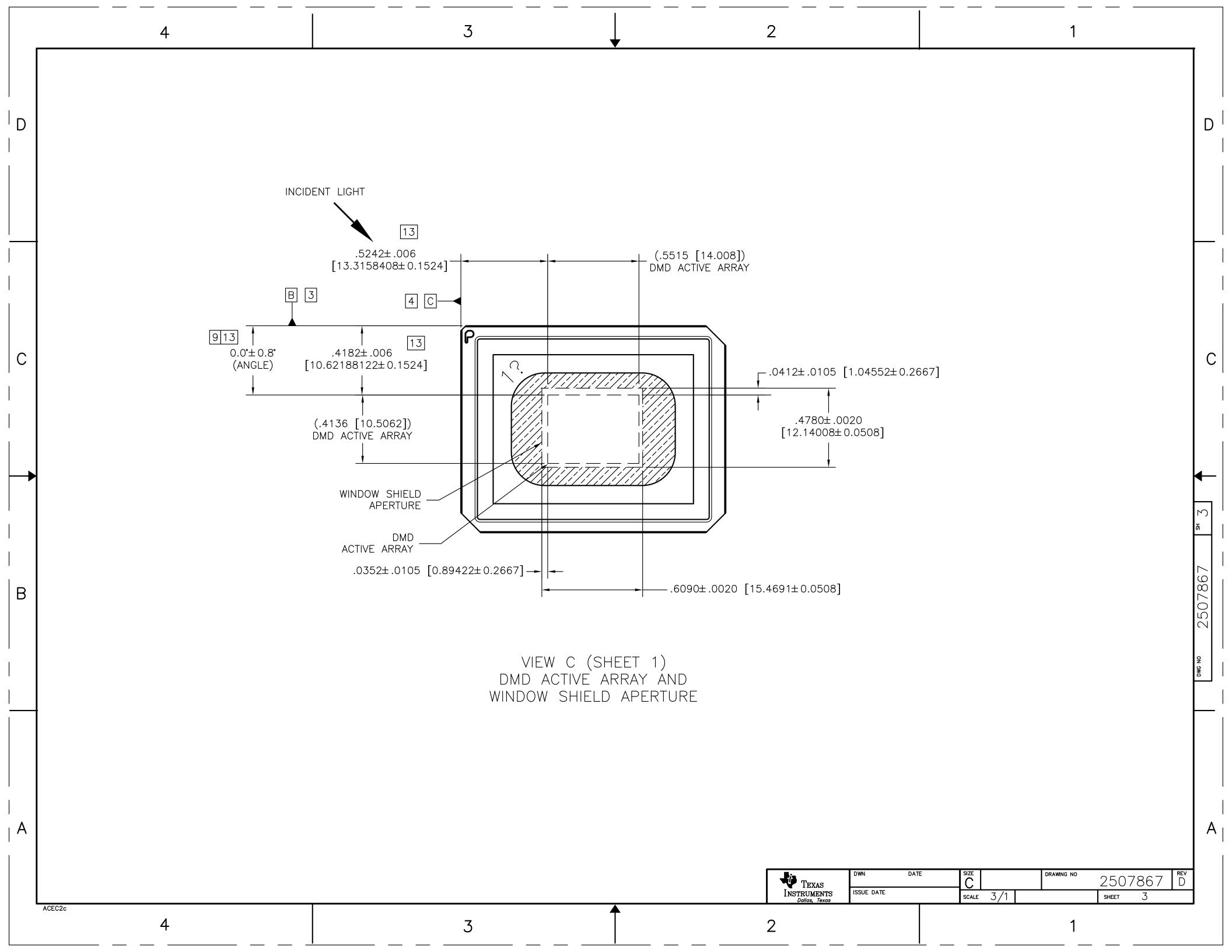
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

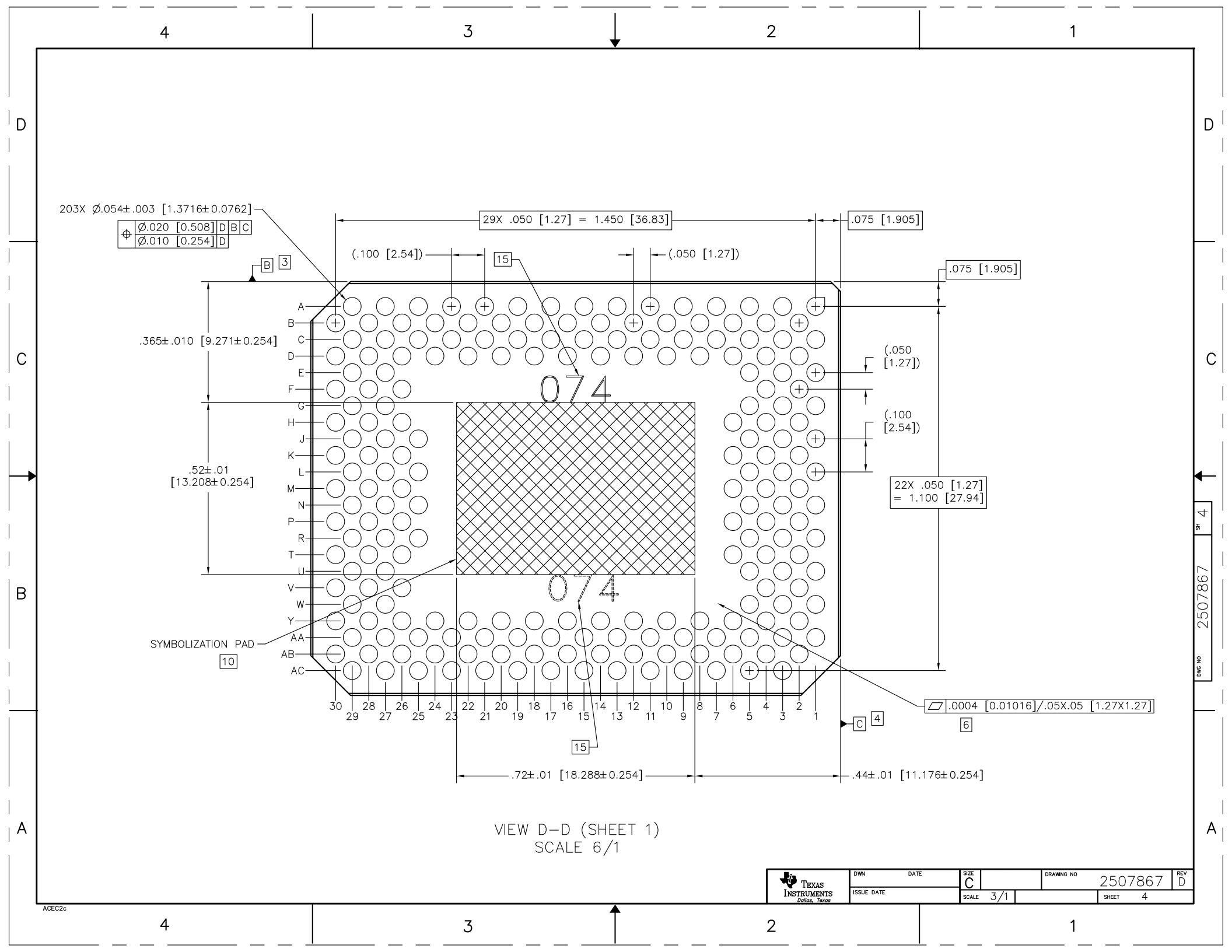
OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".


RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.


Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.


- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

重要なお知らせと免責事項

TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス・デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TI の製品は、TI の販売条件、または ti.com やかかる TI 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。

お客様がいかなる追加条項または代替条項を提案した場合でも、TIはそれらに異議を唱え、拒否します。

郵送先住所:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated