

DS90LV028A-Q1 JAJSPA6 - AUGUST 2020

DS90LV028A-Q1 車載対応、LVDS デュアル差動ライン・レシーバ

1 特長

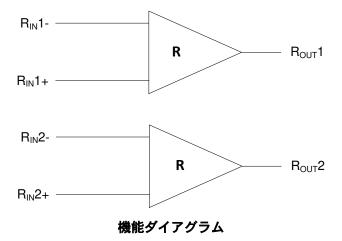
- 車載アプリケーション向けに AEC-Q100 認定済み 温度グレード 2:-40°C~+105°C
- 400Mbps (200MHz) を超えるスイッチング速度
- 差動スキュー:50ps (標準値)
- チャネル間スキュー:0.1ns (標準値)
- 最大伝搬遅延:2.5ns
- 3.3V 電源の設計
- フロースルーのピン配置
- 電源オフ時に高インピーダンスになる LVDS 入力
- 低消費電力の設計 (静的電圧 3.3V で 18mW)
- LVDS 入力は LVDS/CML/LVPECL 信号に対応
- ANSI/TIA/EIA-644 規格に準拠

2 アプリケーション

- 電子 POS (EPOS) アプリケーション
- 車載用インフォテインメントおよびクラスタ
- 車載用ヘッド・ユニット

3 概要

DS90LV028A-Q1 はデュアル CMOS 差動ライン・レシー バで、超低消費電力、低ノイズ、高いデータ速度を必要と するアプリケーション用に設計されています。このデバイス は、低電圧差動信号 (LVDS) テクノロジを活用し、 400Mbps (200MHz) を超えるデータ速度をサポートする よう設計されています。


DS90LV028A-Q1 は低電圧 (標準値 350mV) の差動入 力信号を受信し、3V CMOS 出力レベルへ変換します。 DS90LV028A-Q1 にはフロースルー設計が採用されてい るため、PCB レイアウトが容易です。

DS90LV028A-Q1 と、対になる LVDS ライン・ドライバ DS90LV027AQ は、消費電力の大きい PECL/ECL デバ イスの新しい代替品として、高速のポイント・ツー・ポイント・ インターフェイス・アプリケーションに使用できます。

製品情報(1)

部品番号	パッケージ	本体サイズ (公称)
DS90LV028A-Q1	WSON (DQF 8)	2.00mm × 2.00mm

利用可能なパッケージについては、このデータシートの末尾にあ る注文情報を参照してください。

Table of Contents

1 特長	1	8.2 Functional Block Diagram	10
2 アプリケーション		8.3 Feature Description	10
3 概要		8.4 Device Functional Modes	10
4 Revision History		9 Application and Implementation	11
5 Pin Configuration and Functions		9.1 Application Information	11
Pin Functions		9.2 Typical Application	11
6 Specifications		10 Power Supply Recommendations	13
6.1 Absolute Maximum Ratings		11 Layout	14
6.2 ESD and Latch-Up Ratings		11.1 Layout Guidelines	14
6.3 Recommended Operating Conditions		11.2 Layout Examples	14
6.4 Thermal Information		12 Device and Documentation Support	15
6.5 Electrical Characteristics		12.1 Support Resources	15
6.6 Switching Characteristics		12.2 Trademarks	15
6.7 Typical Performance Curves		12.3 静電気放電に関する注意事項	15
7 Parameter Measurement Information		12.4 Glossary	15
8 Detailed Description		13 Mechanical, Packaging, and Orderable	
8.1 Overview		Information	16

4 Revision History 資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。

DATE	REVISION	NOTES				
August 2020	*	Initial Release				

5 Pin Configuration and Functions

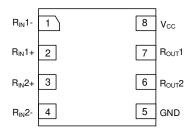


図 5-1. DQF Package WSON 8 Pin Top View

Pin Functions

Pin Number	Name	Description					
1	R _{IN} 1-	Inverting receiver input hin					
4	R _{IN} 2-	Inverting receiver input pin					
2	R _{IN} 1+	Non-inverting receiver input pin					
3	R _{IN} 2+	Non-inverting receiver input pin					
6	R _{OUT} 2	Receiver output pin					
7	R _{OUT} 1	Receiver output piri					
8	V _{CC}	Power supply pin, +3.3V +/- 0.3V					
5	GND	Ground pin					

6 Specifications

6.1 Absolute Maximum Ratings

				MIN	MAX	UNIT
Supply Voltage (V _{CC})				-0.3	4	V
Input Voltage (R _{IN} +, R _{IN} -)				-0.3	3.9	V
Output Voltage (R _{OUT})	Output Voltage (R _{OUT})				V _{CC} +0.3	V
Lead Temperature Range Soldering		c.)			260	°C
Maximum Junction Temperature					125	°C
Storage temperature, T _{stg}				-65	150	°C

6.2 ESD and Latch-Up Ratings

			VALUE	UNIT
V	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±4000	V
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1250	v
I-Test+	Positive I-Test Latch-Up	Positive I-Test Latchup , per AEC Q100-004 at maximum ambient temperature (all signal pins)	+100	mA
I-Test-	Negative I-Test Latch-Up	Negative I-Test Latchup, per AEC Q100-004 at maximum ambient temperature (all signal pins except pin 3)	-100	mA
1-1651-	Negative I-Test Latch-Op	Negative I-Test Latchup, per AEC Q100-004 at maximum ambient temperature (pin 3)	-70	mA

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. .
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

	Min	Тур	Max	Units
Supply Voltage (V _{CC})	+3.0	+3.3	+3.6	V
Receiver Input Voltage	+0.5		+2.1	V
Operating Free Air Temperature (T _A)	-40	25	105	°C

6.4 Thermal Information

		DS90LV028A-Q1	
	THERMAL METRIC ⁽¹⁾	DQF (WSON)	UNIT
		8 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	104.0	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	33.3	°C/W
R _{0JB}	Junction-to-board thermal resistance	27.6	°C/W
ΨЈТ	Junction-to-top characterization parameter	0.3	°C/W
ΨЈВ	Junction-to-board characterization parameter	27.4	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Submit Document Feedback

6.5 Electrical Characteristics

Over Supply Voltage and Operating Temperature ranges, unless otherwise specified. (1) (2)

Symbol	Parameter		Conditions			Тур	Max	Units
V _{TH}	Differential Input High Threshold	VCM(1) = +1.2 V ($VCM^{(1)} = +1.2 \text{ V}, 0.5 + (V_{ID} /2) \text{ V}, 2.1 - (V_{ID} /2^{(2)})$				+100	mV
V _{TL}	Differential Input Low Threshold	VCIVIC + 1.2 V, (0.5 + (V _{ID} /2) V, 2.1 - (V _{ID} /2 ⁽⁻⁾		-100			mV
		V _{IN} = +2.8V	V _{CC} = 3.6V or 0V	R _{IN} +, R _{IN} -	-10	±1	+10	uA
I _{IN}	Input Current	V _{IN} = 0V	V _{CC} = 3.0V 0I 0V	I SIN	-10	±1	+10	uA
		V _{IN} = +3.6V	V _{CC} = 0V		-20		+20	uA
V _{OH}	Output High Voltage	$I_{OH} = -0.4 \text{ mA}, V_{II}$	_D ⁽²⁾ = +200 mV		2.7	3.1		V
V _{OL}	Output Low Voltage	I _{OL} = 2 mA, V _{ID} (2)) = −200 mV			0.3	0.5	V
Ios	Output Short Circuit Current	V _{OUT} = 0V (3)		R _{OUT}	-100	-50	-15	mA
V _{CL}	Input Clamp Voltage	I _{CL} = −18 mA			-1.5	-0.8		V
I _{CC}	No Load Supply Current	V _{ID} ⁽²⁾ = +200 mV or -200mV		V _{CC}		5.4	9	mA

- (1) V_{CM} is input common mode voltage $|(V_{RIN+} + V_{RIN-})/2|$
- V_{ID} is input differential voltage (V_{RIN+} V_{RIN-})

6.6 Switching Characteristics

Over Supply Voltage and Operating Temperature ranges, unless otherwise specified. (2) (4) (5)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PHLD}	Differential Propagation Delay High to Low	C _L = 15 pF	1.0	1.6	2.5	ns
t _{PLHD}	Differential Propagation Delay Low to High	V _{ID} = 200 mV	1.0	1.7	2.5	ns
t _{SKD1}	Differential Pulse Skew t _{PHLD} - t _{PLHD} (6)	(図 7-1 and 図 7-2)	0	50	650	ps
t _{SKD2}	Differential Channel-to-Channel Skew-same device (7)		0	0.1	0.5	ns
t _{SKD3}	Differential Part to Part Skew (8)		0		1.0	ns
t _{SKD4}	Differential Part to Part Skew (9)		0		1.5	ns
t _{TLH}	Rise Time			325	800	ps
t _{THL}	Fall Time			225	800	ps
f _{MAX}	Maximum Operating Frequency (10)			250		MHz

- (1) Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground unless otherwise specified (such as V_{ID}).
- (2) All typicals are given for: V_{CC} = +3.3V and T_A = +25°C.
- (3) Output short circuit current (I_{OS}) is specified as magnitude only, minus sign indicates direction only. Only one output should be shorted at a time, do not exceed maximum junction temperature specification.
- (4) C_L includes probe and jig capacitance.
- (5) Generator waveform for all tests unless otherwise specified: f = 1 MHz, Z_O = 50Ω, t_r and t_f (0% to 100%) ≤ 3 ns for R_{IN}.
- (6) t_{SKD1} is the magnitude difference in differential propagation delay time between the positive-going-edge and the negative-going-edge of the same channel.
- (7) t_{SKD2} is the differential channel-to-channel skew of any event on the same device. This specification applies to devices having multiple receivers within the integrated circuit.
- (8) t_{SKD3}, part to part skew, is the differential channel-to-channel skew of any event between devices. This specification applies to devices at the same V_{CC} and within 5°C of each other within the operating temperature range.
- (9) t_{SKD4}, part to part skew, is the differential channel-to-channel skew of any event between devices. This specification applies to devices over the recommended operating temperature and voltage ranges, and across process distribution. t_{SKD4} is defined as |Max Min| differential propagation delay.
- (10) f_{MAX} generator input conditions: $t_r = t_f < 1$ ns (0% to 100%), 50% duty cycle, differential (1.05V to 1.35 peak to peak). Output criteria: 60%/40% duty cycle, V_{OL} (max 0.4V), V_{OH} (min 2.7V), load = 15 pF (stray plus probes).

6.7 Typical Performance Curves

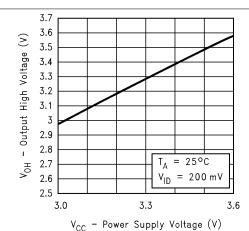
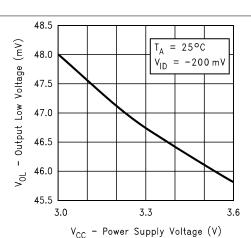



図 6-1. Output High Voltage vs Power Supply Voltage

☑ 6-2. Output Low Voltage vs Power Supply Voltage

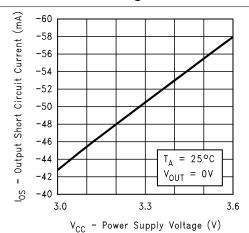


図 6-3. Output Short Circuit Current vs Power Supply Voltage

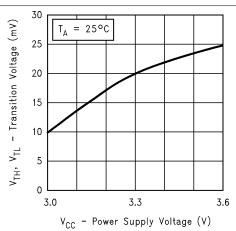


図 6-4. Differential Transition Voltage vs Power Supply Voltage

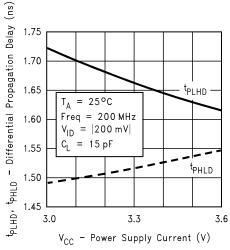


図 6-5. Differential Propagation Delay vs Power Supply Voltage

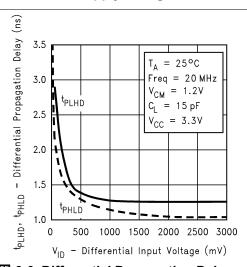


図 6-6. Differential Propagation Delay vs Differential Input Voltage

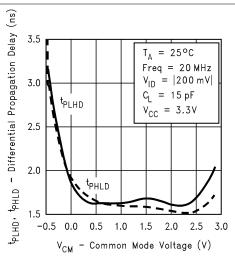


図 6-7. Differential Propagation Delay vs Common-Mode Voltage

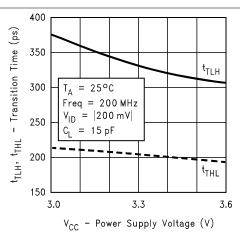


図 6-8. Transition Time vs Power Supply Voltage

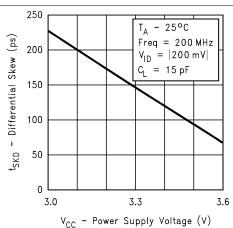


図 6-9. Differential Skew vs Power Supply Voltage

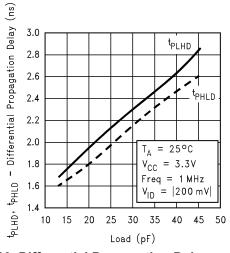


図 6-10. Differential Propagation Delay vs Load

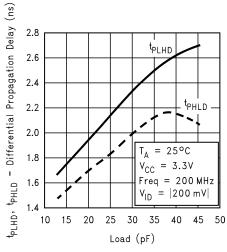


図 6-11. Differential Propagation Delay vs Load

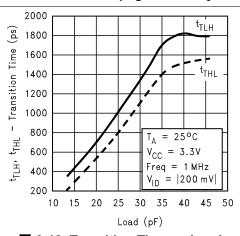
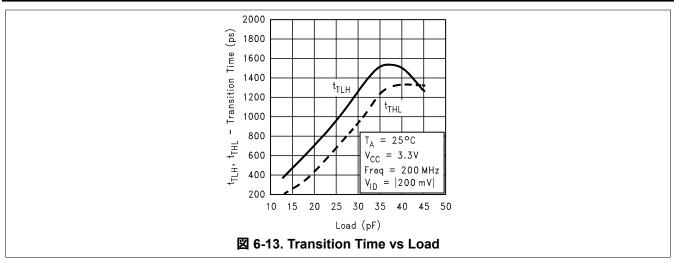
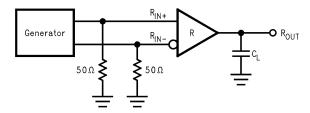




図 6-12. Transition Time vs Load

7 Parameter Measurement Information

図 7-1. Receiver Propagation Delay and Transition Time Test Circuit

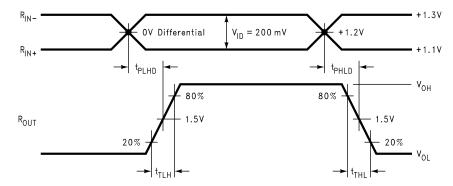
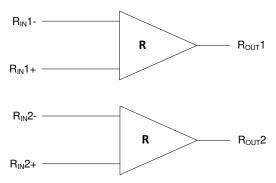


図 7-2. Receiver Propagation Delay and Transition Time Waveforms



8 Detailed Description

8.1 Overview

LVDS drivers and receivers are intended to be primarily used in a simple point-to-point configuration as is shown in \boxtimes 9-1. This configuration provides a clean signaling environment for the fast edge rates of the drivers. The receiver is connected to the source through a impedance controlled 100 Ω differential PCB traces. A termination resistor of 100 Ω should be used, and is located as close to the receiver input pins as possible. The termination resistor converts the driver output (current mode) into a voltage that is detected by the receiver.

8.2 Functional Block Diagram

8.3 Feature Description

The DS90LV028A-Q1 differential line receiver is capable of detecting signals as low as 100 mV, over a common-mode range of $0.5 + (V_{ID}/2)$ V to $2.1 - (V_{ID}/2)$ V. This is related to the driver offset voltage which is typically +1.2V. The driven signal is centered around this voltage and may shift ± 0.5 V around this center point. The ± 0.5 V shifting may be the result of a ground potential difference between the driver's ground reference and the receiver's ground reference, the common-mode effects of coupled noise, or a combination of the two. The AC parameters of both receiver input pins are optimized for a recommended operating input voltage range of +0.5V to +2.1V (measured from each pin to ground). The device will operate for receiver input voltages up to V_{CC} , but exceeding V_{CC} will turn on the ESD protection circuitry which will clamp the bus voltages.

8.4 Device Functional Modes

表 8-1. Truth Table

INPUTS	OUTPUT
[R _{IN} +] - [R _{IN} -]	R _{OUT}
V _{ID} ≥ 0.1V	Н
V _{ID} ≤ −0.1V	L
$-0.1V \le V_{ID} \le 0.1V$?(1)

(1) ? indicates state is indeterminate

9 Application and Implementation

注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

General application guidelines and hints for LVDS drivers and receivers may be found in the LVDS application notes and design guides.

9.2 Typical Application

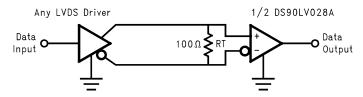


図 9-1. Balanced System Point-to-Point Application

9.2.1 Design Requirements

When using LVDS devices, it is important to remember to specify controlled impedance PCB traces. All components of the transmission media must have a matched differential impedance of 100 Ω . They must not introduce major impedance discontinuities.

9.2.2 Detailed Design Procedure

9.2.2.1 Power Decoupling Recommendations

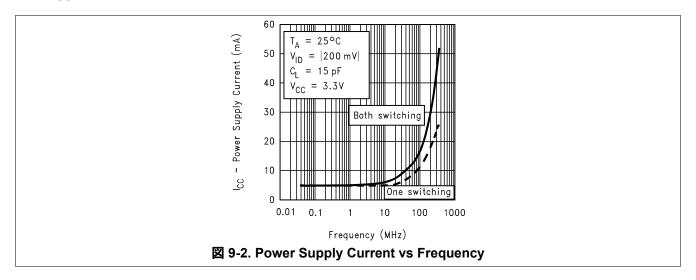
Bypass capacitors must be used on power pins. Use high frequency ceramic (surface mount is recommended) 0.1 μ F and 0.01 μ F capacitors in parallel at the power supply pin with the smallest value capacitor closest to the device supply pin. Additional scattered capacitors over the printed circuit board will improve decoupling. Multiple vias should be used to connect the decoupling capacitors to the power planes. A 10 μ F (35 V) or greater solid tantalum capacitor should be connected at the power entry point on the printed circuit board between the supply and ground.

9.2.2.2 Termination

Use a termination resistor which best matches the differential impedance or your transmission line. The resistor should be between 90 Ω and 110 Ω . Remember that the current mode outputs need the termination resistor to generate the differential voltage. LVDS will not work correctly without resistor termination. Typically, connecting a single resistor across the pair at the receiver end will suffice.

Surface mount 1% resistors are the best. PCB stubs, component lead, and the distance from the termination to the receiver inputs should be minimized. The distance between the termination resistor and the receiver should be < 10 mm (12 mm MAX).

9.2.2.3 Input Failsafe Biasing


External pull up and pull down resistors may be used to provide enough of an offset to enable an input failsafe under open-circuit conditions. This configuration ties the positive LVDS input pin to VDD thru a pull up resistor and the negative LVDS input pin is tied to GND by a pull down resistor. The pull up and pull down resistors should be in the 5 k Ω to 15 k Ω range to minimize loading and waveform distortion to the driver. The common-mode bias point ideally should be set to approximately 1.2 V to be compatible with the internal circuitry. Please refer to application note AN-1194, "Failsafe Biasing of LVDS Interfaces" (SNLA051) for more information.

9.2.2.4 Probing LVDS Transmission Lines

Always use high impedance (> 100 k Ω), low capacitance (< 2 pF) scope probes with a wide bandwidth (1 GHz) scope. Improper probing will give deceiving results.

9.2.3 Application Curves

10 Power Supply Recommendations

Bypass capacitors must be used on power pins. TI recommends using high-frequency, ceramic, $0.1-\mu F$ and $0.01-\mu F$ capacitors in parallel at the power supply pin with the smallest value capacitor closest to the device supply pin. Additional scattered capacitors over the printed-circuit board improves decoupling. Multiple vias must be used to connect the decoupling capacitors to the power planes. A $10-\mu F$ bulk capacitor, 35-V (or greater) solid tantalum capacitor must be connected at the power entry point on the printed-circuit board between the supply and ground.

11 Layout

11.1 Layout Guidelines

11.1.1 Differential Traces

Use controlled impedance traces which match the differential impedance of your transmission trace and termination resistor. Run the differential pair trace lines as close together as possible as soon as they leave the IC (stubs should be < 10mm long). This will help eliminate reflections and ensure noise is coupled as common-mode. In fact, we have seen that differential signals which are 1mm apart radiate far less noise than traces 3mm apart since magnetic field cancellation is much better with the closer traces. In addition, noise induced on the differential lines is much more likely to appear as common-mode which is rejected by the receiver.

Match electrical lengths between traces to reduce skew. Skew between the signals of a pair means a phase difference between signals which destroys the magnetic field cancellation benefits of differential signals and EMI will result! (Note that the velocity of propagation, $v = c/E_{\Gamma}$ where c (the speed of light) = 0.2997 mm/ps or 0.0118 in/ps). Do not rely solely on the autoroute function for differential traces. Carefully review dimensions to match differential impedance and provide isolation for the differential lines. Minimize the number of vias and other discontinuities on the line.

Avoid 90° turns (these cause impedance discontinuities). Use arcs or 45° bevels.

Within a pair of traces, the distance between the two traces should be minimized to maintain common-mode rejection of the receivers. On the printed circuit board, this distance should remain constant to avoid discontinuities in differential impedance. Minor violations at connection points are allowable.

11.1.2 PC Board Considerations

Use at least 4 PCB board layers (top to bottom): LVDS signals, ground, power, TTL signals.

Isolate TTL signals from LVDS signals, otherwise the TTL signals may couple onto the LVDS lines. It is best to put TTL and LVDS signals on different layers which are isolated by a power/ground plane(s).

11.2 Layout Examples



図 11-1. WSON Thermal Land Pad and Pin Pads

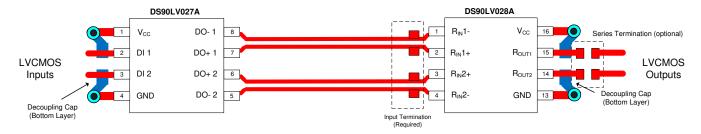


図 11-2. Simplified DS90LV027A and DS90LV028A Layout

12 Device and Documentation Support

12.1 Support Resources

TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

12.2 Trademarks

TI E2E™ is a trademark of Texas Instruments.

すべての商標は、それぞれの所有者に帰属します。

12.3 静電気放電に関する注意事項

この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うことを推奨します。正しい ESD 対策をとらないと、デバイスを破損するおそれがあります。

ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずかに変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。

12.4 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 16-Jun-2023

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
DS90LV028AQDQFRQ1	ACTIVE	WSON	DQF	8	3000	RoHS & Green	NIPDAUAG	Level-1-260C-UNLIM	-40 to 105	D28Q	Samples
DS90LV028AQDQFTQ1	ACTIVE	WSON	DQF	8	250	RoHS & Green	NIPDAUAG	Level-1-260C-UNLIM	-40 to 105	D28Q	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

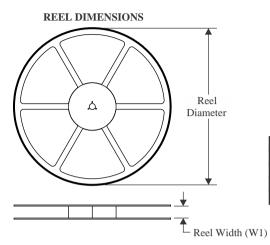
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

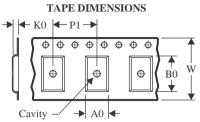
PACKAGE OPTION ADDENDUM

www.ti.com 16-Jun-2023

OTHER QUALIFIED VERSIONS OF DS90LV028A-Q1:

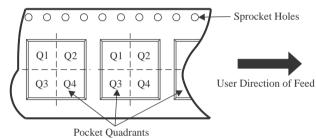
● Catalog : DS90LV028A


NOTE: Qualified Version Definitions:

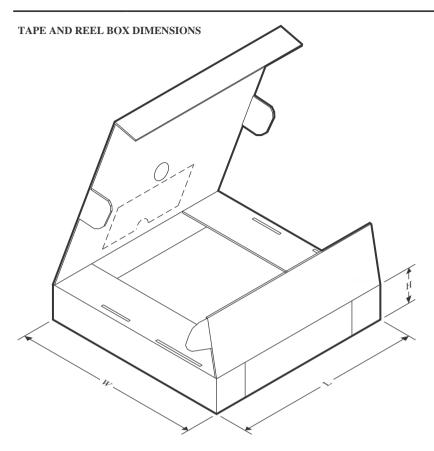

• Catalog - TI's standard catalog product

PACKAGE MATERIALS INFORMATION

www.ti.com 17-Apr-2023


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
DS90LV028AQDQFRQ1	WSON	DQF	8	3000	178.0	8.4	2.25	2.25	1.0	4.0	8.0	Q1
DS90LV028AQDQFTQ1	WSON	DQF	8	250	178.0	8.4	2.25	2.25	1.0	4.0	8.0	Q1

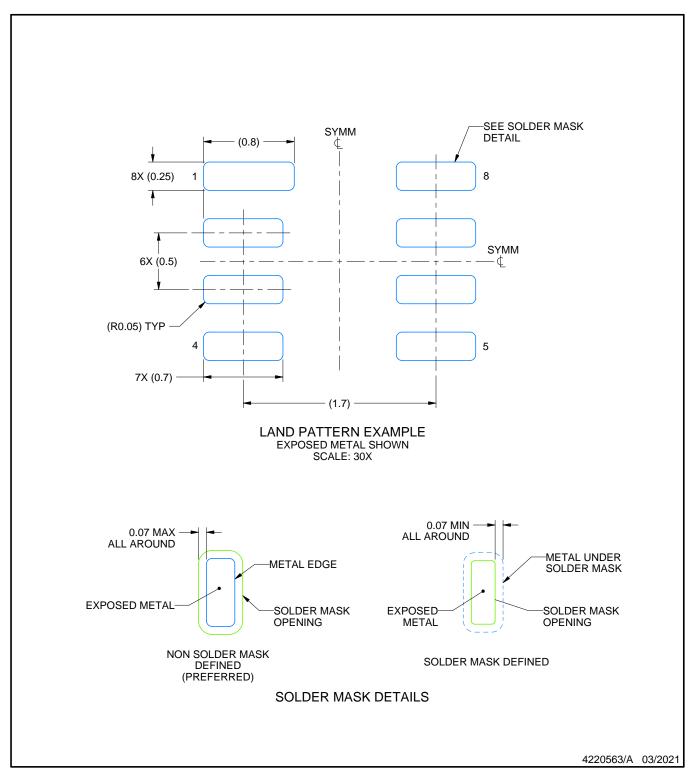
www.ti.com 17-Apr-2023



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
DS90LV028AQDQFRQ1	WSON	DQF	8	3000	205.0	200.0	33.0
DS90LV028AQDQFTQ1	WSON	DQF	8	250	205.0	200.0	33.0

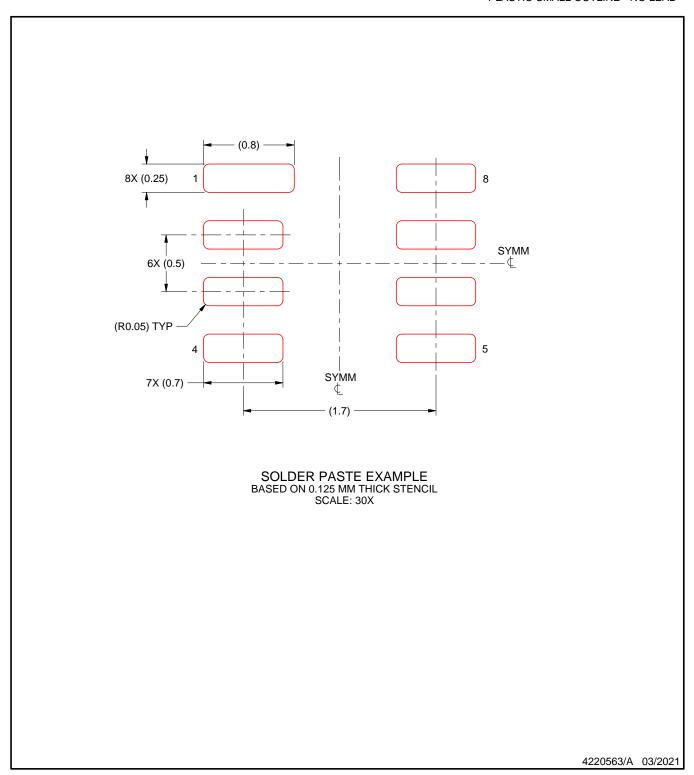
PLASTIC SMALL OUTLINE - NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.

PLASTIC SMALL OUTLINE - NO LEAD



NOTES: (continued)

3. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要なお知らせと免責事項

TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス・デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TI の製品は、TI の販売条件、または ti.com やかかる TI 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。

お客様がいかなる追加条項または代替条項を提案した場合でも、TIはそれらに異議を唱え、拒否します。

郵送先住所:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated