

OPA814

JAJSK63A - APRIL 2023 - REVISED NOVEMBER 2023

OPA814 600MHz、高精度、ユニティ・ゲインで安定、FET 入力オペアンプ

1 特長

広い帯域幅:

TEXAS

INSTRUMENTS

- ゲイン帯域幅積:250MHz
- 帯域幅 (G = 1V/V):600MHz
- 大信号帯域幅 (2VPP):200MHz
- スルーレート:750V/µs
- 高精度
 - 入力オフセット電圧:250µV (最大値)
 - 入力オフセット電圧ドリフト:3.5µV/℃(最大値)
- 入力電圧ノイズ:5.3nV/√Hz
- 入力バイアス電流:2pA
- ・ 低歪み (R_L = 100Ω、V_O = 2V_{PP}): - 10MHz での HD2、HD3:-75dBc、-100dBc
- 電源電圧範囲:6V~12.6V
- 消費電流:16mA
- OPA656 の性能アップグレード版

2 アプリケーション

- 高速データ・アクイジション (DAQ)
- アクティブ・プローブ
- オシロスコープ •
- 光通信モジュール ٠
- テストおよび測定機器のフロントエンド
- 医療用および化学用分析器
- 光時間領域反射測定法 (OTDR)

3 概要

OPA814 は、高速、高精度、広いダイナミック・レンジのア プリケーションに適した、ユニティ・ゲインで安定している電 圧帰還型オペアンプです。

OPA814 は、低ノイズの接合ゲート電界効果トランジスタ (JFET) 入力段を備えており、250MHz の広いゲイン帯域 幅と 6V~12.6V の電源電圧範囲を特長としています。 750V/µs の高いスルーレートにより、高速デジタイザ、アク ティブ・プローブ、その他のテストおよび測定アプリケーシ ョンで高インピーダンスのバッファとして使用する場合、広 い大信号帯域幅と低歪みを実現できます。

OPA814 は、入力オフセット電圧が ±250µV と非常に低 く、オフセット電圧ドリフトは ±3.5µV/℃です。入力バイアス 電流がピコアンペア単位であり、また、入力電圧ノイズが 低い (5.3nV/vHz) ため、OPA814 は光学テスト機器、通 信機器、医療用および科学用計測機器に優れた広帯域ト ランスインピーダンス・アンプです。

OPA814 は、8 ピンの SOIC パッケージで供給されます。 このデバイスは、産業用温度範囲の -40℃~+85℃で動 作が規定されています。

パッケージ情報

· · · · · · · · · · · · · · · · · · ·					
部品番号 ⁽¹⁾	パッケージ ⁽²⁾	パッケージ サイズ ⁽³⁾			
004814	D (SOIC、8)	4.9mm × 6mm			
OFA014	DBV (SOT-23、5)	2.9mm × 2.8mm			

「製品比較」表を参照してください。 (1)

詳細については、セクション 11 を参照してください。 (2)

パッケージ サイズ (長さ×幅) は公称値であり、該当する場合はピ (3) ンも含まれます。

このリソースの元の言語は英語です。翻訳は概要を便宜的に提供するもので、自動化ツール (機械翻訳)を使用していることがあり、TI では翻訳の正確性および妥当 め
低
性につきましては一切保証いたしません。実際の設計などの前には、ti.com で必ず最新の英語版をご参照くださいますようお願いいたします。

Table of Contents

1 特長1
2 アプリケーション1
3 概要1
4 Device Comparison Table
5 Pin Configuration and Functions
6 Specifications
6.1 Absolute Maximum Ratings4
6.2 ESD Ratings4
6.3 Recommended Operating Conditions4
6.4 Thermal Information4
6.5 Electrical Characteristics:5
6.6 Typical Characteristics7
7 Detailed Description13
7.1 Overview13
7.2 Functional Block Diagram13
7.3 Feature Description14
7.4 Device Functional Modes15

8 Application and Implementation	16
8.1 Application Information	
8.2 Typical Application	
8.3 Power Supply Recommendations	20
8.4 Layout	20
9 Device and Documentation Support	22
9.1 Device Support	
9.2 Documentation Support	
9.3ドキュメントの更新通知を受け取る方法	
9.4 サポート・リソース	
9.5 Trademarks	22
9.6 静電気放電に関する注意事項	22
9.7 用語集	
10 Revision History	
11 Mechanical, Packaging, and Orderable	
Information	

4 Device Comparison Table

DEVICE	SUPPLY VOLTAGE (V)	GBW (MHz)	INPUT	SLEW RATE (V/µs)	VOLTAGE NOISE (nV/√Hz)	MINIMUM STABLE GAIN (V/V)
OPA814	±6.3	250	FET	750	5.3	1
OPA817	±6.3	400	FET	1000	4.5	1
OPA818	±6.5	2700	FET	1400	2.2	7
OPA656	±5	230	FET	290	7	1
OPA858	±2.5	5500	CMOS	2000	2.5	7
OPA859	±2.5	900	CMOS	1150	3.3	1
THS4631	±15	210	FET	1000	7	1

5 Pin Configuration and Functions

図 5-1. D Package, 8-Pin SOIC (Top View)

図 5-2. DBV Package, 5-Pin SOT-23 (Top View)

PIN				
	N	0.	TYPE	DESCRIPTION
NAME	E D DBV (SOIC) (SOT-23)			
IN–	2	4	Input	Inverting input
IN+	3	3	Input	Noninverting input
NC	1, 5, 8	_	_	No internal connection to the die.
OUT	6	1	Output	Output of amplifier
VS-	4	2	Power	Negative power supply
VS+	7	5	Power	Positive power supply

表 5-1. Pin Functions

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
Vs	Total supply voltage ($V_{S+} - V_{S-}$)		13	V
	dV _S /dT for supply turn-on and turn-off ⁽²⁾		1	V/µs
VI	Input voltage	V _{S-}	V _{S+}	V
V _{ID}	Differential input voltage	V _{S-}	V _{S+}	V
I	Continuous input current ⁽³⁾		±10	mA
lo	Continuous output current ⁽⁴⁾		±30	mA
	Continuous power dissipation	See Thermal Info	rmation	
TJ	Junction temperature		150	°C
T _{stg}	Storage temperature	-65	150	°C

(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

(2) Staying below this specification makes sure that the edge-triggered ESD absorption devices across the supply pins remain off.

(3) Continuous input current limit for the ESD diodes to supply pins.

(4) Long-term continuous current for electromigration limits.

6.2 ESD Ratings

			VALUE	UNIT
V _(ESD) Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	V	
	Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002 ⁽²⁾	±1500	V	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
$V_{S^+} - V_{S^-}$	Total supply voltage	6	10	12.6	V
T _A	Ambient temperature	-40	25	85	°C

6.4 Thermal Information

		OPA		
	THERMAL METRIC ⁽¹⁾	D (SOIC)	DBV (SOT-23)	UNIT
		8 PINS	5 PINS	
R _{0JA}	Junction-to-ambient thermal resistance	122.9	154	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	63.1	88.7	°C/W
R _{θJB}	Junction-to-board thermal resistance	66.3	55.4	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	16.1	33.7	°C/W
Y _{JB}	Junction-to-board characterization parameter	65.5	55.1	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	N/A	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics:

at $T_A \cong 25^{\circ}$ C, $V_S = \pm 5$ V, G = 1 V/V, $R_F = 0 \Omega$, $R_F = 250 \Omega$ for $G \ge 2$ V/V, $R_L = 100 \Omega$, and input and output referenced to midsupply (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
AC PER	FORMANCE						
		V _{OUT} = 200 mV _{PP} , G = 1 V/V		600			
SSBW	Small-signal bandwidth	V _{OUT} = 200 mV _{PP} , G = 2 V/V		250		MHz	
		V _{OUT} = 200 mV _{PP} , G = 10 V/V		25			
	Gain-bandwidth product	G >= 10 V/V		250		MHz	
		V _{OUT} = 2 V _{PP} , G = 1 V/V		200			
LSBW	Large-signal bandwidth	V _{OUT} = 2 V _{PP} , G = 2 V/V		165		MHz	
		V _{OUT} = 4 V _{PP} , G = 1 V/V		110			
	Bandwidth for 0.1-dB flatness	V _{OUT} = 2 V _{PP}		70		MHz	
	Peaking at G = 1 V/V	V _{OUT} = 200 mV _{PP}		0.6		dB	
0.5		V _{OUT} = 1-V step, G = 2 V/V		550			
SR	Slew rate	V _{OUT} = 4-V step, G = 1 V/V		750		V/µs	
		V _{OUT} = 200-mV step, G = 1 V/V, 10%–90%		0.8			
t _R , t _F	Rise, fall time	V _{OUT} = 200-mV step, G = 2 V/V, 10%–90%		1.3		ns	
	Settling time to 0.1%	V _{OUT} = 2-V step, G = 1 V/V		7		ns	
	Settling time to 0.02%	V _{OUT} = 2-V step, G = 2 V/V		16		ns	
	Overshoot	V _{OUT} = 2-V step		6		%	
	Undershoot	V _{OUT} = 2-V step		10		%	
	Output overdrive recovery time	V _{IN} = ±2.5 V, G = 2 V/V		30		ns	
HD2	Second-order harmonic distortion			-119			
HD3	Third-order harmonic distortion	$-$ f = 1 MHz, V_{OUT} = 2 V_{PP} , R_L = 1 k Ω	-130			aBC	
HD2	Second-order harmonic distortion		-75 -85				
HD3	Third-order harmonic distortion	$-$ f = 10 MHz, V _{OUT} = 2 V _{PP} , R _L = 100 Ω				- aBC	
e _N	Input voltage noise	f > 100 kHz		5.3		nV/√Hz	
	Voltage noise 1/f corner frequency			2		kHz	
	Input current noise	f > 100 kHz		11		fA/√Hz	
DC PER	FORMANCE						
		V _O = ±0.5 V	75	80			
A _{OL}	Open-loop voltage gain	$V_{O} = \pm 0.5 \text{ V}, T_{A} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}$	70			dB	
		SOIC		50	±250		
		SOIC, $T_A = -40^{\circ}C$ to $+85^{\circ}C$			±500	.,	
Vos	Input-referred offset voltage	SOT-23		100	±350	μV	
		SOT-23, T _A = -40°C to +85°C			±600		
	Input offset voltage drift ⁽¹⁾	$T_A = -40^{\circ}C$ to +85°C		1	±3.5	µV/°C	
				2	±20		
I _B	Input bias current	$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$			±1000	pА	
	1			1	±20		
IOS	Input offset current	$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$			±500	pА	

6.5 Electrical Characteristics: (続き)

at $T_A \cong 25^{\circ}$ C, $V_S = \pm 5$ V, G = 1 V/V, $R_F = 0 \Omega$, $R_F = 250 \Omega$ for $G \ge 2$ V/V, $R_L = 100 \Omega$, and input and output referenced to midsupply (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
INPUT			·			
		CMRR > 77 dB	2.1	2.7		
	Maat positivo input voltage	$T_A = -40^{\circ}C$ to +85°C, CMRR > 77 dB	2			
	Most positive input voitage	CMRR > 53 dB	2.6	3.1		V
CMIR		$T_A = -40^{\circ}$ C to +85°C, CMRR > 53 dB	2.4			
CMIR		CMRR > 77 dB		-4.3	-3.9	V
		$T_A = -40^{\circ}$ C to +85°C, CMRR > 77 dB			-3.7	
	Most negative input voltage	CMRR > 53 dB		-4.4	-4	
		$T_A = -40^{\circ}$ C to +85°C, CMRR > 53 dB			-3.8	
		$V_{CM} = \pm 0.5 V$	84	100		dB
CMRR	Common-mode rejection ratio	$V_{CM} = \pm 0.5 \text{ V}, T_{A} = -40 \text{ to } +85^{\circ}\text{C}$	83			dB
	Input impedance common-mode			12 2.5		GΩ∥pF
	Input impedance differential mode		1	000 0.2		GΩ∥pF
OUTPUT			I			
		No load	±3.7	±3.9		V
	Voltage output swing	SOIC, R _L = 100 Ω	±3.4	±3.7		
		SOT-23, R _L = 100 Ω	±3.35	±3.7		
		$T_A = -40^{\circ}$ C to +85°C, R _L = 100 Ω	±3.3			
	Linear output drive (sourcing and sinking)	V_{OUT} = ±1 V, ΔV_{OS} < 2 mV	52	70		
		T _A = -40 to +85°C, V _{OUT} = ±1 V, ΔV _{OS} < 3 mV	45			mA
	Short-circuit current			90		mA
Zo	Closed loop output Impedance	f = 100 kHz, G = 1 V/V		0.01		Ω
POWER	SUPPLY					
	Outres and summer t		15.3	16	16.7	
IQ	Quescent current	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	15.2		16.8	mA
		SOIC, V _{S+} = 4.5 V to 5.5 V	79	100		
	Power-supply rejection ratio	SOIC, V _{S+} = 4.5 V to 5.5 V, T _A = -40°C to +85°C	76			
PSRR+	(positive)	SOT-23, V _{S+} = 4.5 V to 5.5 V	77	100		ав
		SOT-23, V _{S+} = 4.5 V to 5.5 V, T _A = -40°C to +85°C	74			
		SOIC, V_{S-} = -4.5 V to -5.5 V	79	100		
0000	Power-supply rejection ratio	SOIC, $V_{S-} = -4.5 \text{ V}$ to -5.5 V , $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$	76			
PSRR-	(negative)	SOT-23, $V_{S-} = -4.5$ V to -5.5 V	77	100		dВ
		SOT-23, V _{S-} = -4.5 V to -5.5 V, T _A = -40°C to +85°C	74			

(1) Based on electrical characterization of 32 devices. Minimum and maximum values are not specified by final automated test equipment (ATE) nor by QA sample testing. Typical specifications are ±1 sigma.

6.6 Typical Characteristics

at $T_A \cong 25^{\circ}$ C, $V_S = \pm 5 V$, G = 1 V/V, $R_F = 0 \Omega$, $R_F = 250 \Omega$ for other gains, $R_L = 100 \Omega$, and input and output referenced to mid-supply (unless otherwise noted)

Copyright © 2023 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信 7

at $T_A \cong 25^{\circ}$ C, $V_S = \pm 5 V$, G = 1 V/V, $R_F = 0 \Omega$, $R_F = 250 \Omega$ for other gains, $R_L = 100 \Omega$, and input and output referenced to mid-supply (unless otherwise noted)

Product Folder Links: OPA814

Copyright © 2023 Texas Instruments Incorporated

at $T_A \cong 25^{\circ}$ C, $V_S = \pm 5 V$, G = 1 V/V, $R_F = 0 \Omega$, $R_F = 250 \Omega$ for other gains, $R_L = 100 \Omega$, and input and output referenced to mid-supply (unless otherwise noted)

Copyright © 2023 Texas Instruments Incorporated

資料に関するフィードバック (ご意見やお問い合わせ)を送信 9

at $T_A \cong 25^{\circ}$ C, $V_S = \pm 5 V$, G = 1 V/V, $R_F = 0 \Omega$, $R_F = 250 \Omega$ for other gains, $R_L = 100 \Omega$, and input and output referenced to mid-supply (unless otherwise noted)

Copyright © 2023 Texas Instruments Incorporated

at $T_A \cong 25^{\circ}$ C, $V_S = \pm 5 V$, G = 1 V/V, $R_F = 0 \Omega$, $R_F = 250 \Omega$ for other gains, $R_L = 100 \Omega$, and input and output referenced to mid-supply (unless otherwise noted)

Copyright © 2023 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信 11

at $T_A \cong 25^{\circ}$ C, $V_S = \pm 5 V$, G = 1 V/V, $R_F = 0 \Omega$, $R_F = 250 \Omega$ for other gains, $R_L = 100 \Omega$, and input and output referenced to mid-supply (unless otherwise noted)

7 Detailed Description

7.1 Overview

The OPA814 is a high-voltage, unity-gain-stable, 250-MHz gain bandwidth product (GBWP), voltage-feedback operational amplifier (op amp) featuring a 5.3-nV/ \sqrt{Hz} , low-noise JFET input stage. The low offset voltage (250 μ V, maximum), offset voltage drift (3.5 μ V/°C, maximum), and unity gain bandwidth of 600 MHz makes this device an excellent choice for high input impedance, high-speed data acquisition front-ends. The high-voltage capability combined with the 750-V/ μ s slew rate enables applications needing wide output swings (9 V_{PP} at V_S = 12 V) for high-frequency signals such as those often found in medical instrumentation, optical front-ends, test, and measurement applications. The low-noise JFET input with picoamperes of bias current makes this device attractive in high-gain TIA applications, and in test and measurement front-ends.

The OPA814 is built using TI's proprietary high-voltage, high-speed, complementary bipolar SiGe process.

7.2 Functional Block Diagram

The OPA814 is a conventional voltage-feedback op amp with two high-impedance inputs and a low-impedance output. \boxtimes 7-1 and \boxtimes 7-2 show two standard amplifier configuration examples that are supported for this device. The reference voltage (V_{REF}) level shifts the dc operating point for each configuration, which is typically set to mid-supply in single-supply operation. V_{REF} is typically set to ground in split-supply applications.

図 7-1. Noninverting Amplifier

2 7-2. Inverting Amplifier

7.3 Feature Description

7.3.1 Input and ESD Protection

The OPA814 is built using a very high-speed complementary bipolar process. The internal junction breakdown voltages are relatively low for these very small geometry devices. These breakdowns are reflected in the *Absolute Maximum Ratings*. As \boxtimes 7-3 shows, all device pins are protected with internal ESD protection diodes to the power supplies.

The diodes provide moderate protection to input overdrive voltages beyond the supplies as well. The protection diodes can typically support a 10-mA continuous current. Where higher currents are possible (for example, in systems with \pm 12-V power supplies driving into the OPA814), add current limiting series resistors in series with the two inputs to limit the current. Keep these resistor values as low as possible because high values degrade both noise performance and frequency response. There are no back-to-back ESD diodes between V_{IN+} and V_{IN-}. As a result, the differential input voltage between V_{IN+} and V_{IN-} is entirely absorbed by the V_{GS} of the input JFET differential pair and must not exceed the voltage ratings shown in the *Absolute Maximum Ratings*.

☑ 7-3. Internal ESD Protection

7.3.2 FET-Input Architecture With Wide Gain-Bandwidth Product

☑ 7-4 shows the open-loop gain and phase response of the OPA814. The GBWP of an op amp is measured in the 20-dB/decade constant slope region of the A_{OL} magnitude plot. The open-loop gain of 60 dB for the OPA814 is along this 20-dB/decade slope, and the corresponding frequency intercept is at 250 kHz. Converting 60 dB to linear units (1000 V/V) and multiplying the open-loop gain with the 250-kHz frequency intercept gives the GBWP of OPA814 as 250 MHz. As is inferred from the A_{OL} Bode plot, the second pole in the A_{OL} response occurs after A_{OL} magnitude drops to less than 0 dB (1 V/V). This occurrence results in a phase change of less than 180° at 0-dB A_{OL} , indicating that the amplifier is stable in a gain of 1 V/V. Amplifiers such as the OPA814 that are JFET input, low noise, and unity-gain stable can be used as high input-impedance buffers and gain stages with minimal degradation in SNR. The OPA814 has 600 MHz of SSBW in gain of 1-V/V configuration with approximately 65° of phase margin.

The low input offset voltage and offset voltage drift of the OPA814 make the device an excellent amplifier for high-precision, high input-impedance, wideband data-acquisition-system front-ends. \boxtimes 8-2 shows that the system benefits from the low-noise JFET input stage with picoamperes of input bias current to achieve higher precision at the 1-M Ω input impedance setting, and higher SNR at the 50- Ω input impedance setting simultaneously in a typical data-acquisition front-end circuit.

7.4 Device Functional Modes

The OPA814 has a single functional mode and is operational when the power-supply voltage is greater than 6 V. The maximum power supply voltage for the OPA814 is 12.6 V (\pm 6.3 V). The OPA814 can be operated on both single and dual supplies.

8 Application and Implementation

注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

8.1 Application Information

8.1.1 Wideband, High-Input Impedance DAQ Front-End

The OPA814 features a unique combination of high GBWP, low-input voltage noise, and the dc precision of a trimmed JFET-input stage to provide a high input impedance for a voltage-feedback amplifier. 🛛 8-2 shows how the very high GBWP of 250 MHz and high large signal bandwidth of 200 MHz are used to either deliver wide signal bandwidths at high gains or to extend the achievable bandwidth or gain in typical high-speed, high-input-impedance data-acquisition front-end applications. To achieve the full performance of the OPA814, careful attention to the printed circuit board (PCB) layout and component selection is required, as discussed in the following sections of this data sheet. The OPA814 also features a wider supply range, thereby enabling a wider common-mode input range to support higher input-signal swings.

⊠ 8-1 shows the noninverting gain of a +2-V/V circuit used as the basis for most of the *Typical Characteristics*. Most of the curves are characterized using signal sources with 50-Ω driving impedance, and with measurement equipment presenting a 50-Ω load impedance. As ⊠ 8-1 shows, the 49.9-Ω shunt resistor at the V_{IN} terminal matches the source impedance of the test generator, while the 49.9-Ω series resistor at the V_O terminal provides a matching resistor for the measurement equipment load. Generally, data-sheet voltage-swing specifications are at the output pin (V_O in ⊠ 8-1); whereas, output power specifications are at the matched 50-Ω load. ⊠ 8-1 shows that the total 100-Ω load at the output combined with the 500-Ω total feedback network load presents the OPA814 with an effective output load of 83.3 Ω for the circuit.

図 8-2. High Input Impedance DAQ Front-End

図 8-1. Noninverting G = +2 V/V Configuration and Test Circuit

Voltage-feedback operational amplifiers, unlike current-feedback amplifiers, use a wide range of resistor values to set the gain. As \boxtimes 8-1 shows, the parallel combination of $R_F \parallel R_G$ must always be kept to a lower value to retain a controlled frequency response for the noninverting voltage amplifier. In the noninverting configuration, the parallel combination of $R_F \parallel R_G$ form a pole with the parasitic input capacitance at the inverting node of the OPA814 (including layout parasitic capacitance). For best performance, this pole must be at a frequency greater than the closed-loop bandwidth for the OPA814.

8.1.2 Wideband, Transimpedance Design Using the OPA814

The OPA814 design is optimized for wideband, low-noise transimpedance applications with high GBWP, low input voltage, low current noise, and low input capacitance. The high-voltage capability allows greater flexibility of supply voltages along with wider output voltage swings. \boxtimes 8-3 shows an example circuit of a typical photodiode amplifier circuit. \boxtimes 8-3 shows that the photodiode is generally reverse biased in a TIA application, so that the photodiode current in the circuit flows into the op-amp feedback path. This polarity of the current results in an output voltage that reduces from V_{REF} with increasing photodiode current. In this type of configuration, and depending on the application needs, V_{REF} can be biased closer to V_{S+} to achieve the desired output swing. Consider the common-mode input range when V_{REF} bias is used so that the common-mode input voltage stays within the valid range of the OPA814.

The key design elements that determine the closed-loop bandwidth, f_{-3dB} , of the circuit are as follows:

- 1. The op amp GBWP
- 2. The transimpedance gain, R_F
- 3. The total input capacitance, C_{TOT}, that includes photodiode capacitance, input capacitance of the amplifier (common-mode and differential capacitance), and PCB parasitic capacitance

🛛 8-3. Wideband, Low-Noise, Transimpedance Amplifier

 \pm 1 shows the relationship between the three key design elements for a Butterworth response.

$$f_{-3dB} = \sqrt{\frac{GBWP}{2 \times \pi \times R_F \times C_{TOT}}}$$
(1)

The feedback resistance (R_F) and the total input capacitance (C_{TOT}) form a zero in the noise gain, and results in instability if left uncompensated. To counteract the effect of the zero, a pole is inserted in the noise gain by adding the feedback capacitor (C_F). The *Transimpedance Considerations for High-Speed Amplifiers* application report discusses theories and equations that show how to compensate a transimpedance amplifier for a particular gain and input capacitance. The bandwidth and compensation equations from the application report are available in a Microsoft Excel[™] calculator. A link to the calculator is provided in *What You Need To Know About Transimpedance Amplifiers – Part 1*. The details of maximizing the dynamic range of TIA front-ends are provided in the *Maximizing the Dynamic Range of Analog TIA Front-End* application note.

8.2 Typical Application

8.2.1 High-Input-Impedance, 180-MHz, Digitizer Front-End Amplifier

The OPA814 wide, large-signal bandwidth and high-slew rate along with high-input impedance make this device an excellent choice for data-acquisition systems. The trimmed dc precision of the OPA814 enables the device to be used directly as a front-end amplifier where low offset and offset voltage drift are required.

図 8-4. High-Input-Impedance, 180-MHz, Digitizer Front-End Amplifier

8.2.1.1 Design Requirements

表 8-1 lists the design requirements for a high-input-impedance, 180-MHz, digitizer front-end amplifier.

P + +				
PARA	METER	VALUE		
Input impedance		1 MΩ or 50 Ω		
Input rango	1-MΩ setting	20 V _{PP}		
Input range	50-Ω setting	2 V _{PP}		
Offset drift		3.5 μV/°C, maximum		
Noise at highest resolution (50	D-Ω Input)	90 µV _{RMS}		

表 8-1. Design Requirements

8.2.1.2 Detailed Design Procedure

The following bullets list the considerations for this design example:

- Input Impedance: The JFET-input stage of the OPA814 offers gigaohms of input impedance, and therefore enables the front-end to be terminated with a 1-MΩ resistor while achieving excellent precision. A 50-Ω resistance can also be switched in, offering matched termination for high-frequency signals. Thus, the OPA814 enables the designer to use both 1-MΩ and 50-Ω termination in the same signal chain.
- Noise: The total noise of the front-end amplifier is a function of the voltage and current noise of the OPA814, input termination, and the resistors thermal noise. However, in 50-Ω mode, the dominant noise source is contributed by the voltage noise of the OPA814 due to the presence of voltage noise across the complete bandwidth. Therefore, the total RMS noise of the front-end amplifier is approximately equal to the voltage noise of the Voltage noise noise of the Voltage not

The specified input-referred voltage noise of the OPA814 is 5.3 nV/ \sqrt{Hz} ; see also 2222 6.5. The total integrated RMS noise at the input in a bandwidth of 180 MHz is given by the following equation:

$$E_{\text{NRMS}} = 5.3 \text{ nV} / \sqrt{\text{Hz}} \times \sqrt{(180 \text{ MHz} \times 1.57)} = 90 \mu V_{\text{RMS}}$$

(2)

The brickwall correction factor of 1.57 is applied, assuming the bandwidth is limited to 180 MHz with a singlepole RC filter before digitizing the signal with the ADC. Detailed calculations are found at TI Precision Labs – Op Amp Noise: Spectral Density.

Optimizing Overshoot: The OPA814 features an internal slew-boost circuit to deliver fast rise-time in applications that require high slew rates, such as when configured as a transimpedance amplifier. For applications where overshoot must be limited, limit the input slew rates by introducing a series resistance (R_S); see also ⊠ 8-4. Resistor R_S forms a low-pass filter with an input capacitance of approximately 2.5 pF at the noninverting pin of the OPA814, thus limiting the input slew rate to the amplifier. ⊠ 8-5 shows how limiting the input slew rate to the amplifier results in good overshoot performance. ⊠ 8-6 shows how this configuration achieves a small-signal and large-signal bandwidth of 180 MHz.

8.2.1.3 Application Curves

8.3 Power Supply Recommendations

The OPA814 is intended to operate on supplies ranging from 6 V to 12.6 V. The OPA814 supports single-supply, split, balanced, and unbalanced bipolar supplies. When operating at supplies less than 8 V, consider the input common-mode range of the amplifier. Under these supply conditions, the common-mode must be biased appropriately for linear operation. Therefore, the limit to lower supply-voltage operation is the usable input voltage range for the JFET-input stage.

8.4 Layout

8.4.1 Layout Guidelines

Achieving optimum performance with a high-frequency amplifier like the OPA814 requires careful attention to board layout parasitics and external component types. Recommendations that optimize performance include the following:

- 1. Minimize parasitic capacitance to any ac ground for all of the signal I/O pins. Parasitic capacitance on the output and inverting input pins can cause instability. On the noninverting input, parasitic capacitance can react with the source impedance to cause unintentional band-limiting. Ground and power metal planes act as one of the plates of a capacitor, while the signal trace metal acts as the other separated by PCB dielectric. To reduce this unwanted capacitance, minimize the routing of the feedback network. A plane cutout around and underneath the inverting input pin on all ground and power planes is recommended. Otherwise, make sure that ground and power planes are unbroken elsewhere on the board.
- 2. Minimize the distance (less than 0.25 inches) from the power-supply pins to high-frequency decoupling capacitors. Use high-quality, 100-pF to 0.1-μF, C0G- and NPO-type decoupling capacitors. These capacitors must have voltage ratings at least three times greater than the amplifiers maximum power supplies to provide a low-impedance path to the amplifiers power-supply pins across the amplifiers gain bandwidth specification. At the device pins, do not allow the ground and power plane layout to be in close proximity to the signal I/O pins. Avoid narrow power and ground traces to minimize inductance between the pins and the decoupling capacitors. Larger (2.2-μF to 6.8-μF) decoupling capacitors, effective at lower frequencies, must be used on the supply pins. These larger capacitors can be placed further from the device and shared among several devices in the same area of the PCB.
- 3. Careful selection and placement of external components preserves the high-frequency performance of the OPA814. Use low-reactance resistors. Small form-factor, surface-mount resistors work best and allow a tighter overall layout. The output pin and inverting input pin are the most sensitive to parasitic capacitance; therefore, always position the feedback and series output resistor, if any, as close as possible to the inverting input and the output pin, respectively.

Place other network components, such as noninverting input termination resistors, close to the package. Even with a low parasitic capacitance at the noninverting input, high external resistor values can create significant time constants that can degrade performance. When the OPA814 is configured as a conventional voltage amplifier, keep the resistor values as low as possible and consistent with the load driving considerations. Decreasing the resistor values keeps the resistor noise terms low and minimizes the effect of the parasitic capacitance. However, lower resistor values increase the dynamic power consumption because R_F and R_G become part of the output load network of the amplifier.

8.4.1.1 Thermal Considerations

The OPA814 does not require heat sinks or airflow in most applications. The maximum allowed junction temperature sets the maximum allowed internal power dissipation, as described in the following paragraph. Do not allow the maximum junction temperature to exceed 150°C.

The operating junction temperature (T_J) is given by T_A + P_D × R_{0JA}. The total internal power dissipation (P_D) is the sum of quiescent power (P_{DQ}), and additional power dissipated in the output stage (P_{DL}) to deliver load power. Quiescent power is the specified no-load supply current times the total supply voltage across the part. P_{DL} depends on the required output signal and load, but for a grounded resistive load, P_{DL} is at a maximum when the output is fixed at a voltage equal to 1/2 of either supply voltage (for balanced, bipolar supplies). Under this condition, P_{DL} = V_S² / (4 × R_L), where R_L includes feedback network loading.

Be aware that the power in the output stage, and not into the load, determines internal power dissipation.

As a worst-case example, compute the maximum T_J using OPA814 in the circuit of \boxtimes 8-1 operating at the maximum specified ambient temperature of +85°C and driving a grounded 100- Ω load.

$$P_{D} = 10 \text{ V} \times 16 \text{ mA} + 5^{2} / (4 \times (100 \Omega \parallel 500 \Omega)) \cong 235 \text{ mW}$$
(3)

Maximum $T_J = +85^{\circ}C + (0.235 \text{ W} \times 122.9^{\circ}C/\text{W}) = 113.9^{\circ}C.$ (4)

All actual applications operate at a lower internal power and junction temperature.

8.4.2 Layout Example

9 Device and Documentation Support

9.1 Device Support

9.1.1 Development Support

• Texas Instruments, Wide Bandwidth Optical Front-end Reference Design

9.2 Documentation Support

9.2.1 Related Documentation

For related documentation, see the following:

- Texas Instruments, Transimpedance Considerations for High-Speed Amplifiers application report
- Texas Instruments, Optical Front-End System Reference Design
- Texas Instruments, Maximizing the Dynamic Range of Analog TIA Front-End technical brief
- Texas Instruments, What You Need To Know About Transimpedance Amplifiers Part 1
- Texas Instruments, What You Need To Know About Transimpedance Amplifiers Part 2
- Texas Instruments, Training Video: How to Design Transimpedance Amplifier Circuits
- Texas Instruments, Training Video: High-Speed Transimpedance Amplifier Design Flow

9.3 ドキュメントの更新通知を受け取る方法

ドキュメントの更新についての通知を受け取るには、www.tij.co.jpのデバイス製品フォルダを開いてください。[通知]をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取ることができます。変更の詳細については、改訂されたドキュメントに含まれている改訂履歴をご覧ください。

9.4 サポート・リソース

テキサス・インスツルメンツ E2E[™] サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。

リンクされているコンテンツは、各寄稿者により「現状のまま」提供されるものです。これらはテキサス・インスツルメンツの仕様を構成するものではなく、必ずしもテキサス・インスツルメンツの見解を反映したものではありません。テキサス・インスツ ルメンツの使用条件を参照してください。

9.5 Trademarks

Excel[™] is a trademark of Microsoft Corporation. テキサス・インスツルメンツ E2E[™] is a trademark of Texas Instruments. すべての商標は、それぞれの所有者に帰属します。

9.6 静電気放電に関する注意事項

この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うことを推奨します。正しい取り扱いおよび設置手順に従わない場合、デバイスを破損するおそれがあります。

ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずか に変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。

9.7 用語集

テキサス・インスツルメンツ用語集 この用語集には、用語や略語の一覧および定義が記載されています。

10 Revision History

資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。

C	hanges from Revision * (April 2023) to Revision A (November 2023)	Page
•	ドキュメントのステータスを「混在ステータス」から「量産データ」に変更	1
•	DBV パッケージのステータスを「プレビュー」から「アクティブ」に変更	1
•	本体サイズではなくパッケージ サイズを示すよう「パッケージ情報」表を更新	1
•	Added specifications for offset voltage, output swing and PSRR for SOT-23 package in the <i>Electrical</i>	
	Characteristics table	5

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
OPA814DBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 85	OP814	Samples
OPA814DR	ACTIVE	SOIC	D	8	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	OPA814	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com

PACKAGE OPTION ADDENDUM

www.ti.com

Texas

STRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

All dimensions are nominal	

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
OPA814DR	SOIC	D	8	3000	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

8-May-2024

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
OPA814DR	SOIC	D	8	3000	356.0	356.0	35.0	

DBV0005A

PACKAGE OUTLINE

SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 Reference JEDEC MO-178.

- 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25 mm per side.
- 5. Support pin may differ or may not be present.

DBV0005A

EXAMPLE BOARD LAYOUT

SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

DBV0005A

EXAMPLE STENCIL DESIGN

SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.

D0008A

PACKAGE OUTLINE

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.

- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

D0008A

EXAMPLE BOARD LAYOUT

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

D0008A

EXAMPLE STENCIL DESIGN

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.

重要なお知らせと免責事項

TIは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス・デザインを含みます)、アプリケーションや 設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供してお り、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的に かかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあら ゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプ リケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載す ることは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを 自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TIの製品は、TIの販売条件、または ti.com やかかる TI 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供され ています。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありま せん。

お客様がいかなる追加条項または代替条項を提案した場合でも、TIはそれらに異議を唱え、拒否します。

郵送先住所:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated