

SN74LV595A JAJSOV4T - APRIL 1998 - REVISED MARCH 2023

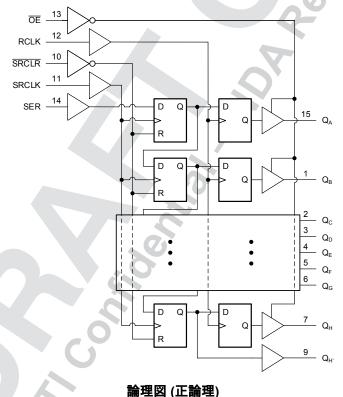
SN74LV595A 3 ステート出力レジスタ搭載 8 ビット・シフト・レジスタ

1 特長

- 2V~5.5V の V_{CC} で動作
- 最大 t_{nd} 7.1ns (5V 時)
- 標準 V_{OLP} (出力グランド・バウンス) $< 0.8 \text{V (V}_{CC} = 3.3 \text{V}, T_A = 25 ^{\circ}\text{C})$
- 標準 V_{OHV} (出力 V_{OH} アンダーシュート) $> 2.3 \text{V} (V_{CC} = 3.3 \text{V}, T_A = 25 ^{\circ}\text{C})$
- すべてのポートで混在モード電圧動作をサポート
- 8ビットのシリアル・イン/パラレル・アウト・シフト
- Ioff により活線挿抜、部分的パワーダウン・モード、バッ ク・ドライブ保護をサポート
- シフト・レジスタはダイレクト・クリアを装備
- JESD 17 準拠で 250mA 超のラッチアップ性能

2 アプリケーション

- 出力拡張
- LED マトリクス制御
- 7 セグメント・ディスプレイ制御


3 概要

SN74LV595A デバイスには 8 ビットのシリアル・イン、パラ レル・アウトのシフト・レジスタが搭載されており、8 ビットの D タイプ・ストレージ・レジスタへデータを供給します。シフ ト・レジスタ・クロック (SRCLK) とストレージ・レジスタ・クロッ ク (RCLK) はどちらもポジティブ・エッジ・トリガです。

パッケージ情報⁽¹⁾

	111	
部品番号	パッケージ	本体サイズ (公称)
	RGY (VQFN, 16)	4.00mm × 3.50mm
	PW (TSSOP、16)	5.00mm × 4.40mm
SN74LV595A	NS (SO, 16)	10.20mm × 5.30mm
	D (SOIC, 16)	9.00mm × 3.90mm
	BQB (WQFN, 16)	3.60mm × 2.60mm

利用可能なすべてのパッケージについては、このデータシートの 末尾にある注文情報を参照してください。

Table of Contents

1 特長 1	7 Parameter Measurement Information	11
2 アプリケーション1	8 Detailed Description	12
3 概要1	8.1 Overview	12
4 Revision History2	8.2 Functional Block Diagram	12
5 Pin Configuration and Functions3	8.3 Feature Description	13
S Specifications4	8.4 Device Functional Modes	14
6.1 Absolute Maximum Ratings4	9 Application and Implementation	
6.2 ESD Ratings4	9.1 Application Information	16
6.3 Recommended Operating Conditions5	9.2 Typical Application	
6.4 Thermal Information5	9.3 Power Supply Recommendations	18
6.5 Electrical Characteristics6	9.4 Layout	19
6.6 Timing Requirements, $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$ 6	10 Device and Documentation Support	
6.7 Timing Requirements, $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	10.1 Documentation Support	20
6.8 Timing Requirements, $V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}7$	10.2ドキュメントの更新通知を受け取る方法	20
6.9 Switching Characteristics, V _{CC} = 2.5 V ± 0.2 V8	10.3 サポート・リソース	20
6.10 Switching Characteristics, V _{CC} = 3.3 V ± 0.3 V8	10.4 Trademarks	20
6.11 Switching Characteristics, V _{CC} = 5 V ± 0.5 V9	10.5 静電気放電に関する注意事項	20
6.12 Noise Characteristics9	10.6 用語集	20
6.13 Operating Characteristics9	11 Mechanical, Packaging, and Orderable	
6.14 Typical Characteristics10	Information	20
• •		

4 Revision History

資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。

Changes from Revision S (November 2022) to Revision T (March 2023)	Page
 ドキュメントの構造レイアウトを現在の標準に更新 Updated thermal values for NS package from RθJA = 79.4 to 110.8, RθJC(top) = 35.8 to 72, 72.6, ΨJT = 5.5 to 39.7, ΨJB = 39.9 to 72.3, all values in °C/W 	$R\theta JB = 40.2 \text{ to}$
Changes from Revision R (June 2022) to Revision S (November 2022)	Page
データシートのステータスを「事前情報」から「 <i>量産データ」に変更</i>	1

Product Folder Links: SN74LV595A

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

5 Pin Configuration and Functions

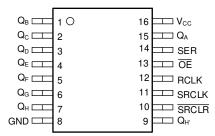


図 5-1. D, DW, or PW Package, 16-Pin SOIC, SOP or TSSOP (Top View)

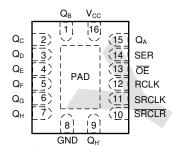


図 5-2. BQB or RGY Package, 16-Pin WQFN or VQFN (Transparent Top View)

表 5-1. Pin Functions

	PIN	TYPE ⁽¹⁾	DESCRIPTION
NAME	NO.	IIFE\/	DESCRIPTION
GND	8	G	Ground Pin
ŌĒ	13	I	Output Enable Pin. Active LOW
Q _A	15	0	Q _A Output
Q _B	1	0	Q _B Output
Q _C	2	0	Q _C Output
Q _D	3	0	Q _D Output
Q _E	4	0	Q _E Output
Q _F	5	0	Q _F Output
Q_G	6	0	Q _G Output
Q _H	7	0	Q _H Output
Q _H '	9	0	Q _H ' Output
RCLK	12	1	RCLK Input
SER	14	1	SER Input
SRCLK	11		SRCLK Input
SRCLR	10	I	SRCLR Input
V _{CC}	16	P	Power Pin
Thermal Pad		-	Thermal Pad ⁽²⁾

- (1) I = Input, O = Output, I/O = Input or Output, G = Ground, P = Power
- (2) RGY and BQB package only

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

				MIN	MAX	UNIT
V _{CC}	Supply voltage range			-0.5	7	V
Vı	Input voltage range ⁽²⁾			-0.5	7	V
Vo	Voltage range applied to any output in the high-impedance or power-off state ⁽²⁾		-0.5	7	V	
Vo	Output voltage range applied in the high or low state ^{(2) (3)}		-0.5 V	_{CC} + 0.5	V	
I _{IK}	Input clamp current	V _I < 0			-20	mA
I _{OK}	Output clamp current	V _O < 0			-50	mA
Io	Continuous output current	V _O = 0 to V	СС	1	±35	mA
	Continuous current through V _{CC} or GND		±70	mA		
T _{stg}	Storage temperature range			-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

6.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±2000	
V _(ESD)	Electrostatic discharge	Machine Model (MM), per JEDEC specification	±200	V
		Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002 (2)	±1000	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

⁽³⁾ This value is limited to 5.5-V maximum.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT	
V _{CC}	Supply voltage		2	5.5	V	
		V _{CC} = 2 V	1.5			
	High-level input voltage	V _{CC} = 2.3 V to 2.7 V	V _{CC} × 0.7		V	
V_{IH}		V _{CC} = 3 V to 3.6 V	V _{CC} × 0.7		V	
		V _{CC} = 4.5 V to 5.5 V	V _{CC} × 0.7			
		V _{CC} = 2 V		0.5		
1.7	Lavy lavyal immy dayalda wa	V _{CC} = 2.3 V to 2.7 V		V _{CC} × 0.3		
V_{IL}	Low-level input voltage	V _{CC} = 3 V to 3.6 V		V _{CC} × 0.3	V	
		V _{CC} = 4.5 V to 5.5 V		V _{CC} × 0.3		
VI	Input voltage		0	5.5	V	
V _O	Output voltage	High or low state	0	V _{CC}	V	
		3-state	0	5.5	V	
		V _{CC} = 2 V	0	-50	μA	
	High lavel autout august	V _{CC} = 2.3 V to 2.7 V		-2		
I _{OH}	High-level output current	V _{CC} = 3 V to 3.6 V		-8	mA	
		V _{CC} = 4.5 V to 5.5 V	9	-16		
		V _{CC} = 2 V	O	50	μΑ	
	Lave lavel autout aumant	V _{CC} = 2.3 V to 2.7 V		2		
l _{OL}	Low-level output current	V _{CC} = 3 V to 3.6 V		8	mA	
		V _{CC} = 4.5 V to 5.5 V	7	16		
		V _{CC} = 2.3 V to 2.7 V		200		
Δt/Δν	Input transition rise or fall rate	V _{CC} = 3 V to 3.6 V		100	ns/V	
		V _{CC} = 4.5 V to 5.5 V		20		
T _A	Operating free-air temperature		-40	125	°C	

¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs.

6.4 Thermal Information

				SN74I	_V595A			
	THERMAL METRIC(1)		DB	NS	PW	RGY	BQB	UNIT
		16 PINS						
R _{θJA} Junction-to-ambient thermal resistance		80.2	97.8	110.8	131.2	39.5	85.9	
R _{θJC(top)}	Junction-to-case (top) thermal resistance	40.3	48.1	72	69.4	50.5	82.4	
R _{θJB}	Junction-to-board thermal resistance	38.0	48.5	72.6	75.8	17.1	55.6	°C/W
ΨЈТ	Junction-to-top characterization parameter	9.0	10.0	39.7	21	0.9	9.4	C/VV
ΨЈВ	Junction-to-board characterization parameter	37.7	47.9	72.3	75.4	17.2	55.6	
R _{θJC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	N/A	N/A	N/A	5.9	33.3	

⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report (SPRA953).

6.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CO	TEST CONDITIONS		-40°	C to 85°C		-40°	C to 125°C		UNIT
PARAMETER	TEST CO	NDITIONS	V _{cc}	MIN	TYP	MAX	MIN	TYP MAX		UNIT
		I _{OH} = -50 μA	2 V to 5.5 V	V _{CC} - 0.1			V _{CC} - 0.1			
		I _{OH} = -2 mA	2.3 V	2			2			
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Q _H '	I _{OH} = -6 mA	3 V	2.48			2.45			V
V _{OH}	Q _A –Q _H	I _{OH} = -8 mA	3 V	2.48			2.45			V
	Q _H '	I _{OH} = -12 mA	4.5 V	3.8			3.7			
	Q _A –Q _H	I _{OH} = -16 mA	4.5 V	3.8			3.7			
		I _{OL} = 50 μA	2 V to 5.5 V			0.1			0.1	
		I _{OL} = 2 mA	2.3 V			0.4		7 (0.4	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Q _H '	I _{OL} = 6 mA	3 V			0.44			0.5	V
V _{OL}	Q _A -Q _H	I _{OL} = 8 mA	3 V			0.44			0.5	V
	Q _H '	I _{OL} = 12 mA	4.5 V			0.55			0.6	
	Q _A -Q _H	I _{OL} = 16 mA	4.5 V			0.55	7 3		0.6	
I _I	V _I = 5.5 V or GND	ı	0 V to 5.5 V			±1)	±1	μA
I _{OZ}	$V_O = V_{CC}$ or GND	$Q_A - Q_H$	5.5 V			±5			±5	μA
I _{CC}	V _I = V _{CC} or GND	I _O = 0	5.5 V			20			20	μΑ
I _{off}	V_I or $V_O = 0$ to 5.5	V	0 V			5	6		5	μΑ
C _i	V _I = V _{CC} or GND		3.3 V		3.5		7	3.5		pF

6.6 Timing Requirements, $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$

over recommended operating free-air temperature range (unless otherwise noted) (see 🗵 7-1)

			T _A = 25°C		-40°C to 8	35°C	-40°C to 1	25°C	UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	ONII
		SRCLK high or low	7	7 4	7.5		8.5		
t _w	Pulse duration	RCLK high or low	7		7.5		8.5		ns
		SRCLR low	6		6.5		7.5		
		SER before SRCLK ↑	5.5		5.5		6.5		
		SRCLK ↑ before RCLK ↑ (1)	8	0	9		10		
t _{su}	Setup time	SRCLR low before RCLK ↑	8.5	>	9.5		10.5		ns
		SRCLR high (inactive) before SRCLK ↑	4		4		5		
t _h	Hold time	SER after SRCLK ↑	1.5		1.5		2.5		ns

(1) This setup time allows the storage register to receive stable data from the shift register. The clocks can be tied together, in which case the shift register is one clock pulse ahead of the storage register.

Product Folder Links: SN74LV595A

Copyright © 2023 Texas Instruments Incorporated

6.7 Timing Requirements, $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$

over recommended operating free-air temperature range (unless otherwise noted) (see Z 7-1)

			T _A = 25	°C	-40°C to	85°C	-40°C to 1	25°C	UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	UNIT
t _w		SRCLK high or low	5.5		5.5		6.5		ns
	Pulse duration	RCLK high or low	5.5		5.5		6.5		
		SRCLR low	5		5		6		
		SER before SRCLK ↑	3.5		3.5		4.5		
		SRCLK ↑ before RCLK ↑ (1)	8		8.5		9.5		
t _{su}	Setup time	SRCLR low before RCLK ↑	8		9		10		ns
		SRCLR high (inactive) before SRCLK ↑	3		3		4	2	
t _h	Hold time	SER after SRCLK ↑	1.5		1.5		2.5		ns

⁽¹⁾ This setup time allows the storage register to receive stable data from the shift register. The clocks can be tied together, in which case the shift register is one clock pulse ahead of the storage register.

6.8 Timing Requirements, $V_{CC} = 5 V \pm 0.5 V$

over recommended operating free-air temperature range (unless otherwise noted) (see 🗵 7-1)

			T _A = 25	°C	-40°C to 85°C	-40°	°C to 125°C	UNIT	
			MIN	MAX	MIN M	AX M	IIN MAX		
		SRCLK high or low	5		5		6		
t _w	Pulse duration	RCLK high or low	5		5		6	ns	
		SRCLR low	5.2		5.2	(3.2		
		SER before SRCLK ↑	3		3		4		
		SRCLK↑ before RCLK↑ (1)	5		5		6		
t _{su}	Setup time	SRCLR low before RCLK ↑	5	7 <	5		6	ns	
		SRCLR high (inactive) before SRCLK ↑	2.5		2.5	3	3.5		
t _h	Hold time	SER after SRCLK ↑	2		2		3	ns	

⁽¹⁾ This setup time allows the storage register to receive stable data from the shift register. The clocks can be tied together, in which case the shift register is one clock pulse ahead of the storage register.

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback

6.9 Switching Characteristics, V_{CC} = 2.5 V ± 0.2 V

over recommended operating free-air temperature range (unless otherwise noted) (see 🗵 7-1)

DADAMETED	FROM	то	LOAD					-40°C to 125	°C	UNIT		
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNII	
f			C _L = 15 pF	65	80		45		45		MHz	
f _{max}			C _L = 50 pF	60	70		40		40		IVITZ	
t _{PLH}	RCLK	0.0			8.4	14.2	1	15.8	1	16.8		
t _{PHL}	KCLK	Q _A – Q _H			8.4	14.2	1	15.8	1	16.8		
t _{PLH}	SRCLK	Q _H			9.4	19.6	1	22.2	1	23.2		
t _{PHL}	SINCLIN	QH'			9.4	19.6	1	22.2	1	23.2		
t _{PHL}	SRCLR	Q _H '	C _L = 15 pF		8.7	14.6	1	16.3	1	17.3	ns	
t _{PZH}	ŌĒ	Q _A – Q _H			8.2	13.9	1	15		16		
t _{PZL}	OE	QA-QH			10.9	18.1	1	20.3	1	21.3		
t _{PHZ}	ŌĒ	Q _A – Q _H			8.3	13.7	1	15.6	1	16.6		
t _{PLZ}	OL	QA-QH			9.2	15.2	1	16.7	1	17.7		
t _{PLH}	RCLK	Q _A – Q _H			11.2	17.2	1	19.3	1	21.3		
t _{PHL}	NOLK	QA-QH			11.2	17.2	1	19.3	1	21.3		
t _{PLH}	SRCLK	Q _H			13.1	22.5	1	25.5	1	27.5		
t _{PHL}	GROER	QH'			13.1	22.5	1	25.5	1	27.5		
t _{PHL}	SRCLR	Q _H '	C _L = 50 pF		12.4	18.8	1	21.1	1	23.1	ns	
t _{PZH}	ŌĒ	Q _A – Q _H			10.8	17	1.	18.3	1	20.3		
t _{PZL}	OL	QA-QH			13.4	21		23	1	25		
t _{PHZ}	ŌĒ	Q _A – Q _H				12.2	18.3	1	19.5	1	21.5	
t _{PLZ}	OL	QA- QH			14	20.9	1	22.6	1	24.6		

6.10 Switching Characteristics, V_{CC} = 3.3 V \pm 0.3 V

over recommended operating free-air temperature range (unless otherwise noted) (see 🗵 7-1)

DADAMETED	FROM	то	LOAD	TA	= 25°C		–40°C to	85°C	-40°C to 1	25°C	LINUT
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
f		4	C _L = 15 pF	80	120		70		70		MHz
f _{max}			C _L = 50 pF	55	105		50		50		IVITZ
t _{PLH}	RCLK	Q _A – Q _H		1.0	6	11.9	1	13.5	1	14.5	
t _{PHL}	KCLK	QA-QH			6	11.9	1	13.5	1	14.5	
t _{PLH}	SRCLK	Q _H '			6.6	13	1	15	1	16	
t _{PHL}	SKOLK	QH'			6.6	13	1	15	1	16	
t _{PHL}	SRCLR	Q _H	C _L = 15 pF		6.2	12.8	1	13.7	1	14.7	ns
t _{PZH}	ŌĒ	0 0	V O		6	11.5	1	13.5	1	14.5	
t _{PZL}	OE .	Q _A – Q _H			7.8	11.5	1	13.5	1	14.5	
t _{PHZ}	ŌĒ	Q _A – Q _H			6.1	14.7	1	15.2	1	16.2	
t _{PLZ}	OL	QA-QH			6.3	14.7	1	15.2	1	16.2	
t _{PLH}	RCLK	Q _A – Q _H			7.9	15.4	1	17	1	19	
t _{PHL}	KOLK	QA-QH			7.9	15.4	1	17	1	19	
t _{PLH}	SRCLK	Q _H '			9.2	16.5	1	18.5	1	20.5	
t _{PHL}	SKOLK	QH'			9.2	16.5	1	18.5	1	20.5	
t _{PHL}	SRCLR	Q _H '	C _L = 50 pF		9	16.3	1	17.2	1	19.2	ns
t _{PZH}	ŌĒ	Q _A – Q _H			7.8	15	1	17	1	19	
t _{PZL}	OE .	WA-WH			9.6	15	1	17	1	19	
t _{PHZ}	ŌĒ	0.0			8.1	15.7	1	16.2	1	18.2	
t _{PLZ}	OE .	Q _A – Q _H			9.3	15.7	1	16.2	1	18.2	

6.11 Switching Characteristics, V_{CC} = 5 V ± 0.5 V

over recommended operating free-air temperature range (unless otherwise noted) (see 🗵 7-1)

DADAMETED	FROM	то	LOAD	TA	= 25°C		-40°C to		-40°C to 125°	С	LINUT
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
f			C _L = 15 pF	135	170		115	(115		MHz
f _{max}			C _L = 50 pF	120	140		95		95		IVIITZ
t _{PLH}	RCLK	0. 0			4.3	7.4	1	8.5	1	9.5	
t _{PHL}	ROLK	Q _A –Q _H			4.3	7.4	1 4	8.5	1	9.5	
t _{PLH}	SRCLK	Q _H ,			4.5	8.2	1	9.4	1	10.4	
t _{PHL}	SNOLK	QH'			4.5	8.2	1	9.4	1	10.4	
t _{PHL}	SRCLR	Q _H '	C _L = 15 pF		4.5	8	1	9.1	1	10.1	ns
t _{PZH}	ŌĒ	Q _A –Q _H			4.3	8.6	1	10	165	11	
t _{PZL}	OL	Q _A –Q _H			5.4	8.6	1	10	1	11	
t _{PHZ}	ŌĒ	Q _A –Q _H			2.4	6	1	7.1	1	7.1	
t _{PLZ}	OL	Q _A –Q _H			2.7	5.1	1	7.2	1	7.2	
t _{PLH}	RCLK	Q _A –Q _H			5.6	9.4	1	10.5	1	12.5	
t _{PHL}	NOLK	Q _A –Q _H			5.6	9.4	1	10.5	1	12.5	
t _{PLH}	SRCLK	Q _H ,			6.4	10.2	1	11.4	1	13.4	
t _{PHL}	SNOLK	QH'			6.4	10.2	1	11.4	1	13.4	
t _{PHL}	SRCLR	Q _H '	C _L = 50 pF		6.4	10	1	11.1	1	13.1	ns
t _{PZH}	ŌĒ	Q _A –Q _H			5.7	10.6		12	1	14	
t _{PZL}	<u> </u>	QA−QH			6.8	10.6	1	12	1	14	
t _{PHZ}	ŌĒ	Q _A –Q _H			3.5	10.3	1	11	1	13	
t _{PLZ}	OE	QA-QH		7	3.4	10.3	1	11	1	13	

6.12 Noise Characteristics

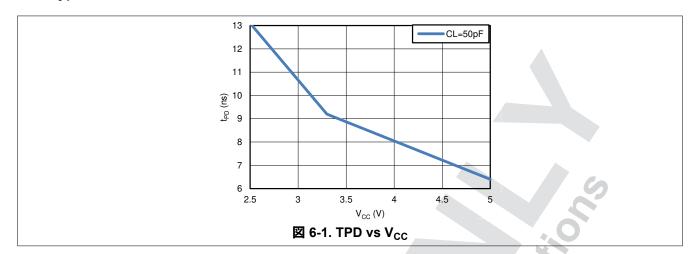
 $V_{CC} = 3.3 \text{ V}, C_L = 50 \text{ pF}, T_A = 25^{\circ}C^{(1)}$

	PARAMETER	MIN	TYP N	MAX	UNIT
V _{OL(P)}	Quiet output, maximum dynamic V _{OL}		0.3		V
V _{OL(V)}	Quiet output, minimum dynamic V _{OL}		-0.2		V
V _{OH(V)}	Quiet output, minimum dynamic V _{OH}		2.8		V
V _{IH(D)}	High-level dynamic input voltage	2.31			V
V _{IL(D)}	Low-level dynamic input voltage		(0.99	V

⁽¹⁾ Characteristics are for surface-mount packages only.

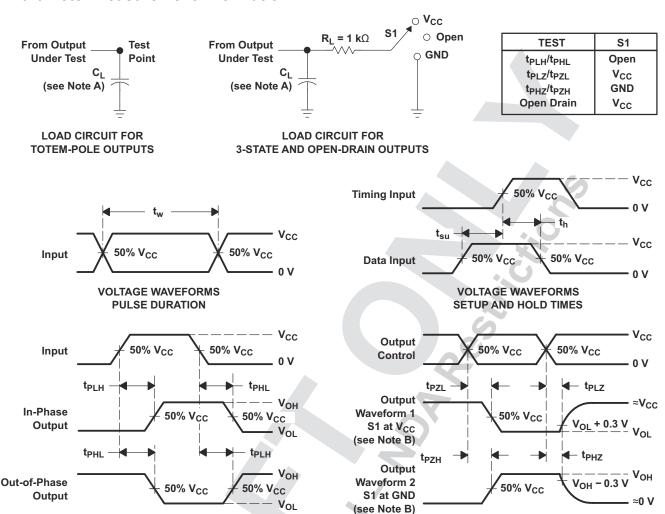
6.13 Operating Characteristics

T_A = 25°C


	PARAMETER	TEST (CONDITIONS	V _{CC}	TYP	UNIT
C .	Power dissipation capacitance	$C_1 = 50 pF$	f = 10 MHz	3.3 V	111	рF
Opd	rower dissipation capacitance	CL = 50 pr,	I - IU WITZ	5 V	114	þΓ

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback



6.14 Typical Characteristics

7 Parameter Measurement Information

- A. C_L includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, Z_O = 50 Ω, t_r ≤ 3 ns, t_f ≤ 3 ns.
- D. The outputs are measured one at a time, with one input transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis}.
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PHL} and t_{PLH} are the same as t_{pd}.
- H. All parameters and waveforms are not applicable to all devices.

VOLTAGE WAVEFORMS

PROPAGATION DELAY TIMES

INVERTING AND NONINVERTING OUTPUTS

図 7-1. Load Circuit and Voltage Waveforms

Product Folder Links: SN74LV595A

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback

VOLTAGE WAVEFORMS

ENABLE AND DISABLE TIMES

LOW- AND HIGH-LEVEL ENABLING

8 Detailed Description

8.1 Overview

The SN74LV595A device contains an 8-bit serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. The storage register has parallel 3-state outputs. Separate clocks are provided for the shift and storage registers. The shift register has a direct overriding clear (\overline{SRCLR}) input, serial (SER) input, and serial outputs for cascading. When the output-enable (\overline{OE}) input is high, the outputs are in the high-impedance state. Both the shift register clock (SRCLK) and storage register clock (RCLK) are positive-edge triggered. If both clocks are connected together, then the shift register always is one clock pulse ahead of the storage register.

8.2 Functional Block Diagram

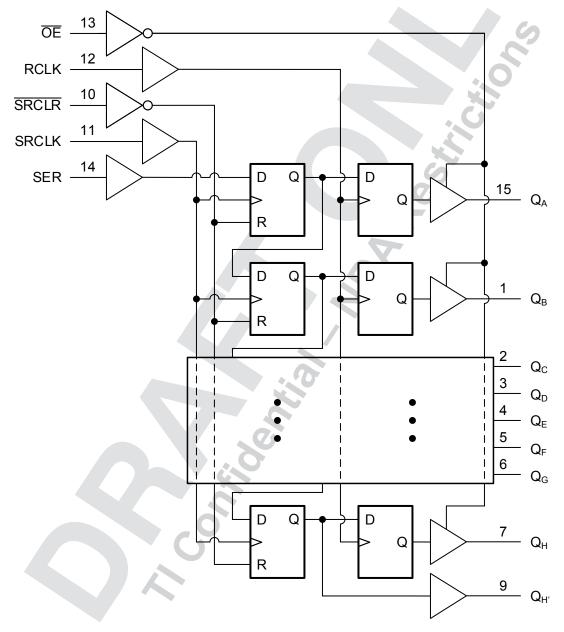


図 8-1. Logic Diagram (Positive Logic)

Product Folder Links: SN74LV595A

8.3 Feature Description

8.3.1 Balanced CMOS 3-State Outputs

This device includes balanced CMOS 3-state outputs. Driving high, driving low, and high impedance are the three states that these outputs can be in. The term *balanced* indicates that the device can sink and source similar currents. The drive capability of this device may create fast edges into light loads, so routing and load conditions should be considered to prevent ringing. Additionally, the outputs of this device can drive larger currents than the device can sustain without being damaged. It is important for the output power of the device to be limited to avoid damage due to overcurrent. The electrical and thermal limits defined in the *Absolute Maximum Ratings* must be followed at all times.

Product Folder Links: SN74LV595A

When placed into the high-impedance mode, the output will neither source nor sink current, with the exception of minor leakage current as defined in the *Electrical Characteristics* table. In the high-impedance state, the output voltage is not controlled by the device and is dependent on external factors. If no other drivers are connected to the node, then this is known as a floating node and the voltage is unknown. A pull-up or pull-down resistor can be connected to the output to provide a known voltage at the output while it is in the high-impedance state. The value of the resistor will depend on multiple factors, including parasitic capacitance and power consumption limitations. Typically, a 10-k Ω resistor can be used to meet these requirements.

Unused 3-state CMOS outputs should be left disconnected.

8.3.2 Latching Logic

This device includes latching logic circuitry. Latching circuits commonly include D-type latches and D-type flip-flops, but include all logic circuits that act as volatile memory.

When the device is powered on, the state of each latch is unknown. There is no default state for each latch at start-up.

The output state of each latching logic circuit only remains stable as long as power is applied to the device within the supply voltage range specified in the *Recommended Operating Conditions* table.

8.3.3 Partial Power Down (Ioff)

This device includes circuitry to disable all outputs when the supply pin is held at 0 V. When disabled, the outputs will neither source nor sink current, regardless of the input voltages applied. The amount of leakage current at each output is defined by the I_{off} specification in the *Electrical Characteristics* table.

8.3.4 Clamp Diode Structure

8-2 shows the inputs and outputs to this device have negative clamping diodes only.

注意

Voltages beyond the values specified in the *Absolute Maximum Ratings* table can cause damage to the device. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

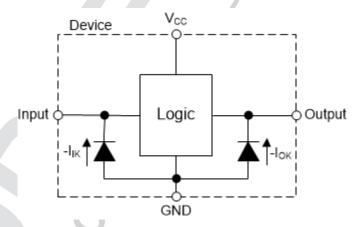


図 8-2. Electrical Placement of Clamping Diodes for Each Input and Output

8.4 Device Functional Modes

表 8-1. Function Table

			32, 0 1.	i unotioi	1 IUDIO
		INPUTS(1)			FUNCTION
SER	SRCLK	SRCLR	RCLK	ŌĒ	TONOTION
Х	х	х	х	Н	Outputs Q _A –Q _H are disabled. Q _H Remains enabled.

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

表 8-1. Function Table (continued)

		INPUTS(1)			FUNCTION
SER	SRCLK	SRCLR	RCLK	ŌĒ	FUNCTION
Х	Х	Х	Х	L	Outputs Q _A -Q _H are enabled.
Х	Х	L	Х	Х	Shift register is cleared.
L	1	Н	Х	х	First stage of the shift register goes low. Other stages store the data of previous stage, respectively.
Н	1	Н	Х	х	First stage of the shift register goes high. Other stages store the data of previous stage, respectively.
Х	Х	Х	1	Х	Shift-register data is stored in the storage register.

Product Folder Links: SN74LV595A

(1) H = High Voltage Level, L = Low Voltage Level, X = Do not Care, Z = High Impedance

9 Application and Implementation

注

以下のアプリケーション情報は、TIの製品仕様に含まれるものではなく、TIではその正確性または完全性を保証いたしません。個々の目的に対する製品の適合性については、お客様の責任で判断していただくことになります。お客様は自身の設計実装を検証しテストすることで、システムの機能を確認する必要があります。

9.1 Application Information

The SN74LV595A is a low-drive CMOS device that can be used for a multitude of bus interface type applications where output ringing is a concern. The low drive and slow edge rates will minimize overshoot and undershoot on the outputs. The inputs are 5-V tolerant allowing for down translation to V_{CC} .

9.2 Typical Application

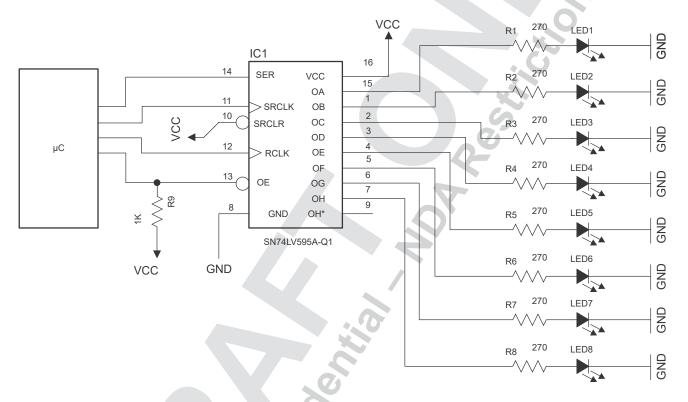


図 9-1. SN74LV595A Expanding IOs to Drive LEDs

9.2.1 Power Considerations

Ensure the desired supply voltage is within the range specified in the *Recommended Operating Conditions*. The supply voltage sets the device's electrical characteristics as described in the *Electrical Characteristics* section.

The positive voltage supply must be capable of sourcing current equal to the total current to be sourced by all outputs of the SN74LV595A plus the maximum static supply current, I_{CC} , listed in the *Electrical Characteristics*, and any transient current required for switching. The logic device can only source as much current that is provided by the positive supply source. Be sure to not exceed the maximum total current through V_{CC} listed in the *Absolute Maximum Ratings*.

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

English Data Sheet: SCLS414

The ground must be capable of sinking current equal to the total current to be sunk by all outputs of the SN74LV595A plus the maximum supply current, I_{CC}, listed in the *Electrical Characteristics*, and any transient current required for switching. The logic device can only sink as much current that can be sunk into its ground connection. Be sure to not exceed the maximum total current through GND listed in the *Absolute Maximum Ratings*.

The SN74LV595A can drive a load with a total capacitance less than or equal to 50 pF while still meeting all of the data sheet specifications. Larger capacitive loads can be applied; however, it is not recommended to exceed 50 pF.

The SN74LV595A can drive a load with total resistance described by $R_L \ge V_O / I_O$, with the output voltage and current defined in the *Electrical Characteristics* table with V_{OH} and V_{OL} . When outputting in the HIGH state, the output voltage in the equation is defined as the difference between the measured output voltage and the supply voltage at the V_{CC} pin.

Total power consumption can be calculated using the information provided in *CMOS Power Consumption and Cpd Calculation*.

Thermal increase can be calculated using the information provided in *Thermal Characteristics of Standard Linear* and Logic (SLL) Packages and Devices.

注意

The maximum junction temperature, $T_{J(max)}$ listed in the *Absolute Maximum Ratings*, is an additional limitation to prevent damage to the device. Do not violate any values listed in the *Absolute Maximum Ratings*. These limits are provided to prevent damage to the device.

9.2.2 Input Considerations

Input signals must cross $V_{IL(max)}$ to be considered a logic LOW, and $V_{IH(min)}$ to be considered a logic HIGH. Do not exceed the maximum input voltage range found in the *Absolute Maximum Ratings*.

Unused inputs must be terminated to either V_{CC} or ground. The unused inputs can be directly terminated if the input is completely unused, or they can be connected with a pull-up or pull-down resistor if the input will be used sometimes, but not always. A pull-up resistor is used for a default state of HIGH, and a pull-down resistor is used for a default state of LOW. The drive current of the controller, leakage current into the SN74LV595A (as specified in the *Electrical Characteristics*), and the desired input transition rate limits the resistor size. A 10-k Ω resistor value is often used due to these factors.

The SN74LV595A has CMOS inputs and thus requires fast input transitions to operate correctly, as defined in the *Recommended Operating Conditions* table. Slow input transitions can cause oscillations, additional power consumption, and reduction in device reliability.

Refer to the Feature Description section for additional information regarding the inputs for this device.

9.2.3 Output Considerations

The positive supply voltage is used to produce the output HIGH voltage. Drawing current from the output will decrease the output voltage as specified by the V_{OH} specification in the *Electrical Characteristics*. The ground voltage is used to produce the output LOW voltage. Sinking current into the output will increase the output voltage as specified by the V_{OL} specification in the *Electrical Characteristics*.

Push-pull outputs that could be in opposite states, even for a very short time period, should never be connected directly together. This can cause excessive current and damage to the device.

Two channels within the same device with the same input signals can be connected in parallel for additional output drive strength.

Product Folder Links: SN74LV595A

Unused outputs can be left floating. Do not connect outputs directly to V_{CC} or ground.

Refer to the *Feature Description* section for additional information regarding the outputs for this device.

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback

17

9.2.4 Design Requirements

This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads so routing and load conditions should be considered to prevent ringing.

9.2.5 Detailed Design Procedure

- Add a decoupling capacitor from V_{CC} to GND. The capacitor needs to be placed physically close to the device and electrically close to both the V_{CC} and GND pins. An example layout is shown in the *Layout* section
- 2. Ensure the capacitive load at the output is ≤ 50 pF. This is not a hard limit; it will, however, ensure optimal performance. This can be accomplished by providing short, appropriately sized traces from the SN74LV595A to one or more of the receiving devices.
- 3. Ensure the resistive load at the output is larger than $(V_{CC} / I_{O(max)}) \Omega$. This will ensure that the maximum output current from the *Absolute Maximum Ratings* is not violated. Most CMOS inputs have a resistive load measured in M Ω ; much larger than the minimum calculated previously.
- 4. Thermal issues are rarely a concern for logic gates; the power consumption and thermal increase, however, can be calculated using the steps provided in the application report, *CMOS Power Consumption and Cpd Calculation*.

9.2.6 Application Curves

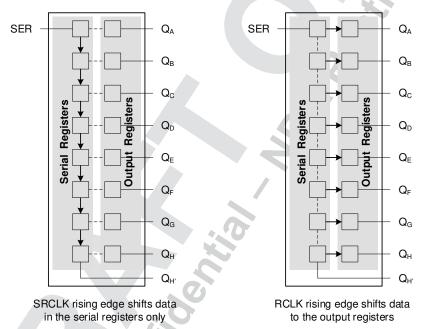


図 9-2. Simplified Functional Diagram Showing Clock Operation

9.3 Power Supply Recommendations

The power supply can be any voltage between the MIN and MAX supply voltage rating located in the *Recommended Operating Conditions* table.

Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, a 0.1 μ F capacitor is recommended. If there are multiple V_{CC} terminals then 0.01 μ F or 0.022 μ F capacitors are recommended for each power terminal. It is ok to parallel multiple bypass capacitors to reject different frequencies of noise. 0.1 μ F and 1.0 μ F capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for the best results.

Product Folder Links: SN74LV595A

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

9.4 Layout

9.4.1 Layout Guidelines

When using multiple bit logic devices, inputs should not float. In many cases, functions or parts of functions of digital logic devices are unused. Some examples are when only two inputs of a triple-input AND gate are used, or when only 3 of the 4-buffer gates are used. Such unused input pins must not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. All unused inputs of digital logic devices must be connected to a logic high or logic low voltage, as defined by the input voltage specifications, to prevent them from floating. The logic level that must be applied to any particular unused input depends on the function of the device. Generally, the inputs are tied to GND or VCC, whichever makes more sense for the logic function or is more convenient.

9.4.2 Layout Example

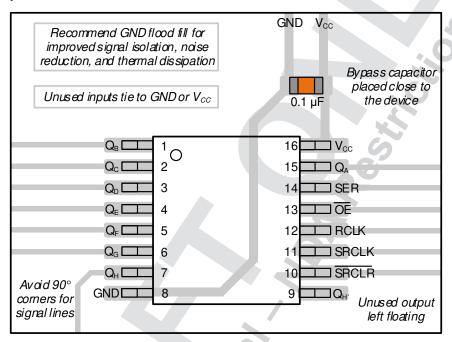


図 9-3. Layout Example for the SN74LV595A in TSSOP

Product Folder Links: SN74LV595A

10 Device and Documentation Support

10.1 Documentation Support

10.1.1 Related Documentation

For related documentation, see the following:

- Texas Instruments, CMOS Power Consumption and Cpd Calculation application report
- Texas Instruments, Thermal Characteristics of Standard Linear and Logic (SLL) Packages and Devices appliation report

10.2 ドキュメントの更新通知を受け取る方法

ドキュメントの更新についての通知を受け取るには、ti.com のデバイス製品フォルダを開いてください。「更新の通知を受け取る」をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取れます。変更の詳細については、修正されたドキュメントに含まれている改訂履歴をご覧ください。

10.3 サポート・リソース

TI E2E™ サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。

リンクされているコンテンツは、該当する貢献者により、現状のまま提供されるものです。これらは TI の仕様を構成するものではなく、必ずしも TI の見解を反映したものではありません。 TI の使用条件を参照してください。

10.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

すべての商標は、それぞれの所有者に帰属します。

10.5 静電気放電に関する注意事項

この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うことを推奨します。正しい取り扱いおよび設置手順に従わない場合、デバイスを破損するおそれがあります。

ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずかに変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。

10.6 用語集

テキサス・インスツルメンツ用語集 この用語集には、用語や略語の一覧および定義が記載されています。

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Product Folder Links: SN74LV595A

Copyright © 2023 Texas Instruments Incorporated

www.ti.com 6-Feb-2024

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
SN74LV595ABQBR	ACTIVE	WQFN	BQB	16	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV595A	Samples
SN74LV595ADR	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	LV595A	Samples
SN74LV595ADRG3	ACTIVE	SOIC	D	16	2500	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 125	LV595A	Samples
SN74LV595ADRG4	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV595A	Samples
SN74LV595ANSR	ACTIVE	SO	NS	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	74LV595A	Samples
SN74LV595APWR	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	LV595A	Samples
SN74LV595APWRG3	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 125	LV595A	Samples
SN74LV595APWRG4	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV595A	Samples
SN74LV595ARGYR	ACTIVE	VQFN	RGY	16	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	LV595A	Samples
SN74LV595ARGYRG4	ACTIVE	VQFN	RGY	16	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	LV595A	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

PACKAGE OPTION ADDENDUM

www.ti.com 6-Feb-2024

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

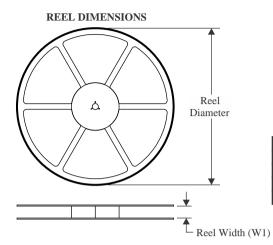
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

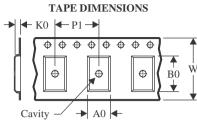
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN74LV595A:

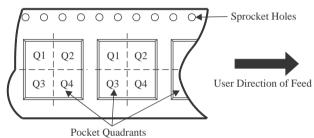
Automotive: SN74LV595A-Q1

■ Enhanced Product : SN74LV595A-EP


NOTE: Qualified Version Definitions:

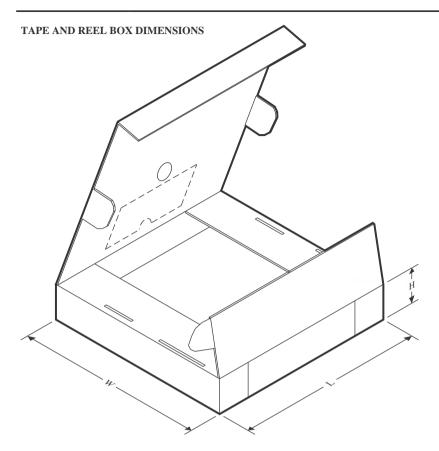

- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Enhanced Product Supports Defense, Aerospace and Medical Applications

www.ti.com 26-Apr-2024


TAPE AND REEL INFORMATION

Γ	A0	Dimension designed to accommodate the component width
	В0	Dimension designed to accommodate the component length
	K0	Dimension designed to accommodate the component thickness
	W	Overall width of the carrier tape
	P1	Pitch between successive cavity centers

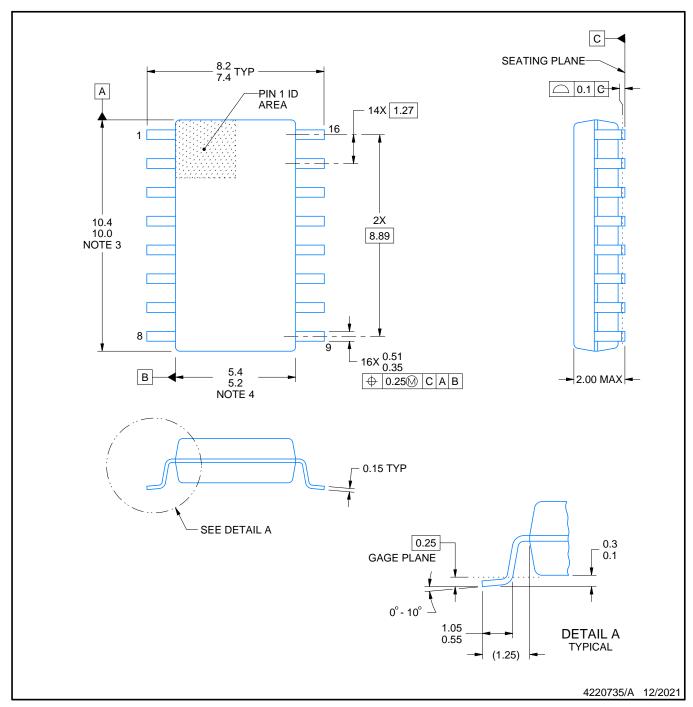
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LV595ABQBR	WQFN	BQB	16	3000	180.0	12.4	2.8	3.8	1.2	4.0	12.0	Q1
SN74LV595ADR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74LV595ADR	SOIC	D	16	2500	330.0	12.4	3.75	3.75	1.15	8.0	12.0	Q1
SN74LV595ADRG3	SOIC	D	16	2500	330.0	16.8	6.5	10.3	2.1	8.0	16.0	Q1
SN74LV595ADRG4	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74LV595ANSR	so	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
SN74LV595APWR	TSSOP	PW	16	2000	330.0	12.4	6.85	5.45	1.6	8.0	12.0	Q1
SN74LV595APWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74LV595APWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74LV595APWRG3	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74LV595APWRG4	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74LV595APWRG4	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74LV595ARGYR	VQFN	RGY	16	3000	330.0	12.4	3.8	4.3	1.5	8.0	12.0	Q1

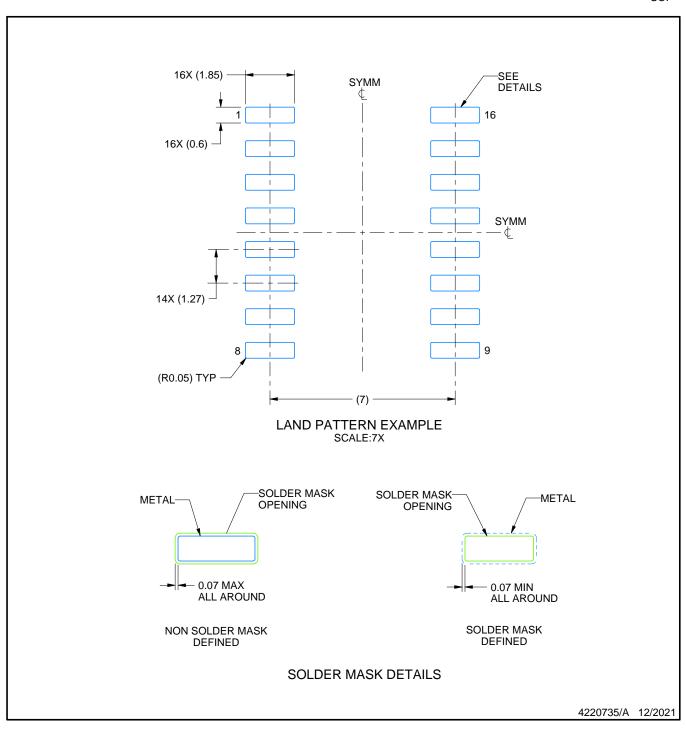
www.ti.com 26-Apr-2024



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LV595ABQBR	WQFN	BQB	16	3000	210.0	185.0	35.0
SN74LV595ADR	SOIC	D	16	2500	340.5	336.1	32.0
SN74LV595ADR	SOIC	D	16	2500	340.5	336.1	32.0
SN74LV595ADRG3	SOIC	D	16	2500	364.0	364.0	27.0
SN74LV595ADRG4	SOIC	D	16	2500	340.5	336.1	32.0
SN74LV595ANSR	SO	NS	16	2000	356.0	356.0	35.0
SN74LV595APWR	TSSOP	PW	16	2000	366.0	364.0	50.0
SN74LV595APWR	TSSOP	PW	16	2000	356.0	356.0	35.0
SN74LV595APWR	TSSOP	PW	16	2000	353.0	353.0	32.0
SN74LV595APWRG3	TSSOP	PW	16	2000	364.0	364.0	27.0
SN74LV595APWRG4	TSSOP	PW	16	2000	356.0	356.0	35.0
SN74LV595APWRG4	TSSOP	PW	16	2000	353.0	353.0	32.0
SN74LV595ARGYR	VQFN	RGY	16	3000	356.0	356.0	35.0

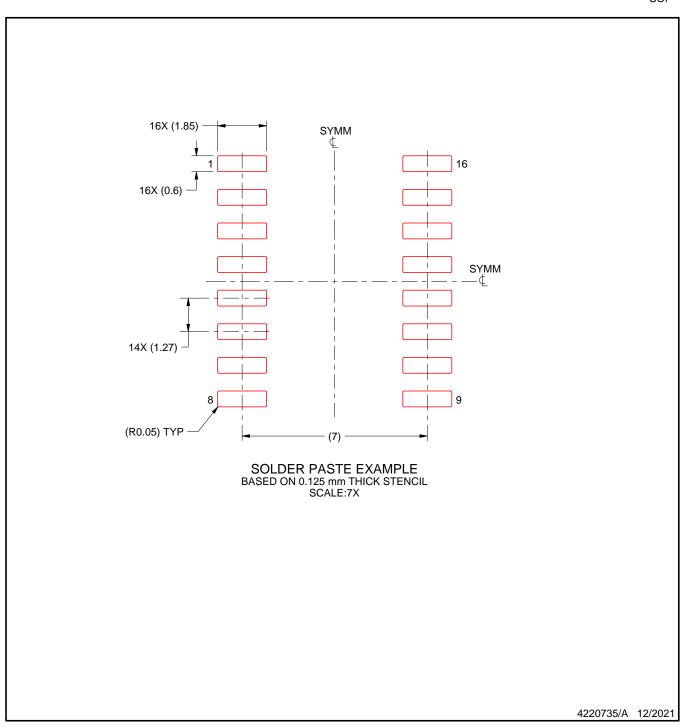
SOP


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing
- per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.

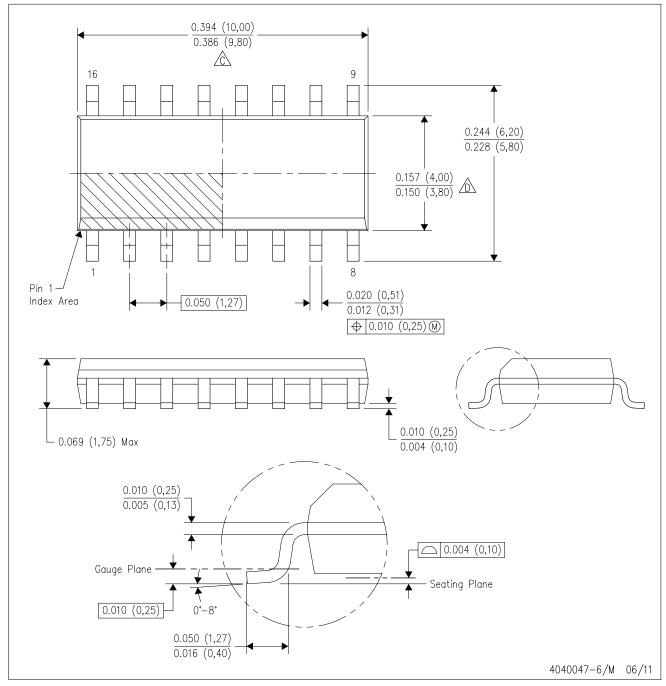
SOF



NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

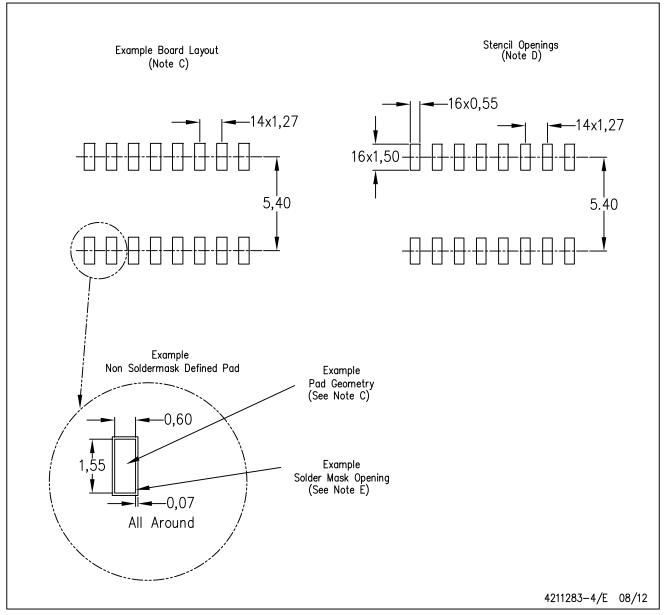
SOF


NOTES: (continued)

- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

D (R-PDS0-G16)

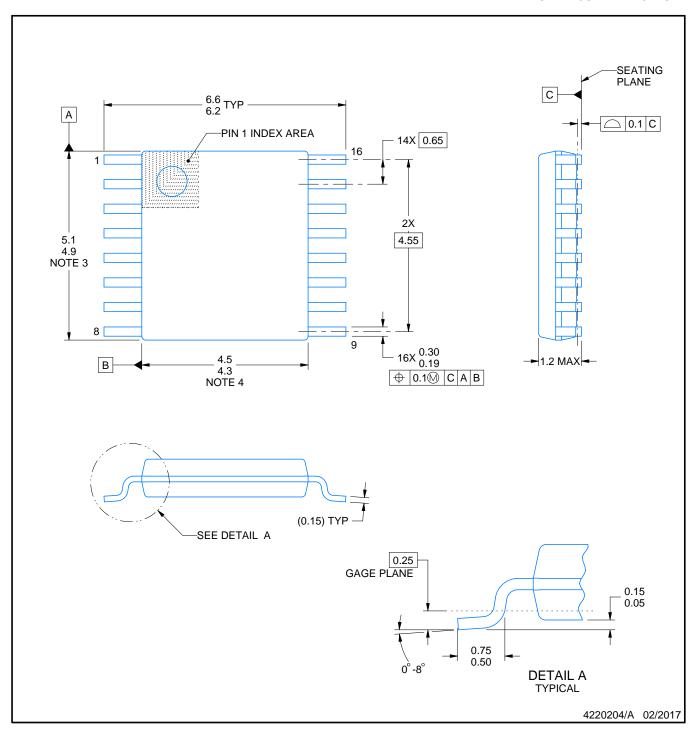
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

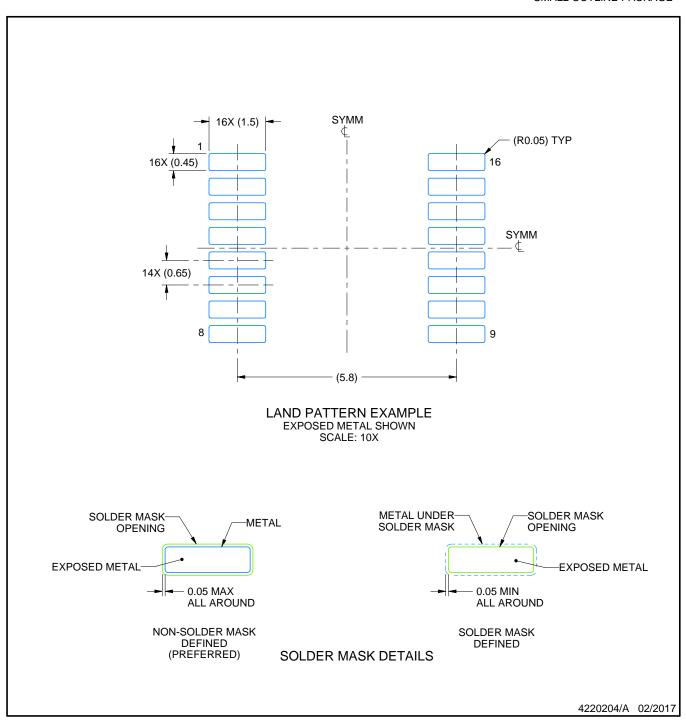
D (R-PDSO-G16)

PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

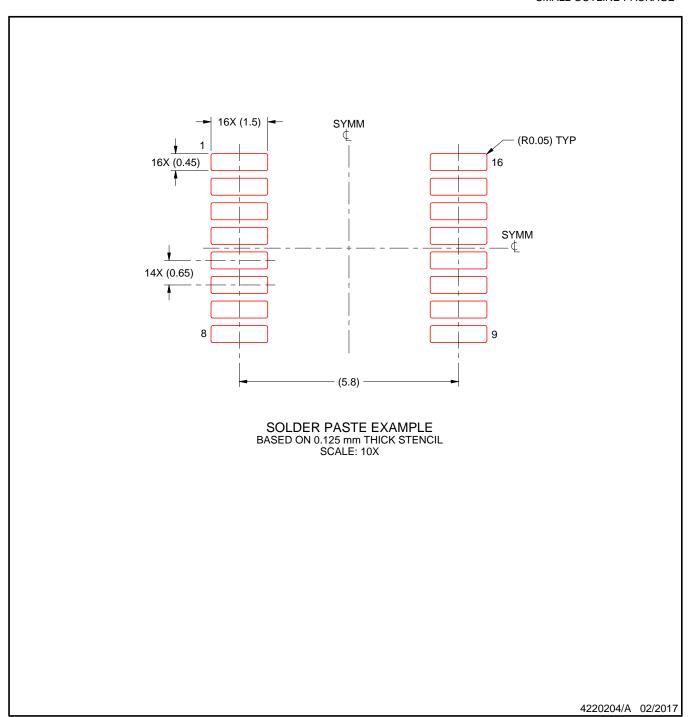
SMALL OUTLINE PACKAGE


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE


NOTES: (continued)

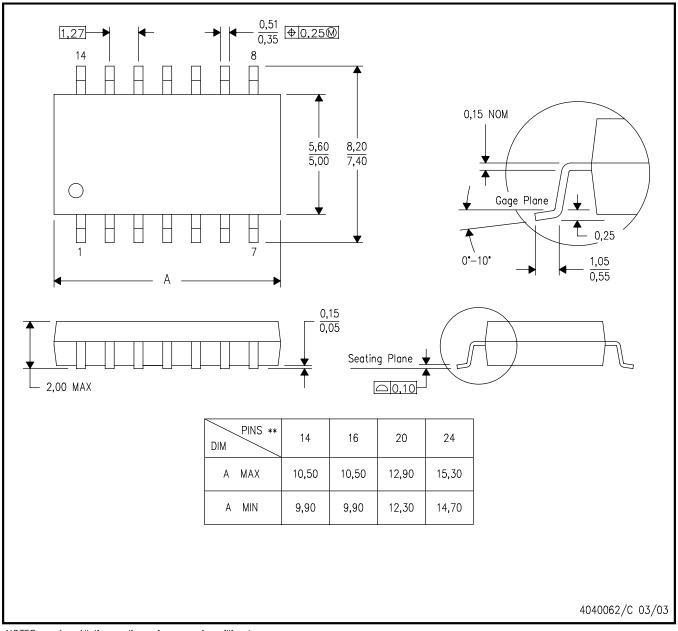
6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

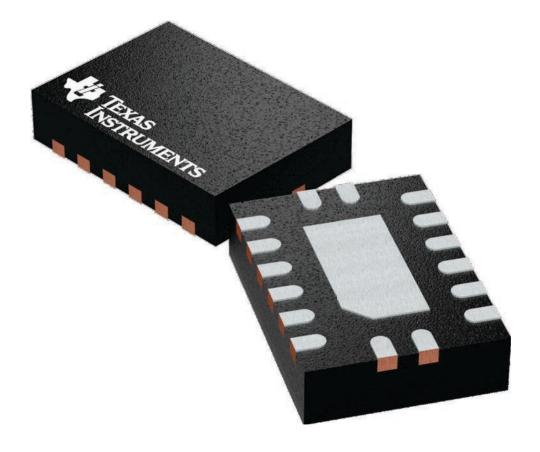


MECHANICAL DATA

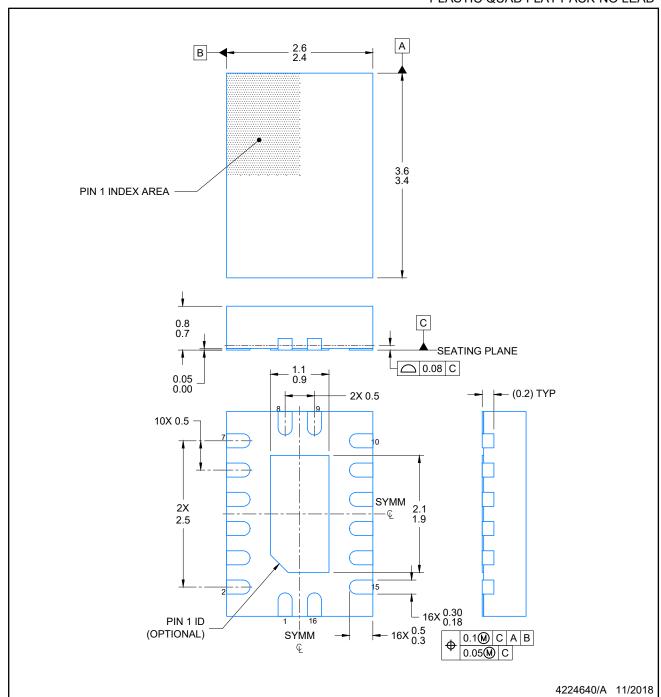
NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

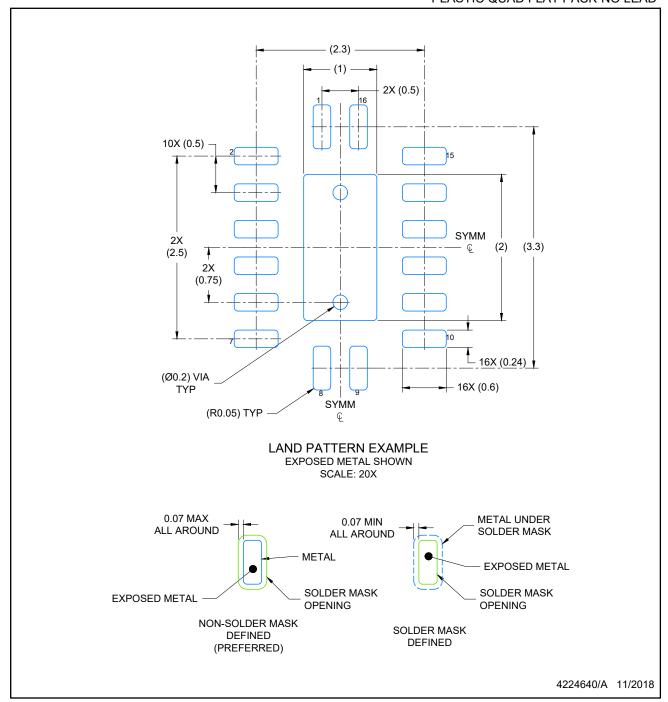

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

2.5 x 3.5, 0.5 mm pitch


PLASTIC QUAD FLATPACK - NO LEAD

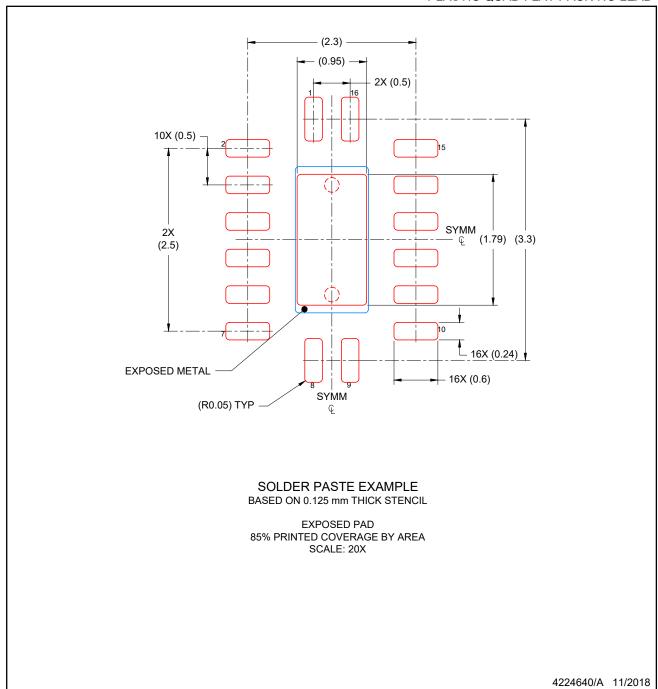
This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

INSTRUMENTS www.ti.com


PLASTIC QUAD FLAT PACK-NO LEAD

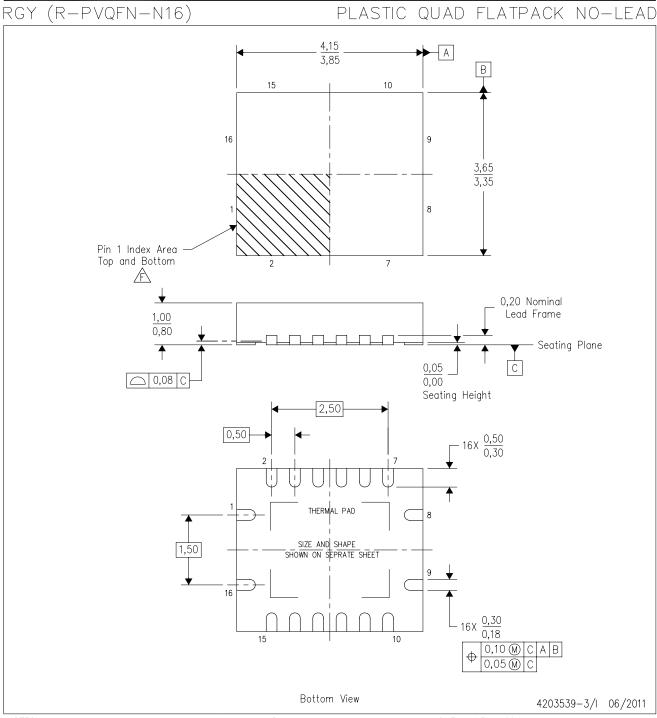
- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.

PLASTIC QUAD FLAT PACK-NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.


PLASTIC QUAD FLAT PACK-NO LEAD

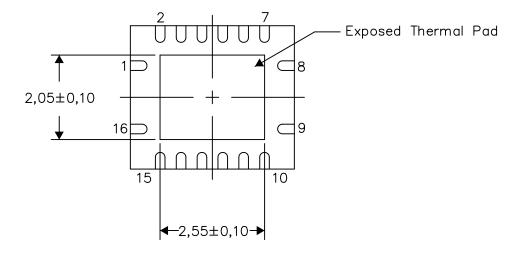
NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- Pin 1 identifiers are located on both top and bottom of the package and within the zone indicated. The Pin 1 identifiers are either a molded, marked, or metal feature.
- G. Package complies to JEDEC MO-241 variation BA.

RGY (R-PVQFN-N16)


PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

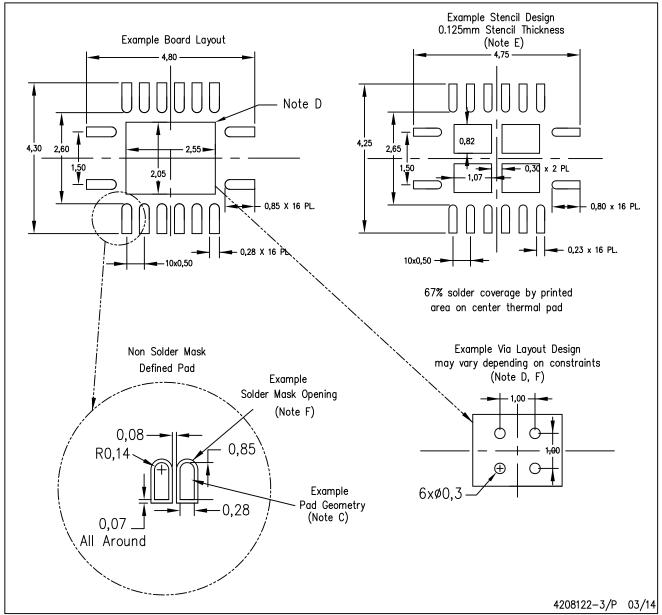
This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View

Exposed Thermal Pad Dimensions


4206353-3/P 03/14

NOTE: All linear dimensions are in millimeters

RGY (R-PVQFN-N16)

PLASTIC QUAD FLATPACK NO-LEAD

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

重要なお知らせと免責事項

TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス・デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあら ゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TIの製品は、TIの販売条件、または ti.com やかかる TI 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。

お客様がいかなる追加条項または代替条項を提案した場合でも、TIはそれらに異議を唱え、拒否します。

郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated