TAD5242 JAJSNP1 - DECEMBER 2023 # TAD5242 高性能、ピン制御ステレオ オーディオ DAC、119dB ダイナミック L ### 1 特長 - DAC チャネル - DAC 性能: - DAC からライン出力へのダイナミック レンジ:119dB - DAC から HP 出力へのダイナミック レ ンジ:115dB - THD+N: -95dB - ヘッドホン/ライン出力の出力電圧: - 差動、2V_{RMS} フルスケール - ― 疑似差動、1V_{RMS} フルスケール - シングルエンド、1V_{RMS} フルスケール - DAC サンプル レート (f_s) = 8KHz~192KHz - 共通機能 - ピン制御 - オーディオ シリアル インターフェイス - フォーマット:TDM、LJ、I²S - 構成可能な TDM スロット - バスのコントローラ モードとターゲット モード - ワード長:16ビット、24ビット、32ビ ットを選択可能 - 線形位相フィルタ - 自動クロック検出および構成 - 低消費電力モード - 割り込み出力 - 単一電源動作 AVDD: 1.8V または 3.3V - I/O 電源動作:1.2V、1.8V、3.3V - 温度グレード 1:-40℃ ≤ T_A ≤ +125℃ # 2 アプリケーション - AV レシーバ - IP ネットワーク カメラ - サウンドバー - テレビ会議システム - 業務用オーディオ ミキサ/制御卓 ## 3 概要 TAD5242 は、2V_{RMS} 119dB のステレオ DAC で す。DAC 出力はライン出力とヘッドホン負荷のどち らかに構成でき、シングルエンド出力と差動出力の両 方をサポートしています。フェーズ ロック ループ (PLL)、DC 除去ハイパス フィルタ (HPF) を内蔵 し、最高 192kHz のサンプル レートに対応していま す。TAD5242 は、ヘッドホン負荷に最大 62.5mW を駆動できます。TAD5242 は、コントローラ モード およびターゲット モードで時分割多重 (TDM)、左揃 え (LJ)、l²S オーディオ フォーマットに対応してお り、ピンで制御できます。これらの高性能機能、ピン 制御、単一電源動作を内蔵しているため、TAD5242 はスペースに制約のあるオーディオ アプリケーショ ンに最適です。 #### 製品情報 | 部品番号 | パッケージ ⁽¹⁾ | 本体サイズ (公称) | |---------|----------------------|-----------------------| | TAD5242 | (- / | 4mm×4mm、
0.5mm ピッチ | 利用可能なパッケージについては、このデータシートの末尾 にある注文情報を参照してください。 概略ブロック図 # **Table of Contents** | 1 特長 1 | 8.1 Overview | 12 | |--|---|----| | 2 アプリケーション1 | 8.2 Functional Block Diagram | 12 | | 3 概要1 | 8.3 Feature Description | | | 4 Revision History2 | 8.4 Device Functional Modes | 24 | | 5 Pin Configuration and Functions3 | 9 Application and Implementation | 25 | | 6 Specifications5 | 9.1 Application Information | 25 | | 6.1 Absolute Maximum Ratings5 | 9.2 Typical Application | 25 | | 6.2 ESD Ratings5 | 10 Power Supply Recommendations | 27 | | 6.3 Recommended Operating Conditions5 | 11 Device and Documentation Support | 28 | | 6.4 Thermal Information6 | 11.1 Documentation Support | 28 | | 6.5 Electrical Characteristics6 | 11.2 ドキュメントの更新通知を受け取る方法 | 28 | | 6.6 Timing Requirements: TDM, I ² S or LJ Interface 8 | 11.3 サポート・リソース | 28 | | 6.7 Switching Characteristics: TDM, I ² S or LJ | 11.4 Trademarks | 28 | | Interface9 | 11.5 静電気放電に関する注意事項 | 28 | | 6.8 Typical Characteristics9 | 11.6 用語集 | 28 | | 7 Parameter Measurement Information 11 | 12 Mechanical, Packaging, and Orderable | | | 8 Detailed Description12 | Information | 28 | | | | | # **4 Revision History** 資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。 | DATE | REVISION | NOTES | |---------------|----------|-----------------| | December 2023 | * | Initial Release | 資料に関するフィードバック(ご意見やお問い合わせ)を送信 # **5 Pin Configuration and Functions** 図 5-1. TAD5242 Pinout 表 5-1. Pin Functions | F | PIN | TYPE(1) | DESCRIPTION | |-------|---------------------------------------|-------------------|--| | NAME | NO. | TIPE(") | DESCRIPTION | | VSS | A1 | Ground | Short directly to board Ground Plane. | | DREG | 1 | Digital
Supply | Digital on-chip regulator output voltage for digital supply (1.5 V, nominal) | | BCLK | 2 | Digital
I/O | Audio serial data interface bus bit clock | | FSYNC | 3 | Digital I/O | Audio serial data interface bus frame synchronization signal | | MD6 4 | | Digital | TDM Mode: Daisy chain output | | | | Input | I2S/LJF Mode: # of channels select | | DIN | 5 | Digital
Input | Audio serial data interface bus input | | IOVDD | 6 | Digital
Supply | Digital I/O power supply (1.8 V or 3.3 V, nominal) | | VSS | A2 | Ground | Short directly to board Ground Plane. | | MD1 | 7 | Digital | Controller Mode: Frame Rate and BCLK frequency selection | | INDI | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | Input | Target Mode: AVDD Supply and Word Length selection | | MD2 | 8 | Digital | Controller Mode: Frame Rate and BCLK frequency selection | | WIDZ | O | Input | Target Mode: AVDD Supply and Word Length selection | | MD3 | 9 | Digital | Controller Mode: Controller Clock Input | | | | Input | Target Mode: Digital HPF and Data Slot selection | | MD4 | 10 | Digital
Input | DAC mode selection | | GPO | 11 | Digital
Output | Interrupt Output | 資料に関するフィードバック (ご意見やお問い合わせ) を送信 Copyright © 2024 Texas Instruments Incorporated 3 English Data Sheet: SLASF31 # 表 5-1. Pin Functions (続き) | F | PIN | TYPE(1) | DESCRIPTION | | | |---------|-----|------------------|--|--|--| | NAME | NO. | I TPE(") | DESCRIPTION | | | | MD5 | 12 | Digital
Input | DAC mode selection | | | | VSS | A3 | Ground | Short directly to board Ground Plane. | | | | MD0 | 13 | Analog
Input | Multi-Level Analog input for Controller/Target and I ² S/TDM/LJ selection | | | | MICBIAS | 14 | Analog | MICBIAS Output (Porgrammable output upto 11V) | | | | VSSA | 15 | Ground | Short directly to board Ground Plane. | | | | VSSA | 16 | Ground | Short directly to board Ground Plane. | | | | VSSA | 17 | Ground | Short directly to board Ground Plane. | | | | VSSA | 18 | Ground | Short directly to board Ground Plane. | | | | VSS | A4 | Ground | Short directly to board Ground Plane. | | | | OUT1M | 19 | Analog
Output | Analog Output 1M Pin | | | | OUT1P | 20 | Analog
Output | Analog Output 1P Pin | | | | OUT2P | 21 | Analog
Output | Analog Output 2P Pin | | | | OUT2M | 22 | Analog
Output | Analog Output 2M Pin | | | | AVDD | 23 | Analog
Supply | Analog power (3.3 V, nominal) | | | | VREF | 24 | Analog | Analog reference voltage filter output | | | (1) I = Input, O = Output, I/O = Input or Output, G = Ground, P = Power. ## **6 Specifications** # **6.1 Absolute Maximum Ratings** over the operating ambient temperature range (unless otherwise noted)(1) | | | MIN | MAX | UNIT | | |----------------------------|---|------|-------------|------|--| | Supply voltage | AVDD to AVSS | -0.3 | 3.9 | V | | | Supply voltage | IOVDD to VSS (thermal pad) | -0.3 | 3.9 | V | | | Ground voltage differences | AVSS to VSS (thermal pad) | -0.3 | 0.3 | V | | | Digital input voltage | Digital input pins voltage to VSS (thermal pad) | -0.3 | IOVDD + 0.3 | V | | | | Functional ambient, T _A | -55 | 125 | | | | Tomporatura | Operating ambient, T _A | -40 | 125 | °C | | | Temperature | Junction, T _J | -40 | 150 | | | | | Storage, T _{stg} | -65 | 150 | | | ⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. ### 6.2 ESD Ratings | | | | VALUE | UNIT | |--------------------|-------------------------|---|-------|------| | V _(ESD) | Electrostatic discharge | Human-body model (HBM), per AEC Q100-002 ⁽¹⁾ | ±2000 | V | | V _(ESD) | Electrostatic discharge | Charged-device model (CDM), per AEC Q100-011 | ±500 | V | ⁽¹⁾ AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification. # **6.3 Recommended Operating Conditions** | | | MIN | NOM | MAX | UNIT | |---------------------|--|----------|-----|-------|------| | POWER | | · | | | | | AVDD ⁽¹⁾ | Analog supply voltage to AVSS AVDD-3.3V Operation | 3.0 | 3.3 | 3.6 | V | | AVDD ⁽¹⁾ | Analog supply voltage to AVSS - AVDD 1.8V operation | 1.65 | 1.8 | 1.95 | V | | IOVDD | IO supply voltage to VSS (thermal pad) - IOVDD 3.3-V operation | 3.0 | 3.3 | 3.6 | V | | טטעטו | IO supply voltage to VSS (thermal pad) - IOVDD 1.8-V operation | 1.65 | 1.8 | 1.95 | V | | IOVDD | IO supply voltage to VSS (thermal pad) - IOVDD 1.2-V operation | 1.08 | 1.2 | 1.32 | V | | INPUTS | | <u> </u> | | ' | | | INxx | Analog input pins voltage to AVSS for line-in recording | 0 | | AVDD | V | | INxx | Analog input pins voltage to AVSS for microphone recording | 0.1 | N | - | V | | Ю | Digital input pins(except MD0) voltage to VSS (thermal pad) | 0 | | IOVDD | V | | MD0 | MD0 pin w.r.t AVSS | 0 | | AVDD | V | | TEMPERA | TURE | ' | | ' | | | T _A | Operating ambient temperature | -40 | | 125 | °C | Product Folder Links: TAD5242 資料に関するフィードバック(ご意見やお問い合わせ)を送信 | | | MIN | NOM | MAX | UNIT | |----------------|--|-----|-----|-----------------------|------| | OTHERS | | | | | | | | MD3 clock frequency (in controller mode) | | | 36.864 ⁽²⁾ | MHz | | C _L | Digital output load capacitance | | 20 | 50 | pF | - (1) AVSS and VSS (thermal pad); all ground pins must be tied together and must not differ in voltage by more than 0.2 V. - (2) MCLK input rise time (V_{IL} to V_{IH}) and fall time (V_{IH} to V_{IL}) must be less than 5 ns. For better audio noise performance, MCLK input must be used with low jitter. ### 6.4 Thermal Information | | | TAD5242 | | |-----------------------|--|------------|------| | | THERMAL METRIC ⁽¹⁾ | RGE (WQFN) | UNIT | | | | 28 PINS | | | R _{θJA} | Junction-to-ambient thermal resistance | 38.4 | °C/W | | R _{0JC(top)} | Junction-to-case (top) thermal resistance | 26.3 | °C/W | | $R_{\theta JB}$ | Junction-to-board thermal resistance | 15.9 | °C/W | | ΨЈТ | Junction-to-top characterization parameter | 0.5 | °C/W | | ΨЈВ | Junction-to-board characterization parameter | 15.8 | °C/W | | R _{0JC(bot)} | Junction-to-case (bottom) thermal resistance | 13.8 | °C/W | ⁽¹⁾ For more information about traditional and new thermal metrics, see the spra953 application report. ### 6.5 Electrical Characteristics at T_A = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, f_{IN} = 1-kHz sinusoidal signal, f_S = 48 kHz, 32-bit audio data, BCLK = 256 [char_not_recognized] f_S , TDM target mode and PLL on
(unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | NOM | MAX | UNIT | |---------|-----------------------------|---|-----|-----|-----|-----------| | DAC Per | rformance for Line Output/l | Head Phone Playback | | | | | | | | Differential output between OUTxP and OUTxM, AVDD=3.3V | | 2 | | | | | | Differential Output between OUTxP and OUTxM, AVDD=1.8V | | 1 | | | | | Full Scale Output | Single-ended Output, AVDD=3.3V | | 1 | | \/ | | | Voltage | Single-ended Output, AVDD=1.8V | | 0.5 | | V_{RMS} | | | | Pseudo Differential Output between OUTxP and OUTxM, AVDD=3.3V | | 1 | | | | | | Pseudo Differential Output between OUTxP and OUTxM, AVDD=1.8V | | 0.5 | | | | | | Differential Output, 0dBFS Signal, AVDD=3.3V | | 119 | | | | | | Single Ended Output, 0dBFS Signal, AVDD=3.3V | | 111 | | | | SNR | Signal-to-noise ratio, A- | Pseudo Differential Output, 0dBFS Signal,
AVDD=3.3V | | 110 | | dB | | OINIX | weighted ⁽¹⁾ (2) | Differential Output, 0dBFS Signal, AVDD=1.8V | | 114 | | ФВ | | | | Single Ended Output, 0dBFS Signal, AVDD=1.8V | | 105 | | | | | | Pseudo Differential Output, 0dBFS Signal,
AVDD=1.8V | | 104 | | | Product Folder Links: TAD5242 資料に関するフィードバック(ご意見やお問い合わせ)を送信 at T_A = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, f_{IN} = 1-kHz sinusoidal signal, f_S = 48 kHz, 32-bit audio data, BCLK = 256 [char_not_recognized] f_S , TDM target mode and PLL on (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | NOM | MAX | UNIT | |------------------|---|---|-----------------|-------------|-----------------|---------| | | | Differential Output, -60dBFS Signal, AVDD=3.3V | | 119 | | | | | | Single Ended Output, -60dBFS Signal,
AVDD=3.3V | | 111 | | | | DR | Dynamic range, A-weighted ⁽²⁾ | Pseudo Differential Output, -60dBFS Signal, AVDD=3.3V | | 110 | | dB | | DK | | Differential Output, -60dBFS Signal, AVDD=1.8V | | 114 | | | | | | Single Ended Output, -60dBFS Signal,
AVDD=1.8V | | 105 | | | | | | Pseudo Differential Output, -60dBFS Signal, AVDD=1.8V | | 104 | | | | THD+N | Total harmonic distortion ⁽²⁾ | | | – 95 | | dB | | | Head Phone Load
Range | | | 16 | | Ω | | | Head Phone/LO Cap
Load | | 0 | 100 | 550 | pF | | | Line Out Load Range | | 600 | | | Ω | | DAC Chai | nnel OTHER PARAMETER | - | | | | | | | Output Offset | 0 Input, Fully Differential Output | | 0.2 | | mV | | | Output Offset | 0 Input, Pseudo Differential Output | | 0.4 | | mV | | | Output Common Mode | Common Mode Level for OUTxP and OUTxM AVDD=1.8V | | 0.9 | | V | | | Output Common Mode | Common Mode Level for OUTxP and OUTxM AVDD=3.3V | | 1.66 | | V | | | Common Mode Error | DC Error in Common Mode Voltage | | ±10 | | mV | | | Output Signal
Bandwidth | | | 20 | | kHz | | | Input data sample word length | Programmable | 16 | | 32 | Bits | | | Digital high-pass filter cutoff frequency | First-order IIR filter with programmable coefficients, –3-dB point (default setting) | | 2 | | Hz | | | Interchannel isolation | | | -134 | | dB | | | Interchannel gain mismatch | | | 0.1 | | dB | | | Interchannel phase mismatch | 1-kHz sinusoidal signal | | 0.01 | | Degrees | | PSRR | Power-supply rejection ratio | 100-mV _{PP} , 1-kHz sinusoidal signal on AVDD,
differential input selected, 0-dB channel gain | | 100 | | dB | | | Mute Attenuation | | | -130 | | dB | | P _{out} | Output Power Delivery | Single ended/Pseudo Differential R _L =16 Ohms, THD+N<1% | | 62.5 | | mW | | DIGITAL I | 10 | | | | | | | V _{IL} | Low-level digital input logic voltage threshold | All digital pins, IOVDD 1.8-V operation | -0.3 | | 0.35 x
IOVDD | V | | | gio rollago un conola | All digital pins, IOVDD 3.3-V operation | -0.3 | | 0.8 | | | V_{IH} | High-level digital input | All digital pins, IOVDD 1.8-V operation | 0.65 x
IOVDD | | IOVDD +
0.3 | V | | | logic voltage threshold | All digital pins, IOVDD 3.3-V operation | 2 | | IOVDD +
0.3 | - | | | | | | | | | at T_A = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, f_{IN} = 1-kHz sinusoidal signal, f_S = 48 kHz, 32-bit audio data, BCLK = 256 [char_not_recognized] f_S , TDM target mode and PLL on (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | NOM | MAX | UNIT | |---------------------------------------|--|--|-----------------|-----|------|------| | V | Low-level digital output | All digital pins, $I_{OL} = -2 \text{ mA}$, IOVDD 1.8-V operation | | | 0.45 | V | | | | All digital pins, $I_{OL} = -2 \text{ mA}$, IOVDD 3.3-V operation | | | 0.4 | V | | · · · · · · · · · · · · · · · · · · · | High-level digital output | All digital pins, I _{OH} = 2 mA, IOVDD 1.8-V operation | IOVDD –
0.45 | | | V | | V _{OH} | voltage | All digital pins, I _{OH} = 2 mA, IOVDD 3.3-V operation | 2.4 | | | V | | I _{IL} | Input logic-low leakage for digital inputs | All digital pins, input = 0 V | -5 | 0.1 | 5 | μΑ | | I _{IH} | Input logic-high leakage for digital inputs | All digital pins, input = IOVDD | -5 | 0.1 | 5 | μΑ | | C _{IN} | Input capacitance for digital inputs | All digital pins | | 5 | | pF | | R _{PD} | Pulldown resistance for digital I/O pins when asserted on | | | 20 | | kΩ | | TYPICAL | SUPPLY CURRENT CONS | SUMPTION | | | | | | I _{AVDD} | Current consumption in | | | TBD | | | | I _{IOVDD} | sleep mode (software shutdown mode) | All device external clocks stopped | | 1 | | μA | | I _{AVDD} | Current consumption | | | TBD | | | | I _{IOVDD} | with DAC to HP 2-
channel operation at f _S
16-kHz, BCLK = 512 *
f _S | | | 0.2 | | mA | | I _{AVDD} | Current consumption | | | TBD | | | | I _{IOVDD} | with DAC to HP 2-
channel operation at f _S
48-kHz, BCLK = 512 *
f _S | | | TBD | | mA | - (1) Ratio of output level with 1-kHz full-scale sine-wave input, to the output level with the AC signal input shorted to ground, measured A-weighted over a 20-Hz to 20-kHz bandwidth using an audio analyzer. - (2) All performance measurements done with 20-kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter can result in higher THD and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter removes out-of-band noise, which, although not audible, can affect dynamic specification values. # 6.6 Timing Requirements: TDM, I²S or LJ Interface at T_A = 25°C, IOVDD = 3.3 V or 1.8 V and 20-pF load on all outputs (unless otherwise noted); see for timing diagram | | | | MIN | NOM MAX | UNIT | |-------------------------|------------------------------|---------------------|-----|---------|------| | t _(BCLK) | BCLK period | | 40 | | ns | | t _{H(BCLK)} | BCLK high pulse duration (1) | 18 | | ns | | | t _{L(BCLK)} | BCLK low pulse duration (1) | | 18 | | ns | | t _{SU(FSYNC)} | FSYNC setup time | | 8 | | ns | | t _{HLD(FSYNC)} | FSYNC hold time | | 8 | | ns | | t _{r(BCLK)} | BCLK rise time | 10% - 90% rise time | | 10 | ns | | t _{f(BCLK)} | BCLK fall time | 90% - 10% fall time | | 10 | ns | (1) The BCLK minimum high or low pulse duration must be higher than 25 ns (to meet the timing specifications), if the SDOUT data line is latched on the opposite BCLK edge polarity than the edge used by the device to transmit SDOUT data. 資料に関するフィードバック(ご意見やお問い合わせ)を送信 # 6.7 Switching Characteristics: TDM, I²S or LJ Interface at T_A = 25°C, IOVDD = 3.3 V or 1.8 V and 20-pF load on all outputs (unless otherwise noted); see TBD for timing diagram | PARAMETER | | TEST CONDITIONS MIN TYP I | | TYP MAX | UNIT | | |------------------------------|--|---|----|---------|------|--| | + | BCLK to SDOUT delay | 50% of BCLK to 50% of SDOUT, IOVDD = 1.8 V | | 18 | ns | | | t _d (SDOUT-BCLK) | BOLK to Shoot delay | 50% of BCLK to 50% of SDOUT, IOVDD = 3.3 V | | 14 | ns | | | | FSYNC to SDOUT delay in TDM | 50% of FSYNC to 50% of SDOUT, IOVDD = 1.8 V | | 18 | | | | t _d (SDOUT-FSYNC) | or LJ mode (for MSB data with TX_OFFSET = 0) | 50% of FSYNC to 50% of SDOUT, IOVDD = 3.3 V | | 14 | ns | | | f _(BCLK) | BCLK output clock frequency;
master mode ⁽¹⁾ | | | 24.576 | MHz | | | t _{H(BCLK)} | BCLK high pulse duration; master | IOVDD = 1.8 V | 14 | | ns | | | | mode | IOVDD = 3.3 V | 14 | | | | | t | BCLK low pulse duration; master | IOVDD = 1.8 V | 14 | | ns | | | t _{L(BCLK)} | mode | IOVDD = 3.3 V | 14 | | | | | | BCLK to FSYNC delay; master | 50% of BCLK to 50% of FSYNC, IOVDD = 1.8 V | | 18 | ns | | | t _{d(FSYNC)} | mode | 50% of BCLK to 50% of FSYNC, IOVDD = 3.3 V | | 14 | | | | $t_{r(BCLK)}$ | PCI K rise time: meeter mede | 10% - 90% rise time, IOVDD = 1.8 V | | 10 | no | | | | BCLK rise time; master mode | 10% - 90% rise time, IOVDD = 3.3 V | | 10 | ns | | | | DOLK (| 90% - 10% fall time, IOVDD = 1.8 V | | 8 | ne | | | t _{f(BCLK)} | BCLK fall time; master mode | 90% - 10% fall time, IOVDD = 3.3 V | | 8 | ns | | ⁽¹⁾ The BCLK output clock frequency must be lower than 18.5 MHz (to meet the timing specifications), if the SDOUT data line is latched on the opposite BCLK edge polarity than the edge used by the device to transmit SDOUT data. ## 6.8 Typical Characteristics Graph Placeholder Graph Placeholder 図 6-1. 資料に関するフィードバック(ご意見やお問い合わせ)を送信 # **6.8 Typical Characteristics (continued)** | Graph Placeholder | Graph Placeholder | |-------------------|-------------------| | 図 6-3. | 図 6-4. | | Graph Placeholder | Graph Placeholder | | 図 6-5. | 図 6-6. | # 7 Parameter Measurement Information ## 8 Detailed Description ### 8.1 Overview The TAD5242 is from a scalable family of devices. As part of the extended family of devices, the TAD5242 consists of a
high-performance, low-power, flexible, mono/stereo, audio analog-to-digital converter (ADC) and audio digital-to-analog converter (DAC) with extensive feature integration. This device is intended for broad market applications such as ruggedized communication equipment, IP network camera, Professional Audio and multimedia applications. The high dynamic range of this device enables far-field audio recording with high fidelity. This device integrates a host of features that reduce cost, board space, and power consumption in space-constrained system designs. Package, performance, and compatible configuration across extended family make this device well suited for scalable system designs. The TAD5242 consists of the following blocks: - 2-channel, multibit, high-performance delta-sigma (ΔΣ) DACs - · Configurable single-ended, differential or pseudo-differential audio outputs - · Linear-phase digital interpolation filters - Volume ramp up/down for each channel - Configurable digital high-pass filter (HPF) - · Integrated low-jitter, phase-locked loop (PLL) supporting a wide range of system clocks - Integrated digital and analog voltage regulators to support single-supply operation ## 8.2 Functional Block Diagram 図 8-1. Functional Block Diagram # 8.3 Feature Description 資料に関するフィードバック(ご意見やお問い合わせ)を送信 ### 8.3.1 Hardware Control The device supports simple hardware-pin-controlled options to select a specific mode of operation and audio interface for a given system. The MD0 to MD6 pins allow the device to be controlled by either pullup or pulldown resistors. #### 8.3.2 Audio Serial Interfaces Digital audio data flows between the host processor and the TAD5242 on the digital audio serial interface (ASI), or audio bus. This highly flexible ASI bus includes a TDM mode for multichannel operation, support for the I²S and LJF, and the pin-selectable controller-target configurability for bus clock lines. The device supports an audio bus controller or target mode of operation using the hardware pin MD0. In target mode, FSYNC and BCLK work as input pins whereas in controller mode, FSYNC and BCLK work as output pins generated by the device. 表 8-1 shows the controller and target mode selection using the MD0 pin. 表 8-1. Controller and Target Mode Selection | <u> </u> | | | | |--------------------------------|---------------------------------|--|--| | MD0 | CONTROLLER AND TARGET SELECTION | | | | Short to Ground | Target I2S Mode | | | | Short to Ground with 4.7K Ohms | Target TDM Mode | | | | Short to AVDD | Controller I2S Mode | | | | Short to AVDD with 4.7K Ohms | Controller TDM Mode | | | | Short to AVDD with 22K Ohms | Target LJ Mode | | | | | | | | The word length for audio serial interface (ASI) in TAD5242 can be selected through MD1 and MD2 Pins in target mode of operation. In controller mode, fixed word length of 32 bits is supported. The TAD5242 also supports 1.8V AVDD operation in target mode with 32 bit word length. 表 8-2 shows the configuration table for setting word length and AVDD supply voltage 表 8-2. Word Length and Supply Mode Selection | 20 21 Troid 2019th and outpri) mode colocion | | | | | | |--|------|---------------------------------|--|--|--| | MD1 | MD2 | CONTROLLER AND TARGET SELECTION | | | | | Low | Low | Word Length=32 | | | | | | | AVDD=3.3V | | | | | Low | High | Word Length=32 | | | | | | | AVDD=1.8V | | | | | High | Low | Word Length=24 | | | | | | | AVDD=3.3V | | | | | High | High | Word Length=16 | | | | | | | AVDD=3.3V | | | | The TAD5242 also offers daisy chain option for TDM mode of operation. This option is auto enabled whenever device is selected to be in TDM Mode with MD0. MD6 Pin acts as a Daisy Chain output in this mode. In this case, Device plays the data coming on Slot 0 and Slot 1 and sends the shifted data on remaining slots on MD6. #### 8.3.2.1 Time Division Multiplexed Audio (TDM) Interface In TDM mode, also known as DSP mode, the rising edge of FSYNC starts the data transfer with the slot 0 data first. Immediately after the slot 0 data transmission, the remaining slot data are transmitted in order. FSYNC and each data bit (except the MSB of slot 0 when TX_OFFSET equals 0) is transmitted on the rising edge of BCLK. 8-2 and 8-3 show the protocol timing for TDM operation with various configurations. 資料に関するフィードバック(ご意見やお問い合わせ)を送信 图 8-2. TDM Mode Protocol Timing (MD0 shorted to ground with 4.7K Ohms) In Target Mode 図 8-3. TDM Mode Protocol Timing (MD0 shorted to AVDD with 4.7K Ohms) In Controller Mode For proper operation of the audio bus in TDM mode, the number of bit clocks per frame must be greater than or equal to the number of active output channels times the 32-bits word length of the output channel data. The device transmits a zero data value on SDOUT for the extra unused bit clock cycles. The device supports FSYNC as a pulse with a 1-cycle-wide bit clock, but also supports multiples as well. ### 8.3.2.2 Inter IC Sound (I²S) Interface The standard I^2S protocol is defined for only two channels: left and right. In I^2S mode, the MSB of the left slot 0 is transmitted on the falling edge of BCLK in the second cycle after the *falling* edge of FSYNC. The MSB of the right slot 0 is transmitted on the falling edge of BCLK in the second cycle after the *rising* edge of FSYNC. Each subsequent data bit is transmitted on the falling edge of BCLK. In master mode, FSYNC is transmitted on the rising edge of BCLK. \boxtimes 8-4 and \boxtimes 8-5 show the protocol timing for I^2S operation in target and controller mode of operation. 图 8-4. I²S Mode Protocol Timing (MD0 shorted to ground) in Target Mode 図 8-5. I²S Protocol Timing (MD0 shorted to AVDD) In Controller Mode For proper operation of the audio bus in I²S mode, the number of bit clocks per frame must be greater than or equal to the number of active output channels (including left and right slots) times the 32-bits word length of the output channel data. The device FSYNC low pulse must be a number of BCLK cycles wide that is greater than or equal to the number of active left slots times the 32-bits data word length. Similarly, the FSYNC high pulse must be a number of BCLK cycles wide that is greater than or equal to the number of active right slots times the 32-bits data word length. The device transmit zero data value on SDOUT for the extra unused bit clock cycles. ### 8.3.3 Phase-Locked Loop (PLL) and Clock Generation The device uses an integrated, low-jitter, phase-locked loop (PLL) to generate internal clocks required for the ADC and DAC modulators and digital filter engine, as well as other control blocks. In target mode of operation, the device supports the various output data sample rates (of the FSYNC signal frequency) and the BCLK to FSYNC ratio to configure all clock dividers, including the PLL configuration, internally without host programming. 表 8-3 and 表 8-4 list the supported FSYNC and BCLK frequencies. 表 8-3. Supported FSYNC (Multiples or Submultiples of 48 kHz) and BCLK Frequencies | | BCLK (MHz) | | | | | | | |------------------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------| | BCLK TO
FSYNC RATIO | FSYNC
(8 kHz) | FSYNC
(16 kHz) | FSYNC
(24 kHz) | FSYNC
(32 kHz) | FSYNC
(48 kHz) | FSYNC
(96 kHz) | FSYNC
(192 kHz) | | 16 | Reserved | 0.256 | 0.384 | 0.512 | 0.768 | 1.536 | 3.072 | | 24 | Reserved | 0.384 | 0.576 | 0.768 | 1.152 | 2.304 | 4.608 | | 32 | 0.256 | 0.512 | 0.768 | 1.024 | 1.536 | 3.072 | 6.144 | | 48 | 0.384 | 0.768 | 1.152 | 1.536 | 2.304 | 4.608 | 9.216 | | 64 | 0.512 | 1.024 | 1.536 | 2.048 | 3.072 | 6.144 | 12.288 | | 96 | 0.768 | 1.536 | 2.304 | 3.072 | 4.608 | 9.216 | 18.432 | | 128 | 1.024 | 2.048 | 3.072 | 4.096 | 6.144 | 12.288 | 24.576 | | 192 | 1.536 | 3.072 | 4.608 | 6.144 | 9.216 | 18.432 | Reserved | | 256 | 2.048 | 4.096 | 6.144 | 8.192 | 12.288 | 24.576 | Reserved | | 384 | 3.072 | 6.144 | 9.216 | 12.288 | 18.432 | Reserved | Reserved | | 512 | 4.096 | 8.192 | 12.288 | 16.384 | 24.576 | Reserved | Reserved | 表 8-4. Supported FSYNC (Multiples or Submultiples of 44.1 kHz) and BCLK Frequencies | | | BCLK (MHz) | | | | | | |------------------------|---------------------|---------------------|----------------------|---------------------|---------------------|---------------------|----------------------| | BCLK TO
FSYNC RATIO | FSYNC
(7.35 kHz) | FSYNC
(14.7 kHz) | FSYNC
(22.05 kHz) | FSYNC
(29.4 kHz) | FSYNC
(44.1 kHz) | FSYNC
(88.2 kHz) | FSYNC
(176.4 kHz) | | 16 | Reserved | Reserved | 0.3528 | 0.4704 | 0.7056 | 1.4112 | 2.8224 | | 24 | Reserved | 0.3528 | 0.5292 | 0.7056 | 1.0584 | 2.1168 | 4.2336 | | 32 | Reserved | 0.4704 | 0.7056 | 0.9408 | 1.4112 | 2.8224 | 5.6448 | | 48 | 0.3528 | 0.7056 | 1.0584 | 1.4112 | 2.1168 | 4.2336 | 8.4672 | | 64 | 0.4704 | 0.9408 | 1.4112 | 1.8816 | 2.8224 | 5.6448 | 11.2896 | | 96 | 0.7056 | 1.4112 | 2.1168 | 2.8224 | 4.2336 | 8.4672 | 16.9344 | | 128 | 0.9408 | 1.8816 | 2.8224 | 3.7632 | 5.6448 | 11.2896 | 22.5792 | | 192 | 1.4112 | 2.8224 | 4.2336 | 5.6448 | 8.4672 | 16.9344 | Reserved | | 256 | 1.8816 | 3.7632 | 5.6448 | 7.5264 | 11.2896 | 22.5792 | Reserved | | 384 | 2.8224 | 5.6448 | 8.4672 | 11.2896 | 16.9344 | Reserved | Reserved | | 512 | 3.7632 | 7.5264 | 11.2896 | 15.0528 | 22.5792 | Reserved | Reserved | In the controller mode of operation, the device uses the MD3 pin (as the system clock, CCLK) as the reference input clock source. The device provides flexibility in FSYNC selection with a supported system clock frequency option of either 256 \times f_S or 128 \times f_S or a fixed 48/44.1KSPS or 96/88.2KSPS as configured using the MD1 and MD2 pins. 表 8-5 shows the FSYNC and BCLK selection for the controller mode using the MD1 and MD2 pins. 資料に関するフィードバック (ご意見やお問い合わせ) を送信 ### 表 8-5. System Clock Selection for the Controller Mode | MD1 | MD2 | SYSTEM CLOCK
SELECTION (Valid for Master Mode Only) | |------|------|--| | LOW | LOW | FSYNC = CCLK/256 I2S Mode: BCLK = 64*f _S TDM Mode: For FSYNC<=96KSPS, BCLK = 128*f _S For FSYNC>96KSPS, BCLK = 64*f _S | | LOW | HIGH | FSYNC = CCLK/128 I2S Mode: BCLK = 64*f _S TDM Mode: For FSYNC<=96KSPS, BCLK = 128*f _S For FSYNC>96KSPS, BCLK = 64*f _S | | HIGH | LOW | FSYNC = 96/88.2KSPS; I2S Mode: BCLK = 64*f _S TDM Mode: BCLK = 128*f _S | | HIGH | HIGH | FSYNC = 48/44.1KSPS; I2S Mode: BCLK = 64*f _S TDM Mode: BCLK = 128*f _S | See 表 8-2 for the MD1, MD2 and MD3 pin function in the target mode of operation. #### 8.3.4 Analog Output Configurations The device supports playback of two channels using the high-performance stereo DAC. The device consists of two pairs of analog output pins (OUTxP and OUTxM) which can be configured in single-ended or differential input mode by setting MD4 and MD5 pins. The input source for these channels is from TDM/I2S. 表 8-6 shows the analog input output configuration modes available with MD4 and MD5 configuration 表 8-6. Analog Output Configurations | 20 | | | | | | |------|---------------------------------|---|--|--|--| | MD4 | MD5 ANALOG OUTPUT CONFIGURATION | | | | | | Low | Low | Differential Output; Lineout load only | | | | | Low | High | Differential Output; Receiver or Lineout load | | | | | High | Low | Single ended output; Lineout only | | | | | High | High | Pseudo differential output; Headphone or Lineout load | | | | The device also supports Channel select configurations to enable mono or stereo outptu in I2S and LJF Modes. Thi can be configured by setting MD6 pin. 表 8-7 shows the control for this feature with MD6 configuration. 表 8-7. Output Channel select configuration | MD6 | ANALOG OUTPUT CONFIGURATION | |------|-----------------------------| | Low | Stereo DAC | | High | Mono Channel 1 DAC | Product Folder Links: TAD5242 The device also supports output cap charging for AC Coupled loads with a pop reduction. This is supproted for Headphone loads and supports power on in 100ms time. 表 8-8 shows the control for this feature with MD3 configuration. 表 8-8. Output cap charging configuration | MD3 | ANALOG OUTPUT CONFIGURATION | |------|------------------------------| | Low | Output Cap Charging Disabled | | High | Output Cap Charging Enabled | ### 8.3.5 Reference Voltage All audio data converters require a DC reference voltage. The TAD5242 achieves low-noise performance by internally generating a low-noise reference voltage. This reference voltage is generated using a band-gap circuit with high PSRR performance. This audio converter reference voltage must be filtered externally using a minimum 1- μ F capacitor connected from the VREF pin to analog ground (AVSS). The value of this reference voltage, VREF, is set to 2.75 V, which in turn supports a 2-V_{RMS} differential full-scale output to the device. The required minimum AVDD voltage for this VREF voltage is 3 V. Do not connect any external load to a VREF pin. 資料に関するフィードバック(ご意見やお問い合わせ)を送信 ### 8.3.6 DAC Signal-Chain 図 8-6 shows the key components of the playback signal chain. 図 8-6. DAC Signal-Chain Processing Flowchart The DAC signal chain offers a highly flexible low-noise playback path for low-noise and high-fidelity audio applications. This low-noise and low-distortion, multibit, delta-sigma DAC enables the TAD5242 to achieve 120 dB dynamic range in very low power. Moreover, the DAC architecture has inherent antialias filtering with a high rejection of out-of-band frequency noise around multiple modulator frequency components. Therefore, the device prevents noise from aliasing into the audio band. The TAD5242 also integrates, high-performance multistage digital interpolation filter sharply cuts off any out-of-band frequency noise with high stop-band attenuation. ### 8.3.6.1 Configurable Digital Interpolation Filters The device playback channel includes a high dynamic range, built-in digital interpolation filter to process the input data stream to generate digital data stream for multibit delta-sigma ($\Delta\Sigma$) modulator. The interpolation filters in the device are linear phase making them suitable for a wide variety of Audio applications. Following section describes the filter response for different samples rates. #### 8.3.6.1.1 Linear Phase Filters The linear phase interpolation filters are the default filters set by the device and can be used for all applications that require a perfect linear phase with zero-phase deviation within the pass-band specification of the filter. The filter performance specifications and various plots for all supported output sampling rates are listed in this section. 資料に関するフィードバック(ご意見やお問い合わせ)を送信 Copyright © 2024 Texas Instruments Incorporated 20 Product Folder Links: TAD5242 #### 8.3.6.1.1.1 Sampling Rate: 16 kHz or 14.7 kHz 図 8-7 and 図 8-8 respectively show the magnitude response and the pass-band ripple for a interpolation filter with a sampling rate of 16 kHz or 14.7 kHz. 表 8-9 lists the specifications for a interpolation filter with an 16-kHz or 14.7-kHz sampling rate. 図 8-7. Linear Phase Interpolation Filter Magnitude Response 図 8-8. Linear Phase Interpolation Filter Pass-Band Ripple 表 8-9. Linear Phase Interpolation Filter Specifications | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | | | | | |------------------------|--|-------|------|------|------------------|--|--|--|--| | Pass-band ripple | Frequency range is 0 to 0.454 × f _S | -0.17 | | 0.03 | dB | | | | | | Stop-band attenuation | Frequency range is 0.6 × f _S to 4 × f _S | 80.4 | | | dB | | | | | | | Frequency range is 4 × f _S to 7.43 × f _S | 86.9 | | | uБ | | | | | | Group delay or latency | Frequency range is 0 to 0.454 × f _S | | 16.0 | | 1/f _S | | | | | #### 8.3.6.1.1.2 Sampling Rate: 24 kHz or 22.05 kHz 図 8-9 and 図 8-10 respectively show the magnitude response and the pass-band ripple for a interpolation filter with a sampling rate of 24 kHz or 22.05 kHz. 表 8-10 lists the specifications for a interpolation filter with an 24-kHz or 22.05-kHz sampling rate. 图 8-9. Linear Phase Interpolation Filter Magnitude Response 図 8-10. Linear Phase Interpolation Filter Pass-Band Ripple 表 8-10. Linear Phase Interpolation Filter Specifications | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |-----------------------|---|-------|-----|------|------| | Pass-band ripple | Frequency range is 0 to 0.454 × f _S | -0.05 | | 0.03 | dB | | Stop-band attenuation | Frequency range is 0.58 × f _S to 4 × f _S | 81.9 | | | dB | | | Frequency range is 4 × f _S to 15.42 × f _S | 87.6 | | | uБ | 資料に関するフィードバック(ご意見やお問い合わせ)を送信 表 8-10. Linear Phase Interpolation Filter Specifications (続き) | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |------------------------|--|-----|------|-----|------------------| | Group delay or latency | Frequency range is 0 to 0.454 × f _S | | 17.6 | | 1/f _S | #### 8.3.6.1.1.3 Sampling Rate: 32 kHz or 29.4 kHz 図 8-11 and 図 8-12 respectively show the magnitude response and the pass-band ripple for a interpolation filter with a sampling rate of 32 kHz or 29.4 kHz. 表 8-11 lists the specifications for a interpolation filter with an 32-kHz or 29.4-kHz sampling rate. 図 8-11. Linear Phase Interpolation Filter Magnitude Response 図 8-12. Linear Phase Interpolation Filter Pass-Band Ripple 表 8-11. Linear Phase Interpolation Filter Specifications | | · · · · · · · · · · · · · · · · · · · | | | | | |------------------------|---|-------|------|------|------------------| | PARAMETER | TEST CONDITIONS | MAX | UNIT | | | | Pass-band ripple | Frequency range is 0 to 0.454 × f _S | -0.05 | | 0.03 | dB | | Stop-band attenuation | Frequency range is 0.586 × f _S to 4 × f _S | 81.9 | | | dB | | | Frequency range is 4 × f _S to 15.42 × f _S | 87.6 | | | αВ | | Group delay or latency | Frequency range is 0 to 0.454 × f _S | | 17.6 | | 1/f _S | ### 8.3.6.1.1.4 Sampling Rate: 48 kHz or 44.1 kHz 図 8-13 and 図 8-14 respectively show the magnitude response and the pass-band ripple for a interpolation filter with a sampling rate of 48 kHz or 44.1 kHz. 表 8-12 lists the specifications for a interpolation filter with an 48-kHz or 44.1-kHz sampling rate. 図 8-13. Linear Phase Interpolation Filter Magnitude Response 図 8-14. Linear Phase Interpolation Filter Pass-Band Ripple 資料に関するフィードバック (ご意見やお問い合わせ) を送信 表 8-12. Linear Phase Interpolation Filter Specifications | PARAMETER | TEST CONDITIONS | TYP | MAX | UNIT | | | | | | |------------------------|--|------|------|------|------------------|--|--|--|--| | Pass-band ripple | Frequency range is 0 to 0.454 × f _S | dB | | | | | | | | | Stop-band attenuation | Frequency range is 0.585 × f _S to 4 × f _S | 82.0 | | | | | | | | | | Frequency range is 4 × f _S to 7.42 × f _S onwards | 89.0 | | | dB | | | | | | Group delay or latency | Frequency range is 0 to 0.454 × f _S | | 17.3 | | 1/f _S | | | | | #### 8.3.6.1.1.5 Sampling Rate: 96 kHz or 88.2 kHz 図 8-15 and 図 8-16 respectively show the magnitude response and the pass-band ripple for a interpolation filter with a sampling rate of 96 kHz or 88.2 kHz. 表 8-13 lists the specifications for a interpolation filter with an 96-kHz or 88.2-kHz sampling rate. 図 8-15. Linear Phase Interpolation Filter Magnitude Response 図 8-16. Linear Phase Interpolation Filter Pass-Band Ripple 表 8-13. Linear Phase Interpolation Filter Specifications | PARAMETER | TEST CONDITIONS | MAX | UNIT | | | |------------------------
---|------|------|------|------------------| | Pass-band ripple | Frequency range is 0 to 0.452 × f _S | -0.2 | | 0.04 | dB | | Stop-band attenuation | Frequency range is 0.58 × f _S to 3.42 × f _S | 82.4 | | | dB | | Group delay or latency | Frequency range is 0 to 0.454 × f _S | | 16.7 | | 1/f _S | ### 8.3.6.1.1.6 Sampling Rate: 384 kHz or 352.8 kHz 図 8-17 and 図 8-18 respectively show the magnitude response and the pass-band ripple for a interpolation filter with a sampling rate of 384 kHz or 352.8 kHz. 表 8-14 lists the specifications for a interpolation filter with an 384-kHz or 352.8-kHz sampling rate. 図 8-18. Linear Phase Interpolation Filter Pass-Band Ripple 表 8-14. Linear Phase Interpolation Filter Specifications | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |------------------------|--|-------|------|------|------------------| | Pass-band ripple | Frequency range is 0 to 0.245 × f _S | -0.03 | | 0.67 | dB | | Stop-band attenuation | Frequency range is 0.391 × f _S to 1.61 × f _S | 77.6 | | | dB | | Group delay or latency | Frequency range is 0 to 0.212 × f _S | | 10.7 | | 1/f _S | #### 8.4 Device Functional Modes #### 8.4.1 Active Mode The device wakes up in active mode when AVDD and IOVDD are available. Configure all hardware control pins (MD0, MD1, MD2, MD3, MD4,MD5 and MD6) for the device desired mode of operation before enabling clocks for the device. In active mode, when the audio clocks are available, the device automatically powers up all DAC channels and starts transmitting and playing data over the audio serial interface. If the clocks are stopped, then the device auto powers down the DAC channels. 資料に関するフィードバック(ご意見やお問い合わせ)を送信 ## 9 Application and Implementation Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. ### 9.1 Application Information The TAD5242 is a stereo, high-performance audio DAC that supports sample rates of up to 192 kHz. The device can be configured by controlling the Pins MD0 to MD6 and can support 1.8/3.3V AVDD along with flexible Digital interfaces of I2S/TDM/LJF. The device also supports 2 channel differential, single ended or psuedo differential output with options for headphone and lineout drive capabilities. ### 9.2 Typical Application #### 9.2.1 Application ☑ 9-1 shows a typical configuration of the TAD5242 for an application using two channel lineout operation in an I²S target audio data target interface. For best distortion performance, use input AC-coupling capacitors with a low-voltage coefficient. 図 9-1. Stereo Lineout in Target I2S Mode Block Diagram #### 9.2.2 Design Requirements 表 9-1 lists the design parameters for this application. 表 9-1. Design Parameters | PARAMETER | VALUE | |------------------------------------|----------------------| | AVDD | 3.3V | | IOVDD | 1.2V or 1.8V or 3.3V | | AVDD supply current consumption | TBD | | IOVDD supply current consumption | TBD | | Load on OUT1M, OUT1P, OUT2M, OUT2P | >600 ohms | #### 9.2.3 Detailed Design Procedure This section describes the necessary steps to configure the TAD5242 for this specific application. - 1. Apply power to the device: - a. Power up the IOVDD and AVDD power supplies - b. Wait for at least 1ms to allow the device to initialize the internal registers. - c. The device now goes into sleep mode (low-power mode < 10 μ A) - 2. Configure the Mode Pins as per the system requirements: - a. Select the ASI Mode by pulling up to AVDD or down to VSS; MD0 Pin. MD0 should be grounded for this use case. - b. Pull Up to IOVDD or Pull down to VSS on MD1 to MD5 Pin as per the reuqired configuration. All the Pins are grounded for this use case. - 3. Applying the ASI Clocks will wake up the device (BCLK and FSYNC) - 4. To put th device back in sleep mode, Stop the clocks: - a. Wait at least 100 ms to allow the device to complete the shutdown sequence - b. Change the Mode configuration by changing MD0 to MD6 as per requirement - 5. Repeat step 4 and step 5 as required for mode transitions ## 10 Power Supply Recommendations The power-supply sequence between the IOVDD and AVDD rails can be applied in any order. However, after all Mode pins are stable, then only initiate the clocks to initialize the device. 図 10-1. Power-Supply Sequencing Requirement Timing Diagram Make sure that the supply ramp rate is slower than $0.1V/\mu s$ and that the wait time between a power-down and a power-up event is at least 100 ms. The TAD5242 supports a single AVDD supply operation by integrating an on-chip digital regulator, DREG, and an analog regulator, AREG. ## 11 Device and Documentation Support TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below. ### 11.1 Documentation Support #### 11.1.1 Related Documentation ## 11.2 ドキュメントの更新通知を受け取る方法 ドキュメントの更新についての通知を受け取るには、www.tij.co.jp のデバイス製品フォルダを開いてください。 [通知] をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取ることができます。 変更の詳細については、改訂されたドキュメントに含まれている改訂履歴をご覧ください。 ### 11.3 サポート・リソース テキサス・インスツルメンツ E2E™ サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。 リンクされているコンテンツは、各寄稿者により「現状のまま」提供されるものです。これらはテキサス・インスツルメンツの仕様を構成するものではなく、必ずしもテキサス・インスツルメンツの見解を反映したものではありません。テキサス・インスツルメンツの使用条件を参照してください。 #### 11.4 Trademarks テキサス・インスツルメンツ E2E[™] is a trademark of Texas Instruments. すべての商標は、それぞれの所有者に帰属します。 ## 11.5 静電気放電に関する注意事項 この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うことを推奨します。正しい取り扱いおよび設置手順に従わない場合、デバイスを破損するおそれがあります。 ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずかに変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。 ### 11.6 用語集 テキサス・インスツルメンツ用語集 この用語集には、用語や略語の一覧および定義が記載されています。 ### 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. 資料に関するフィードバック(ご意見やお問い合わせ)を送信 # **PACKAGE OUTLINE** # RGE0024N VQFN - 1 mm max height ### NOTES: - All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. - This drawing is subject to change without notice. - The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance. ### **EXAMPLE BOARD LAYOUT** # RGE0024N VQFN - 1 mm max height # **EXAMPLE STENCIL DESIGN** # **RGE0024N** **VQFN - 1 mm max height** NOTES: (continued) Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. www.ti.com 24-Dec-2023 #### PACKAGING INFORMATION | Orderable Device | Status | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead finish/
Ball material | MSL Peak Temp | Op Temp (°C) | Device Marking (4/5) | Samples | |------------------|--------|--------------|--------------------|------|----------------|----------|-------------------------------|---------------|--------------|----------------------|---------| | XTAD5242IRGER | ACTIVE | VQFN | RGE | 24 | 3000 | TBD | Call TI | Call TI | -40 to 125 | | Samples | (1) The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. **Important Information and Disclaimer:** The
information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. PLASTIC QUAD FLATPACK - NO LEAD Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details. 4204104/H ### 重要なお知らせと免責事項 TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス・デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。 これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあら ゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。 上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。 TIの製品は、TIの販売条件、または ti.com やかかる TI 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。 お客様がいかなる追加条項または代替条項を提案した場合でも、TIはそれらに異議を唱え、拒否します。 郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated