TPS274C65 JAJSKH0C - APRIL 2023 - REVISED FEBRUARY 2024 # TPS274C65xS SPI インターフェイスおよび診断機能搭載、72mΩ、クワッド チ ャネル、スマート ハイサイド スイッチ ### 1 特長 - クワッド チャネル、72Ωの R_{ON}、SPI 制御のスマート ハイサイド スイッチ - 低い R_{ON} により、500mA~2A の DC 負荷で低消 費電力を確保 - SPI制御により、制御を出力から簡単に絶縁可能 - 可変電流制限機能により、システムレベルの信頼性が 向上 - TPS274C65AS, TPS274C65BS:250mA~2.2A の電流制限設定ポイント - TPS274C65ASH:290mA~2.45Aの電流制限設 定ポイント - 誘導性、容量性、抵抗性負荷を駆動可能 - 突入電流管理のためのデュアル電流制限スレッシ - 誘導性負荷の逆起電圧の発生を防止する出力クラ ンプを内蔵 - 強力な出力保護 - サーマルシャットダウン機能を内蔵 - グランドへの短絡に対する保護 - フォルト処理を設定可能 - 診断機能によりモジュールのインテリジェンスの向上が 可能 - 出力負荷電流測定 - 断線と電源への短絡の検出 - 小型 6mm x 6mm リードレス パッケージ ## 2 アプリケーション - 産業用 PLC システム - デジタル出力モジュール - IO-Link マスタ ポート - センサの電源 代表的なアプリケーション回路図 ### 3 概要 TPS274C65xS デバイスは、シリアル インターフェイス (SPI) 制御のクワッド チャネル スマート ハイサイド スイッ チで、産業用制御システムの要件を満たすように設計され ています。 $72m\Omega$ の低い R_{DSON} により、大きな出力負荷 電流を供給する場合でもデバイスの消費電力が最小限に 抑えられます。このデバイスは、保護および診断機能を内 蔵しており、短絡や負荷障害などの有害な事象が発生し た場合でもシステムを確実に保護します。このデバイス は、出力負荷電流に関係なく保護を提供するために、 250mA~2.45A の調整可能な信頼性の高い電流制限を 備えて故障を防止します。TPS274C65xS には構成可能 な突入電流期間があり、大きい突入電流の負荷、容量性 負荷の高速充電、白熱電球の駆動に対してターンオン時 に、より高い電流制限を設定します。 また、TPS274C65xS は、正確な電流センス機能と内蔵 A/D コンバータ (AS) も搭載しており、負荷診断機能を改 善することができます。負荷電流をデジタルで報告するこ とで、このデバイスはあらゆる絶縁バリアを越えた通信を可 能にし、同時に予知保全や負荷診断を可能にしてシステ ムの寿命を向上させます。オン状態またはオフ状態での 開放負荷検出や電源への短絡検出など、追加の診断機 能も内蔵されています。 TPS274C65xS は、ピン ピッチ 0.5mm の小型 6mm × 6mm VQFN パッケージで供給され、設計の PCB の占有 面積を最小限に抑えます。 #### パッケージ情報 | 部品番号 | パッケージ ⁽¹⁾ | パッケージ サイズ ⁽²⁾ | |-------------|----------------------|--------------------------| | TPS274C65xS | RHA (VQFN, 40) | 6.00mm × 6.00mm | - 利用可能なすべてのパッケージについては、データシートの末尾 にある注文情報を参照してください。 - パッケージ サイズ (長さ×幅) は公称値であり、該当する場合はピ ンも含まれます。 ## **Table of Contents** | 4 帐目 | 4 | |--------------------------------------|----| | 1 特長 | | | 2 アプリケーション | 1 | | 3 概要 | 1 | | 4 Device Comparison Table | | | 5 Pin Configuration and Functions | | | 6 Specifications | 7 | | 6.1 Absolute Maximum Ratings | 7 | | 6.2 ESD Ratings | 7 | | 6.3 Recommended Operating Conditions | 7 | | 6.4 Thermal Information | 8 | | 6.5 Electrical Characteristics | 8 | | 6.6 Switching Characteristics | | | 6.7 SPI Timing Requirements | 14 | | 6.8 Typical Characteristics | 15 | | 7 Parameter Measurement Information | 16 | | 8 Detailed Description | 17 | | 8.1 Overview | 17 | | 8.2 Functional Block Diagram | 17 | | 6.5 realure Description | IO | |--|-----------------| | 8.4 Device Functional Modes | 49 | | 8.5 TPS274C65BS Available Registers List | 49 | | 8.6 TPS274C65 Registers | | | 9 Application and Implementation | <mark>76</mark> | | 9.1 Application Information | 76 | | 9.2 Typical Application | | | 9.3 Power Supply Recommendations | <mark>79</mark> | | 9.4 Layout | <mark>79</mark> | | 10 Device and Documentation Support | 81 | | 10.1ドキュメントの更新通知を受け取る方法 | 81 | | 10.2 サポート・リソース | 81 | | 10.3 Trademarks | 81 | | 10.4 静電気放電に関する注意事項 | 81 | | 10.5 用語集 | 81 | | 11 Revision History | 81 | | 12 Mechanical, Packaging, and Orderable | | | Information | 82 | | | | ## **4 Device Comparison Table** ## 表 4-1. Functionality Comparison | Part Number | Interface | Reverse
Current
Blocking
(RCB) | Integrated
LED
Driver | LED Integrated Settings Current Sense | | Available Registers | | |----------------------|-----------------|---|-----------------------------|---------------------------------------|----------------------------------|---|----------------------------| | TPS274C65 AS | SPI Yes Yes Yes | | Yes | No | Digital via SPI or analog output | See TPS274C65
Registers | | | TPS274C65 ASH | SPI | Yes | Yes Yes Yes Yes | | Yes | Digital via SPI or analog output | See TPS274C65
Registers | | TPS274C65 BS | SPI | No | No | No No No current sense | | See TPS274C65BS
Available Registers List | | 3 Product Folder Links: TPS274C65 ## **5 Pin Configuration and Functions** 図 5-1. RHA Package, 40-Pin VQFN – AS and ASH Version (Top View) Copyright © 2024 Texas Instruments Incorporated English Data Sheet: SLVSFZ2 1 図 5-2. RHA Package, 40-Pin VQFN – BS Version (Top View) 表 5-1. Pin Functions - Version AS and BS Do not connect for pins labeled DNC | | PIN | | | | |-------|------------------------------|--------------------|---------------------|---| | NO. | TPS274C65AS,
TPS274C65ASH | TPS274C65BS | TYPE ⁽¹⁾ | DESCRIPTION | | 1 | READY | DNC ⁽³⁾ | 0 | Logic low output indicating the IC is ready for SPI data transmission (connect to GND pin of the IC with resistor). | | 2 | FLT | FLT | 0 | Fault output – on any (one or more) channel - open drain, needs to be pulled up to VDD pin. | | 3 | DO_EN | DO_EN | I | Setting this pin low would disable all of the outputs. Set high to enable SPI based output Internal pull-down. | | 4 | VDD ⁽²⁾ | VDD ⁽²⁾ | Р | Logic Supply Input ⁽²⁾ . | | 5, 21 | GND | GND | _ | Device ground. | | 6 | ISNS | DNC ⁽³⁾ | 0 | SNS current output – use a parallel RC network to the GND pin of the IC. | | 7 | SDO | SDO | 0 | SPI Data Output from the device. | | 8 | SDI | SDI | I | SPI device (secondary) data input. | | 9 | SCLK | SCLK | 0 | SPI Clock Input. | | 10 | CS | CS | I | SPI Chip select. | | 11 | RCB3 | DNC ⁽³⁾ | 0 | Gate connection for reverse current blocking FET Ch3. | ### 表 5-1. Pin Functions – Version AS and BS (続き) Do not connect for pins labeled DNC | | PIN | | | | |----------------|------------------------------|--------------------|---------------------|--| | NO. | TPS274C65AS,
TPS274C65ASH | TPS274C65BS | TYPE ⁽¹⁾ | DESCRIPTION | | 12, 13 | OUT3 | OUT3 | 0 | Output voltage for channel 3. | | 14–17 | VS | VS | Р | 24V Switch Supply input to the IC. | | 18, 19 | OUT4 | OUT4 | 0 | Output voltage for channel 4. | | 20 | RCB4 | DNC ⁽³⁾ | 0 | Gate connection for reverse current blocking FET Ch4. | | 22 | LEDOUT1 | DNC ⁽³⁾ | 0 | LED matrix select driver. | | 23 | LEDOUT2 | DNC ⁽³⁾ | 0 | LED matrix select driver. | | 24 | LEDOUT3 | DNC ⁽³⁾ | 0 | LED matrix select driver. | | 25 | LEDOUT4 | DNC ⁽³⁾ | 0 | LED matrix select driver. | | 26 | DNC ⁽³⁾ | DNC ⁽³⁾ | _ | Do not connect. | | 27 | DNC ⁽³⁾ | DNC ⁽³⁾ | _ | Do not connect. | | 28 | DSPI | DSPI | I | Configure the device in daisy chain SPI mode when the pin is pulled HI. | | 29 | REG_EN | REG_EN | I | Internal Regulator Enable pin, float to enable. Tie to GND to disable and use an external supply input to VDD. | | 30 | ADDCFG | ADDCFG | I | SPI IC Address Configuration pin – set the 3-bit address of each IC (up to 8 on one board) with a resistor to GND pin of the IC. Leave floating if using Daisy Chain mode. | | 31 | RCB2 | DNC ⁽³⁾ | 0 | Gate connection for reverse current blocking FET Ch2. | | 32, 33 | OUT2 | OUT2 | 0 | Output voltage for channel 2. | | 34–37 | VS | VS | Р | 24V Switch Supply input to the IC. | | 38, 39 | OUT1 | OUT1 | 0 | Output voltage for channel 1. | | 40 | RCB1 | DNC ⁽³⁾ | 0 | Gate connection for reverse current blocking FET Ch1. | | Exposed
Pad | GND | GND | ı | Connected to GND pin of the IC. | ⁽¹⁾ I = input, O = output, P = power. English Data Sheet: SLVSFZ2 ⁽²⁾ When the device is configured to support an external regulator connected to VDD, it is required that the supply input for the external regulator is derived from the same VS supply of TPS274C65 as shown in the Typical Application Schematic. ⁽³⁾ Do not connect for pins labeled DNC. ### **6 Specifications** ### **6.1 Absolute Maximum Ratings** Over operating free-air temperature range (unless otherwise noted)(1) | | | MIN | MAX | UNIT | |--|--|-----------------------|----------|------| | Continuous supply voltage, V _{VS} to IC_GND | | -0.3 | 40 | V | | Maximum transient (< 1 ms) voltage at the sup | oply pin (with respect to IC GND), V _{VS} , during ON state | -0.3 | 60 | V | | VOUT voltage to IC_GND | -30 | V _{VS} + 0.3 | V | | | V _{DS} voltage | V _{DS} voltage | -0.7 | 39 | V | | Low voltage supply pin voltage, V _{DD} | Low voltage supply pin voltage, V _{DD} | -0.3 | 7.0 | V | | Digital Input pin voltages, V _{DIG} | | -0.3 | 7.0 | V | | LED drive pin voltage, V _{LED_OUT} | | | 7.0 | V | | Analog pin voltage REG_EN | | -0.3 | 7.0 | V | | RCBx pin voltage, V _{RCBx} | RCBx pin voltage, V _{RCBx} | | VOUT + 6 | V | | Sense pin voltage, V _{SNS} | | -0.3 | 7.0 | V | | FLT pin voltage, V _{FLT} | FLT pin voltage, V _{FLT} | -0.3 | 7.0 | V | | Reverse ground current, I _{GND} | V _S < 0 V | | -50 | mA | | Maximum junction temperature, T _J | | | 150 | °C | | Storage temperature, T _{stg} | | -65 | 150 | °C | ⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime. ### 6.2 ESD Ratings | | | | | VALUE | UNIT | |--------------------|-------------------------|---|----------------------------------|-------|------| | V _{ESD1} | Electrostatic discharge | Human body model (HBM), per
ANSI/ESDA/JEDEC JS-001 ⁽¹⁾ | All pins except VS and VOUTx | ±2000 | V | | V _{ESD2} | Electrostatic discharge | Human body model (HBM), per
ANSI/ESDA/JEDEC JS-001 ⁽¹⁾ | VS and VOUTx with respect to GND | ±4000 | V | | V _{ESD3} | Electrostatic discharge | Charged device model (CDM), per
ANSI/ESDA/
JEDEC JS-002, all pins ⁽²⁾ | All pins | ±500 | V | | V _{surge} | Electrostatic discharge | Surge protection with 42 Ω , per IEC 61000-4-5; 1.2/50 μs | VS, OUTx | ±1000 | V | ⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. ### **6.3 Recommended Operating Conditions** over operating free-air temperature range (unless otherwise noted) | | | MIN | MAX | UNIT | |-----------------------|-------------------------------|------|-----|------| | V _{S_OPMAX} | Nominal supply voltage | 12 | 36 | V | | V_{DD} | Low voltage supply voltages | 3.0 | 5.5 | V | | V_{DIG} | All digital input pin voltage | -0.3 | 5.5 | V | | V _{FLT} | FLT pin voltage | -0.3 | 5.5 | V | | V _{LED_OUTx} | LED_OUTx pin voltage | -0.3 | 5.5 | V | | V _{ANA} | REG_EN pin voltage | -0.3 | 5.0 | V | | V _{ANA} | SNS, ADDCFG pin voltage | -0.3 | 5.0 | V | Copyright © 2024 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 1 ⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. over operating free-air temperature range (unless otherwise noted) | | | MIN | MAX | UNIT | |----------------|--------------------------------|-----|-----|------| | T _A | Operating free-air temperature | -40 | 125 | °C | #### **6.4 Thermal Information** | | | TPS274C65X | | |------------------------|--|------------|------| | | THERMAL METRIC ⁽¹⁾ (2) | RHA (VQFN) | UNIT | | | | 40 PINS | | | $R_{\theta JA}$ | Junction-to-ambient thermal resistance | 25.4 | °C/W | | R ₀ JC(top) | Junction-to-case (top) thermal resistance | 15.8 | °C/W | | $R_{\theta JB}$ | Junction-to-board thermal resistance | 7.6 | °C/W | | Ψ_{JT} | Junction-to-top characterization parameter | 0.2 | °C/W | | ΨЈВ | Junction-to-board characterization parameter | 7.6 | °C/W | | R _{θJC(bot)} | Junction-to-case (bottom) thermal resistance | 0.6 | °C/W | - (1) For more information about traditional and new thermal metrics, see the SPRA953 application report. - (2) The thermal parameters are based on a 4-layer PCB according to the JESD51-5 and JESD51-7 standards. #### 6.5 Electrical Characteristics V_{VS} = 11 V to 36 V, V_{VDD} = 3.0 V to 5.5 V, T_J = -40°C to 125°C (unless otherwise noted) | PARAMETER | | TEST CONDITIONS | | MIN | TYP | MAX | UNIT | |------------------------------|--|---|---|------|------|------|------| | INPUT VOL | TAGE AND CURRENT | | | | | | | | V _{DS_Clamp}
CHx | V _{DS} clamp voltage | FET current = 10 mA, V _S = | = 24 V | 40 | 44 | 50 | V | | V _{DS_Clamp}
CHx | V _{DS} clamp voltage | FET current = 10 mA, V _S = | = 19 V | 40 | 44 | 50 | V | | V _{DS_Clamp}
CHx | V _{DS} clamp voltage | FET current = 10 mA, V _S = | = 10 V | 33 | 37 | 41 | V | | V _{S_UVPF} | V _S undervoltage protection falling | Measured with respect to
the GND pin of the
device, All channels ON | Output FETs turned off at VS less than this threshold. | 8.6 | 9 | 9.3 | V | | V _{S_UVPR} | V _S undervoltage protection recovery rising | Measured with respect to
the GND pin of the
device, All channels ON | Output FETs turned ON at VS more than this threshold. | 9.5 | 10 | 10.3 | V | | V _{S_UVPRH} | V _S undervoltage protection deglitch time | Time from triggering the U | VP fault to FET turn-off | 15 | 20 | 25 | μs | | V _{S_UVWF} | V _S undervoltage warning falling | Measured with respect to the GND pin of the device, | Reported in VS_UV_WRN register bit when below this threshold | 12 | 12.5 | 13.5 | V | | V _{S_UVWR} | V _S undervoltage warning recovery rising | Measured with respect to the GND pin of the device, | VS_UV_WRN register bit
cleared when below this
threshold and register
read | 11.2 | 13.5 | 15.8 | V | | V _{S_UVLOF} | V _S undervoltage lockout falling | Measured with respect to the GND pin of the device | Device will hit POR and READY pin will be pulled low | | 3.0 | | V | | V _{S,UVLOR} | V _S undervoltage lockout rising | Measured with respect to the GND pin of the device | READY pin will go high | 2.7 | 3 | 3.3 | V | | V _{DD,UVLOF} | V _{DD} undervoltage lockout falling | Measured with respect to | the GND pin of the device | 2.7 | 2.8 | 2.9 | V | | V _{DD,UVLOR} | V _{DD} undervoltage lockout rising | Measured with respect to | the GND pin of the device | 2.8 | 2.88 | 2.98 | V | Copyright © 2024 Texas Instruments Incorporated V_{VS} = 11 V to 36 V, V_{VDD} = 3.0 V to 5.5 V, T_{J} = -40°C to 125°C (unless otherwise noted) | | PARAMETER | TEST CO | NDITIONS | MIN | TYP | MAX | UNIT | |------------------------|--|--|--|-----|-----|------|------| | IL _{NOM} | Continuous load current, | All channels enabled, T _{AM} | _B = 85°C | | 1.6 | | Α | | NOW | per channel | Two channels enabled, T | _{AMB} = 85°C | | 2.5 | | Α | | I _{OUT,LEAKX} | Leakage current from OUT to GND in OFF state | Vs = VOUT < 36 V, Switch
disabled, measured into the | | | 40 | μΑ | | | I _{OUT(OFF)} | Output leakage current (per channel) | VS <= 36 V, V _{OUT} = 0
Channel disabled, diagnos | S <= 36 V, V _{OUT} = 0
hannel disabled, diagnostics disabled Tj <= 125°C | | 0.8 | 10 | μΑ | | VDD I _Q | V _{DD} quiescent current,
SCLK ON, all diagnostics
disabled,(WB_OFF,
WB_ON, SHRT_VS,
ADC) external VDD | $V_S \le 36 \text{ V}, V_{DD} = 5.5 \text{ V}$
All channels enabled, I_{OU} | $V_{\rm S} \le 36$ V, $V_{\rm DD} = 5.5$ V
All channels enabled, $I_{\rm OUTx} = 0$ A | | 1.3 | 1.6 | mA | | VDD I _Q | V _{DD} quiescent current,
SCLK ON, all diagnostics
disabled,(WB_OFF,
WB_ON, SHRT_VS,
ADC) external VDD | $V_S \le 36 \text{ V}, V_{DD} = 3.0 \text{ V}$
All channels enabled, I_{OU} | _{Tx} = 0 A | | 1 | 1.2 | mA | | VDD I _Q | VDD quiescent current,
SCLK off, all diagnostics
disabled ((WB_OFF,
WB_ON, SHRT_VS),
ADC enabled and
converting, external VDD | $V_S \le 36 \text{ V}, V_{DD} = 5.5 \text{ V}$
All channels enabled, I_{OU} | $V_S \le 36 \text{ V}, V_{DD} = 5.5 \text{ V}$
All channels enabled, $I_{OUTx} = 0 \text{ A}$ | | 1.2 | 1.6 | mA | | VS I _Q | V _S quiescent current,
SCLK off, all diagnostics
disabled,(WB_OFF,
WB_ON, SHRT_VS,
ADC) internal VDD | V _S ≤ 36 V,
All channels enabled, I _{OUTx} = 0 A | | | 2.8 | 3.2 | mA | | VS I _Q | V _S quiescent current,
SCLK off, all diagnostics
(WB_OFF, WB_ON,
SHRT_VS, ADC)
enabled, external VDD | $V_S \le 36 \text{ V}, V_{DD} = 3.0 \text{ V}$
All channels enabled, I_{OU} | $V_S \le 36 \text{ V}, V_{DD} = 3.0 \text{ V}$
All channels enabled, $I_{OUTx} = 0 \text{ A}$ | | 1.7 | 2.5 | mA | | VS I _Q | V _S quiescent current,
SCLK off, all diagnostics
(WB_OFF, WB_ON,
SHRT_VS, ADC)
disabled, RCB enabled,
external VDD | $V_S \le 36 \text{ V}, V_{DD} = 3.0 \text{ V}$ All channels enabled, I_{OU} | _{Tx} = 0 A | | 1.4 | 2.45 | mA | | I _{leak_LG} | Leakage current out of
the output pins with the
GND of IC disconnected,
Load ground connected
to supply ground | V _S ≤ 30 V, V _{DD} = 5.5 V, RL
All channels enabled | = 24 Ω | | 0.8 | 0.9 | mA | | RON CHAP | RACTERISTICS | | | | | | | | | On-resistance | 10 V ≤ V _S ≤ 36 V, I _{OUT1} = | T _J = 25°C | | 72 | | mΩ | | | (Includes MOSFET and package) | I _{OUT2} = 200 mA | T _J = 125°C | | | 110 | mΩ | | R _{ON} | On-resistance when 2 | 10 V ≤ V _S ≤ 36 V, I _{OUT1} = | T _J = 25°C | | 33 | | mΩ | | | channels are paralleled
(Includes MOSFET and
package) | $I_{OUT2} > 200 \text{ mA.}$
V_{OUT1} tied to V_{OUT2} | T _J = 125°C | | | 55 | mΩ | | VDD_REG | CHARACTERISTICS | • | • | | | 1 | | | V_{VDD} | VDD Output voltage
(Internal regulator
enabled) | 6 V ≤ V _S ≤ 36 V, I _{VDD} < 20 mA | Includes load and line regulation across the range. | 3.1 | 3.3 | 3.6 | V | V_{VS} = 11 V to 36 V, V_{VDD} = 3.0 V to 5.5 V, T_{J} = -40°C to 125°C (unless otherwise noted) | | PARAMETER | TEST CO | NDITIONS | MIN | TYP | MAX | UNIT | |------------------------|--|--|----------------------------|---------------------------------------|-------|-------|------| | LR _{VDD} | Load regulation of internal VDD regulator when enabled | 6 V ≤ V _S ≤ 36 V, I _{VDD} < 20 | mA | | | 0.95 | V/A | | LR _{tran_VDD} | Load transient regulation of internal VDD regulator when enabled | $6 \text{ V} \le \text{V}_{\text{S}} \le 36 \text{ V}, \text{I}_{\text{VDD}}$ <step 10="" 15="" 5="" from="" in="" ma="" td="" to="" μs<=""><td>1 uF</td><td></td><td></td><td>10</td><td>mV</td></step> | 1 uF | | | 10 | mV | | I _{CL_VDD} | Current Limit of internal regulator | 6 V ≤ V _S ≤ 36 V | | 25 | | 50 | mA | | CURRENT | SENSE CHARACTERISTIC | CS | | | | • | | | I _{SNSI} CHx | Current sense ratio | I _{OUTX} = 1 A, Range = 2.4
A | I _{OUTX} = 1 A | | 1160 | | | | | | | I _{OUTx} = 2 A | 1.69 | 1.73 | 1.77 | mA | | | | | I _{OUT1} = 1 A | 0.834 | 0.862 | 0.890 | mA | | I _{SNSI} CHx | CHx Current sense | 0 | I _{OUT1} = 500 mA | 0.410 | 0.424 | 0.45 | mA | | ISNSI OI IX | current | Enabled, $R_{SNS} = 1k\Omega$ | I _{OUT1} = 200 mA | 0.151 | 0.168 | 0.184 | mA | | | | | I _{OUT1} = 100 mA | 0.068 | 0.081 | 0.092 | mA | | | | | I
_{OUT1} = 50 mA | 0.02 | 0.037 | 0.054 | mA | | I _{SNSI} CHx | CHx Current sense current | Current Sense Diagnostic Enabled, $R_{SNS} = 1k\Omega$ | I _{OUT1} = 20 mA | 0.005 | 0.010 | 0.028 | mA | | I _{SNSI} CHx | CHx Current sense current | Current Sense Diagnostic Enabled, $R_{SNS} = 1k\Omega$ | I _{OUT1} = 10 mA | 0.002 | 0.005 | 0.008 | mA | | I _{SNSI} CHx | CHx Current sense current | Current Sense Diagnostic Enabled, $R_{SNS} = 1k\Omega$ | I _{OUT1} = 5 mA | 0.000 | 0.002 | 0.004 | mA | | ADC Perfo | mance Characteristics | | | - | | 1 | | | V _{ADCEFfHI} | ADC refernce voltage | | | 2.72 | 2.8 | 2.85 | V | | Tconv1 | ADC sample update time in each measurement | | | | | 128 | μs | | SNS CHAR | ACTERISTICS | | | - | | - | | | T _{SNSout1} | T _{SNS} output | T _J = -40°C | | | 2.57 | | V | | T _{SNSout2} | T _{SNS} output | T _J = 25°C | Г _Ј = 25°С | | 2.17 | | V | | T _{SNSout3} | T _{SNS} output | T _J = 125°C | | | 1.55 | | V | | VOUT _{SNS} _ | VOUT _{SNS} output | VOUT_CHx = 20 V | OUT_CHx = 20 V | | 1.87 | | V | | CURRENT | LIMIT CHARACTERISTICS | 3 | | · · · · · · · · · · · · · · · · · · · | | | | Copyright © 2024 Texas Instruments Incorporated English Data Sheet: SLVSFZ2 10 Product Folder Links: TPS274C65 V_{VS} = 11 V to 36 V, V_{VDD} = 3.0 V to 5.5 V, T_{J} = -40°C to 125°C (unless otherwise noted) | | PARAMETER | TEST CO | NDITIONS | MIN | TYP | MAX | UNIT | |----------|---|--|--|------|------|------|------| | | | | Setting = 2.45 A | 2.06 | 2.45 | 2.84 | Α | | | | | Setting = 2.26 A | 2.01 | 2.26 | 2.88 | Α | | | | | Setting = 2.07 A | 1.74 | 2.07 | 2.4 | Α | | | | | Setting = 1.9 A | 1.6 | 1.9 | 2.3 | Α | | | | | Setting =1.71 A | 1.42 | 1.71 | 1.94 | Α | | | | | Setting = 1.52 A | 1.2 | 1.52 | 1.78 | Α | | | | Regulated current at | Setting = 1.33 A | 1.06 | 1.33 | 1.6 | Α | | | CHx I _{CL} current limitation | short circuit RL < 200 | Setting = 1.15 A | 0.94 | 1.15 | 1.36 | Α | | CLx | level, H version | mohms when | Setting = 0.96 A | 0.78 | 0.96 | 1.1 | Α | | | | Enabled. VDD = 3.3 V. | Setting = 0.86 A | 0.72 | 0.86 | 1.02 | Α | | | | | Setting = 0.76 A | 0.64 | 0.76 | 0.88 | Α | | | | | Setting = 0.67 A | 0.53 | 0.67 | 0.78 | Α | | | | | Setting = 0.57 A | 0.47 | 0.57 | 0.65 | Α | | | | | Setting = 0.48 A | 0.4 | 0.48 | 0.55 | Α | | | | | Setting = 0.38 A | 0.3 | 0.38 | 0.45 | Α | | | | | Setting = 0.29 A | 0.22 | 0.29 | 0.39 | Α | | | | Regulated current at short circuit RL < 200 mohms when | Setting = 2.2 A | 1.85 | 2.2 | 2.55 | Α | | | | | Setting = 1.9 A | 1.6 | 1.9 | 2.3 | Α | | | | | Setting = 1.75 A | 1.5 | 1.75 | 2.05 | Α | | | | | Setting = 1.6 A | 1.35 | 1.6 | 1.85 | Α | | | | | Setting =1.5 A | 1.19 | 1.5 | 1.75 | Α | | | | | Setting = 1.25 A | 1 | 1.25 | 1.5 | Α | | | | | Setting = 1.1 A | 0.9 | 1.1 | 1.3 | Α | | | CHx I _{CL} current limitation | | Setting = 1 A | 0.85 | 1 | 1.15 | Α | | CLx | level | | Setting = 0.85 A | 0.72 | 0.85 | 1 | Α | | | | Enabled. VDD = 3.3 V. | Setting = 0.72 A | 0.62 | 0.72 | 0.82 | Α | | | | | Setting = 0.67 A | 0.53 | 0.67 | 0.78 | Α | | | | | Setting = 0.56 A | 0.47 | 0.56 | 0.63 | Α | | | | | Setting = 0.48 A | 0.4 | 0.48 | 0.55 | Α | | | | | Setting = 0.4 A | 0.32 | 0.4 | 0.47 | Α | | | | | Setting = 0.33 A | 0.26 | 0.33 | 0.39 | Α | | | | | Setting = 0.25 A | 0.19 | 0.25 | 0.33 | Α | | CL_LINPK | Overcurrent limit threshold | Threshold before current limiting - Overload condition | Setting = 2.2 A V _{VS} – V _{VOUT} < 1 V | | | 2.75 | Α | | CL_LINPK | Overcurrent limit threshold | Threshold before current limiting - Overload Conditions | Setting = 0.85 A V _{VS} -
V _{VOUT} < 1V | | | 1.1 | Α | | CL_PK1 | Peak current before regulation while enabling switch into 100 mohm load | T _J = -40°C to 125°C VS
= 24 V, Minimum
inductance = 2.2 μH | Settting = 2.2 A | | | 10 | Α | | CL_PK2 | Peak current threshold
when short is applied
while switch enabled | T _J = -40°C to 125°C VS
= 24 V, Minimum
inductance = 2.2 µH | Settting = 2.2 A | | | 9.4 | Α | V_{VS} = 11 V to 36 V, V_{VDD} = 3.0 V to 5.5 V, T_J = -40°C to 125°C (unless otherwise noted) | | PARAMETER | TEST CO | NDITIONS | MIN | TYP | MAX | UNIT | |------------------------------|---|---|--|---------------------------|------|------|------| | I _{CL_P} | Parallel I _{CL} Current
Limitation Level | Regulated current at
short circuit RL < 200
mohms when Enabled | Settting = 2.2 A | | 4.3 | | A | | I _{CL_PK1_P} | Paralled Peak current enabling into permanent short | $T_J = -40$ °C to 125°C VS
= 24V, Minimum
inductance = 2.2 μ H | Settting = 2.2 A | | | 6.4 | Α | | I _{CL,PARALLE}
L | Paralled Channels
Current Limit Accuracy
Multiplier | V _{OUT1} tied to V _{OUT2} ,
parallel channel mode
enabled | arallel channel mode Settting = 2.2 A | | | 1.1 | | | FAULT CHA | RACTERISTICS | | | | | | | | I _{WB_ON_TH} | Wire-break (WB) or
Open-load (OL) detection
on-state threshold | Switch enabled, WB_ON_
WB_ON_TH_= 000 | CHx = enabled | 0.38 | 0.49 | 0.61 | mA | | I _{WB_OFF} | Off State Wirebreak or
Open-load (OL) detection
internal pullup current | Switch disabled, WB_OFF
WB_PU=00 | CHx = enabled | 38 | 51 | 64 | μΑ | | V _{SHRT_VS_T}
H | Off state short to VS detection voltage | Channel Disabled, off-stat enabled | e short_VS diagnostics | | 12.0 | | V | | V _{WB_OFF_P}
u | Off state WireBreak (WB) or Open-load (OL) detection pull up current source voltage | Channel Disabled, off-stat
enabled | Channel Disabled, off-state wire-break diagnostics | | 6.7 | | V | | V _{WB_OFF_} T | Off state WireBreak (WB) or Open-load (OL) detection voltage | Channel Disabled, off-stat enabled | Channel Disabled, off-state wire-break diagnostics enabled | | 6 | 6.5 | ٧ | | t _{RCB_DGL} | CHx RCB Fault Deglitch time | Channel Enabled, RCB er | Channel Enabled, RCB enabled | | 1.2 | | ms | | T _{ABS} | Thermal shutdown | | | 160 | 185 | 210 | °C | | T _{OTW} | Thermal shutdown warning | | | 110 | 130 | 150 | °C | | T _{HYS} | Thermal shutdown hysteresis | | | 20 | 27 | 35 | °C | | V _{ol_FLT} | Fault low-output voltage | I _{FLT} = 2 mA, sink current ir | nto the pin | | | 0.4 | V | | t _{RETRY} | Retry time | Time from thermal shutdov | wn until switch re-enable. | | 0.6 | | ms | | t _{RCB_F} | Reverse current protection comparator delay | Time from VS – VOUT < 5 gate off | 50 mV overdrive to FET | 1.6 | 2 | 2.4 | μs | | $V_{RCB_{F}}$ | V(VS) – V(OUT)
threshold for
reverse protection
comparator,
falling | | | -104 | -64 | -23 | mV | | t _{RCB_comp_r} | RCB internal comparator reset interval | | | | 100 | | ms | | V _{RCB_pu} | RCBx FET gate voltage | | | | 6 | 7 | V | | V _{RCB_} R | V(VS) – V(OUT)
threshold for
reverse protection
comparator,
rising | | | 28 | 45 | 58 | mV | | DIGITAL IN | PUT PIN CHARACTERIST | ic | | | | | | | V _{IH, DIG} | DIG pin Input voltage
high-level | 3.0 V ≤ VDD ≤ 5.5 V | | 0.7 ×
V _{VDD} | | | V | Copyright © 2024 Texas Instruments Incorporated 12 Product Folder Links: TPS274C65 V_{VS} = 11 V to 36 V, V_{VDD} = 3.0 V to 5.5 V, T_J = -40°C to 125°C (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |------------------------|--|--|------|------|---------------------------|------| | V _{IL, DIG} | DIG pin Input voltage low-level | 3.0 V ≤ VDD ≤ 5.5 V | | | 0.3 ×
V _{VDD} | V | | R _{REG_EN} | Internal pullup resistance for REG_EN pin | | | 1 | | МΩ | | R _{DIGx} | Internal pulldown resistor | | 0.7 | 1 | 2.0 | МΩ | | I _{IH, DIG} | Input current high-level | V _{DIG} = 5 V | | 5 | | μΑ | | DIGITAL O | UTPUT PIN CHARACTERI | STICS | | | | | | V _{OH} | Output Logic High
Voltage Drop | READY Pin current = -4 mA | -0.5 | | | V | | V _{OL_SDO} | Output Logic Low
Voltage | SDO Pin current = -4 mA | | | 0.2 | V | | V _{OL_FLT} | Output Logic Low
Voltage | FLT Pin current = -4 mA | | | 0.4 | V | | LED DRIVE | R CHARACTERISTICS | | | | | | | V _{drop_HL14} | LED High Side / Low side drop Channels 1 and 4 | I_LED (average current over 4 phases) = 4 mA, LED switch current = 16 mA | | | 0.2 | V | | V _{drop_HL23} | LED High Side / Low side drop Channels 2 and 3 | I_LED (average current over 4 phases) = 4 mA, LED switch current = 32 mA | | | 0.2 | V | | f _{PWM_LED} | LED driver PWM frequency | | | 1000 | | Hz | ### **6.6 Switching Characteristics** V_S = 6 V to 36 V, T_J = -40°C to +125°C (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | | |------------------------------------|---|---|--------|------------|-------|------| | | PANAMETEN | TEST CONDITIONS | IVIIIV | 111 | IVIAA | UNIT | | t _{DR} | CHx Turnon delay time | V_S = 24 V, R_L = 48 Ω 50% of EN to 10% of VOUT | 5 | 18 | 25 | μs | | t _{DF} | CHx Turnoff delay time | V_S = 24 V, R_L = 48 Ω 50% of EN to 90% of VOUT | 16 | 24 | 33 | μs | | SR2 _R | VOUTx rising slew rate | V_S = 24 V, 25% to 75% of V_{OUT} , R_L = 48 Ω , | 1 | 1.6 | 2.2 | V/µs | | SR2 _F | VOUTx falling slew rate | V_S = 24 V, 75% to 25% of V_{OUT} , R_L = 48 Ω , | 1 | 1.4 | 1.8 | V/µs | | f _{max} | Maximum PWM frequency | | | | 1 | kHz | | t _{ON} | CHx Turnon time | V_S = 24 V, R_L = 48 Ω 50% of EN to 90% of VOUT | | 33 | 42 | μs |
| t _{OFF} | CHx Turnoff time | V_S = 24 V, R_L = 48 Ω 50% of EN to 10% of VOUT | | 46 | 57 | μs | | t _{ON} - t _{OFF} | CHx Turnon and off matching | 1ms ON time switch enable pulse V_{BB} = 24 V, R_L = 48 Ω | -41 | - 7 | 23 | μs | | t _{ON} - t _{OFF} | CHx Turnon and off matching | 100- μ s OFF time switch enable pulse, V _S = 24 V, R _L = 48 Ω , F = f _{max} | -41 | - 7 | 23 | μs | | t _{ON} - t _{OFF} | CHxTurnon and off matching | 100-μs ON time switch enable pulse, V_S = 24 V, R_L = 48 Ω, F = f_{max} | -41 | -7 | 23 | μs | | Δ_{PWM} | CHx PWM accuracy - average load current | 200- μ s enable pulse, V _S = 24 V, R _L = 48 Ω F = f _{max} | -20 | | 20 | % | ### **6.7 SPI Timing Requirements** Over operating junction temperature $T_J = -40$ °C to 125°C and operating $V_{VS} = 2.3$ to 36 V (unless otherwise noted). | | | | MIN | NOM | MAX | UNIT | |---------------------|---|---------------------------------|-----|-----|-----|------| | t _{SPI} | SPI clock (SCLK) period | C _{SDO} = 30 pF; | 100 | | | ns | | t _{high} | High time: SCLK logic high-time duration | | 45 | | | ns | | t _{low} | Low time: SCLK logic low-time duration | | 45 | | | ns | | t _{sucs} | NCS setup time: Time delay between falling edge of | NCS and rising edge of SCLK | 45 | | | ns | | t _{su_SDI} | SDI setup time: Setup time of SDI before the falling e | dge of SCLK | 15 | | | ns | | t _{h_SDI} | SDI hold time: Hold time of SDI before the falling edg | e of SCLK | 30 | | | ns | | t _{d_SDO} | Delay time: Time delay from rising edge of SCLK to d | lata valid at SDO | | | 30 | ns | | t _{hcs} | Hold time: Time between the falling edge of SCLK an | d rising edge of NCS | 45 | | | ns | | t _{dis_cs} | nCS disable time, nCS high to SDO high impedance | | | 10 | | ns | | t _{hics} | SPI transfer inactive time (time between two transfers high | s) during which NCS must remain | 500 | | | ns | ### **6.8 Typical Characteristics** 15 Product Folder Links: TPS274C65 ### 7 Parameter Measurement Information Copyright © 2017, Texas Instruments Incorporated (1) Rise and fall time of $V_{\text{DO_EN}}$ is 100 ns. ### 図 7-1. Switching Characteristics Definitions 図 7-2. SPI Timing ### **8 Detailed Description** #### 8.1 Overview The TPS274C65 device is a quad channel 72-m Ω smart high-side switch intended for use for output ports with protection for 24-V industrial systems. The device is designed to drive a variety of resistive, inductive and capacitive loads. The device integrates various protection features including overload protection through current limiting, thermal protection, short-circuit protection, and reverse current protection. For more details on the protection features, refer to the *Feature Description* and *Application Information* sections of the document. In addition, the device diagnostics features include a digital per-channel readout of output current, output voltage and FET temperature. The high-accuracy load current sense allows for integration of load measurement features that can enable predictive maintenance for the system by watching for leading indicators of load failures. The device also integrates open load detection in on and off states to enable protection against wire breaks. In addition, the device includes an open drain FLT pin output that indicates device fault states such as short to GND, short to supply, overtemperature, and the other fault states discussed. ### 8.2 Functional Block Diagram ### 8.3 Feature Description #### 8.3.1 Pin Diagrams This section presents the I/O structure of all digital input and output pins. 図 8-1. Logic Level Input Pin 図 8-2 shows the input structure for the logic levels pin, CS. The input can be with a voltage or external resistor. 図 8-2. Logic Level Input Pin (CS) ⊠ 8-3 shows the structure of the open-drain output pin, FAULT. The open-drain output requires an external pullup resistor to function properly. 図 8-3. Open Drain Output Pin (FAULT) ### 8.3.2 SPI Mode Operation The TPS274C65xS communicates with the host controller through a high-speed SPI serial interface. The interface has three logic inputs: clock (CLK), chip select (\overline{CS}), serial data in (SDI), and one data out (SDO). The SDO is three-stated when CS is high. The maximum SPI clock rate is 10 MHz. The capacitance at SPI communication pins (CLK, \overline{CS} , SDI, SDO) needs to be minimized to achieve high SPI communication frequencies. The device supports both simple daisy chain1 and addressable SPI; the selection of mode is from the DSPI pin. The main advantage of the addressable SPI mode is that diagnostics and configuration is easier. The two Copyright © 2024 Texas Instruments Incorporated different modes of SPI that is fixed for a given system implementation and cannot be changed dynamically or on the fly. The two modes can be used with or without CRC. The two modes are described in detail: - 1. Addressable SPI mode non-daisy-chained SPI bus with one single/shared CS through chip addressing. Each chip on the shared SPI is assigned an individual chip address with the address set through a resistor (three-bit address for the chip). Addressed SPI (DSPI pin pulled low) allows direct communication with up to eight TPS274C65xS on a shared SPI using a single shared CS signal. The three-bit address of each IC (up to eight on one board) is set with a resistor to GND on this pin Addressed SPI offers the advantage of direct chip access. CRC check is enabled when CRCEN=1. The SPI main device addresses a specific chip by sending the appropriate A2, A1, A0 logic in the first three bits of the SPI read/write command. The TPS274C65xS monitors the SPI address in each SPI read or write cycle and responds appropriately when the address matches the programmed address for that IC. The added advantage is that it is possible to update the SW state register and read the data in the various read only fault and data registers in every read as well as write command frame. The transmission speed will be faster for addressable SPI compared to the daisy chain SPI as the direct data transmission will happen immediately once the address is transmitted. - 2. Daisy chain SPI mode is enabled by setting DSPI pin high. In this mode, multiple TPS274C65xS devices are configured in a serial fashion. In the 16-bit daisy-chain mode, only a minimum read capability and Switch state ON/OFF write is possible- the FAULT status can be read out on each write to the switch ON-OFF register. It is not possible to write to the LED registers or re-configure the device and at the same time update the switch state. However, it is possible to update the SW state register and read the data in the various read only fault and data registers. The 24-bit SPI format allows the write to the SW_STATE register in every read as well as write command frame as well enable CRC. The speed of the transmission for daisy chain will be depending on the CLK frequency as well as the number of devices connected in series. The communication between the TPS274C65 IC and the controller or MCU is through a SPI bus in a master-slave configuration. The external MCU is always an SPI master that sends command requests on the SDI pin of the TPS274C65 IC and receives device responses on the SDO pin of the IC. The TPS274C65 device is always an SPI slave device that receives command requests and sends responses (such as status and measured values) to the external MCU over the SDO line. The following lists the characteristics of the SPI: The TPS274C65 device can be connected to the master MCU in the following formats. · One slave device 図 8-4. Independent Slave Configuration Multiple slave devices in parallel connection (addressable SPI mode) 図 8-5. Addressable SPI Configuration Multiple slave devices in series (daisy chain) connection limited only by the SPI write frame speed requirements. 図 8-6. Daisy Chain Configuration SPI mode controls the following functions. - · ON/OFF control of the switches. - · Disable the diagnostics to reduce the quiescent current consumption. - Select the channel(s) and measurements for VOUT, IOUT and TEMP. - Fault management (clearing faults and action/response on fault). - Watchdog timer the device will generate an error if the SW_STATE register has not been successfully written into within the watchdog timeout period. The customer can disable the watchdog feature using the WD_EN bit (default is off). - · The current limit protection threshold 表 8-1. SPI IC Address Configuration | Resistor Value(kΩ) | ADDCFG Code | |--------------------|-------------| | 13.3 | 000 | | 17.8 | 001 | | 23.7 | 010 | | 31.6 | 011 | | 44.2 | 100 | | 59 | 101 | | 78.7 | 110 | | 110 | 111 | Note: Please use resistor with <1% tolerance. 表 8-2. SPI Configuration | Pin Configuration | SPI Register | SCLK Cycle per Frame | | |-------------------|---------------|----------------------|-------------------| | DSPI | D24BIT CRC_EN | | | | 0 | X | 0 | 24 bits, no CRC | | O | Х | 1 | 32 bits, with CRC | | | 0 | 0 | 16 bits, no CRC | | 1 | 1 | 1 | 24 bits, with CRC | | | 1 | 0 | 24 bits, no CRC | #### **SPI Sequence Frame Format** 注 FAULT STATUS TYPE bits in the SDO frame are equivalent to the FAULT_TYPE_STAT register (0h) listed in TPS274C65 Registers. 図 8-7. 24-bit Read, DSPI=0, D24BIT=x, CRC_EN=0 図 8-8. 24-bit Write, DSPI=0, D24BIT=x, CRC_EN=0 図 8-9. 32-bit Read, DSPI=0, D24BIT=x, CRC_EN=1 English Data Sheet: SLVSFZ2 ### 図 8-10. 32-bit Write, DSPI=0, D24BIT=x, CRC_EN=1 図 8-11. 16-bit Read, DSPI=1, D24BIT=0, CRC_EN=0 図 8-12. 16-bit Write, DSPI=1, D24BIT=0, CRC_EN=0 図 8-13. 24-bit Read, DSPI=1, D24BIT=1, CRC_EN=0 23 Product Folder Links: TPS274C65 図 8-14. 24-bit Write, DSPI=1, D24BIT=1, CRC_EN=0 図 8-15. 24-bit Read, DSPI=1, D24BIT=1, CRC_EN=1 図 8-16. 24-bit Write, DSPI=1, D24BIT=1, CRC_EN=1 #### 8.3.2.1 Diagnostic Bit Behavior 図 8-17. Fault Signaling Scheme
資料に関するフィードバック (ご意見やお問い合わせ) を送信 Copyright © 2024 Texas Instruments Incorporated #### 8.3.3 Programmable Current Limit The TPS274C65xS integrates a dual stage adjustable current limit. For the most efficient and reliable output protection, the current limit can be set as close to the DC current level as possible. However often systems require high inrush current handling as well (example incandescent lamp and capacitive loads). By integrating a dual stage current limit, the TPS274C65xS enables robust DC current limiting while still allowing flexible inrush handling. A lower current limit lowers fault energy and current during a load failure event such as a short-circuit or a partial load failure. By lowering fault energy and current, the overall system improves through: - Reduced size and cost in current carrying components such as PCB traces and module connectors - Less disturbance at the power supply (V_S pin) during a short circuit event - · Less additional budget for the power supply to account for overload currents in one channel or more - · Improved protection of the downstream load 表 8-3. Current Limit Setting Table for TPS274C65ASH | | 20 0. Guitett Elitit Getting Tubic for 11 027 4000 AGT | | | | | | | | | |----------------|--|----------------|----------------|------------------------------|--|--|--|--|--| | ILIM_REG_xx[3] | ILIM_REG_xx[2] | ILIM_REG_xx[1] | ILIM_REG_xx[0] | Typical ILIM
Threshold(A) | | | | | | | 0 | 0 | 0 | 0 | 0.29 | | | | | | | 0 | 0 | 0 | 1 | 0.38 | | | | | | | 0 | 0 | 1 | 0 | 0.48 | | | | | | | 0 | 0 | 1 | 1 | 0.57 | | | | | | | 0 | 1 | 0 | 0 | 0.67 | | | | | | | 0 | 1 | 0 | 1 | 0.76 | | | | | | | 0 | 1 | 1 | 0 | 0.86 | | | | | | | 0 | 1 | 1 | 1 | 0.96 | | | | | | | 1 | 0 | 0 | 0 | 1.15 | | | | | | | 1 | 0 | 0 | 1 | 1.33 | | | | | | | 1 | 0 | 1 | 0 | 1.52 | | | | | | | 1 | 0 | 1 | 1 | 1.71 | | | | | | | 1 | 1 | 0 | 0 | 1.9 | | | | | | | 1 | 1 | 0 | 1 | 2.07 | | | | | | | 1 | 1 | 1 | 0 | 2.26 | | | | | | | 1 | 1 | 1 | 1 | 2.45 | | | | | | 表 8-4. Current Limit Setting Table for TPS274C65AS, TPS274C65BS | 20 11 0411011 2111111 0041119 14410 101 11 021 1000 10, 11 021 1000 20 | | | | | | | | | |--|----------------|----------------|----------------|------------------------------|--|--|--|--| | ILIM_REG_xx[3] | ILIM_REG_xx[2] | ILIM_REG_xx[1] | ILIM_REG_xx[0] | Typical ILIM
Threshold(A) | | | | | | 0 | 0 | 0 | 0 | 0.25 | | | | | | 0 | 0 | 0 | 1 | 0.33 | | | | | | 0 | 0 | 1 | 0 | 0.4 | | | | | | 0 | 0 | 1 | 1 | 0.48 | | | | | | 0 | 1 | 0 | 0 | 0.56 | | | | | | 0 | 1 | 0 | 1 | 0.67 | | | | | | 0 | 1 | 1 | 0 | 0.72 | | | | | | 0 | 1 | 1 | 1 | 0.85 | | | | | Copyright © 2024 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 25 ### 表 8-4. Current Limit Setting Table for TPS274C65AS, TPS274C65BS (続き) | ILIM_REG_xx[3] | ILIM_REG_xx[2] | ILIM_REG_xx[1] | ILIM_REG_xx[0] | Typical ILIM
Threshold(A) | |----------------|----------------|----------------|----------------|------------------------------| | 1 | 0 | 0 | 0 | 1 | | 1 | 0 | 0 | 1 | 1.1 | | 1 | 0 | 1 | 0 | 1.25 | | 1 | 0 | 1 | 1 | 1.5 | | 1 | 1 | 0 | 0 | 1.6 | | 1 | 1 | 0 | 1 | 1.75 | | 1 | 1 | 1 | 0 | 1.9 | | 1 | 1 | 1 | 1 | 2.2 | ### 表 8-5. Inrush Current Period Setting Table | ILIM_REG_xx[7] | ILIM_REG_xx[6] | ILIM_REG_xx[5] | ILIM_REG_xx[4] | Inrush Period (ms) | |----------------|----------------|----------------|----------------|--------------------| | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 1 | 2 | | 0 | 0 | 1 | 0 | 4 | | 0 | 0 | 1 | 1 | 6 | | 0 | 1 | 0 | 0 | 8 | | 0 | 1 | 0 | 1 | 10 | | 0 | 1 | 1 | 0 | 12 | | 0 | 1 | 1 | 1 | 16 | | 1 | 0 | 0 | 0 | 20 | | 1 | 0 | 0 | 1 | 24 | | 1 | 0 | 1 | 0 | 28 | | 1 | 0 | 1 | 1 | 32 | | 1 | 1 | 0 | 0 | 40 | | 1 | 1 | 0 | 1 | 48 | | 1 | 1 | 1 | 0 | 56 | | 1 | 1 | 1 | 1 | 64 | ### 表 8-6. ILIM Configuration Table | ILIM_CONFIG | ILIM level during ILIMDELAY | FLT reporting during ILIMDELAY | |-------------|---|--------------------------------| | | As programmed with INRUSH_LIMIT[1:0] and ILIM_REG_xx[3:0] | Fault not reported | | 1 | As programmed with ILIM_REG_xx[3:0] | Fault is reported | 資料に関するフィードバック (ご意見やお問い合わせ) を送信 Copyright © 2024 Texas Instruments Incorporated 26 Product Folder Links: TPS274C65 English Data Sheet: SLVSFZ2 ### 8.3.3.1 Inrush Current Handling The current limit thresholds and the inrush current time duration can be set by SPI register writes to enable flexible inrush current control behavior. The following table shows the various options available. | 20-7. Initiali Current Limit Options | | | | | | | |--------------------------------------|---------------------|---|--|--|--|--| | INRUSH_LIMI
T[1] | INRUSH_LIMI
T[0] | Current Limit During Inrush
Duration | Notes | | | | | 0 | 0 | Current limit at the level set by register | The device will show constant current limit threshold in each channel at all times set by the register values | | | | | 0 | 1 | Current limit at 2x the level set by register | The current is set higher during the duration of the inrush delay to support high inrush current loads like incandescent lamps - See figure (Case B) showing ex current limit behavior enabling into a short circuit | | | | | 1 | 0 | Current limit at 0.5x the level set by register | Feature to limit the current and power dissipation during the charging large power supply capacitor loads. | | | | | 1 | 1 | Current limit fixed at 2.2 A threshold | | | | | 表 8-7. Inrush Current Limit Options An example current limit timing behavior is shown 🗵 8-18. 図 8-18. Inrush current limit set to 2x ILIM with a delay set by the ILIMDELAY register setting. Initially current load is higher than the twice the limit and then decreases to the 1x limit The above waveform shows the current limiting behavior on enabling the outputs during the initial inrush period. The initial inrush current period when the current limit is higher enables two different system advantages when driving loads - Enables higher load current to be supported for a period of time in the order of milliseconds to drive high inrush current loads like incandescent bulb loads. - Enables fast capacitive load charging. In some situations, it is ideal to charge capacitive loads at a higher current than the DC current to ensure quick supply bring up. This architecture allows a module to quickly charge a capacitive load using the initial higher inrush current limit and then use a lower current limit to reliably protect the module under overload or short circuit conditions. While in current limiting mode, at any level, the device will have a high power dissipation. If the FET temperature exceeds the over-temperature shutdown threshold, the device will turn off just the channel that is overloaded. After cooling down, the device will either latch off or re-try, depending on the latch configuration. If the device is turning off prematurely on start-up, it is recommended to improve the PCB thermal layout, lower the current limit to lower power dissipation, or decrease the inrush current (capacitive loading). 27 Product Folder Links: TPS274C65 #### 8.3.4 DO_EN Feature DO_EN pin allows user to turn OFF all the channels regardless of the SW_STATE register status. If the DO_EN is kept low, all the output channels cannot be turned ON even if the SW_STATE register shows channels are enabled. When the SW_STATE commands are sent during DO_EN low period, the register values will be stored in the register. Once the DO_EN goes high, then the output states will follow the register values stored in the SW STATE. #### 8.3.5 Protection Mechanisms The TPS274C65xS protects the system against load fault events like short circuits, inductive load kickback, overload events and over-temperature events. This section describes the details for protecting against each of these fault cases. There are protection features which, if triggered, will cause the switch to automatically disable: · Thermal Shutdown The fault indication is reset and the switch will turn back on when all of the below conditions are met: - · t_{RETRY} has expired - All faults are cleared (thermal shutdown and current limit) Please note that if device hits thermal shutdown during the inrush period, the device will retry with the higher inrush current. #### 8.3.5.1 Overcurrent Protection When I_{OUT} reaches the current limit threshold, I_{CL} , the device will register an overcurrent fault and begin regulating the current at the set limit. When any switch is in the FAULT state it will be indicated on the \overline{FLT} pin. This protects the system against overload cases where the load attempts to draw more than it's max rated current, so the TPS274C65 can recognize and limit current or shut off during these cases. In the case of a slow overload with the device channel enabled for a while, the current limit levels are as shown in \boxtimes 8-19. 図 8-19. Overload Response 資料に関するフィードバック(ご意見やお問い合わせ)を送信 Copyright © 2024 Texas Instruments Incorporated English Data Sheet: SLVSFZ2 図 8-20. Overcurrent Behavior For more details on the current limiting functionality, please see Programmable Current Limit. #### 8.3.5.2 Short Circuit Protection The TPS274C65xS provides output short-circuit protection to ensure that the device will prevent current flow in the event of a low impedance path to GND, removing the risk of damage or significant supply droop. The TPS274C65xS is guaranteed to protect against short-circuit events regardless of the state of the ILIM pins and with up to 36 V supply at 125°C. 図 8-21 shows the behavior of the TPS274C65xS when the device is
enabled into a short-circuit. 29 図 8-21. Enable into Short-Circuit Behavior Due to the low impedance path, the output current will rapidly increase until it hits the current limit threshold. Due to series inductance and deglitch, the measured maximum current may temporarily exceed the I_{CL} value defined as I_{CL} ENPS, however it will settle to the current limit. In this state high power is dissipated in the FET, so eventually the internal thermal protection temperature for the FET is reached and the device safely shuts down. If the device is not configured in latch mode, the device will wait t_{RETRY} amount of time and turn the channel back on. \boxtimes 8-22 shows the behavior of the TPS274C65xS when a short-circuit occurs when the device is in the on-state and already outputting current. When the internal pass FET is fully enabled, the current clamping settling time is slower so to ensure overshoot is limited, the device implements a fast trip level at a level I_{OVCR} . When this fast trip threshold is hit, the device immediately shuts off for a short period of time before quickly re-enabling and clamping the current to I_{CL_Reg} level after a brief transient overshoot to the I_{CL_ENPS} level. The device will then keep the current clamped at the regulation current limit until the thermal shutdown temperature is hit and the device will safely shut-off. 図 8-22. On-State Short-Circuit Behavior Soft Short- Circuit Behavior illustrated in Soft Short-Circuit Behavior shows the behavior of the TPS274C65xS when there is a small change in impedance that sends the load current above the I_{CL} threshold. The current Product Folder Links: TPS274C65 資料に関するフィードバック(ご意見やお問い合わせ)を送信 Copyright © 2024 Texas Instruments Incorporated rises to I_{CL_LINPK} since the FET is still in the linear mode. Then the current limit kicks in and the current drops to the I_{Cl_} value. 図 8-23. Soft Short-Circuit Behavior In all of these cases, the internal thermal shutdown is safe to hit repetitively. There is no device risk or lifetime reliability concerns from repeatedly hitting this thermal shutdown level. #### 8.3.5.2.1 V_S During Short-to-Ground When V_{OUT} is shorted to ground, the module power supply (V_S) can see a transient decrease. This is caused by the sudden increase in current flowing through the cable inductance. For ideal system behavior, it is recommended that the module supply capacitance be increased by adding bulk capacitance on the power supply node. #### 8.3.5.3 Inductive-Load Switching-Off Clamp When an inductive load is switching off, the output voltage is pulled down to negative, due to the inductance characteristics. The power FET may break down if the voltage is not clamped during the current-decay period. To protect the power FET in this situation, internally clamp the drain-to-source voltage, namely $V_{DS,clamp}$, the clamp diode between the drain and gate. $$V_{DS,Clamp} = V_S - V_{OUT}$$ (1) During the current-decay period (T_{DECAY}), the power FET is turned on for inductance-energy dissipation. Both the energy of the power supply (E_S) and the load (E_{LOAD}) are dissipated on the high-side power switch itself, which is called E_{HSD} . If resistance is in series with inductance, some of the load energy is dissipated in the resistance. $$E_{HSD} = E_S + E_{LOAD} = E_S + E_L - E_R \tag{2}$$ From the high-side power switch's view, E_{HSD} equals the integration value during the current-decay period. $$E_{HSD} = \int_{0}^{T_{DECAY}} V_{DS,clamp} \times I_{OUT}(t) dt$$ (3) $$T_{DECAY} = \frac{L}{R} \times ln \left(\frac{R \times I_{OUT(MAX)} + |V_{OUT}|}{|V_{OUT}|} \right)$$ (4) $$E_{HSD} = L \times \frac{V_{BAT} + |V_{OUT}|}{R^2} \times \left[R \times I_{OUT(MAX)} - |V_{OUT}| In \left(\frac{R \times I_{OUT(MAX)} + |V_{OUT}|}{|V_{OUT}|} \right) \right]$$ (5) When R approximately equals 0, E_{HSD} can be given simply as: $E_{HSD} = \frac{1}{2} \times L \times I_{OUT(MAX)}^2 \frac{V_{BAT} + |V_{OUT}|}{R^2}$ (6) 図 8-24. Driving Inductive Load 図 8-25. Inductive-Load Switching-Off Diagram As discussed previously, when switching off, supply energy and load energy are dissipated on the high-side power switch, which leads to the large thermal variation. For each high-side power switch, the upper limit of the maximum safe power dissipation depends on the device intrinsic capacity, ambient temperature, and board dissipation condition. #### 8.3.5.4 Inductive Load Demagnetization When switching off an inductive load, the inductor can impose a negative voltage on the output of the switch. The TPS274C65 includes voltage clamps between VS and VOUT to limit the voltage across the FETs and demagnetize load inductance if there is any. The negative voltage applied at the OUT pin drives the discharge of inductor current. \boxtimes 8-26 shows the device discharging a load of 100mH paralleled with 48 Ω , resulting 500mA at the turn-off. 図 8-26. TPS274C65 Inductive Discharge (100mH + 48Ω) The maximum acceptable load inductance is a function of the energy dissipated in the device and therefore the load current and the inductive load. The maximum energy and the load inductance the device can withstand for one pulse inductive dissipation at 125°C is shown in \boxtimes 8-27. The device can withstand 40% of this energy for one million inductive repetitive pulses with a 2Hz repetitive pulse. If the application parameters exceed this device limit, use a protection device like a freewheeling diode to dissipate the energy stored in the inductor. 図 8-27. Maximum Energy Dissipation (E_{AS}) Allowed T_{J. START} = 125°C – Single Pulse, One Channel #### 8.3.5.5 Thermal Shutdown The TPS274C65 includes a temperature sensor on the power FET and also within the controller portion of the device. There are two cases that the device will register a thermal shutdown fault: Copyright © 2024 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 33 - T_{J.FET} > T_{ABS} - $(T_{J,FET} T_{J,controller}) > T_{REL}$ The first condition enables the device to register a long-term overtemperature event (caused by ambient temperature or too high DC current flow), while the second condition allows the device to quickly register transient heating that is causes in events like short-circuits. After the fault is detected, the switch will turn off. If $T_{J,FET}$ passes T_{ABS} , the fault is cleared when the switch temperature decreases by the hysteresis value, T_{HYS} . If instead the T_{REL} threshold is exceeded, the fault is cleared after T_{RETRY} passes. Each channel will shut down independently in case of a thermal event, as each has it's own temperature sensor and fault reporting. #### 8.3.5.6 Undervoltage protection on VS The device monitors the supply voltage V_S to prevent unpredicted behaviors in the event that the supply voltage is too low. When the supply voltage falls down to V_{S_UVPF} , the swtiches will shut off When the supply rises up to V_{S_UVPR} , the device turns back on. The VS undervoltage fault will be indicated through the register and FLTpin unless masked. 図 8-28. VS UVP ### 8.3.5.7 Undervoltage Lockout on Low Voltage Supply (VDD UVLO) The device monitors the input supply voltage V_{VDD} to prevent unpredictable behavior in the event that the supply voltage is too low. When the supply voltage falls down to V_{VDD_UVLOF} , the device channel outputs are disabled and \overline{READY} pin is pulled high. The device will resume normal operation when VDD rises above the VDD_{UVLOR} threashold. The device will indicate through the POR bit if a reset of the digital has occured. 図 8-29. VDD UVLO #### 8.3.5.8 Power-Up and Power-Down Behavior Device is in OFF or POR state when the device is not powered. FAULT, READY and VOUTx will be in high-Z state. Once the $V_S > V_{S_UVPR}$ and $V_{DD} > V_{DD,UVLOR}$, the device starts to read in the configurations and \overline{READY} will be pulled low when the device is ready for the SPI communication. In case the VDD power supply is enabled the first and the VDD voltage exceeds $V_{DD,UVLOR}$ before the VS supply is up and VS voltage exceeds $V_{S\ UVPR}$, the outputs remain disabled. #### 8.3.5.9 Reverse Current Blocking Reverse current occurs when V_{VS} < V_{OUT} . In this case, current will flow from V_{OUTx} to VS. Reverse current can be caused by miswiring at the output, or a capacitive or inductive load can cause inverse current. For example, if there is a significant amount of load capacitance and the V_S node has a transient droop, V_{OUTx} may be greater than V_S. The V_Sdroop may be caused by inrush current from a different load. Similarly load/supply faults and inductive loads can cause supply to be pushed up as well. Another application is to provide protection when output connection to supply (miswiring) occurs when the input power supply is not available or connected. The device monitors V_S and V_{OUT} to provide true reverse current blocking when a reverse condition or input power failure condition is detected. To prevent reverse current flow, TPS274C65AS integrates a NMOS gate driver that drives an external blocking FET. The blocking FET is enabled as soon as the device is enabled and $V_{VS} > V_{S_UVP}$. When a reverse current condition is detected such as $V_{OUT} - V_{VS} > V_{RCB R}$, the blocking FET gets disabled to prevent unwanted reverse currents and signaled through RVRS_BLK_FLT and FLT. Once off, TPS274C65AS has the hysteresis implemented to keep the RCB FET off as long as $V_{OUT} - V_{VS} < V_{RCB}$ F. After $t_{RCB \ comp \ reset}$ timer expired, the RCB FET is enabled to check if the reverse current condition has cleared, and the comparator threshold is reset from V_{RCB_F} to V_{RCB_R} . If $V_{OUT} - V_{VS} > V_{RCB_R}$ condition is met after the RCB FET is re-enabled, TPS274C65AS again turns off the RCB FET. During reverse current event, current sensing is not
available, and I_{SNS} and ADC register go to 0 mA. In case the RCB FET needs to be kept off, the per channel RCB bit RCB CHx can be turned low to keep the RCB FET off. However, the main FET needs to be off as well to avoid excessive heat through the RCB FET that can lead to the RCB FET damage. If there's no external RCB FET connected, RCB DIS bit needs to be turned high, and the RCB pins need to be left floating. Each channel has RCB CHx bit to configure the RCB FET to be always OFF or with normal RCB function as described above. 表 8-8 shows some example use cases for the RCB feature. 表 8-8. Common Applications for RCB | Example Application | RCB_DIS | Per Channel RCB | Comment | |---|---------|-----------------|--| | Digital Output Module but reverse current blocking function is not desired | 1 | RCB_CHx = X | RCB pin left floating and not connected to the RCB FET. | | Digital Output Module and reverse current blocking function is needed | 0 | RCB_CHx = 1 | RCB pin connected to the RCB FET gate with normal RCB function. | | Digital Input Ouput module with RCB FET used to conduct current in DI configuration | 0 | RCB_CHx = 0 | RCB pin connected to the RCB
FET gate with RCB FET always
OFF. No RCB detection. | | Digital Input Ouput module with the channel in Digital Output configuration | 0 | RCB_CHx = 1 | RCB pin connected to the FET gate with normal RCB function. | Copyright © 2024 Texas Instruments Incorporated Product Folder Links: TPS274C65 English Data Sheet: SLVSFZ2 図 8-30. Reverse Current Blocking ### 8.3.6 Diagnostic Mechanisms As systems demand more intelligence, it is becoming increasingly important to have robust diagnostics measuring the conditions of output power. The TPS274C65 integrates many diagnostic features that enable modules to provide predictive maintenance and intelligence power monitoring to the system. #### 8.3.6.1 Current Sense The SNS output may be used to sense the load current through any channel. The SNS pin will output a current that is proportional to the load current through either channel. This current will be sourced into an external resistor to create a voltage that is proportional to the load current. This voltage may be measured by an ADC or comparator and used to implement intelligent current monitoring for a system. To ensure accurate sensing measurement, R_{SNS} should be connected to the same ground potential as the µC ADC. Equation 3 shows the transfer function for calculating the load current from the SNS pin current. $$I_{SNSI} = I_{OUT} / K_{SNS}$$ (7) dI_{SNST}/dT and K_{SNS} are defined in the *Specifications* section. #### 8.3.6.1.1 R_{SNS} Value The following factors should be considered when selecting the R_{SNS} value: - Current sense ratio (K_{SNS}) - Largest and smallest diagnosable load current required for application operation - Full-scale voltage of the ADC - · Resolution of the ADC ### 8.3.6.1.1.1 SNS Output Filter To achieve the most accurate current sense value, it is recommended to filter the SNS output. There are two methods of filtering: - Low-Pass RC filter between the SNS pin and the ADC input. This filter is illustrated in ☑ 9-1 with typical values for the resistor and capacitor. The designer should select a C_{SNS} capacitor value based on system requirements. A larger value will provide improved filtering but a smaller value will allow for faster transient response. - The ADC and microcontroller can also be used for filtering. It is recommended that the ADC collects several measurements of the SNS output. The median value of this data set should be considered as the most accurate result. By performing this median calculation, the microcontroller can filter out any noise or outlier data. ### 8.3.6.2 Fault Indication The following faults will be register a fault that will show on the FLT pin (unless masked):. - · FET Thermal Shutdown - · Active Current Regulation - Thermal Shutdown caused by Current Limitation - · Open load detection in on-state or off-state - V_{OUT} Short to Battery | Condition | vs | VDD | ENx | OUTx | LATCH(AUTO_
RETRY_DIS) | FLT | FAULT
Recovery | |--------------------|----------------------|-----------------------|-----|------|---------------------------|-----|-------------------| | VS
Undervoltage | <v<sub>S_UVP</v<sub> | >V _{DD,UVLO} | Х | X | × | Н | - | | Normal - | >V _{S_UVP} | >V _{DD,UVLO} | L | L | Х | Н | - | | | >V _{S_UVP} | >V _{DD,UVLO} | Н | Н | × | Н | - | 資料に関するフィードバック(ご意見やお問い合わせ)を送信 | Condition | vs | VDD | ENx | OUTx | LATCH(AUTO_
RETRY_DIS) | FLT | FAULT
Recovery | |--|---------------------|-----------------------|-----|------|---------------------------|-----|---| | Short to Supply,
Off-state open
load | >V _{S_UVP} | >V _{DD,UVLO} | L | н | X | L | - | | | >V _{S_UVP} | >V _{DD,UVLO} | Н | L | L | L | Auto-retry | | Short to GND,
Overload, TSD | >V _{S_UVP} | >V _{DD,UVLO} | Н | L | н | L | Latch-off. Fault recovers when ENx toggles. | #### 8.3.6.2.1 Current Limit Behavior 図 8-31. FLT Pin Behavior With an Overcurrent Event on Channel Enable № 8-32 shows the device fault and retry behavior when there is a slow creep into an over-current event. As shown, the switch clamps the current until it hits thermal shutdown, and then the device will remain latched off until the AUTO_RETRY_DIS bit is low. 図 8-32. Current Limit - Latched Behavior \boxtimes 8-33 shows the behavior with AUTO_RETRY_DIS = 1 (Latched behavior); hence, the switch will retry after the fault is cleared and t_{RETRY} has expired. 図 8-33. Current Limit – AUTO_RETRY_DIS = 0 When the switch retries after a shutdown event, the fault indication will remain until V_{OUTx} has risen to $V_{BB}-1.8$ V. Once V_{OUTx} has risen, the \overline{FLT} output is reset and current sensing is available. If there is a short-to-ground and V_{OUT} is not able to rise, the SNS fault indication will remain indefinitely. \boxtimes 8-34 illustrates auto-retry behavior and provides a zoomed-in view of the fault indication during retry. 注 \boxtimes 8-34 assumes that t_{RETRY} has expired by the time that T_J reaches the hysteresis threshold. AUTO_RETRY_DIS = 0 # 8.3.6.3 Short-to-Battery and Open-Load Detection The TPS274C65 is capable of detecting short-to-battery and open-load events regardless of whether the switch is turned on or off, however the two conditions use different methods to signify fault. This feature enables systems to recognize mis-wiring or wire-break events. #### 8.3.6.4 On-State Wire-Break Detection When the switch is enabled, TPS274C65 supports on-state open load detecttion as low as 0.32mA. In order to achieve this accuracy, TPS274C65 uses a higher resistance path that is enabled for a short period of time(T_{WB_ON1}). If the WB_ON is kept high, the higher resistance path will be turned on again after 100ms retry time. The wire-break will also be retried whenever the WB_ON signal is toggled. Please refer to \boxtimes 8-35 for the wire-break detection timing diagram. This functionality is enabled when EN_WB_ON and diagnostics are enabled, during this time open-load threshold will be detected and signaled through WB_ON_FLT bit if wire break is detected. 表 8-9. Open-Load ON-State Detection Threshold | WB_ON_THD[2] | WB_ON_THD[1] | WB_ON_THD[0] | Typical Current Threshold (mA) | |--------------|--------------|--------------|--------------------------------| | 0 | 0 | 0 | 0.32 | | 0 | 0 | 1 | 0.64 | | 0 | 1 | 0 | 0.96 | | 0 | 1 | 1 | 1.28 | | 1 | 0 | 0 | 1.6 | | 1 | 0 | 1 | 1.92 | | 1 | 1 | 0 | 2.24 | | 1 | 1 | 1 | 2.56 | 43 English Data Sheet: SLVSFZ2 Product Folder Links: TPS274C65 図 8-35. ON-State Wire-Break Detection ### 8.3.6.5 Off State Wire-Break Detection While the switch disabled and WB_OFF_CHx_EN high, an internal comparator watches the condition of V_{OUT} . The TPS274C65 includes a current source connected to V_{OUT} controlled by the DIA_EN signal. So, if the load is disconnected (open load condition) or there is a short to battery the V_{OUT} voltage will be pulled towards V_S . In either of these events, the internal comparator will measure V_{OUT} as higher than the open load threshold ($V_{OL,off}$) and a fault is indicated on the \overline{FLT} pin and on the SNS pin. No external component are required in most cases, however if there is external pull-down resistor to GND on V_{OUT} , an additional external pull-up resistor might be necessary to bias V_{OUT} appropriately. The comparator and detection circuitry is only enabled when EN = LOW. Open load will be indicated on the FLT pin even if WB_OFF_CHx_EN is set low, but will need an external pull-up resistor (and potentially a switch). Open load fault signaling on the SNS is enabled only if WB_OFF_CHx_EN is set HI. While the switch is disabled, the fault indication mechanisms will continuously represent the present status. For example, if V_{OUT} decreases from greater than V_{OL} to less than V_{OL} , the fault indication is reset. Additionally, the fault indication is reset upon WB_OFF_CHx_EN = 0 or the rising edge of EN. 図 8-36. Open Load Detection Circuit 45 Product Folder Links: TPS274C65 図 8-37. Off-State Open Load Detection Timing English Data Sheet: SLVSFZ2 図 8-38. Off-State Open Load Detection Timing #### 8.3.6.6 ADC The device includes an internal ADC that can convert the current sense, temperature sense, input and output voltages. The ADC reference voltage is fixed internally as shown in the electrical characteristics table. The TPS274C65AS device has a successive approximation 10-bit ADC which can convert multiple channels serially. The ADC can be used to convert the following (but each or all of these can be disabled using SPI register
configuration. 1. Sensed load current. The sense resistor converting the sense current to voltage should be sized such that the max load current (including the 20% over the nominal load value) produces a voltage value at the SNS pin (V_ISNS) that falls roughly at 80% of the ADC range. In this case, if ISNS is at the upper end of the ADC range, the device ADC output indicates that there is an over-load condition, and if ISNS is in the lower end of the ADC range, they know that there is an under-load condition. However, given the very low current values that need to be diagnosed, additional scaling of the V_ISNS voltage or the sensed current may be needed at the very low current limit. Note that the current output occurs only when the switch is enabled ON. The V_ISNS voltage would be sampled by the MUX switch only when the switch is fully ON (switch enable digital). English Data Sheet: SLVSFZ2 signal gated with the ISNS_DELAY signal from) allowing the SNS current to settle. The four-sample average would be done only after the MUX switch is ON. The ADC ISNS reports FF as the output value. $$ADC_{current} \text{ in decimal = round}[(2^{number of ADC bits}-1)*I_{load}*R_{SNS}/(K_{SNS}*V_{ADCREF})]$$ (8) 2. VS/VOUT voltage signals applied to the general purpose ADC pins. Note that the VOUT voltage need only be sensed as a fraction of the VS voltage. $$ADC_{voltage} \text{ in decimal = round}[(2^{number of ADC bits}-1)*V_{S/OUT}/30]$$ (9) where $V_{S/OUT}$ can be either V_S or V_{OUT} 3. Temperature sensed in each FET. $$ADC_{temp} \text{ in decimal = round}[(2^{number of ADC bits}-1)*(0.83-T_{IC}/450)]$$ (10) where T_{IC} is in °C The ADC's reference voltage pin is ADREFHI which is generated internally thus making the max voltage convertible to the ADCREFHI. Internally the ADC's ground reference is connected to the IC GND pin, so externally should be connected to the same pin to minimize the PCB ground shift errors. The ADC scheduling is round robin with the following order: - 1. ISNS - 2. TSNS - 3. VOUT SNS - 4. VSNS. 図 8-39. ADC Block Diagram #### 8.3.7 LED Driver TPS274C65 integrates an LED driver designed to drive 8 Status LEDs using only 4 outputs(LEDOUT1-LEDOUT4). This design provides the flexibility to ensure *any combination of LEDs can be turned on at any given time* and the user can configure the outputs through SPI using the TPS274C65 Registers. This LED driver is designed to control each output with independent clock signals with ON phases offset from each other. This ensures maximum flexibility for the user assigning use cases when configuring LED driver. An example application is to provide ON/OFF channel status and fault indication per channel. In this example, the user could assign channel specific functionality for D1-D4 such as channel on or off and tie D5-D8 as fault indication LEDs. However, the user has full discretion on how they want to leverage these outputs. RS and RF resistors determine the LED current through each LED and should be chosen according to the LED's current/light density specifications. Current will flow from VDD pins to the LEDs, and the average current through each LED will be VDD/RS(or RF)/4. 図 8-40. LED Driver ### 8.4 Device Functional Modes During typical operation, the TPS274C65 can operate in a number of states that are described below. ### 8.4.1 OFF/POR Off state occurs when the device is not powered. FAULT, READY and VOUTx will be in high-Z state. #### 8.4.2 INIT Once the $V_S > V_{S_UVPR}$ and $V_{DD} > V_{DD,UVLOR}$, the device starts to read in the configurations and \overline{READY} will be high in this state. ### **8.4.3 Active** Once $\overline{\text{READY}}$ is low from the INIT state, the device enters active state, where the switch states are constantly written in through SPI. ## 8.5 TPS274C65BS Available Registers List The registers listed in TPS274C65 Registers section show all available registers in the AS version. Some registers are not available in the BS version. Available Registers in TPS274C65BS Version shows the registers' availability in the BS version. English Data Sheet: SLVSFZ2 # 表 8-10. Available Registers in TPS274C65BS Version | D , 0 | | | | | |--------------------------|--|---|--|---| | REG_NAME | FUNCTIONAL IN BS
VERSION | ADDRESS | REG_NAME | FUNCTIONAL IN BS
VERSION | | FAULT_TYPE_STAT | Υ | 0x18 | ADC_RESULT_CH2_
V | N | | FAULT_CH_STAT | Υ | 0x19 | ADC_RESULT_CH3_
V | N | | FAULT_GOBAL_TYP
E | Υ | 0x1A | ADC_RESULT_CH4_
V | N | | SHRT_VS_CH_STAT | Υ | 0x1B | ADC_RESULT_VS | N | | WB_OFF_CH_STAT | Υ | 0x1C | ADC_RESULT_VS_L
SB | N | | WB_ON_CH_STAT | Υ | 0x1D | SW_STATE | Υ | | ILIMIT_CH_STAT | Υ | 0x1E | LED_OUT_ON | N | | THERMAL_SD_CH_
STAT | Y | 0x1F | LED_ERR_ON | N | | THERMAL_WRN_CH
_STAT | Υ | 0x20 | SW_FS_STATE | Υ | | RVRS_BLK_CH_STA
T | N | 0x21 | DEV_CONFIG1 | Υ | | RESERVED | N | 0x22 | DEV_CONFIG2 | Υ | | ADC_RESULT_CH1_ | N | 0x23 | DEV_CONFIG3 | See Registers with
Partial Blts Available
in BS | | ADC_RESULT_CH1_
I_LSB | N | 0x24 | DEV_CONFIG4 | Υ | | ADC_RESULT_CH2_ | N | 0x25 | DEV_CONFIG5 | See Registers with
Partial Blts Available
in BS | | ADC_RESULT_CH2_
I_LSB | N | 0x26 | DEV_CONFIG6 | N | | ADC_RESULT_CH3_ | N | 0x27 | FAULT_MASK | See Registers with
Partial Blts Available
in BS | | ADC_RESULT_CH3_
I_LSB | N | 0x28 | EN_WB_OFF_CH | Υ | | ADC_RESULT_CH4_ | N | 0x29 | EN_WB_ON_CH | Υ | | ADC_RESULT_CH4_
I_LSB | N | 0x2A | EN_SHRT_VS_CH | Υ | | ADC_RESULT_CH1_
T | N | 0x2B | ADC_ISNS_DIS | N | | ADC_RESULT_CH2_
T | N | 0x2C | ADC_TSNS_DIS | N | | ADC_RESULT_CH3_
T | N | 0x2D | ADC_VSNS_DIS | N | | ADC_RESULT_CH4_
T | N | 0x2E | ADC_CONFIG1 | N | | ADC_RESULT_CH1_
V | N | 0x2F | CFG_CRC | Υ | | | FAULT_TYPE_STAT FAULT_CH_STAT FAULT_GOBAL_TYP E SHRT_VS_CH_STAT WB_OFF_CH_STAT WB_ON_CH_STAT ILIMIT_CH_STAT THERMAL_SD_CH_STAT THERMAL_WRN_CH_STAT RVRS_BLK_CH_STA T RESERVED ADC_RESULT_CH1_ I ADC_RESULT_CH2_ I ADC_RESULT_CH2_ I ADC_RESULT_CH3_ I ADC_RESULT_CH4_ | REG_NAME FUNCTIONAL IN BS VERSION FAULT_TYPE_STAT FAULT_CH_STAT FAULT_GOBAL_TYP E SHRT_VS_CH_STAT WB_OFF_CH_STAT WB_ON_CH_STAT ILIMIT_CH_STAT THERMAL_SD_CH STAT RVRS_BLK_CH_STA RVRS_BLK_CH_STA T RESERVED ADC_RESULT_CH1 I LSB ADC_RESULT_CH2 I LSB ADC_RESULT_CH2 I LSB ADC_RESULT_CH3 I ADC_RESULT_CH4 I I ADC_RESULT_CH4 I I ADC_RESULT_CH4 I I ADC_RESULT_CH1 I I ADC_RESULT_CH4 I ADC_RESULT_CH4 I I I I I I I I I I I I I I I I I I I | REG_NAME FUNCTIONAL IN BS VERSION ADDRESS VERSION FAULT_TYPE_STAT Y 0x18 FAULT_CH_STAT Y 0x19 FAULT_GOBAL_TYP PE Y 0x1A SHRT_VS_CH_STAT Y 0x1B WB_OFF_CH_STAT Y 0x1C WB_ON_CH_STAT Y 0x1D ILIMIT_CH_STAT Y 0x1E THERMAL_SD_CH_STAT Y 0x21 THERMAL_WRN_CH_STAT Y 0x20 STAT N 0x21 RESERVED N 0x22 ADC_RESULT_CH_STAT N 0x23 ADC_RESULT_CH1_N N 0x23 ADC_RESULT_CH1_N N 0x23 ADC_RESULT_CH2_N N 0x25 ADC_RESULT_CH2_N N 0x26 LLSB ADC_RESULT_CH3_N 0x27 ADC_RESULT_CH4_N N 0x28 ADC_RESULT_CH4_N N 0x28 ADC_RESULT_CH2_N N 0x2C ADC_RESULT_CH3_N N | FAULT_TYPE_STAT Y | There are some registers contains bits that are not
available in the BS version. The bits marked $\frac{\text{RSVD}}{\text{RSVD}}$ in $\frac{1}{8}$ 8-11 are not functional in the BS version. # 表 8-11. Registers with Partial Bits Available in BS | ADDRESS | REG_NAME | b7 | b6 | b5 | b4 | b3 | b2 | b1 | b0 | |---------|-----------------|------------------|-----------------|-----------------|--------------------|-------------------|-------------------|-----------------|----------------------| | 0x23 | DEV_CONFI
G3 | RSVD | ILIM_SET | RSVD | PARALLEL_
34 | PARALLEL_
12 | ILIM_CONFI
G | INRUSH_ILI
M | INRUSH_ILI
M | | 0x25 | DEV_CONFI
G5 | RSVD | RSVD | RSVD | AUTO_RET
RY_DIS | WB_SVS_B
LANK1 | WB_SVS_B
LANK0 | SW_FS_CF
G | FLT_BIT_LT
CH_DIS | | 0x27 | FAULT_MAS
K | MASK_SPI_
ERR | MASK_WD_
ERR | MASK_ILIMI
T | RSVD | MASK_SHR
T_VS | MASK_WB_
OFF | MASK_WB_
ON | MASK_VSU
V | 51 Product Folder Links: TPS274C65 ## 8.6 TPS274C65 Registers 表 8-12 lists the memory-mapped registers for the TPS274C65 registers. All register offset addresses not listed in 8-12 should be considered as reserved locations and the register contents should not be modified. 表 8-12. TPS274C65 Registers | 表 8-12. TPS274C65 Registers Offset Acronym Register Name Section | | | | | | | |---|---------------------------------|---|--------------|--|--|--| | Onset | | • | | | | | | 1h | FAULT_TYPE_STAT | Fault Type Register Faulted channel register | セクション 8.6.1 | | | | | 2h | FAULT_CH_STAT FAULT_GLOBAL_TYPE | Global fault type register | セクション 8.6.2 | | | | | | SHRT VS CH STAT | | セクション 8.6.3 | | | | | 3h | | Short_to VS Faulted Channel Register | セクション 8.6.4 | | | | | 4h | WB_OFF_CH_STAT | Off-state Wire-break faulted channel register | セクション 8.6.5 | | | | | 5h | WB_ON_CH_STAT | On-state Wire-break faulted channel register | セクション 8.6.6 | | | | | 6h | ILIMIT_CH_STAT | Current Limit faulted channel register | セクション 8.6.7 | | | | | 7h | THERMAL_NORM CULSTAT | Thermal Shutdown faulted channel register Thermal warning threshold faulted channel register | セクション 8.6.8 | | | | | 8h | THERMAL_WRN_CH_STAT | | セクション 8.6.9 | | | | | 9h | RVRS_BLK_CH_STAT | Reverse Current flow (blocked) faulted channel register | セクション 8.6.10 | | | | | Bh | ADC_RESULT_CH1_I | ADC conversion result ISNS CH1 | セクション 8.6.11 | | | | | Ch | ADC_RESULT_CH1_I_LSB | ADC conversion result ISNS CH1 LSBs | セクション 8.6.12 | | | | | Dh | ADC_RESULT_CH2_I | ADC conversion result ISNS CH2 | セクション 8.6.13 | | | | | Eh | ADC_RESULT_CH2_I_LSB | ADC conversion result ISNS CH2 LSBs | セクション 8.6.14 | | | | | Fh | ADC_RESULT_CH3_I | ADC conversion result ISNS CH3 | セクション 8.6.15 | | | | | 10h | ADC_RESULT_CH3_I_LSB | ADC conversion result ISNS CH3 LSBs | セクション 8.6.16 | | | | | 11h | ADC_RESULT_CH4_I | ADC conversion result ISNS CH4 | セクション 8.6.17 | | | | | 12h | ADC_RESULT_CH4_I_LSB | ADC conversion result ISNS CH4 LSBs | セクション 8.6.18 | | | | | 13h | ADC_RESULT_CH1_T | ADC conversion result TSNS CH1 | セクション 8.6.19 | | | | | 14h | ADC_RESULT_CH2_T | ADC conversion result TSNS CH2 | セクション 8.6.20 | | | | | 15h | ADC_RESULT_CH3_T | ADC conversion result TSNS CH3 | セクション 8.6.21 | | | | | 16h | ADC_RESULT_CH4_T | ADC conversion result TSNS CH4 | セクション 8.6.22 | | | | | 17h | ADC_RESULT_CH1_V | ADC conversion result VSNS CH1 | セクション 8.6.23 | | | | | 18h | ADC_RESULT_CH2_V | ADC conversion result VSNS CH2 | セクション 8.6.24 | | | | | 19h | ADC_RESULT_CH3_V | ADC conversion result VSNS CH3 | セクション 8.6.25 | | | | | 1Ah | ADC_RESULT_CH4_V | ADC conversion result VSNS CH4 | セクション 8.6.26 | | | | | 1Bh | ADC_RESULT_VS | ADC conversion result VS | セクション 8.6.27 | | | | | 1Ch | ADC_RESULT_VS_LSB | ADC conversion result VS | セクション 8.6.28 | | | | | 1Dh | SW_STATE | Switch state per channel register | セクション 8.6.29 | | | | | 1Eh | LED1_4_CTL | LED1-LED4 Control | セクション 8.6.30 | | | | | 1Fh | LED_5_8_CTL | LED5-LED8 Control | セクション 8.6.31 | | | | | 20h | FS_SW_STATE | SPI/WD error state per channel register | セクション 8.6.32 | | | | | 21h | DEV_CONFIG1 | Device Configuration Register #1 | セクション 8.6.33 | | | | | 22h | DEV_CONFIG2 | Device Configuration Register #2 | セクション 8.6.34 | | | | | 23h | DEV_CONFIG3 | Device Configuration Register #3 | セクション 8.6.35 | | | | | 24h | DEV_CONFIG4 | Device Configuration Register #4 | セクション 8.6.36 | | | | | 25h | DEV_CONFIG5 | Device Configuration Register #5 | セクション 8.6.37 | | | | | 26h | DEV_CONFIG6 | Device Configuration Register #6 | セクション 8.6.38 | | | | | 27h | FAULT_MASK | Fault Mask register | セクション 8.6.39 | | | | | | | | | | | | | 表 8 | 8-12 . | TPS274C65 | Registers | (続き) | |-----|---------------|-----------|-----------|------| |-----|---------------|-----------|-----------|------| | Offset | Acronym | Register Name | Section | |--------|--------------|---|--------------| | 28h | EN_WB_OFF | Enable Off-state Wire-break fault per channel | セクション 8.6.40 | | 29h | EN_WB_ON | Enable On-state Wire-break fault per channel | セクション 8.6.41 | | 2Ah | EN_SHRT_VS | Enable Output Short_to-VS fault per channel | セクション 8.6.42 | | 2Bh | ADC_ISNS_DIS | ADC conversion disable ISNS channels | セクション 8.6.43 | | 2Ch | ADC_TSNS_DIS | ADC conversion disable TSNS channels | セクション 8.6.44 | | 2Dh | ADC_VSNS_DIS | ADC conversion disable VSNS channels | セクション 8.6.45 | | 2Eh | ADC_CONFIG1 | ADC configuration - disable conversion | セクション 8.6.46 | | 2Fh | CRC_CONFIG | Configure CRC | セクション 8.6.47 | Complex bit access types are encoded to fit into small table cells. $\frac{1}{8}$ 8-13 shows the codes that are used for access types in this section. 表 8-13. TPS274C65 Access Type Codes | 20 101 11 021 1000 100000 1,000 | | | | | | | | | |---------------------------------|--------|--|--|--|--|--|--|--| | Access Type | Code | Description | | | | | | | | Read Type | | | | | | | | | | R | R | Read | | | | | | | | RC | R
C | Read
to Clear | | | | | | | | Write Type | | | | | | | | | | W | W | Write | | | | | | | | Reset or Default Value | | | | | | | | | | -n | | Value after reset or the default value | | | | | | | # 8.6.1 FAULT_TYPE_STAT Register (Offset = 0h) [Reset = 80h] FAULT_TYPE_STAT is shown in 表 8-14. Return to the Summary Table. The register reports the fault type in any of the channels (OR of all channels) ### 表 8-14. FAULT TYPE STAT Register Field Descriptions | | ge in the last transfer in the green priority and | | | | | | | |-----|--|------|-------|---|--|--|--| | Bit | Field | Туре | Reset | Description | | | | | 7 | SUPPLY_FLT | R | 1h | The bit is set if either the VDD_UVLO or VS_UV are faults occur. If FLT_LTCH_DIS bit is set, then the fault bit is latched and is cleared only when the FLT_GLOBAL_TYPE register is read and the fault condition no longer exists. Oh = no UV fault in VDD, VINT or VS 1h = UV fault in VDD, VINT or VS | | | | | 6 | RVRS_BLK_FLT | R | Oh | The bit is set if there is a reverse current fault in any one of the channels. If FLT_LTCH_DIS bit is set, then the fault bit is latched and is cleared only when the RVRS_BLK_CH_STAT register is read and the fault condition no longer exists. Oh = no reverse current blocking fault in any of the channels 1h = reverse current blocking fault in one of the channels | | | | | 5 | CHAN_TSD | R | Oh | The bit is set if there is a thermal shutdown fault due to thermal overload in any one of the channels. If FLT_LTCH_DIS bit is set,
then the fault bit is latched and is cleared only when the THERMAL_SD_CH_STAT register is read and the fault condition no longer exists. Oh = no thermal shutdown fault in any of the channels 1h = thermal shutdown fault in one of the channels | | | | Copyright © 2024 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 # 表 8-14. FAULT_TYPE_STAT Register Field Descriptions (続き) | Bit | Field | Туре | Reset | Description | |-----|----------------|------|-------|---| | 4 | ILIMIT_FLT | R | Oh | The bit is set if there is a current limit fault due to ovecurrent in any one of the channels. If FLT_LTCH_DIS bit is set, then the fault bit is latched and is cleared only when the ILIMIT_CH_STAT register is read and the fault condition no longer exists. Oh = no current limit (overcurrent) fault in any of the channels 1h = current limit (overcurrent) fault in one of the channels | | 3 | WB_ON_FLT | R | Oh | The bit is set if there is a wire break in the on state fault in any one of the channels. If FLT_LTCH_DIS bit is set, then the fault bit is latched and is cleared only when the WB_ON_CH_STAT register is read and the fault condition no longer exists 0h = no on-state wire-break fault in any of the channels 1h = on-state wire-break fault in one of the channels | | 2 | WB_OFF_FLT | R | Oh | The bit is set if either there is a wire break in the off-state fault in any one of the channels. If FLT_LTCH_DIS bit is set, then the fault bit is latched and is cleared only when the WB_OFF_CH_STAT register is read and the fault condition no longer exists 0h = no off-state wire-break fault in any of the channels 1h = off-state wire-break fault in one of the channels | | 1 | SHRT_VS_FLT | R | Oh | The bit is set if there is a short to VS supply in the off-state fault in any one of the channels. If FLT_LTCH_DIS bit is set, then the fault bit is latched and is cleared only when the SHRT_VS_CH_STAT register is read and the fault condition no longer exists 0h = no off-state short to VS fault in any of the channels 1h = off-state short to VS fault in one of the channels | | 0 | GLOBAL_ERR_WRN | R | Oh | The bit is set if there is a global fault reported in the FLT_GLOBAL_TYPE register (SPI error, watchdog error, VS_UV_WRN fault or chip thermal warning occurs. If FLT_LTCH_DIS bit is set, then the fault bit is latched and is cleared only when the FLT_GLOBAL_TYPE register is read and the fault condition no longer exists. 0h = no global fault (SPI error, watchdog error, VS_UV_WRN fault or chip thermal warning) 1h = One of the following errors have occurred: SPI error, watchdog error, VS_UV_WRN fault or chip thermal warning | # 8.6.2 FAULT_CH_STAT Register (Offset = 1h) [Reset = 00h] FAULT_CH_STAT is shown in 表 8-15. Return to the Summary Table. The register reports faulted channel(s) (OR of all fault types in each channel) ## 表 8-15. FAULT_CH_STAT Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|----------|------|-------|---| | 7-4 | RESERVED | R | 0h | Reserved | | 3 | CH4 | R | 0h | The bit is set if any type of fault (RVRS_BLK, THERMAL_SD_CH, ILIMIT, WB_ON, WB_OFF, SHRT_VS) occurs in CH4 0h = No fault in CH4 1h = One or more fault has occurred in CH4 | | 2 | СН3 | R | 0h | The bit is set if any type of fault (RVRS_BLK, THERMAL_SD_CH, ILIMIT, WB_ON, WB_OFF, SHRT_VS) occurs in CH3 0h = No fault in CH4 1h = One or more fault has occurred in CH2 | | 1 | CH2 | R | 0h | The bit is set if any type of fault (RVRS_BLK, THERMAL_SD_CH, ILIMIT, WB_ON, WB_OFF, SHRT_VS) occurs in CH2 0h = No fault in CH4 1h = One or more fault has occurred in CH3 | 資料に関するフィードバック(ご意見やお問い合わせ)を送信 Copyright © 2024 Texas Instruments Incorporated 54 Product Folder Links: TPS274C65 表 8-15. FAULT CH STAT Register Field Descriptions (続き) | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | |-----|-------|------|--|---| | Bit | Field | Туре | Reset | Description | | 0 | CH1 | R | Oh | The bit is set if any type of fault (RVRS_BLK, THERMAL_SD_CH, ILIMIT, WB_ON, WB_OFF, SHRT_VS) occurs in CH1 0h = No fault in CH4 1h = One or more fault has occurred in CH1 | ## 8.6.3 FAULT_GLOBAL_TYPE Register (Offset = 2h) [Reset = 47h] FAULT_GLOBAL_TYPE is shown in 表 8-16. Return to the Summary Table. The register reports the type of global fault that has occurred in the IC ### 表 8-16. FAULT GLOBAL TYPE Register Field Descriptions | | | | | YPE Register Field Descriptions | |-----|----------------|------|-------|--| | Bit | Field | Туре | Reset | Description | | 7 | RESERVED | R | 0h | Reserved | | 6 | POR | RC | 1h | The bit is indicative of whether a power on reset has occurred. 0h = There is no power-on reset anytime after the last register read The register bit is cleared on read, so if read again and the bit is 0, means that no power-on reset has occurred since the read. 1h = A power-on reset has occurred since the last register read. | | 5 | CHIP_THERMALSD | RC | Oh | The bit is set if the chip thermal warning is triggered at any time. The fault bit is cleared if the GLOBAL_FAULT_TYPE register is read and the chip thermal shutdown error condition is removed 0h = No chip thermal warning 1h = Chip thermal warning threshold exceeded | | 4 | SPI_ERR | RC | Oh | The bit is set if there is an SPI communication error either from format, clock or CRC errors. The fault bit is latched and cleared only after read and the error is removed. Oh = No SPI communication error fault 1h = SPI communication error either from format, clock or CRC has occurred | | 3 | WD_ERR | RC | Oh | The bit is set if the watchdog timeout on SPI read or write occurs. The fault bit is latched and cleared only after read and the error is removed. Oh = No SPI interface watchdog error Th = SPI watchdog timeout error has occurred | | 2 | VDD_UVLO | RC | 1h | The bit is set if VDD supply is below the UVLO threshold at any time. The fault bit is cleared if the GLOBAL_FAULT_TYPE register is read and the UVLO condition is removed 0h = No VDD UVLO fault 1h = VDD UVLO fault | | 1 | VS_UV_WRN | RC | 1h | The bit is set if VS supply is below the UV warning (UV_WRN) threshold at any time. The fault bit is cleared if the GLOBAL_FAULT_TYPE register is read and the UV condition is removed 0h = No VS UV_WRN fault 1h = VS UV_WRN fault | | 0 | VS_UV | RC | 1h | The bit is set if VS supply is below the UV threshold at any time. The fault bit is cleared if the GLOBAL_FAULT_TYPE register is read and the UV condition is removed 0h = No VS UV fault 1h = VS UV fault | ## 8.6.4 SHRT_VS_CH_STAT Register (Offset = 3h) [Reset = 00h] SHRT_VS_CH_STAT is shown in 表 8-17. English Data Sheet: SLVSFZ2 Return to the Summary Table. The register reports faulted channel(s) with the off-state short-to-supply fault # 表 8-17. SHRT_VS_CH_STAT Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|-------------|------|-------|---| | 7-4 | RESERVED | R | 0h | Reserved | | 3 | SHRT_VS_CH4 | RC | Oh | The bit is set if any short to supply (VS) fault has occurred at any time in CH4. The fault is latched and cleared when the SHRT_VS_CH_STAT register is read and fault condition does not exist anymore. 0h = No fault in CH4 1h = Short to VS fault has occurred in CH4 | | 2 | SHRT_VS_CH3 | RC | Oh | The bit is set if any short to supply (VS) fault has occurred at any time in CH3. The fault is latched and cleared when the SHRT_VS_CH_STAT register is read and fault condition does not exist anymore. 0h = No fault in CH4 1h = Short to VS fault has occurred in CH3 | | 1 | SHRT_VS_CH2 | RC | Oh | The bit is set if any short to supply (VS) fault has occurred at any time in CH2. The fault is latched and cleared when the SHRT_VS_CH_STAT register is read and fault condition does not exist anymore. 0h = No fault in CH4 1h = Short to VS fault has occurred in CH2 | | 0 | SHRT_VS_CH1 | RC | Oh | The bit is set if any short to supply (VS) fault has occurred at any time in CH1. The fault is latched and cleared when the SHRT_VS_CH_STAT register is read and fault condition does not exist anymore. 0h = No fault in CH4 1h = Short to VS fault has occurred in CH1 | # 8.6.5 WB_OFF_CH_STAT Register (Offset = 4h) [Reset = 00h] WB_OFF_CH_STAT is shown in 表 8-18. Return to the Summary Table. The register reports faulted channel(s) with the off-state wire-break fault # 表 8-18. WB_OFF_CH_STAT Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|------------|------|-------
---| | 7-4 | RESERVED | R | 0h | Reserved | | 3 | WB_OFF_CH4 | RC | 0h | The bit is set if the wire break (open load) fault in off-state has occurred at any time in CH4. The fault is latched and cleared when the WB_OFF_CH_STAT register is read and fault condition does not exist anymore. Oh = No wire-break (off-state) fault in CH4 The Wire break (open load) fault in off-state has occurred in CH4 | | 2 | WB_OFF_CH3 | RC | 0h | The bit is set if the wire break (open load) fault in off-state has occurred at any time in CH3. The fault is latched and cleared when the WB_OFF_CH_STAT register is read and fault condition does not exist anymore. 0h = No wire-break (off-state) fault in CH3 1h = Wire break (open load) fault in off-state has occurred in CH3 | | 1 | WB_OFF_CH2 | RC | 0h | The bit is set if the wire break (open load) fault in off-state has occurred at any time in CH2. The fault is latched and cleared when the WB_OFF_CH_STAT register is read and fault condition does not exist anymore. 0h = No wire-break (off-state) fault in CH2 1h = Wire break (open load) fault in off-state has occurred in CH2 | Product Folder Links: TPS274C65 資料に関するフィードバック (ご意見やお問い合わせ) を送信 表 8-18. WB_OFF_CH_STAT Register Field Descriptions (続き) | | 24 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 | | | | | | | |-----|--|------|-------|--|--|--|--| | Bit | Field | Туре | Reset | Description | | | | | 0 | WB_OFF_CH1 | RC | 0h | The bit is set if the wire break (open load) fault in off-state has occurred at any time in CH1. The fault is latched and cleared when the WB_OFF_CH_STAT register is read and fault condition does not exist anymore. Oh = No wire-break (off-state) fault in CH1 The Wire break (open load) fault in off-state has occurred in CH1 | | | | ## 8.6.6 WB_ON_CH_STAT Register (Offset = 5h) [Reset = 00h] WB_ON_CH_STAT is shown in 表 8-19. Return to the Summary Table. The register reports faulted channel(s) with the on-state wire-break fault ## 表 8-19. WB_ON_CH_STAT Register Field Descriptions | | | | | Tregister Field Descriptions | | |-----|-----------|------|-------|---|--| | Bit | Field | Type | Reset | Description | | | 7-4 | RESERVED | R | 0h | Reserved | | | 3 | WB_ON_CH4 | RC | Oh | The bit is set if the wire break (open load) fault in off-state has occurred at any time in CH4. The fault is latched and cleared when the WB_OFF_CH_STAT register is read and fault condition does not exist anymore. Oh = No wire-break (on-state) fault in CH4 1h = Wire break (open load) fault in on-state has occurred in CH4 | | | 2 | WB_ON_CH3 | RC | Oh | The bit is set if the wire break (open load) fault in off-state has occurred at any time in CH3. The fault is latched and cleared when the WB_OFF_CH_STAT register is read and fault condition does not exist anymore. Oh = No wire-break (on-state) fault in CH3 1h = Wire break (open load) fault in on-state has occurred in CH3 | | | 1 | WB_ON_CH2 | RC | 0h | The bit is set if the wire break (open load) fault in off-state has occurred at any time in CH2. The fault is latched and cleared when the WB_OFF_CH_STAT register is read and fault condition is cleared. 0h = No wire-break (on-state) fault in CH2 1h = Wire break (open load) fault in on-state has occurred in CH2 | | | 0 | WB_ON_CH1 | RC | Oh | The bit is set if the wire break (open load) fault in off-state has occurred at any time in CH1. The fault is latched and cleared when the WB_OFF_CH_STAT register is read and fault condition does not exist anymore. Oh = No wire-break (on-state) fault in CH1 1h = Wire break (open load) fault in on-state has occurred in CH1 | | # 8.6.7 ILIMIT_CH_STAT Register (Offset = 6h) [Reset = 00h] ILIMIT_CH_STAT is shown in 表 8-20. Return to the Summary Table. The register reports faulted channel(s) with the current limit fault ## 表 8-20. ILIMIT_CH_STAT Register Field Descriptions | Bit | it | Field | Туре | Reset | Description | |-----|----|----------|------|-------|-------------| | 7-4 | 4 | RESERVED | R | 0h | Reserved | Product Folder Links: TPS274C65 Copyright © 2024 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 ## 表 8-20. ILIMIT_CH_STAT Register Field Descriptions (続き) | Bit | Field | Туре | Reset | Description | |-----|------------|------|-------|--| | 3 | ILIMIT_CH4 | RC | Oh | The bit is set if current limiting due to overcurrent has occurred at any time in CH4. The fault is latched and cleared when the ILIMIT_CH_STAT register is read and fault condition does not exist anymore. Oh = No current limit fault in CH4 1h = Current limit due to overcurrent fault has occurred in CH4 | | 2 | ILIMIT_CH3 | RC | Oh | The bit is set if current limiting due to overcurrent has occurred at any time in CH3. The fault is latched and cleared when the ILIMIT_CH_STAT register is read and fault condition does not exist anymore. Oh = No current limit fault in CH3 1h = Current limit due to overcurrent fault has occurred in CH3 | | 1 | ILIMIT_CH2 | RC | Oh | The bit is set if current limiting due to overcurrent has occurred at any time in CH2. The fault is latched and cleared when the ILIMIT_CH_STAT register is read and fault condition does not exist anymore. Oh = No current limit fault in CH2 1h = Current limit due to overcurrent fault has occurred in CH2 | | 0 | ILIMIT_CH1 | RC | Oh | The bit is set if current limiting due to overcurrent has occurred at any time in CH1. The fault is latched and cleared when the ILIMIT_CH_STAT register is read and fault condition does not exist anymore. Oh = No current limit fault in CH1 The = Current limit due to overcurrent fault has occurred in CH1 | ## 8.6.8 THERMAL_SD_CH_STAT Register (Offset = 7h) [Reset = 00h] THERMAL_SD_CH_STAT is shown in 表 8-21. Return to the Summary Table. The register reports faulted channel(s) with the thermal shutdown fault ## 表 8-21. THERMAL_SD_CH_STAT Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|----------------|------|-------|--| | 7-4 | RESERVED | R | 0h | Reserved | | 3 | THERMAL_SD_CH4 | RC | Oh | The bit is set if the thermal shutdown has occurred at any time in CH4. The fault is latched and cleared when the THERMAL_SD_CH_STAT register is read and channel temperature has fallen below the thermal shutdown reset threshold. 0h = No thermal shutdown fault in CH4 1h = Thermal shudtwon has occurred in CH4 | | 2 | THERMAL_SD_CH3 | RC | Oh | The bit is set if the thermal shutdown has occurred at any time in CH3. The fault is latched and cleared when the THERMAL_SD_CH_STAT register is read and channel temperature has fallen below the thermal shutdown reset threshold. 0h = No thermal shutdown fault in CH3 1h = Thermal shudtwon has occurred in CH3 | | 1 | THERMAL_SD_CH2 | RC | Oh | The bit is set if the thermal shutdown has occurred at any time in CH2. The fault is latched and cleared when the THERMAL_SD_CH_STAT register is read and channel temperature has fallen below the thermal shutdown reset threshold. 0h = No thermal shutdown fault in CH2 1h = Thermal shudtwon has occurred in CH2 | 資料に関するフィードバック(ご意見やお問い合わせ)を送信 ## 表 8-21. THERMAL_SD_CH_STAT Register Field Descriptions (続き) | Bit | Field | Туре | Reset | Description | |-----|----------------|------|-------|--| | 0 | THERMAL_SD_CH1 | RC | 0h | The bit is set if the thermal shutdown has occurred at any time in CH1. The fault is latched and cleared when the THERMAL_SD_CH_STAT register is read and channel temperature has fallen below the thermal shutdown reset threshold. 0h = No thermal shutdown fault in CH1 1h = Thermal shudtwon has occurred in CH1 | ## 8.6.9 THERMAL_WRN_CH_STAT Register (Offset = 8h) [Reset = 00h] THERMAL_WRN_CH_STAT is shown in 表 8-22. Return to the Summary Table. The register reports channel(s) with the temperature above thermal warning threshold ### 表 8-22. THERMAL WRN CH STAT Register Field Descriptions | | 表 6-22. THERMAL_WRN_CH_STAT Register Field Descriptions | | | | | | | | |-----|---|------|-------
---|--|--|--|--| | Bit | Field | Туре | Reset | Description | | | | | | 7-4 | RESERVED | R | 0h | Reserved | | | | | | 3 | THERMAL_WRN_CH4 | R | Oh | The bit is set if FET temperature is above the overtemperature warning threshold in CH4. The bit is cleared when over-temperature earning condition does not exist anymore. Oh = FET temperatire below over-temperature warning threshold in CH4 1h = FET temperatire above over-temperature warning threshold in CH4 | | | | | | 2 | THERMAL_WRN_CH3 | R | 0h | The bit is set if FET temperature is above the overtemperature warning threshold in CH3. The bit is cleared when over-temperature earning condition does not exist anymore. Oh = FET temperatire below over-temperature warning threshold in CH4 1h = FET temperatire above over-temperature warning threshold in CH3 | | | | | | 1 | THERMAL_WRN_CH2 | R | Oh | The bit is set if FET temperature is above the overtemperature warning threshold in CH2. The bit is cleared when over-temperature earning condition does not exist anymore. Oh = FET temperatire below over-temperature warning threshold in CH2 1h = FET temperatire above over-temperature warning threshold in CH2 | | | | | | 0 | THERMAL_WRN_CH1 | R | Oh | The bit is set if FET temperature is above the overtemperature warning threshold in CH1. The bit is cleared when over-temperature earning condition does not exist anymore. 0h = FET temperatire below over-temperature warning threshold in CH1 1h = FET temperatire above over-temperature warning threshold in CH1 | | | | | ### 8.6.10 RVRS_BLK_CH_STAT Register (Offset = 9h) [Reset = 00h] RVRS_BLK_CH_STAT is shown in 表 8-23. Return to the Summary Table. The register reports faulted channel(s) with the reverse current flow (blocked) fault ### 表 8-23. RVRS_BLK_CH_STAT Register Field Descriptions | | | _ | | • | |-----|----------|------|-------|-------------| | Bit | Field | Туре | Reset | Description | | 7-4 | RESERVED | R | 0h | Reserved | Copyright © 2024 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 # 表 8-23. RVRS_BLK_CH_STAT Register Field Descriptions (続き) | 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10 | | | | | | |--|--------------|------|-------|--|--| | Bit | Field | Туре | Reset | Description | | | 3 | RVRS_BLK_CH4 | RC | Oh | The bit is set if the reverse current fault (blocked) has occurred at any time in CH4. The fault is latched and cleared when the RVRS_BLK_CH_STAT register is read. 0h = No reverse current fault in CH4 1h = Reverse current flow (blocked) fault in on-state has occurred in CH4 | | | 2 | RVRS_BLK_CH3 | RC | Oh | The bit is set if the reverse current fault (blocked) has occurred at any time in CH3. The fault is latched and cleared when the RVRS_BLK_CH_STAT register is read. Oh = No reverse current fault in CH3 1h = Reverse current flow (blocked) fault in on-state has occurred in CH4 | | | 1 | RVRS_BLK_CH2 | RC | Oh | The bit is set if the reverse current fault (blocked) has occurred at any time in CH2. The fault is latched and cleared when the RVRS_BLK_CH_STAT register is read. Oh = No reverse current fault in CH2 1h = Reverse current flow (blocked) fault in on-state has occurred in CH4 | | | 0 | RVRS_BLK_CH1 | RC | Oh | The bit is set if the reverse current fault (blocked) has occurred at any time in CH1. The fault is latched and cleared when the RVRS_BLK_CH_STAT register is read. Oh = No reverse current fault in CH1 1h = Reverse current flow (blocked) fault in on-state has occurred in CH4 | | ### 8.6.11 ADC_RESULT_CH1_I Register (Offset = Bh) [Reset = 00h] ADC_RESULT_CH1_I is shown in 表 8-24. Return to the Summary Table. The register records ADC conversion result for current sense of CH1 ## 表 8-24. ADC_RESULT_CH1_I Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|--------------|------|-------|---| | 7-0 | ADC_ISNS_CH1 | R | 0h | ADC result (8-bits) from the conversion of the current in CH1 | ## 8.6.12 ADC_RESULT_CH1_I_LSB Register (Offset = Ch) [Reset = 00h] ADC_RESULT_CH1_I_LSB is shown in 表 8-25. Return to the Summary Table. The register records ADC conversion result for current sense of CH1 (Two LSBs) ## 表 8-25. ADC_RESULT_CH1_I_LSB Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|------------------|------|-------|---| | 7-2 | RESERVED | R | 0h | Reserved | | 1-0 | ADC_ISNS_CH1_LSB | R | 0h | Least Significant Bits for ADC result from conversion of the current in CH1 | ## 8.6.13 ADC_RESULT_CH2_I Register (Offset = Dh) [Reset = 00h] ADC_RESULT_CH2_I is shown in 表 8-26. Return to the Summary Table. 資料に関するフィードバック(ご意見やお問い合わせ)を送信 The register records ADC conversion result for current sense of CH2 ### 表 8-26. ADC_RESULT_CH2_I Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|--------------|------|-------|---| | 7-0 | ADC_ISNS_CH2 | R | 0h | ADC result (8-bits) from the conversion of the current in CH2 | ### 8.6.14 ADC_RESULT_CH2_I_LSB Register (Offset = Eh) [Reset = 00h] ADC_RESULT_CH2_I_LSB is shown in 表 8-27. Return to the Summary Table. The register records ADC conversion result for current sense of CH2 (Two LSBs) ## 表 8-27. ADC_RESULT_CH2_I_LSB Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|------------------|------|-------|---| | 7-2 | RESERVED | R | 0h | Reserved | | 1-0 | ADC_ISNS_CH2_LSB | R | 0h | Least Significant Bits for ADC result from conversion of the current in CH2 | ### 8.6.15 ADC_RESULT_CH3_I Register (Offset = Fh) [Reset = 00h] ADC RESULT CH3 I is shown in 表 8-28. Return to the Summary Table. The register records ADC conversion result for current sense of CH3 ### 表 8-28. ADC RESULT CH3 I Register Field Descriptions | | | | | · · · · · · · · · · · · · · · · · · · | |-----|--------------|------|-------|---| | Bit | Field | Туре | Reset | Description | | 7-0 | ADC_ISNS_CH3 | R | 0h | ADC result (8-bits) from the conversion of the current in CH3 | # 8.6.16 ADC_RESULT_CH3_I_LSB Register (Offset = 10h) [Reset = 00h] ADC RESULT CH3 I LSB is shown in 表 8-29. Return to the Summary Table. The register records ADC conversion result for current sense of CH3 (Two LSBs) ### 表 8-29. ADC_RESULT_CH3_I_LSB Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|------------------|------|-------|---| | 7-2 | RESERVED | R | 0h | Reserved | | 1-0 | ADC_ISNS_CH3_LSB | R | 0h | Least Significant Bits for ADC result from conversion of the current in CH3 | Product Folder Links: TPS274C65 #### 8.6.17 ADC_RESULT_CH4_I Register (Offset = 11h) [Reset = 00h] ADC_RESULT_CH4_I is shown in 表 8-30. Return to the Summary Table. The register records ADC conversion result for current sense of CH4 Copyright © 2024 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 表 8-30. ADC_RESULT_CH4_I Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|--------------|------|-------|---| | 7-0 | ADC_ISNS_CH4 | R | 0h | ADC result (8-bits) from the conversion of the current in CH4 | ## 8.6.18 ADC_RESULT_CH4_I_LSB Register (Offset = 12h) [Reset = 00h] ADC_RESULT_CH4_I_LSB is shown in 表 8-31. Return to the Summary Table. The register records ADC conversion result for current sense of CH4 (Two LSBs) 表 8-31. ADC_RESULT_CH4_I_LSB Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|------------------|------|-------|---| | 7-2 | RESERVED | R | 0h | Reserved | | 1-0 | ADC_ISNS_CH4_LSB | R | 0h | Least Significant Bits for ADC result from conversion of the current in CH4 | ### 8.6.19 ADC_RESULT_CH1_T Register (Offset = 13h) [Reset = 00h] ADC_RESULT_CH1_T is shown in 表 8-32. Return to the Summary Table. The register records ADC conversion result for temperature sense of CH1 ### 表 8-32. ADC_RESULT_CH1_T Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|--------------|------|-------|---| | 7-0 | ADC_TSNS_CH1 | R | 0h | ADC result (8-bits) from the conversion of the temperature in CH1 | #### 8.6.20 ADC_RESULT_CH2_T Register (Offset = 14h) [Reset = 00h] ADC_RESULT_CH2_T is shown in 表 8-33. Return to the Summary Table. The register records ADC conversion result for temperature sense of CH2 ### 表 8-33. ADC_RESULT_CH2_T Register Field Descriptions | | | _ | | • | |-----|--------------|------|-------|---| | Bit | Field | Туре | Reset | Description | | 7-0 | ADC_TSNS_CH2 | R | 0h | ADC result (8-bits) from the conversion of the temperature in CH2 | #### 8.6.21 ADC_RESULT_CH3_T Register (Offset = 15h) [Reset = 00h] ADC RESULT CH3 T is shown in 表 8-34. Return to the Summary Table. The register records ADC conversion result for temperature sense of CH3 ### 表 8-34. ADC_RESULT_CH3_T Register Field Descriptions | Bit | Field | Туре | Reset |
Description | |-----|--------------|------|-------|---| | 7-0 | ADC_TSNS_CH3 | R | 0h | ADC result (8-bits) from the conversion of the temperature in CH3 | Product Folder Links: TPS274C65 資料に関するフィードバック(ご意見やお問い合わせ)を送信 ## 8.6.22 ADC_RESULT_CH4_T Register (Offset = 16h) [Reset = 00h] ADC_RESULT_CH4_T is shown in 表 8-35. Return to the Summary Table. The register records ADC conversion result for temperature sense of CH4 ### 表 8-35. ADC_RESULT_CH4_T Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|--------------|------|-------|---| | 7-0 | ADC_TSNS_CH4 | R | 0h | ADC result (8-bits) from the conversion of the temperature in CH4 | ## 8.6.23 ADC_RESULT_CH1_V Register (Offset = 17h) [Reset = 00h] ADC_RESULT_CH1_V is shown in 表 8-36. Return to the Summary Table. The register records ADC conversion result for voltage sense of CH1 ### 表 8-36. ADC_RESULT_CH1_V Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|--------------|------|-------|---| | 7-0 | ADC_VSNS_CH1 | R | 0h | ADC result (8-bits) from the conversion of the voltage in CH1 | # 8.6.24 ADC_RESULT_CH2_V Register (Offset = 18h) [Reset = 00h] ADC_RESULT_CH2_V is shown in 表 8-37. Return to the Summary Table. The register records ADC conversion result for voltage sense of CH2 ## 表 8-37. ADC_RESULT_CH2_V Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|--------------|------|-------|---| | 7-0 | ADC_VSNS_CH2 | R | 0h | ADC result (8-bits) from the conversion of the voltage in CH2 | #### 8.6.25 ADC_RESULT_CH3_V Register (Offset = 19h) [Reset = 00h] ADC_RESULT_CH3_V is shown in 表 8-38. Return to the Summary Table. The register records ADC conversion result for voltage sense of CH3 # 表 8-38. ADC_RESULT_CH3_V Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|--------------|------|-------|---| | 7-0 | ADC_VSNS_CH3 | R | 0h | ADC result (8-bits) from the conversion of the voltage in CH3 | Product Folder Links: TPS274C65 #### 8.6.26 ADC_RESULT_CH4_V Register (Offset = 1Ah) [Reset = 00h] ADC RESULT CH4 V is shown in 表 8-39. Return to the Summary Table. The register records ADC conversion result for voltage sense of CH4 Copyright © 2024 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 表 8-39. ADC_RESULT_CH4_V Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|--------------|------|-------|---| | 7-0 | ADC_VSNS_CH4 | R | 0h | ADC result (8-bits) from the conversion of the voltage in CH4 | ## 8.6.27 ADC_RESULT_VS Register (Offset = 1Bh) [Reset = 00h] ADC_RESULT_VS is shown in 表 8-40. Return to the Summary Table. The register records ADC conversion result for supply voltage sense ### 表 8-40. ADC_RESULT_VS Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|------------|------|-------|--| | 7-0 | ADC_VS_SNS | R | 0h | ADC result (8-bits) from the conversion of the supply voltage input (VS pin) | ## 8.6.28 ADC_RESULT_VS_LSB Register (Offset = 1Ch) [Reset = 00h] ADC_RESULT_VS_LSB is shown in 表 8-41. Return to the Summary Table. The register records ADC conversion result for supply voltage sense (Two LSBs) ### 表 8-41. ADC_RESULT_VS_LSB Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|--------------------|------|-------|--| | 7-2 | RESERVED | R | 0h | Reserved | | 1-0 | ADC_VS_SNS_CH4_LSB | R | 0h | Least Significant Bits for ADC result from conversion of the supply voltage input (VS pin) | ### 8.6.29 SW_STATE Register (Offset = 1Dh) [Reset = 00h] SW_STATE is shown in 表 8-42. Return to the Summary Table. The register sets the switch state (ON/OFF) of each output channel. The switch state bits in the SPI frame are ignored when a write to this register is performed (only the contents of the DATA_IN field of the SPI frame are used to update the switch state) #### 表 8-42. SW_STATE Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|----------|------|-------|---| | 7-4 | RESERVED | R | 0h | Reserved | | 3 | CH4_ON | R/W | 0h | Set this bit to 1 to turn on the FET and CH4 output ON 0h = CH4 Output set to OFF (FET is OFF). The switch state bits in the SPI frame are ignored 1h = CH4 Output set to ON (FET is ON). The switch state bits in the SPI frame are ignored | | 2 | CH3_ON | R/W | 0h | Set this bit to 1 to turn on the FET and CH3 output ON 0h = CH3 Output set to OFF (FET is OFF). The switch state bits in the SPI frame are ignored. 1h = CH3 Output set to ON (FET is ON). The switch state bits in the SPI frame are ignored | 資料に関するフィードバック(ご意見やお問い合わせ) を送信 # 表 8-42. SW STATE Register Field Descriptions (続き) | | St o 42. or 12 Register Flora Becomptions (NSEC) | | | | | | | | |-----|--|------|-------|--|--|--|--|--| | Bit | Field | Туре | Reset | Description | | | | | | 1 | CH2_ON | R/W | 0h | Set this bit to 1 to turn on the FET and CH2 output ON 0h = CH2 Output set to OFF (FET is OFF). The switch state bits in the SPI frame are ignored 1h = CH2 Output set to ON (FET is ON). The switch state bits in the SPI frame are ignored | | | | | | 0 | CH1_ON | R/W | 0h | Set this bit to 1 to turn on the FET and CH1 output ON 0h = CH1 Output set to OFF (FET is OFF). The switch state bits in the SPI frame are ignored 1h = CH1 Output set to ON (FET is ON). The switch state bits in the SPI frame are ignored | | | | | # 8.6.30 LED1_4_CTL Register (Offset = 1Eh) [Reset = 00h] LED1_4_CTL is shown in 表 8-43. Return to the Summary Table. The register sets the LEDs ON or OFF # 表 8-43, LED1 4 CTL Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|----------|------|-------|--| | 7-4 | RESERVED | R | 0h | Reserved | | 3 | LED4_CTL | R/W | 0h | Set this bit to 1 to turn on the LED4 Output Status indicator 0h = LED set to OFF 1h = LED set to ON | | 2 | LED3_CTL | R/W | 0h | Set this bit to 1 to turn on the LED3 Output Status indicator 0h = LED set to OFF 1h = LED set to ON | | 1 | LED2_CTL | R/W | Oh | Set this bit to 1 to turn on the LED2 Output Status indicator 0h = LED set to OFF 1h = LED set to ON | | 0 | LED1_CTL | R/W | 0h | Set this bit to 1 to turn on the LED1 Output Status indicator 0h = LED set to OFF 1h = LED set to ON | ## 8.6.31 LED_5_8_CTL Register (Offset = 1Fh) [Reset = 00h] LED_5_8_CTL is shown in 表 8-44. Return to the Summary Table. The register sets the LEDs ON or OFF ## 表 8-44. LED_5_8_CTL Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|----------|------|-------|--| | 7-4 | RESERVED | R | 0h | Reserved | | 3 | LED8_CTL | R/W | 0h | Set this bit to 1 to turn on the LED8 Output Status indicator 0h = LED set to OFF 1h = LED set to ON | | 2 | LED7_CTL | R/W | 0h | Set this bit to 1 to turn on the LED7 Output Status indicator 0h = LED set to OFF 1h = LED set to ON | | 1 | LED6_CTL | R/W | 0h | Set this bit to 1 to turn on the LED6 Output Status indicator 0h = LED set to OFF 1h = LED set to ON | Product Folder Links: TPS274C65 Copyright © 2024 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 表 8-44. LED_5_8_CTL Register Field Descriptions (続き) | Bit | Field | Туре | Reset | Description | |-----|----------|------|-------|--| | 0 | LED5_CTL | R/W | | Set this bit to 1 to turn on the LED5 Output Status indicator 0h = LED set to OFF 1h = LED set to ON | # 8.6.32 FS_SW_STATE Register (Offset = 20h) [Reset = 00h] FS_SW_STATE is shown in 表 8-45. Return to the Summary Table. The register sets the switch state (ON/OFF) of each output channel in case of SPI_ERR or WD_ERR 表 8-45. FS_SW_STATE Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|-----------|------|-------|---| | 7-4 | RESERVED | R | 0h | Reserved | | 3 | CH4_FS_ON | R/W | Oh | Set this bit to 1 to turn on the CH4 FET and CH4 Output ON when WD_ERR fault has occurred 0h = CH4 Output set to OFF (FET is OFF) when WD_ERR occurs 1h = CH4 Output set to ON (FET is ON) when WD_ERR occurs | | 2 | CH3_FS_ON | R/W | Oh | Set this bit to 1 to turn on the CH3 FET and CH4 Output ON when WD_ERR fault has occurred 0h = CH3 Output set to OFF (FET is OFF) when WD_ERR occurs 1h = CH3 Output set to ON (FET is ON) when WD_ERR occurs | | 1 | CH2_FS_ON | R/W | Oh | Set this bit to 1 to turn on the CH2 FET and CH4 Output ON when WD_ERR fault has occurred 0h = CH2 Output set to OFF (FET is OFF) whenWD_ERR occurs 1h = CH2 Output set to ON (FET is ON) when WD_ERR occurs | | 0 | CH1_FS_ON | R/W | Oh | Set
this bit to 1 to turn on the CH1 FET and CH4 Output ON when WD_ERR fault has occurred 0h = CH1 Output set to OFF (FET is OFF) when WD_ERR occurs 1h = CH1 Output set to ON (FET is ON) when WD_ERR occurs | ## 8.6.33 DEV_CONFIG1 Register (Offset = 21h) [Reset = 0Ah] DEV_CONFIG1 is shown in 表 8-46. Return to the Summary Table. Current limit setting and duration of initial inrush level and time channel 1/2 資料に関するフィードバック(ご意見やお問い合わせ)を送信 Copyright © 2024 Texas Instruments Incorporated English Data Sheet: SLVSFZ2 # 表 8-46. DEV_CONFIG1 Register Field Descriptions | | & 0-40. DEV_CONFIG 1 Register Field Descriptions | | | | | | |-----|--|------|-------|---|--|--| | Bit | Field | Туре | Reset | Description | | | | 7-4 | ILIM_DURATION_12 | R/W | Oh | Sets the delay period during with inrush current limit level applies (Ch1 and Ch2). Oh = 0ms 1h = 2ms 2h = 4ms 3h = 6ms 4h = 8ms 5h = 10ms 6h = 12ms 7h = 16ms 8h = 20ms 9h = 24ms Ah = 28ms Bh = 32ms Ch = 40ms Dh = 48ms Eh = 56ms Fh = 64ms | | | | 3-0 | ILIM_REG_12 | R/W | Ah | Sets the current limit regulation value during overcurrent or short circuit events (Ch1 and Ch2). 0h = 0.25A 1h = 0.33A 2h = 0.4A 3h = 0.48A 4h = 0.56A 5h = 0.67A 6h = 0.72A 7h = 0.85A 8h = 1A 9h = 1.1A Ah = 1.25A Bh = 1.5A Ch = 1.6A Dh = 1.75A Eh = 1.9A Fh = 2.2A | | | # 8.6.34 DEV_CONFIG2 Register (Offset = 22h) [Reset = 0Ah] DEV_CONFIG2 is shown in 表 8-47. Return to the Summary Table. Current limit setting and duration of initial inrush level and time channel 3/4 67 Product Folder Links: TPS274C65 ## 表 8-47. DEV_CONFIG2 Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|------------------|------|-------|--| | 7-4 | ILIM_DURATION_34 | R/W | Oh | Sets the delay period during with inrush current limit level applies (Ch3 and Ch4). 0h = 0ms 1h = 2ms 2h = 4ms 3h = 6ms 4h = 8ms 5h = 10ms 6h = 12ms 7h = 16ms 8h = 20ms 9h = 24ms Ah = 28ms Bh = 32ms Ch = 40ms Dh = 48ms Eh = 56ms Fh = 64ms | | 3-0 | ILIM_REG_34 | R/W | Ah | Sets the current limit regulation value during overcurrent or short circuit events(Ch3 and Ch4). 0h = 0.25A 1h = 0.33A 2h = 0.4A 3h = 0.48A 4h = 0.56A 5h = 0.67A 6h = 0.72A 7h = 0.85A 8h = 1A 9h = 1.1A Ah = 1.25A Bh = 1.5A Ch = 1.6A Dh = 1.75A Eh = 1.9A Fh = 2.2A | ## 8.6.35 DEV_CONFIG3 Register (Offset = 23h) [Reset = 00h] DEV_CONFIG3 is shown in 表 8-48. Return to the Summary Table. Device Configuration register - RCB function disable in all channels, Sense current range Inrush current Limit level config, Parallel chanel config Inrush current Limit level config, ILIM type config inrush or current limit duration ## 表 8-48. DEV_CONFIG3 Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|----------|------|-------|---| | 7 | RCB_DIS | R/W | 0h | Setting this bit to 1, disable RCB function in all channels 0h = RCB FET gate output set per channel. 1h = Disables RCB function | | 6 | ILIM_SET | R/W | 0h | Set this bit to allow CH1/CH2 to have different current limit setting than CH3/CH4 0h = Current Limit / inrush deay the same for all channels as in register DEV_CONFIG1 1h = Current limit / inrsh delay set differenty for CH1/CH2 (as in DEV_CONFIG1) and C3/CH4 (DEV_CONFIG2) | 資料に関するフィードバック (ご意見やお問い合わせ) を送信 # 表 8-48. DEV_CONFIG3 Register Field Descriptions (続き) | Bit | Field | Туре | Reset | Description | |-----|--------------|------|-------|--| | 5 | ISNS_RANGE | R/W | Oh | Sets the load current sense range - optimizing the current sense output 0h = Load current to be sensed less than or equal to 800 mA 1h = Load current to be sensed more than 800 mA | | 4 | PARALLEL_34 | R/W | Oh | Set this bit to 1 to signal that channels 3 and 4 (CH3 and CH4) are paralleled. Write to this bit is valid only when all four SW_STATE bits are 0 and not rewritten to 1 in the same frame. 0h = CH3 and CH4 are not paralleled together 1h = CH3 and CH4 are paralleled together | | 3 | PARALLEL_12 | R/W | Oh | Set this bit to 1 to signal that channels 1 and 2(CH1 and CH2) are paralleled. Write to this bit is valid only when all four SW_STATE bits are 0 and not rewritten to 1 in the same frame. 0h = CH1 and CH2 are not paralleled together 1h = CH1 and CH2 are paralleled together | | 2 | ILIM_CONFIG | R/W | Oh | Set this bit to 1 to have the ILIM duration applied as the period of inrush current limit or to set as the duration of current limiting before switching off the FET. Oh = ILIM duration set as the period of inrush current limit 1h = ILIM duration set as the period of current limiting before switching off FET | | 1-0 | INRUSH_LIMIT | R/W | 0h | Sets the inrush current limit level that applies during the duration of ILIM inrush duration. See table of inrush current limit level settings in the datasheet | ## 8.6.36 DEV_CONFIG4 Register (Offset = 24h) [Reset = 02h] DEV_CONFIG4 is shown in 表 8-49. Return to the Summary Table. Device Configuration register - Configuring WB_on_threshold current. WB_off PU current, Watchdog enable and timer duration 表 8-49. DEV_CONFIG4 Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|-----------|------|-------|--| | 7 | WD_EN | R/W | 0h | The bit is set to enable the watchdog function 0h = Watchdog is disabled 1h = Watchdog function is enabled | | 6-5 | WD_TO | R/W | Oh | Sets the timeout period for the SPI watchdog monitor 0h = Watchdog timeout 400 us 1h = Watchdog timeout is 400 ms 2h = Watchdog timeout is 800 ms 3h = Watchdog timeout is 1200 ms | | 4-3 | WB_OFF_PU | R/W | Oh | Sets the pullup current value (at the OUTx pins) by the off-state wire-break (open load) detection circuit. 0h = I_pu is 50 uA 1h = I_pu is 100 uA 2h = I_pu is 200 uA 3h = I_pu is 500 uA | | 2-0 | WB_ON_THD | R/W | 2h | Sets the current threshold for on-state wire-break (open load) detection. See table of settings in the datasheet | # 8.6.37 DEV_CONFIG5 Register (Offset = 25h) [Reset = 00h] DEV_CONFIG5 is shown in 表 8-50. Return to the Summary Table. 資料に関するフィードバック(ご意見やお問い合わせ)を送信 Device Configuration register - Device Configuration register - Fault bit LATCH_mode enable, ,Wire break or short to VS blanking time in off-state,Sw_STATE config, fault latch with retry only on enable toggle. ## 表 8-50. DEV_CONFIG5 Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|----------------|------|-------|--| | 7-6 | RESERVED | R | 0h | Reserved | | 5 | ADC_EN | R/W | Oh | Setting this bit to 1, enables the ADC function 0h = ADC function disabled 1h = ADC enabled | | 4 | AUTO_RETRY_DIS | R/W | Oh | Setting this bit to 1, disables the auto-retry and latches the channel Output OFF on thermal shutdown of the channel occurs. Retry can be attempted by toggling enable. Oh = Auto-retry on thermal shutdown of the channel 1h = Latches the channel output off on thermal shutdown - retry on toggling enable. | | 3-2 | WB_SVS_BLANK | R/W | Oh | Sets the blanking time for wire-break (ON-state and OFF-state) and the short_to_VS faults before the fault is registered. 0h = Blanking time is 0.4 ms 1h = Blanking time is 1.0 ms 2h = Blanking time is 2.0 ms 3h = Blanking time is 4.0 ms | | 1 | SW_FS_CFG | R/W | Oh | Set this bit to 1 to have the outputs hold state when WD_ERR faults have occurred. Otherwise the device uses the FS_SW_STATE register bits. 0h = Switch (output) holds state 1h = Switch (output) state set by Sw_FS_STATE register when WD_ERR occurs | | 0 | FLT_LTCH_DIS | R/W | Oh | Set this bit to 1 to not latch the fault bits in the register and cleared on read. 0h = Fault bits latched and cleared only on read 1h = Fault bits not latched, cleared when the fault disappears | ### 8.6.38 DEV_CONFIG6 Register (Offset = 26h) [Reset = 0Fh] DEV_CONFIG6 is shown in 表 8-51. Return to the Summary Table. Device Configuration register - Per Channel RCB FET gate off configuration ## 表 8-51. DEV_CONFIG6 Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|----------|------|-------|--| | 7-4 | RESERVED | R | 0h | Reserved | | 3 | RCB_CH4 | R/W | 1h | Bit determines the reverse current blocking FET gate control in CH4 0h = Reverse current blocking FET gate
pulldown (CH4) is enabled (if RCB_DIS bit is not set) 1h = Reverse current blocking function in CH4 enabled (if RCB_DIS bit is not set) | | 2 | RCB_CH3 | R/W | 1h | Bit determines the reverse current blocking FET gate control in CH3 0h = Reverse current blocking FET gate pulldown (CH3) is enabled (if RCB_DIS bit is not set) 1h = Reverse current blocking function in CH3 enabled (if RCB_DIS bit is not set) | | 1 | RCB_CH2 | R/W | 1h | Bit determines the reverse current blocking FET gate control in CH2 0h = Reverse current blocking FET gate pulldown (CH2) is enabled (if RCB_DIS bit is not set) 1h = Reverse current blocking function in CH2 enabled (if RCB_DIS bit is not set) | 資料に関するフィードバック (ご意見やお問い合わせ) を送信 Copyright © 2024 Texas Instruments Incorporated English Data Sheet: SLVSFZ2 70 Product Folder Links: TPS274C65 表 8-51. DEV_CONFIG6 Register Field Descriptions (続き) | Bit | Field | Туре | Reset | Description | |-----|---------|------|-------|--| | 0 | RCB_CH1 | R/W | 1h | Bit determines the reverse current blocking FET gate control in CH1 0h = Reverse current blocking FET gate pulldown (CH1) is enabled (if RCB_DIS bit is not set) 1h = Reverse current blocking function in CH1 enabled (if RCB_DIS bit is not set) | # 8.6.39 FAULT_MASK Register (Offset = 27h) [Reset = 00h] FAULT_MASK is shown in 表 8-52. Return to the Summary Table. The register allows masking of certain types of faults. ## 表 8-52. FAULT_MASK Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|---------------|------|-------|--| | 7 | MASK_SPI_ERR | R/W | 0h | The bit is set to mask the SPI error (SPI_ERR) signaling in the FLT pin output and FAULT_TYPE_STAT register Oh = SPI error is signaled in FAULT_TYPE_STAT register and FLT pin 1h = FLT pin not impacted by SPI error, but SPI error will be signaled through FAULT_TYPE_STAT register | | 6 | MASK_WD_ERR | R/W | 0h | The bit is set to mask the SPI watchdog error (WD_ERR) signaling in the FLT pin output and FAULT_TYPE_STAT register 0h = SPI watchdog error is signaled in FAULT_TYPE_STAT register and FLT pin 1h = FLT pin not impacted by SPI error, but watchdog error will be signaled through FAULT_TYPE_STAT register | | 5 | MASK_ILIMIT | R/W | 0h | The bit is set to mask the signaling ILIMIT fault on the FLT pin 0h = Fault is signaled on the FLT pin on current limit occuring 1h = Current limit fault is not signaled (masked from) on the FLT pin | | 4 | MASK_RVRS_BLK | R/W | 0h | The bit is set to mask the signaling reverse current fault on the FLT pin 0h = Fault is signaled on the FLT pin on reverse current fault occuring 1h = Reverse current fault is not signaled (masked from) on the FLT pin | | 3 | MASK_SHRT_VS | R/W | 0h | The bit is set to mask the signaling off-state Short to VS fault on the FLT pin 0h = Short to VS Fault is signaled on the FLT pin on detecting the fault with the diagnostic 1h = Short to VS fault is not signaled (masked from) on the FLT pin | | 2 | MASK_WB_OFF | R/W | 0h | The bit is set to mask the signaling off-state wire-break fault on the FLT pin Oh = Off-state wire-break fault is signaled on the FLT pin on detecting the fault with the diagnostic 1h = Off-state wire-break fault is not signaled (masked from) on the FLT pin | | 1 | MASK_WB_ON | R/W | 0h | The bit is set to mask the signaling on-state wire-break fault on the FLT pin Oh = On-state wire-break fault is signaled on the FLT pin on detecting the fault with the diagnostic 1h = On-state wire-break fault is not signaled (masked from) on the FLT pin | Product Folder Links: TPS274C65 Copyright © 2024 Texas Instruments Incorporated 資料に関するフィードバック (ご意見やお問い合わせ) を送信 表 8-52. FAULT_MASK Register Field Descriptions (続き) | Bit | Field | Туре | Reset | Description | |-----|------------|------|-------|---| | 0 | MASK_VS_UV | R/W | | The bit is set to mask the supply voltage VS UV fault signaling on the FLT pin output. 0h = VS UV fault is signaled on the FLT pin on detecting the fault with the diagnostic 1h = VS UV fault is not signaled (masked from) on the FLT pin | ## 8.6.40 EN_WB_OFF Register (Offset = 28h) [Reset = 00h] EN_WB_OFF is shown in 表 8-53. Return to the Summary Table. Enables diagnostic of the wire-break (off-state) faults in the fault registers ### 表 8-53. EN WB OFF Register Field Descriptions | Bit | Field | Type | Reset | Description | |-----|---------------|------|-------|--| | DIL | rieia | туре | Reset | Description | | 7-4 | RESERVED | R | 0h | Reserved | | 3 | WB_OFF_CH4_EN | R/W | 0h | Set this bit to 1 to enable the wire-break (off-state) fault in CH4 0h = Wire-break (off-state) fault diagnostic in CH4 not enabled 1h = Wire-break (off-state) fault diagnostic in CH4 is enabled | | 2 | WB_OFF_CH3_EN | R/W | 0h | Set this bit to 1 to enable the wire-break (off-state) fault in CH3 0h = Wire-break (off-state) fault diagnostic in CH3 not enabled 1h = Wire-break (off-state) fault diagnostic in CH3 is enabled | | 1 | WB_OFF_CH2_EN | R/W | Oh | Set this bit to 1 to enable the wire-break (off-state) fault in CH2 0h = Wire-break (off-state) fault diagnostic in CH2 not enabled 1h = Wire-break (off-state) fault diagnostic in CH2 is enabled | | 0 | WB_OFF_CH1_EN | R/W | Oh | Set this bit to 1 to enable the wire-break (off-state) fault in CH1 0h = Wire-break (off-state) fault diagnostic in CH1 not enabled 1h = Wire-break (off-state) fault diagnostic in CH1 is enabled | ## 8.6.41 EN_WB_ON Register (Offset = 29h) [Reset = 00h] EN_WB_ON is shown in 表 8-54. Return to the Summary Table. The register allows masking of On-state Wire-break fault per channel ### 表 8-54. EN WB ON Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|--------------|------|-------|---| | 7-4 | RESERVED | R | 0h | Reserved | | 3 | WB_ON_CH4_EN | R/W | 0h | Set this bit to 1 to enable the wire-break (off-state) fault diagnostic in CH4 0h = Wire-break (off-state) fault diagnostic in CH4 not enabled 1h = Wire-break (off-state) fault diagnostic in CH4 is enabled | | 2 | WB_ON_CH3_EN | R/W | 0h | Set this bit to 1 to enable the wire-break (off-state) fault diagnostic in CH3 0h = Wire-break (off-state) fault diagnostic in CH3 not enabled 1h = Wire-break (off-state) fault diagnostic in CH3 is enabled | | 1 | WB_ON_CH2_EN | R/W | 0h | Set this bit to 1 to enable the wire-break (off-state) fault diagnostic in CH2 0h = Wire-break (off-state) fault diagnostic in CH2 not enabled 1h = Wire-break (off-state) fault diagnostic in CH2 is enabled | 資料に関するフィードバック (ご意見やお問い合わせ) を送信 表 8-54. EN_WB_ON Register Field Descriptions (続き) | Bit | Field | Туре | Reset | Description | |-----|--------------|------|-------|---| | 0 | WB_ON_CH1_EN | R/W | | Set this bit to 1 to enable the wire-break (off-state) fault diagnostic in CH1 0h = Wire-break (off-state) fault diagnostic in CH1 not enabled 1h = Wire-break (off-state) fault diagnostic in CH1 is enabled | #### 8.6.42 EN_SHRT_VS Register (Offset = 2Ah) [Reset = 00h] EN_SHRT_VS is shown in 表 8-55. Return to the Summary Table. The register allows masking of output short to supply (VS) fault per channel ## 表 8-55. EN_SHRT_VS Register Field Descriptions | | | | | egister Fleid Descriptions | |-----|----------------|------|-------|---| | Bit | Field | Туре | Reset | Description | | 7-4 | RESERVED | R | 0h | Reserved | | 3 | SHRT_VS_CH4_EN | R/W | 0h | Set this bit to 1 to enable the short_to_VS (off-state) fault diagnostic in CH4 0h = short_to_VS (off-state) fault diagnostic in CH4 not enabled 1h = short_to_VS (off-state) fault diagnostic in CH4 enabled | | 2 | SHRT_VS_CH3_EN | R/W | 0h | Set this bit to 1 to enable the short_to_VS (off-state) fault diagnostic in CH3 0h = short_to_VS (off-state) fault diagnostic in CH3 not enabled 1h = short_to_VS (off-state) fault diagnostic in CH3 enabled | | 1 | SHRT_VS_CH2_EN | R/W | 0h | Set this bit to 1 to enable the short_to_VS (off-state) fault diagnostic in CH2 0h = short_to_VS (off-state) fault diagnostic in CH2 not enabled 1h = short_to_VS (off-state) fault diagnostic in CH2 enabled | | 0 | SHRT_VS_CH1_EN | R/W | 0h | Set this bit to 1 to enable the short_to_VS (off-state) fault diagnostic in CH1 0h = short_to_VS (off-state) fault diagnostic in CH1 not enabled 1h = short_to_VS (off-state) fault diagnostic in CH1 enabled | #### 8.6.43 ADC_ISNS_DIS Register (Offset = 2Bh) [Reset = 00h] ADC_ISNS_DIS is shown in 表 8-56. Return to the Summary Table. Allows disabling the ADC conversion of
ISNS on a per channel basis #### 表 8-56. ADC_ISNS_DIS Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|--------------|------|-------|---| | 7-4 | RESERVED | R | 0h | Reserved | | 3 | ISNS_DIS_CH4 | R/W | 0h | Set this bit to 1 disable ISNS_CH4 conversion 0h = ISNS_CH4 ADC conversion included 1h = ISNS_CH4 ADC conversion disabled | | 2 | ISNS_DIS_CH3 | R/W | 0h | Set this bit to 1 disable ISNS_CH3 conversion 0h = ISNS_CH3 ADC conversion included 1h = ISNS_CH3 ADC conversion disabled | | 1 | ISNS_DIS_CH2 | R/W | 0h | Set this bit to 1 disable ISNS_CH2 conversion 0h = ISNS_CH2 ADC conversion included 1h = ISNS_CH2 ADC conversion disabled | 資料に関するフィードバック(ご意見やお問い合わせ)を送信 73 表 8-56. ADC_ISNS_DIS Register Field Descriptions (続き) | Bit | Field | Туре | Reset | Description | |-----|--------------|------|-------|---| | 0 | ISNS_DIS_CH1 | R/W | | Set this bit to 1 disable ISNS_CH1 conversion 0h = ISNS_CH1 ADC conversion included 1h = ISNS_CH1 ADC conversion disabled | #### 8.6.44 ADC_TSNS_DIS Register (Offset = 2Ch) [Reset = 00h] ADC_TSNS_DIS is shown in 表 8-57. Return to the Summary Table. Allows disabling the ADC conversion of TSNS on a per channel basis #### 表 8-57. ADC TSNS DIS Register Field Descriptions | Bit | Field | Туре | Reset | Description | | | | |-----|--------------|------|--------|---|--|--|--| | Dit | Tield | Турс | 110301 | Description | | | | | 7-4 | RESERVED | R | 0h | Reserved | | | | | 3 | TSNS_DIS_CH4 | R/W | 0h | Set this bit to 1 disable TSNS_CH4 conversion 0h = TSNS_CH4 ADC conversion included 1h = TSNS_CH4 ADC conversion disabled | | | | | 2 | TSNS_DIS_CH3 | R/W | Oh | Set this bit to 1 disable TSNS_CH3 conversion 0h = TSNS_CH3 ADC conversion included 1h = TSNS_CH3 ADC conversion disabled | | | | | 1 | TSNS_DIS_CH2 | R/W | Oh | Set this bit to 1 disable TSNS_CH2 conversion 0h = TSNS_CH2 ADC conversion included 1h = TSNS_CH2 ADC conversion disabled | | | | | 0 | TSNS_DIS_CH1 | R/W | Oh | Set this bit to 1 disable TSNS_CH1 conversion 0h = TSNS_CH1 ADC conversion included 1h = TSNS_CH1 ADC conversion disabled | | | | #### 8.6.45 ADC_VSNS_DIS Register (Offset = 2Dh) [Reset = 00h] ADC_VSNS_DIS is shown in 表 8-58. Return to the Summary Table. Allows disabling the ADC conversion of VSNS on a per channel basis #### 表 8-58. ADC_VSNS_DIS Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|--------------|------|-------|---| | 7-4 | RESERVED | R | 0h | Reserved | | 3 | VSNS_DIS_CH4 | R/W | 0h | Set this bit to 1 disable VSNS_CH4 conversion 0h = VSNS_CH4 ADC conversion included 1h = VSNS_CH4 ADC conversion disabled | | 2 | VSNS_DIS_CH3 | R/W | Oh | Set this bit to 1 disable VSNS_CH3 conversion 0h = VSNS_CH3 ADC conversion included 1h = VSNS_CH3 ADC conversion disabled | | 1 | VSNS_DIS_CH2 | R/W | Oh | Set this bit to 1 disable VSNS_CH2 conversion 0h = VSNS_CH2 ADC conversion included 1h = VSNS_CH2 ADC conversion disabled | | 0 | VSNS_DIS_CH1 | R/W | 0h | Set this bit to 1 disable VSNS_CH1 conversion 0h = VSNS_CH1 ADC conversion included 1h = VSNS_CH1 ADC conversion disabled | *資料に関するフィードバック (ご意見やお問い合わせ) を送信*Product Folder Links: *TPS274C65* Copyright © 2024 Texas Instruments Incorporated ## 8.6.46 ADC_CONFIG1 Register (Offset = 2Eh) [Reset = 00h] ADC_CONFIG1 is shown in 表 8-59. Return to the Summary Table. ADC configuration - disable conversion of measurements not needed. ## 表 8-59. ADC_CONFIG1 Register Field Descriptions | Bit | Field | Туре | Reset | Description | | | | | |-----|--------------|------|-------|---|--|--|--|--| | 7-4 | RESERVED | R | 0h | Reserved | | | | | | 3 | ADC_TSNS_DIS | R/W | 0h | Set this bit to 1 to disable the ADC TSNS functionality 0h = TSNS ADC functionality enabled 1h = TSNS ADC functionality is disabled | | | | | | 2 | ADC_VSNS_DIS | R/W | 0h | Set this bit to 1 to disable the VSNS ADC functionality 0h = VSNS ADC functionality enabled 1h = VSNS ADC functionality is disabled | | | | | | 1 | ADC_ISNS_DIS | R/W | 0h | Set this bit to 1 to disable ISNS ADC functionality 0h = ISNS ADC functionality enabled 1h = ISNS ADC functionality is disabled | | | | | | 0 | ADC_VS_DIS | R/W | Oh | Set this bit to 1 to disable supply voltage V_VS conversion in the ADC conversion sequence. 0h = Include supply voltage V_VS conversion in the sequence 1h = No conversion of suppy voltage V_VS | | | | | ## 8.6.47 CRC_CONFIG Register (Offset = 2Fh) [Reset = 00h] CRC_CONFIG is shown in 表 8-60. Return to the Summary Table. Configure CRC ## 表 8-60. CRC_CONFIG Register Field Descriptions | | | | | 9.000. 1.000. 2.000. p.1000. | | | |-----|----------|------|-------|--|--|--| | Bit | Field | Туре | Reset | Description | | | | 7-2 | RESERVED | R | 0h | Reserved | | | | 1 | D24BIT | R/W | 0h | Set this bit to 1 to use 24-bit SPI command frame in daisy chain mode 0h = 16-bit frame and No CRC check of SPI command frame 1h = 24-bit frame with the possibility of CRC check | | | | 0 | CRC_EN | R/W | 0h | Set this bit to 1 to enable CRC check of SPI command frame. 0h = No CRC check of SPI command frame 1h = CRC check of SPI command frame enabled | | | Product Folder Links: TPS274C65 資料に関するフィードバック (ご意見やお問い合わせ) を送信 75 ## 9 Application and Implementation 注 以下のアプリケーション情報は、TIの製品仕様に含まれるものではなく、TIではその正確性または完全性を保証いたしません。個々の目的に対する製品の適合性については、お客様の責任で判断していただくことになります。お客様は自身の設計実装を検証しテストすることで、システムの機能を確認する必要があります。 #### 9.1 Application Information The following sections give examples of typical implementation and design examples. #### 9.2 Typical Application ☑ 9-1 shows the schematic of a typical application of the TPS274C65. The schematic includes all standard external components. This section of the data sheet discusses the considerations in implementing commonly required application functionality. 資料に関するフィードバック(ご意見やお問い合わせ) を送信 Copyright © 2024 Texas Instruments Incorporated 76 Product Folder Links: TPS274C65 図 9-1. Typical Application Circuit 77 Product Folder Links: TPS274C65 #### 9.2.1 Design Requirements 表 9-1. Recommended External Components | COMPONENT | TYPICAL VALUE | PURPOSE | |-------------------------------------|--|---| | R _{SNS} | 1 kΩ | Translate the sense current into sense voltage. | | C _{SNS} | 100 pF | Low-pass filter for the ADC input. | | R _{ILIMx} | 5 kΩ to 80 kΩ | Set current limit threshold, connect from pin to IC GND. | | C _{Vin1} | 4.7 nF to Device GND | Filtering of voltage transients (for example, ESD, IEC 61000-4-5) and improved emissions. | | C _{Vin2} | 100 nF to Module GND | Stabilize the input supply and filter out low frequency noise. | | C _{VDD} | 2.2 μF to Module GND | Stabilize the VDD supply and limit supply excursions. Needed with either external or internal VDD supplies. | | C _{OUT} | 22 nF | Filtering of voltage transients (for example, ESD, RF transients). | | Z _{TVS} | 36-V TVS | Clamp surge voltages at the supply input. | | D _{GND} , Z _{GND} | Diode + max 10 Ω from
Device GND to Module
GND | Optional for reverse polarity protection - if needed. Series resistor needed for surge events. | | R _{GND} | 4.7 kΩ | Stabilize IC GND in the event of negative output swings. | | Q _{RCB} | 20-nC FET | Optional for Reverse current blocking. | | R _S | 490 Ω | Limiting the current flowing through the LEDs. | | R _F | 490 Ω | Limiting the current flowing through the LEDs. | #### 9.2.2 Detailed Design Procedure In an example application with maximum load current of 500 mA, the current limit must be set to an acceptable level. With the current limit variation and tolerance allowed for this specific application, the current limit setting of 1 A is chosen. Referring back to the $\frac{1}{8}$ 8-4, ILIM REG[3:0] must be set to 0x8 through SPI. Depending on the tolerance on the maximum current for the application, the current limit resistor can be chosen to leave the overhead needed before the current limit engages. #### 9.2.2.1 IEC 61000-4-5 Surge The TPS274C65 is designed to survive against IEC 61000-4-5 surge using external TVS clamps. The device is rated to 48 V ensuring that external TVS diodes can clamp below the rated maximum voltage of the TPS274C65. Above 48V, the device includes V_{DS} clamps to help shunt current and ensure that the device will survive the transient pulses. Depending on the class of the output, it is recommend that the system has a SMBJ36A or SMCJ36A between VS and module GND. #### 9.2.2.2 Loss of GND The ground connection may be lost either on the device level or on the module level. If the ground connection is lost, both the channel outputs will be disabled irrespective of the EN input level. If the switch was already disabled when the ground connection was lost, the outputs will remain disabled even when the channels are enabled. The steady state current from the output to the load that remains connected to the system ground is below the level specified in the *Specifications* section of this document. When the ground is reconnected, normal operation will resume. #### 9.2.2.3 Paralleling Channels If an
application requires lower power dissipation than is possible with a 65 m Ω switch, the TPS274C65 can have up to two channel outputs (CH1 and CH2 OR CH3 and CH4) tied together to function as a single 32.5 m Ω high side switch. In this case, there will be some decrease in I_{SNS} and I_{LIM} accuracy, however the device will function properly. The max continuous load current per channel while channels are paralleled is defined in *Electrical Characteristics*. 資料に関するフィードバック(ご意見やお問い合わせ)を送信 Copyright © 2024 Texas Instruments Incorporated #### 9.2.3 Application Curves \boxtimes 9-2 shows a test example of switching the load with 250-kHz PWM signal. Test conditions: VS =12 V, Duty Cycle = 5%, T_{AMB} = 25°C. Channel 1 is V_{OUT} voltage. Channel 2 is EN pin voltage. Channel 3 is VS voltage. Channel 4 is VS current. \boxtimes 9-3 shows a test example of enabling a switch while there is a short at the output. Test conditions: VS = 24 V, T_{AMB} = 25°C. Channel 1 is V_{OUT} voltage. Channel 2 is \overline{FAULT} pin voltage. Channel 3 is VS voltage. Channel 4 is VS current. #### 9.3 Power Supply Recommendations 表 9-2. Operating Voltage Range | V _S Voltage Range | Note | |------------------------------|---| | 6 V to 36 V | Nominal supply voltage, all parametric specifications apply. The device is completely short-circuit protected up to 125°C | | 36 V to 48 V | Functional operation per data
sheet (switch can turn-off), but
can not meet parametric
specifications. | ## 9.4 Layout #### 9.4.1 Layout Guidelines To prevent thermal shutdown, T_J must be less than T_{ABS} . If the output current is very high, the power dissipation can be large. The VQFN package has good thermal impedance. However, the PCB layout is very important. Good PCB design can optimize heat transfer, which is absolutely essential for the long-term reliability of the device. - Maximize the copper coverage on the PCB to increase the thermal conductivity of the board. The major heat-flow path from the package to the ambient is through the copper on the PCB. Maximum copper is extremely important when there are not any heat sinks attached to the PCB on the other side of the board opposite the package. - 2. Add as many thermal vias as possible directly under the package ground pad to optimize the thermal conductivity of the board - 3. Plate shut or plug and cap all thermal vias on both sides of the board to prevent solder voids. To ensure reliability and performance, the solder coverage must be at least 85%. Product Folder Links: TPS274C65 Copyright © 2024 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 79 #### 9.4.2 Layout Example 図 9-4. Layout Example # 10 Device and Documentation Support #### 10.1 ドキュメントの更新通知を受け取る方法 ドキュメントの更新についての通知を受け取るには、www.tij.co.jp のデバイス製品フォルダを開いてください。[通知] をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取ることができます。 変更の詳細については、改訂されたドキュメントに含まれている改訂履歴をご覧ください。 #### 10.2 サポート・リソース テキサス・インスツルメンツ E2E™ サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。 リンクされているコンテンツは、各寄稿者により「現状のまま」提供されるものです。これらはテキサス・インスツルメンツの仕様を構成するものではなく、必ずしもテキサス・インスツルメンツの見解を反映したものではありません。テキサス・インスツルメンツの使用条件を参照してください。 #### 10.3 Trademarks テキサス・インスツルメンツ E2E™ is a trademark of Texas Instruments. すべての商標は、それぞれの所有者に帰属します。 #### 10.4 静電気放電に関する注意事項 この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うことを推奨します。正しい取り扱いおよび設置手順に従わない場合、デバイスを破損するおそれがあります。 ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずかに変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。 #### 10.5 用語集 テキサス・インスツルメンツ用語集 この用語集には、用語や略語の一覧および定義が記載されています。 #### 11 Revision History 資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。 | Changes from Revision B (October 2023) to Revision C (February 2024) | Page | |---|----------| | Updated Device Comparison Table section to include the H version | 3 | | • Updated Electrical Characteristics section to include the current limit for H version devices | 7 | | Updated Inductive Load Demagnetization section to include the discharge capability | 33 | | Changes from Revision A (October 2023) to Revision B (October 2023) | Page | | Changed VS and VOUT pins HBM ESD levels from 4 kV to 2 kV in the ESD Ratings section | 7 | ## 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Product Folder Links: TPS274C65 #### 重要なお知らせと免責事項 テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。 これらのリソースは、テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。 上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されているテキサス・インスツルメンツ製品を使用するアプリケーションの開発の目的でのみ、テキサス・インスツルメンツはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。テキサス・インスツルメンツや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、テキサス・インスツルメンツは一切の責任を拒否します。 テキサス・インスツルメンツの製品は、テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。テキサス・インスツルメンツがこれらのリソースを提供することは、適用されるテキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありません。 お客様がいかなる追加条項または代替条項を提案した場合でも、テキサス・インスツルメンツはそれらに異議を唱え、拒否します。 郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated www.ti.com 3-May-2024 #### PACKAGING INFORMATION | Orderable Device | Status | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead finish/
Ball material | MSL Peak Temp | Op Temp (°C) | Device Marking
(4/5) | Samples | |------------------|--------|--------------|--------------------|------|----------------|--------------|-------------------------------|---------------------|--------------|-------------------------|---------| | | | | | | | | (6) | | | | | | PTPS274C65ASRHAR | ACTIVE | VQFN | RHA | 40 | 2500 | TBD | Call TI | Call TI | -40 to 125 | | Samples | | TPS274C65ASHRHAR | ACTIVE | VQFN | RHA | 40 | 2500 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | TPS274C6
5ASHRHA | Samples | | TPS274C65ASRHAR | ACTIVE | VQFN | RHA | 40 | 2500 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | TPS274C
65ASRHA | Samples | | TPS274C65ASWRHAR | ACTIVE | VQFN | RHA | 40 | 2500 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | TPS274C
65ASWRHA | Samples | | TPS274C65BSRHAR | ACTIVE | VQFN | RHA | 40 | 2500 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | TPS274C
65BSRHA | Samples | | TPS274C65BSWRHAR | ACTIVE | VQFN | RHA | 40 | 2500 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | TPS274C
65BSWRHA | Samples | (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. **Green:** TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. ⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. ⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. ⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. ## **PACKAGE OPTION ADDENDUM** www.ti.com 3-May-2024 (6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to
provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. # **PACKAGE MATERIALS INFORMATION** www.ti.com 4-May-2024 #### TAPE AND REEL INFORMATION | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | #### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |------------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | TPS274C65ASHRHAR | VQFN | RHA | 40 | 2500 | 330.0 | 16.4 | 6.3 | 6.3 | 1.1 | 12.0 | 16.0 | Q2 | | TPS274C65ASRHAR | VQFN | RHA | 40 | 2500 | 330.0 | 16.4 | 6.3 | 6.3 | 1.1 | 12.0 | 16.0 | Q2 | | TPS274C65ASWRHAR | VQFN | RHA | 40 | 2500 | 330.0 | 16.4 | 6.3 | 6.3 | 1.1 | 12.0 | 16.0 | Q2 | | TPS274C65BSRHAR | VQFN | RHA | 40 | 2500 | 330.0 | 16.4 | 6.3 | 6.3 | 1.1 | 12.0 | 16.0 | Q2 | | TPS274C65BSWRHAR | VQFN | RHA | 40 | 2500 | 330.0 | 16.4 | 6.3 | 6.3 | 1.1 | 12.0 | 16.0 | Q2 | www.ti.com 4-May-2024 #### *All dimensions are nominal | 7 III dilitoriolorio dio Frontina | | | | | | | | | | | |-----------------------------------|--------------|-----------------|------|------|-------------|------------|-------------|--|--|--| | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | | | | | TPS274C65ASHRHAR | VQFN | RHA | 40 | 2500 | 367.0 | 367.0 | 35.0 | | | | | TPS274C65ASRHAR | VQFN | RHA | 40 | 2500 | 367.0 | 367.0 | 35.0 | | | | | TPS274C65ASWRHAR | VQFN | RHA | 40 | 2500 | 367.0 | 367.0 | 35.0 | | | | | TPS274C65BSRHAR | VQFN | RHA | 40 | 2500 | 367.0 | 367.0 | 35.0 | | | | | TPS274C65BSWRHAR | VQFN | RHA | 40 | 2500 | 367.0 | 367.0 | 35.0 | | | | 6 x 6, 0.5 mm pitch PLASTIC QUAD FLATPACK - NO LEAD This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details. PLASTIC QUAD FLATPACK - NO LEAD #### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. - 2. This drawing is subject to change without notice. - 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance. PLASTIC QUAD FLATPACK - NO LEAD NOTES: (continued) 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271). PLASTIC QUAD FLATPACK - NO LEAD NOTES: (continued) 5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. ### 重要なお知らせと免責事項 TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス・デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。 これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあら ゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。 上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。 TIの製品は、TIの販売条件、または ti.com やかかる TI 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。 お客様がいかなる追加条項または代替条項を提案した場合でも、TIはそれらに異議を唱え、拒否します。 郵送先住所:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated