TPS51216-EP JAJSOE8A - NOVEMBER 2015 - REVISED JULY 2022 # TPS51216-EP DDR2、DDR3 および DDR3L メモリ電源ソリューション一式、 期整流降圧コントローラ、2A LDO、バッファ付きリファレンス電圧 ### 1 特長 - 同期整流降圧コントローラ (VDDQ) - 変換電圧範囲:3~28V - 出力電圧範囲:0.7~1.8V - 0.8% の V_{REF} 精度 - 高速過渡応答の D-CAP™ モード - **300kHz/400kHz** のスイッチング 周波数を選択可能 - 自動スキップ機能により軽負荷と重負荷の両方で 効率を最適化 - S4/S5 状態でソフトオフに対応 - OCL、OVP、UVP、UVLO 保護機能 - パワー・グッド出力 - 2A LDO (VTT)、バッファ付き基準電圧 (VTTREF) - 2A ピークのシンクおよびソース電流 - セラミック出力コンデンサ 最小容量 10μF - 低ノイズ、バッファ付きの 10mA VTTREF 出力 - 0.8% VTTREF、20mV VTT 精度 - ハイ・インピーダンス (S3) およびソフトオフ (S4/S5) に対応 - サーマル・シャットダウン - 20 ピン、3mm × 3mm、WQFN パッケージ - 防衛、航空宇宙、および医療アプリケーションをサポー 卜 - 管理されたベースライン - 単一のアセンブリ/テスト施設 - 単一の製造施設 - 軍用 (-55°C~125°C) 温度範囲で利用可能。1 - 長い製品ライフ・サイクル - 製品変更通知期間の延長 - 製品のトレーサビリティ # 2 アプリケーション - DDR2/DDR3/DDR3L メモリ電源 - SSTL_18、SSTL_15、SSTL_135、HSTL のターミネ ーション ### 3 概要 TPS51216-EP デバイスは、DDR2、DDR3、DDR3L メモ リ・システム用の電源一式を、最低限の総コストと最小限の 容積で実現します。同期整流降圧レギュレータ・コントロー ラ (VDDQ) と、2A シンク / ソースのトラッキング LDO (VTT) およびバッファ付きの低ノイズ基準電圧 (VTTREF) が内蔵されています。TPS51216-EP は、D-CAP™ モー ドと 300kHz/400kHz の周波数を組み合わせて使用し、 使いやすさと高速な過渡応答を実現しています。 VTTREF は、0.8% という非常に優れた精度で VDDQ/2 に追従します。VTT は 2A シンク / ソースのピーク電流能 力を備え、10uF のセラミック・コンデンサのみで動作しま す。さらに、専用の LDO 電源入力が利用可能です。 TPS51216-EP は非常に優れた電源性能だけでなく、豊 富な機能も備えています。柔軟な電力状態制御に対応し ており、S3 では VTT を高インピーダンスにし、S4 または S5 状態では VDDQ、VTT、VTTREF を放電します (ソフ ト・オフ)。 #### 製品情報 | 部品番号(1) | パッケージ | 本体サイズ (公称) | | | |-------------|-----------|-----------------|--|--| | TPS51216-EP | WQFN (20) | 3.00mm × 3.00mm | | | 利用可能なパッケージについては、このデータシートの末尾にあ (1) る注文情報を参照してください。 アプリケーション図 ¹ その他の温度範囲も利用可能 - 工場にお問い合わせください ## **Table of Contents** | 1 特長 | 1 | 8.4 Device Functional Modes | 18 | |--------------------------------------|----|---|----------------------| | 2 アプリケーション | | 9 Application and Implementation | 19 | | 3 概要 | | 9.1 Application Information | 19 | | 4 Revision History | | 9.2 Typical Application | <mark>22</mark> | | 5 概要 (続き) | | 10 Power Supply Recommendations | 25 | | 6 Pin Configuration and Functions | | 11 Layout | 26 | | 7 Specifications | | 11.1 Layout Guidelines | 26 | | 7.1 Absolute Maximum Ratings | | 11.2 Layout Example | 27 | | 7.2 ESD Ratings | | 12 Device and Documentation Support | 28 | | 7.3 Recommended Operating Conditions | | 12.1 Receiving Notification of Documentation Upda | ates <mark>28</mark> | | 7.4 Thermal Information | | 12.2 サポート・リソース | 28 | | 7.5 Electrical Characteristics | | 12.3 Trademarks | 28 | | 7.6 Typical Characteristics | | 12.4 Electrostatic Discharge Caution | 28 | | 8 Detailed Description | | 12.5 Glossary | 28 | | 8.1 Overview | 15 | 13 Mechanical, Packaging, and Orderable | | | 8.2 Functional Block Diagram | | Information | 28 | | 8.3 Feature Description | | | | # **4 Revision History** | C | hanges from Revision * (November 2015) to Revision A (July 2022) | Pag | |---|--|-----| | • | 文書全体にわたって表、図、相互参照の採番方法を更新 | | | | Updated resistor numbers in Equation 7 to match description. | | # 5 概要 (続き) プログラム可能な OCL とローサイド MOSFET $R_{DS(on)}$ センシング、OVP、UVP、UVLO、サーマル・シャットダウン保護機能も利用できます。 TPS51216-EP は、20 ピン、3mm × 3mm、WQFN パッケージで供給され、-55°C~125°C の接合部温度範囲で動作が規定されています。 ## **6 Pin Configuration and Functions** 図 6-1. RUK Package 20-Pin WQFN Top View 表 6-1. Pin Functions | | | I/O | DESCRIPTION | |-------------|-----|-----|--| | NAME | NO. | 1/0 | DESCRIPTION | | DRVH | 14 | 0 | High-side MOSFET gate driver output. | | DRVL | 11 | 0 | Low-side MOSFET gate driver output. | | GND | 7 | _ | Signal ground. | | MODE | 19 | I | Connect resistor to GND to configure switching frequency and discharge mode. (See 表 8-2.) | | PGND | 10 | _ | Gate driver power ground. R _{DS(on)} current sensing input (+). | | PGOOD | 20 | 0 | Powergood signal open drain output. PGOOD goes high when VDDQ output voltage is within the target range. | | REFIN | 8 | I | Reference input for VDDQ. Connect to the midpoint of a resistor divider from VREF to GND. Add a capacitor for stable operation. | | SW | 13 | I/O | High-side MOSFET gate driver return. R _{DS(on)} current sensing input (–). | | S3 | 17 | I | S3 signal input. (See 表 8-1.) | | S5 | 16 | I | S5 signal input. (See 表 8-1.) | | TRIP | 18 | I | Connect resistor to GND to set OCL at V _{TRIP} / 8. Output 10-µA current at room temperature, T _C = 4700 ppm/°C. | | VBST | 15 | I | High-side MOSFET gate driver bootstrap voltage input. Connect a capacitor from the VBST pin to the SW pin. | | VDDQSNS | 9 | I | VDDQ output voltage feedback. Reference input for VTTREF. Also serves as power supply for VTTREF. | | VLDOIN | 2 | I | Power supply input for VTT LDO. Connect VDDQ in typical application. | | VREF | 6 | 0 | 1.8-V reference output. | | VTT | 3 | 0 | VTT 2-A LDO output. Need to connect 10 μF or larger capacitance for stability. | | VTTGND | 4 | _ | Power ground for VTT LDO. | | VTTREF | 5 | 0 | Buffered VTT reference output. Need to connect 0.22 µF or larger capacitance for stability. | | VTTSNS | 1 | I | VTT output voltage feedback. | | V5IN | 12 | I | 5-V power supply input for internal circuits and MOSFET gate drivers. | | Thermal pad | _ | _ | Connect to GND | ## 7 Specifications ## 7.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)(1) | | | MIN | MAX | UNIT | | |--------------------------------------|---------------------------------------|------------|-----|------|--| | | VBST | -0.3 | 36 | | | | | VBST ⁽³⁾ | -0.3 | 6 | | | | | SW | - 5 | 30 | | | | Input voltage ⁽²⁾ | VLDOIN, VDDQSNS, REFIN | -0.3 | 3.6 | V | | | | VTTSNS | -0.3 | 3.6 | | | | | PGND, VTTGND | -0.3 | 0.3 | | | | | V5IN, S3, S5, TRIP, MODE | -0.3 | 6 | | | | | DRVH | - 5 | 36 | V | | | | DRVH ⁽³⁾ | -0.3 | 6 | | | | | DRVH ⁽³⁾ (duty cycle < 1%) | -2.5 | 6 | | | | Output voltage ⁽²⁾ | VTTREF, VREF | -0.3 | 3.6 | | | | Output voitage(=) | VTT | -0.3 | 3.6 | V | | | | DRVL | -0.3 | 6 | | | | | DRVL (duty cycle < 1%) | -2.5 | 6 | | | | | PGOOD | -0.3 | 6 | | | | Junction temperature, T _J | | -55 | 135 | °C | | | Storage temperature, | T _{stg} | -55 | 150 | °C | | ⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. - (2) All voltage values are with respect to the network ground terminal unless otherwise noted. - (3) Voltage values are with respect to the SW terminal. ## 7.2 ESD Ratings | | | | VALUE | UNIT | |--------------------|-------------------------|--|-------|------| | | | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾ | ±2000 | | | V _(ESD) | Electrostatic discharge | Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾ | ±500 | V | - (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. - (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. ## 7.3 Recommended Operating Conditions | | | MIN | NOM MA | X UNIT | | |----------------------|--------------------------------|------|--------|---------|--| | Supply voltage | V5IN | 4.5 | Į | 5.5 V | | | | VBST | -0.1 | 33 | .5 | | | | VBST ⁽²⁾ | -0.1 | Į. | 5.5 | | | | SW | -3 | | 28 | | | Input voltage range | SW ⁽¹⁾ | -4.5 | | 28
V | | | input voltage range | VLDOIN, VDDQSNS, REFIN | -0.1 | 3 | .5 | | | | VTTSNS | -0.1 | 3 | 3.5 | | | | PGND, VTTGND | -0.1 | (| 0.1 | | | | S3, S5, TRIP, MODE | -0.1 | Į. | 5.5 | | | | DRVH | -3 | 33 | .5 | | | | DRVH ⁽²⁾ | -0.1 | į | .5 | | | | DRVH ⁽¹⁾ | -4.5 | 33 | .5 | | | Output voltage range | VTTREF, VREF | -0.1 | 3 | .5 V | | | | VTT | -0.1 | 3 | .5 | | | | DRVL | -0.1 | | 5.5 | | | | PGOOD | -0.1 | Ę | 5.5 | | | T _J | Operating junction temperature | -55 | 1 | 25 °C | | ⁽¹⁾ This voltage should be applied for less than 30% of the repetitive period. ## 7.4 Thermal Information | | | TPS51216-EP | | |-----------------------|--|-------------|------| | | THERMAL METRIC ⁽¹⁾ | RUK (WQFN) | UNIT | | | | 20 PINS | | | R _{0JA} | Junction-to-ambient thermal resistance | 94.1 | °C/W | | R _{0JC(top)} | Junction-to-case (top) thermal resistance | 58.1 | °C/W | | $R_{\theta JB}$ | Junction-to-board thermal resistance | 64.3 | °C/W | | Ψ_{JT} | Junction-to-top characterization parameter | 31.8 | °C/W | | ΨЈВ | Junction-to-board characterization parameter | 58.0 | °C/W | | R _{θJC(bot)} | Junction-to-case (bottom) thermal resistance | 5.9 | °C/W | ⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953. ⁽²⁾ Voltage values are with respect to the SW terminal. #### 7.5 Electrical Characteristics $T_J = -55$ °C to 125°C, VV5IN = 5 V, VLDOIN is connected to VDDQ output, $V_{MODE} = 0$ V, $V_{S3} = V_{S5} = 5$ V (unless otherwise noted) | noted) | | | | | | | |-------------------------|---|--|--------|-------------------------|--------|------| | | PARAMETER | TEST CONDITION | MIN | TYP | MAX | UNIT | | SUPPLY CURR | RENT | | | | | | | I _{V5IN(S0)} | V5IN supply current, in S0 | $T_J = 25$ °C, No load, $V_{S3} = V_{S5} = 5 \text{ V}$ | | 590 | | μA | | I _{V5IN(S3)} | V5IN supply current, in S3 | T _J = 25°C, No load, V _{S3} = 0 V, V _{S5} = 5 V | | 500 | | μA | | I _{V5INSDN} | V5IN shutdown current | T _J =
25°C, No load, V _{S3} = V _{S5} = 0 V | | | 1 | μA | | I _{VLDOIN(S0)} | VLDOIN supply current, in S0 | T _J = 25°C, No load, V _{S3} = V _{S5} = 5 V | | | 5 | μA | | I _{VLDOIN(S3)} | VLDOIN supply current, in S3 | T _J = 25°C, No load, V _{S3} = 0 V, V _{S5} = 5 V | | | 5 | μA | | I _{VLDOINSDN} | VLDOIN shutdown current | T _J = 25°C, No load, V _{S3} = V _{S5} = 0 V | | | 5 | μA | | VREF OUTPUT | • | | | | | | | | | I _{VREF} = 30 μA, T _{.J} = 25°C | | 1.8000 | | | | V_{VREF} | Output voltage | 0 μA ≤ I _{VREF} <300 μA, T _J = -55°C to 125°C | 1.7820 | | 1.8180 | V | | I _{VREFOCL} | Current limit | V _{VREF} = 1.7 V | 0.4 | 0.8 | | mA | | VTTREF OUTP | UT | VICE | | | | | | V _{VTTREF} | Output voltage | | | V _{VDDQSNS} /2 | | V | | VIIREF | | I _{VTTREF} <100 μA, 1.2 V ≤ V _{VDDQSNS} ≤ 1.8 V | 49.2% | · VDDQSNS/= | 50.8% | | | V_{VTTREF} | Output voltage tolerance to V_{VDDQ} | $ V_{\text{VTREF}} < 10 \text{ mA}, 1.2 \text{ V} \leq V_{\text{VDDOSNS}} \leq 1.8 \text{ V}$ | 49% | | 51% | | | 1 | Source current limit | V _{VDDQSNS} = 1.8 V, V _{VTTREF} = 0 V | 10 | 18 | 3170 | mA | | VTTREFOCLSRC | | 111111111111111111111111111111111111111 | | | | | | VTTREFOCLSNK | Sink current limit | V _{VDDQSNS} = 1.8 V, V _{VTTREF} = 1.8 V | 10 | 17 | | mA | | VTTREFDIS | VTTREF discharge current | $T_J = 25^{\circ}C$, $V_{S3} = V_{S5} = 0$ V, $V_{VTTREF} = 0.5$ V | 0.8 | 1.3 | | mA | | VTT OUTPUT | | | | | | | | V _{VTT} | Output voltage | | | V _{VTTREF} | | V | | | | $ I_{VTT} \le 10 \text{ mA}, 1.2 \text{ V} \le V_{VDDQSNS} \le 1.8 \text{ V}, I_{VTTREF} = 0 \text{ A}$ | -20 | | 20 | | | V _{VTTTOL} | Output voltage tolerance to VTTREF | $ I_{VTT} \le 1 \text{ A}, 1.2 \le V_{VDDQSNS} \le 1.8 \text{ V}, I_{VTTREF} = 0 \text{ A}$ | -30 | | 30 | mV | | VIIIOL | | $ I_{VTT} \le 2 \text{ A}$, 1.4 V $\le V_{VDDQSNS} \le 1.8 \text{ V}$, $I_{VTTREF} = 0 \text{ A}$ | -40 | | 40 | | | | | $ I_{VTT} \le 1.5 \text{ A}$, $1.2 \text{ V} \le V_{VDDQSNS} \le 1.4 \text{ V}$, $I_{VTTREF} = 0 \text{ A}$ | -40 | | 40 | | | I _{VTTOCLSRC} | Source current limit | $V_{VDDQSNS}$ = 1.8 V, V_{VTT} = V_{VTTSNS} = 0.7 V, I_{VTTREF} = 0 A | 2 | 3 | | A | | I _{VTTOCLSNK} | Sink current limit | V _{VDDQSNS} = 1.8V, V _{VTT} = V _{VTTSNS} = 1.1 V, I _{VTTREF} = 0
A | 2 | 3 | | | | I_{VTTLK} | Leakage current | $T_J = 25$ °C , $V_{S3} = 0$ V, $V_{S5} = 5$ V, $V_{VTT} = V_{VTTREF}$ | | | 5 | | | I _{VTTSNSBIAS} | VTTSNS input bias current | $V_{S3} = 5 \text{ V}, V_{S5} = 5 \text{ V}, V_{VTTSNS} = V_{VTTREF}$ | -0.5 | 0.0 | 0.5 | μA | | I _{VTTSNSLK} | VTTSNS leakage current | V _{S3} = 0 V, V _{S5} = 5 V, V _{VTTSNS} = V _{VTTREF} | -1 | 0 | 1 | | | I _{VTTDIS} | VTT Discharge current | T _J = 25°C, V _{S3} = V _{S5} = 0 V, V _{VDDQSNS} = 1.8 V,
V _{VTT} = 0.5 V, I _{VTTREF} = 0 A | | 7.8 | | mA | | VDDQ OUTPUT | Г | | | | | | | V _{VDDQSNS} | VDDQ sense voltage | | | V_{REFIN} | | | | V _{VDDQSNSTOL} | VDDQSNS regulation voltage tolerance to REFIN | T _J = 25°C | -3 | | 3 | mV | | I _{VDDQSNS} | VDDQSNS input current | V _{VDDQSNS} = 1.8 V | - | 39 | | μA | | I _{REFIN} | REFIN input current | V _{REFIN} = 1.8 V | -0.1 | 0.0 | 0.1 | μA | | I _{VDDQDIS} | VDDQ discharge current | $V_{S3} = V_{S5} = 0$ V, $V_{VDDQSNS} = 0.5$ V, MODE pin pulled down to GND through 47 k Ω (Non-tracking) | | 12 | | mA | | I _{VLDOINDIS} | VLDOIN discharge current | V_{S3} = V_{S5} = 0 V, $V_{VDDQSNS}$ = 0.5 V, MODE pin pulled down to GND through 100 kΩ (Non-tracking) | | 1.2 | | А | | SWITCH MODE | POWER SUPPLY (SMPS) FREQUEN | CY | | | | | | | | $V_{IN} = 5 \text{ V}, V_{VDDQSNS} = 1.8 \text{ V}, R_{MODE} = 100 \text{ k}\Omega$ | | 300 | | | | $f_{\sf SW}$ | VDDQ switching frequency | V_{IN} = 5 V, $V_{VDDQSNS}$ = 1.8 V, R_{MODE} = 200 kΩ | | 400 | | kHz | | t _{ON(min)} | Minimum on time | DRVH rising to falling1 | | 60 | | | | t _{OFF(min)} | Minimum off time | DRVH falling to rising | 200 | 320 | 450 | ns | | -OFF(IIIIN) | | | 200 | 320 | +00 | 1 | ## 7.5 Electrical Characteristics (continued) $T_J = -55^{\circ}\text{C}$ to 125°C, VV5IN = 5 V, VLDOIN is connected to VDDQ output, $V_{MODE} = 0$ V, $V_{S3} = V_{S5} = 5$ V (unless otherwise noted) | PARAMETER | TEST CONDITION | MIN | TYP | MAX | UNIT | |--|---|------------------|-----------------|----------------------------------|--| | | | | | , 01 | J. 31. | | | Source I - 50 mA | | 1.6 | 3.0 | | | DRVH resistance | | | | | | | | | | | | Ω | | DRVL resistance | | | | | | | | | | | 1.2 | | | Dead time | | | | | ns | | | DRVL-off to DRVH-on | | 20 | | | | | | | | | | | | | | | | V | | | $T_J = 25^{\circ}C, V_{VBST} = 33 \text{ V}, V_{SW} = 28 \text{ V}$ | | 0.01 | 1.5 | μA | | SHOLD | | | | | | | MODE source current | | 14 | 15 | 16 | μA | | | MODE 0 | 580 | 600 | 620 | | | MODE threshold voltage | MODE 1 | 829 | 854 | 879 | mV | | MODE trieshold voltage | MODE 2 | 1202 | 1232 | 1262 | | | | MODE 3 | 1760 | 1800 | 1840 | | | S3/S5 low-level voltage | | | | 0.5 | | | S3/S5 high-level voltage | | 1.8 | | | V | | S3/S5 hysteresis voltage | | | 0.25 | | | | S3/S5 input leak current | | -1 | 0 | 1 | μA | | | | | | | | | VDDQ soft-start time | Internal soft-start time, C _{VREF} = 0.1 µF,
S5 rising to V _{VDDQSNS} > 0.99 × V _{REFIN} | | 1.1 | | ms | | PARATOR | | | | | | | VDDQ PGOOD threshold | PGOOD in from higher | 106% | 108% | 110% | | | | PGOOD in from lower | 90% | 92% | 94% | | | | PGOOD out to higher | 114% | 116% | 118% | | | | PGOOD out to lower | 82% | 84% | 86% | | | PGOOD sink current | V _{PGOOD} = 0.5 V | 3 | 5.9 | | mA | | | Delay for PGOOD in | 0.8 | 1 | 1.2 | ms | | PGOOD delay time | Delay for PGOOD out, with 100 mV over drive | | 330 | | ns | | PGOOD start-up delay | C _{VREF} = 0.1 μF, S5 rising to PGOOD rising | | 2.5 | | ms | | IS | | | | | | | TRIP source current | T _{.I} = 25°C, V _{TRIP} = 0.4 V | 9 | 10 | 11 | μA | | TRIP source current temperature coefficient1 | | | 4700 | | ppm/° | | V _{TRIP} voltage range | | 0.2 | | 3 | V | | 3 3 | V _{TRIR} = 3.0 V | | 375 | | | | Current limit threshold | | | | | mV | | Garrette in the arrestroid | | | | | | | | | | | | | | Negative current limit threshold | | | | | mV | | Negative current infinit uneshold | | | | | IIIV | | | V _{TRIP} = 0.2 V | -30 | | -20 | ., | | Zero cross detection offset | | | | | mV | | V5IN UVLO threshold voltage | · · · | | | | V | | <u>-</u> | Shutdown | 3.7 | 3.9 | 4.1 | | | | | | | | | | VDDQ OVP threshold voltage | OVP detect voltage | 118% | 120% | 122% | | | | DRVH resistance DRVL resistance Dead time DOT STRAP SW Forward voltage VBST leakage current SHOLD MODE source current MODE threshold voltage S3/S5 low-level voltage S3/S5 high-level voltage S3/S5 input leak current VDDQ soft-start time PARATOR VDDQ PGOOD threshold PGOOD sink current PGOOD start-up delay IS TRIP source current temperature coefficient1 VTRIP voltage range Current limit threshold Negative current limit threshold Zero cross detection offset | DRIVER Source, | DRVH resistance | DRIVER Source, _DRWH = -50 mA | Source DRIVER D | Product Folder Links: TPS51216-EP Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated ## 7.5 Electrical Characteristics (continued) $T_J = -55$ °C to 125°C, VV5IN = 5 V, VLDOIN is connected to VDDQ output, $V_{MODE} = 0$ V, $V_{S3} = V_{S5} = 5$ V (unless otherwise noted) | | PARAMETER | TEST CONDITION | MIN | TYP | MAX | UNIT | |
-----------------------|----------------------------|-----------------------|-------|-----|-----|------|--| | V _{UVP} | VDDQ UVP threshold voltage | UVP detect voltage | 66% | 68% | 70% | | | | t _{UVPDLY} | VDDQ UVP delay | | 1 1.2 | | | ms | | | t _{UVPENDLY} | VDDQ UVP enable delay | | | | | ms | | | V _{OOB} | OOB threshold voltage | | 108% | | | | | | THERMAL SH | IUTDOWN | | | | | | | | т | Thermal shutdown threshold | Shutdown temperature1 | | 140 | | °C | | | ISDN | memai shutdown theshold | Hysteresis1 | | 10 | | | | #### 1. Ensured by design. Not production tested. - A. See data sheet for absolute maximum and minimum recommended operating conditions. - B. Silicon operating life design goal is 10 years at 105°C junction temperature (does not include package interconnect life). - C. Enhanced plastic product disclaimer applies. 図 7-1. TPS51216-EP Derating Chart ## 7.6 Typical Characteristics ## **8 Detailed Description** #### 8.1 Overview TPS51216-EP provides complete Power Supply Solution for DDR2, DDR3 and DDR3L memory system. ## 8.2 Functional Block Diagram ## 8.3 Feature Description ## 8.3.1 VDDQ Switch Mode Power Supply Control TPS51216-EP supports D-CAP mode which does not require complex external compensation networks and is suitable for designs with small external components counts. The D-CAP mode provides fast transient response with appropriate amount of equivalent series resistance (ESR) on the output capacitors. An adaptive on-time control scheme is used to achieve pseudo-constant frequency. The TPS51216-EP adjusts the on-time (t_{ON}) to be inversely proportional to the input voltage (V_{IN}) and proportional to the output voltage (V_{DDQ}). This makes a switching frequency fairy constant over the variation of input voltage at the steady state condition. #### 8.3.2 VREF and REFIN, VDDQ Output Voltage The part provides a 1.8-V, $\pm 0.8\%$ accurate, voltage reference from VREF. This output has a 300- μ A (max) current capability to drive the REFIN input voltage through a voltage divider circuit. A capacitor with a value of 0.1- μ F or larger should be attached close to the VREF terminal. The VDDQ switch-mode power supply (SMPS) output voltage is defined by REFIN voltage, within the range between 0.7 V and 1.8 V, programmed by the resister-divider connected between VREF and GND. (See セクション 9.2.2.2.) A few nano farads of capacitance from REFIN to GND is recommended for stable operation. #### 8.3.3 Soft-Start and Powergood TPS51216-EP provides integrated VDDQ soft-start functions to suppress in-rush current at start-up. The soft-start is achieved by controlling internal reference voltage ramping up. \boxtimes 8-1 shows the start-up waveforms. The switching regulator waits for 400 μ s after S5 assertion. The MODE pin voltage is read in this period. A typical VDDQ ramp up duration is 700 μ s. TPS51216-EP has a powergood open-drain output that indicates the VDDQ voltage is within the target range. The target voltage window and transition delay times of the PGOOD comparator are ±8% (typ) and 1-ms delay for assertion (low to high), and ±16% (typ) and 330-ns delay for de-assertion (high to low) during running. The PGOOD comparator is enabled 1.1 ms after VREF is raised high and the start-up delay is 2.5 ms. Note that the time constant which is composed of the REFIN capacitor and a resistor divider needs to be short enough to reach the target value before PGOOD comparator enabled. 図 8-1. Typical Start-up Waveforms #### 8.3.4 Power State Control The TPS51216-EP has two input pins, S3 and S5, to provide simple control scheme of power state. All of VDDQ, VTTREF and VTT are turned on at S0 state (S3 = S5 = high). In S3 state (S3 = low, S5 = high), VDDQ and VTTREF voltages are kept on while VTT is turned off and left at high impedance state (high-Z). The VTT output floats and does not sink or source current in this state. In S4/S5 states (S3=S5=low), all of the three outputs are turned off and discharged to GND according to the discharge mode selected by MODE pin. Each state code represents as follow; S0 = full ON, S3 = suspend to RAM (STR), S4 = suspend to disk (STD), S5 = soft OFF. (See $\frac{1}{8}$ 8-1) Submit Document Feedback 表 8-1. S3/S5 Power State Control | STATE | S3 | S5 | VREF | VDDQ | VTTREF | VTT | | |-------|----|----|------|-----------------|-----------------|-----------------|--| | S0 | HI | HI | ON | ON | ON | ON | | | S3 | LO | HI | ON | ON | ON | OFF (high-Z) | | | S4/S5 | LO | LO | OFF | OFF (discharge) | OFF (discharge) | OFF (discharge) | | #### 8.3.5 Discharge Control In S4/S5 state, VDDQ, VTT, and VTTREF outputs are discharged based on the respective discharge mode selected above. The tracking discharge mode discharges VDDQ output through the internal VTT regulator transistors enabling quick discharge operation. The VTT output maintains tracking of the VTTREF voltage in this mode. (Refer to \boxtimes 7-26.) After 4 ms of tracking discharge operation, the mode changes to non-tracking discharge. The VDDQ output must be connected to the VLDOIN pin in this mode. The non-tracking mode discharges the VDDQ and VTT pins using internal MOSFETs that are connected to corresponding output terminals. The non-tracking discharge is slow compared with the tracking discharge due to the lower current capability of these MOSFETs. (Refer to \boxtimes 7-27.) #### **8.3.6 VTT Overcurrent Protection** The LDO has an internally fixed constant overcurrent limiting of 3-A (typ) for both sink and source operation. #### 8.3.7 V5IN Undervoltage Lockout (UVLO) Protection TPS51216-EP has a 5-V supply UVLO protection threshold. When the V5IN voltage is lower than UVLO threshold voltage, typically 3.93 V, VDDQ, VTT, and VTTREF are shut off. This is a non-latch protection. #### 8.3.8 Thermal Shutdown TPS51216-EP includes an internal temperature monitor. If the temperature exceeds the threshold value, 140°C (typical), VDDQ, VTT and VTTREF are shut off. The thermal shutdown state of VDDQ is open, VTT and VTTREF are high impedance (high-Z) respectively, and the discharge functions are disabled. This is a non-latch protection and the operation is restarted with soft-start sequence when the device temperature is reduced by 10°C (typical). ## **8.4 Device Functional Modes** ### **8.4.1 MODE Pin Configuration** The TPS51216-EP reads the MODE pin voltage when the S5 signal is raised high and stores the status in a register. A 15- μ A current is sourced from the MODE pin during this time to read the voltage across the resistor connected between the pin and GND. 表 8-2 shows resistor values, corresponding switching frequency, and discharge mode configurations. 表 8-2. MODE Selection | MODE NO. | RESISTANCE BETWEEN MODE AND GND (kΩ) | SWITCHING
FREQUENCY (kHz) | DISCHARGE MODE | | | |----------|--------------------------------------|------------------------------|----------------|--|--| | 3 | 200 | 400 | Tracking | | | | 2 | 100 | 300 | Tracking | | | | 1 | 68 | 300 | Non-tracking | | | | 0 | 47 | 400 | Non-tracking | | | Submit Document Feedback Product Folder Links: TPS51216-EP ## 9 Application and Implementation 注 以下のアプリケーション情報は、TIの製品仕様に含まれるものではなく、TIではその正確性または完全性を保証いたしません。個々の目的に対する製品の適合性については、お客様の責任で判断していただくことになります。お客様は自身の設計実装を検証しテストすることで、システムの機能を確認する必要があります。 ## 9.1 Application Information TPS51216-EP is highly integrated synchronous step-down buck solution. The device is used to convert a higher DC-DC voltage to lower DC output voltage to provide VDDQ and VTT for various DDR memory power solutions. #### 9.1.1 **D-CAP Mode** 図 9-1. Simplified D-CAP Model The VDDQSNS voltage is compared with REFIN voltage. The PWM comparator creates a set signal to turn on the high-side MOSFET. The gain and speed of the comparator is high enough to maintain the voltage at the beginning of each on-cycle (or the end of each off-cycle) to be substantially constant. The DC output voltage monitored at VDDQ may have line regulation due to ripple amplitude that slightly increases as the input voltage increase. The D-CAP mode offers flexibility on output inductance and capacitance selections and provides ease-of-use with a low external component count. However, it requires a sufficient amount of output ripple voltage for stable operation and good jitter performance. The requirement for loop stability is simple and is described in \pm 1. The 0-dB frequency, f_0 defined in \pm 1, is recommended to be lower than 1/3 of the switching frequency to secure proper phase margin. $$f_0 = \frac{1}{2\pi \times \text{ESR} \times C_{\text{OUT}}} \le \frac{f_{\text{SW}}}{3}$$ (1) #### where - · ESR is the effective series resistance of the output capacitor - C_{OUT} is the capacitance of the output capacitor - f_{sw} is switching frequency Jitter is another attribute caused by signal-to-noise ratio of the feedback signal. One of the major factors that determine jitter performance in D-CAP mode is the down-slope angle of the VDDQSNS ripple voltage. \boxtimes 9-2 shows, in the same noise condition, a jitter is improved by making the slope angle larger. 図 9-2. Ripple Voltage Slope and Jitter Performance For a good jitter performance, use the recommended down slope of approximately 20 mV per switching period as shown in \boxtimes 9-2 and \rightrightarrows 2. $$\frac{V_{OUT} \times ESR}{f_{SW} \times L_X} \ge 20 \,\text{mV} \tag{2}$$ where - V_{OUT} is the VDDQ output voltage - L_X is the inductance #### 9.1.2 Light-Load Operation In auto-skip mode, the TPS51216-EP SMPS control logic automatically reduces its switching frequency to improve light-load efficiency. To achieve this intelligence, a zero cross detection comparator is used to prevent negative inductor current by turning off the low-side MOSFET. 式 3 shows the boundary load condition of this skip mode and continuous conduction operation. $$I_{LOAD(LL)} = \frac{\left(V_{IN} - V_{OUT}\right)}{2 \times L_X} \times \frac{V_{OUT}}{V_{IN}} \times
\frac{1}{f_{SW}}$$ (3) #### 9.1.3 VTT and VTTREF TPS51216-EP integrates two high performance, low-dropout linear regulators, VTT and VTTREF, to provide complete DDR2/DDR3/DDR3L power solutions. The VTTREF has a 10-mA sink/source current capability, and tracks $\frac{1}{2}$ of VDDQSNS with $\pm 1\%$ accuracy using an on-chip $\frac{1}{2}$ divider. A 0.22- μ F (or larger) ceramic capacitor must be connected close to the VTTREF terminal for stable operation. The VTT responds quickly to track VTTREF within ± 40 mV at all conditions, and the current capability is 2 A for both sink and source. A 10- μ F (or larger) ceramic capacitor must be connected close to the VTT terminal for stable operation. To achieve tight regulation with minimum effect of wiring resistance, a remote sensing terminal, VTTSNS, should be connected to the positive node of the VTT output capacitors as a separate trace from the high-current line to the VTT pin. (Refer to セクション 11.1 for details.) When VTT is not required in the design, the following treatments are strongly recommended. - Connect VLDOIN to VDDQ. - Tie VTTSNS to VTT, and remove capacitors from VTT to float. - Connect VTTGND to GND. - Select MODE 0 or MODE 1 shown in 表 8-2 (select non-tracking discharge mode). - Maintain a 0.22-µF capacitor connected at VTTREF. - Pull down S3 to GND with 1-kΩ resistance. 図 9-3. Application Circuit When VTT is not Required #### 9.1.4 VDDQ Overvoltage and Undervoltage Protection TPS51216-EP sets the overvoltage protection (OVP) when the VDDQSNS voltage reaches a level 20% (typ) higher than the REFIN voltage. When an OV event is detected, the controller latches DRVH low and DRVL high. VTTREF and VTT are turned off and discharged using the non-tracking discharge MOSFETs regardless of the tracking mode. The undervoltage protection (UVP) latch is set when the VDDQSNS voltage remains lower than 68% (typ) of the REFIN voltage for 1 ms or longer. In this fault condition, the controller latches DRVH low and DRVL low and discharges the VDDQ, VTT, and VTTREF outputs. UVP detection function is enabled after 1.2 ms of SMPS operation to ensure startup. To release the OVP and UVP latches, toggle S5 or adjust the V5IN voltage down and up beyond the undervoltage lockout threshold. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback #### 9.1.5 VDDQ Overcurrent Protection The VDDQ SMPS has cycle-by-cycle overcurrent limiting protection. The inductor current is monitored during the off-state using the low-side MOSFET $R_{DS(on)}$ and the controller maintains the off-state while the voltage across the low-side MOSFET is larger than the overcurrent trip level. The current monitor circuit inputs are PGND and SW pins so that those should be properly connected to the source and drain terminals of low-side MOSFET. The overcurrent trip level, V_{TRIP} , is determined by $\not \equiv 4$. $$V_{TRIP} = R_{TRIP} \times I_{TRIP} \tag{4}$$ where - R_{TRIP} is the value of the resistor connected between the TRIP pin and GND - I_{TRIP} is the current sourced from the TRIP pin. I_{TRIP} is 10 μA typically at room temperature, and has 4700 ppm/°C temperature coefficient to compensate the temperature dependency of the low-side MOSFET R_{DS(on)}. Because the comparison is done during the off-state, V_{TRIP} sets the valley level of the inductor current. The load current OCL level, I_{OCL} , can be calculated by considering the inductor ripple current as shown in \pm 5. $$I_{OCL} = \left(\frac{V_{TRIP}}{8 \times R_{DS(on)}}\right) + \frac{I_{IND(ripple)}}{2} = \left(\frac{V_{TRIP}}{8 \times R_{DS(on)}}\right) + \frac{1}{2} \times \frac{V_{IN} - V_{OUT}}{L_X} \times \frac{V_{OUT}}{f_{SW} \times V_{IN}}$$ (5) where I_{IND(ripple)} is inductor ripple current In an overcurrent condition, the current to the load exceeds the current to the output capacitor, thus the output voltage tends to fall down. Eventually, it crosses the undervoltage protection threshold and shuts down. #### 9.2 Typical Application 図 9-4. DDR3, 400-kHz Application Circuit, Tracking Discharge #### 9.2.1 Design Requirements See 表 9-1 for the design parameters. 表 9-1. Design Parameters | V _{IN} VDDQ | | I _{VDDQ} | VTT | I _{VTT} | F _{SW} | | |----------------------|-------|-------------------|--------|------------------|-----------------|--| | 8 to 20 V | 1.5 V | 20 A | 0.75 V | 2 A | 400 kHz | | #### 9.2.2 Detailed Design Procedure #### 9.2.2.1 List of Materials 表 9-2. DDR3, 400-kHz Application Circuit, List of Materials | REFERENCE DESIGNATOR | QTY | SPECIFICATION | MANUFACTURER | PART NUMBER | |----------------------|-----|------------------------|--------------|---------------| | C8, C9, C10 | 3 | 10 μF, 25 V | Taiyo Yuden | TMK325BJ106MM | | C11 | 1 | 330 μF, 2V, 6 mΩ | Panasonic | EEFSX0D331XE | | L1 | 1 | 0.56 μH, 21 A, 1.56 mΩ | Panasonic | ETQP4LR56WFC | | Q1 | 1 | 30 V, 35 A, 8.5 mΩ | Fairchild | FDMS8680 | | Q2, Q3 | 2 | 30 V, 42 A, 3.5 mΩ | Fairchild | FDMS8670AS | For this example, the bulk output capacitor ESR requirement for D-CAP mode is described in ₹ 6, whichever is greater. $$ESR \ge \frac{20\,\text{mV} \times f_{SW} \times L}{V_{OUT}} \quad \text{or} \quad ESR \ge \frac{3}{2\pi \times f_{SW} \times C_{OUT}} \tag{6}$$ #### 9.2.2.2 External Components Selection The external components selection is simple in D-CAP mode. #### 1. Determine the value of R4 and R5. The output voltage is determined by the value of the voltage-divider resistor, R4 and R5, as shown in \boxtimes 9-4. R4 is connected between VREF and REFIN pins, and R5 is connected between the REFIN pin and GND. Setting R4 as 10-k Ω is a good starting point. Determine R5 using \npreceq 7. $$R5 = \frac{R4}{\left(\frac{1.8}{V_{OUT} - \left(\frac{I_{IND(ripple)} \times ESR}{2}\right)} - 1\right)}$$ (7) #### 2. Choose the inductor. The inductance value should be determined to yield a ripple current of approximately ¼ to ½ of maximum output current. Larger ripple current increases output ripple voltage and improves the signal-to-noise ratio and helps stable operation. $$L_{X} = \frac{1}{I_{IND(ripple)} \times f_{SW}} \times \frac{\left(V_{IN(max)} - V_{OUT}\right) \times V_{OUT}}{V_{IN(max)}} = \frac{3}{I_{O(max)} \times f_{SW}} \times \frac{\left(V_{IN(max)} - V_{OUT}\right) \times V_{OUT}}{V_{IN(max)}} \tag{8}$$ The inductor needs a low direct current resistance (DCR) to achieve good efficiency, as well as enough room above peak inductor current before saturation. The peak inductor current can be estimated in \pm 9. $$I_{IND(peak)} = \frac{V_{TRIP}}{8 \times R_{DS(on)}} + \frac{1}{L_X \times f_{SW}} \times \frac{\left(V_{IN(max)} - V_{OUT}\right) \times V_{OUT}}{V_{IN(max)}}$$ (9) #### 3. Choose the OCL setting resistance, R_{TRIP}. Combining \pm 4 and \pm 5, R_{TRIP} can be obtained using \pm 10. $$R_{TRIP} = \frac{8 \times \left(I_{OCL} - \left(\frac{\left(V_{IN} - V_{OUT}\right)}{\left(2 \times L_X\right)}\right) \times \frac{V_{OUT}}{\left(f_{SW} \times V_{IN}\right)}\right) \times R_{DS(on)}}{I_{TRIP}}$$ (10) #### 4. Choose the output capacitors. TI recommends organic semiconductor capacitors or specialty polymer capacitors. Determine ESR to meet small signal stability and recommended ripple voltage. A quick reference is shown in \pm 11 and \pm 12. $$\frac{1}{2\pi \times \text{ESR} \times C_{\text{OUT}}} \le \frac{f_{\text{SW}}}{3} \tag{11}$$ $$\frac{V_{OUT} \times ESR}{f_{SW} \times L_X} \ge 20 \, \text{mV} \tag{12}$$ #### 9.2.3 Application Curve 図 9-5. Output Ripple Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated ## 10 Power Supply Recommendations TPS51216-EP is designed to operate from input voltage supply range of 8 to 20 V. This supply must be well regulated. The power supply must be well bypassed for proper electrical performance. See セクション 11.2 for recommended bypass capacitor placement. ### 11 Layout ## 11.1 Layout Guidelines Certain issues must be considered before designing a layout using the TPS51216-EP. - VIN capacitors, VOUT capacitors, and MOSFETs are the power components and should be placed on one side of the PCB (solder side). Other small signal components should be placed on another side (component side). At least one inner plane should be inserted, connected to ground, in order to shield and isolate the small signal traces from noisy power lines. - All sensitive analog traces and components such as VDDQSNS, VTTSNS, MODE, REFIN, VREF, and TRIP should be placed away from high-voltage switching nodes such as SW, DRVL, DRVH, or VBST to avoid coupling. Use internal layers as ground planes and shield feedback trace from power traces and components. - The DC/DC converter has several high-current loops. The area of these loops should be minimized in order to suppress generating switching noise. - The most important loop to minimize the area of is the path from the VIN capacitors through the high and low-side MOSFETs, and back to the capacitors through ground. Connect the negative node of the VIN capacitors and the source of the low-side MOSFET at ground as close as possible. (Refer to loop number 1 of ☑ 11-1) - The second important loop is the path from the low-side MOSFET through inductor and VOUT capacitors, and back to source of the low-side MOSFET through ground. Connect source of the low-side MOSFET and negative node of VOUT capacitors at ground as close as possible. (Refer to loop number 2 of ☑ 11-1) - The third important loop is of gate driving system for the low-side MOSFET. To turn on the low-side MOSFET, high current flows from V5IN capacitor through gate driver and the low-side MOSFET, and back to negative node of the capacitor through ground. To turn off the low-side MOSFET, high current flows from gate of the low-side MOSFET through the gate driver and PGND, and back to source of the low-side MOSFET through ground. Connect negative node of V5IN capacitor, source of the low-side MOSFET and PGND at ground as close as possible. (Refer
to loop number 3 of X 11-1) - Because the TPS51216-EP controls output voltage referring to voltage across VOUT capacitor, VDDQSNS should be connected to the positive node of VOUT capacitor. In a same manner GND should be connected to the negative node of VOUT capacitor. - Connect the overcurrent setting resistors from TRIP pin to ground and make the connections as close as possible to the device. The trace from TRIP pin to resistor and from resistor to ground should avoid coupling to a high-voltage switching node. - Connect the frequency and mode setting resistor from MODE pin to ground, and make the connections as close as possible to the device. The trace from the MODE pin to the resistor and from the resistor to ground should avoid coupling to a high-voltage switching node - Connections from gate drivers to the respective gate of the high-side or the low-side MOSFET should be as short as possible to reduce stray inductance. Use 0.65 mm (25 mils) or wider trace and vias of at least 0.5 mm (20 mils) diameter along this trace. - The PCB trace defined as SW node, which connects to the source of the switching MOSFET, the drain of the rectifying MOSFET and the high-voltage side of the inductor, should be as short and wide as possible. - VLDOIN should be connected to VDDQ output with short and wide traces. An input bypass capacitor should be placed as close as possible to the pin with short and wide connections. - The output capacitor for VTT should be placed close to the pin with a short and wide connection in order to avoid additional ESR and/or ESL of the trace. - VTTSNS should be connected to the positive node of the VTT output capacitors as a separate trace from the high-current power line and is strongly recommended to avoid additional ESR and/or ESL. If it is needed to sense the voltage at the point of the load, it is recommended to attach the output capacitors at that point. Also, it is recommended to minimize any additional ESR and/or ESL of ground trace between GND pin and the output capacitors. - Consider adding a low pass filter (LPF) at VTTSNS in case the ESR of the VTT output capacitors is larger than 2 m Ω . - VDDQSNS can be connected separately from VLDOIN. Remember that this sensing potential is the reference voltage of VTTREF. Avoid any noise generative lines. - www.tij.co.jp - The negative node of the VTT output capacitors and the VTTREF capacitor should be tied together by avoiding common impedance to high-current path of the VTT source/sink current. - GND pin node represents the reference potential for VTTREF and VTT outputs. Connect GND to negative nodes of VTT capacitors, VTTREF capacitor and VDDQ capacitors with care to avoid additional ESR and/or ESL. GND and PGND should be connected together at a single point. - In order to effectively remove heat from the package, prepare the thermal land and solder to the package thermal pad. Wide trace of the component-side copper, connected to this thermal land, helps heat spreading. Numerous vias with a 0.3-mm diameter connected from the thermal land to the internal/solder-side ground planes should be used to help dissipation. #### 注意 Do **not** connect PGND pin directly to this thermal land underneath the package. ## 11.2 Layout Example 図 11-1. DC/DC Converter Ground System Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback ## 12 Device and Documentation Support ## 12.1 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. #### 12.2 サポート・リソース TI E2E[™] サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。 リンクされているコンテンツは、該当する貢献者により、現状のまま提供されるものです。これらは TI の仕様を構成するものではなく、必ずしも TI の見解を反映したものではありません。TI の使用条件を参照してください。 #### 12.3 Trademarks D-CAP[™] is a trademark of Texas Instruments. TI E2E[™] is a trademark of Texas Instruments. すべての商標は、それぞれの所有者に帰属します。 ## 12.4 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. ### 12.5 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. #### 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com 29-Mar-2022 #### PACKAGING INFORMATION | Orderable Device | Status (1) | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead finish/
Ball material | MSL Peak Temp | Op Temp (°C) | Device Marking
(4/5) | Samples | |------------------|------------|--------------|--------------------|------|----------------|--------------|-------------------------------|---------------------|--------------|-------------------------|---------| | TPS51216MRUKREP | ACTIVE | WQFN | RUK | 20 | 3000 | RoHS & Green | NIPDAU | Level-3-260C-168 HR | -55 to 125 | 51216M | Samples | | V62/16601-01XE | ACTIVE | WQFN | RUK | 20 | 3000 | RoHS & Green | NIPDAU | Level-3-260C-168 HR | -55 to 125 | 51216M | Samples | (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. ## **PACKAGE OPTION ADDENDUM** www.ti.com 29-Mar-2022 #### OTHER QUALIFIED VERSIONS OF TPS51216-EP: • Catalog : TPS51216 NOTE: Qualified Version Definitions: • Catalog - TI's standard catalog product ## **PACKAGE MATERIALS INFORMATION** www.ti.com 8-May-2023 ## TAPE AND REEL INFORMATION | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | #### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant
| |-----------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | TPS51216MRUKREP | WQFN | RUK | 20 | 3000 | 330.0 | 12.4 | 3.3 | 3.3 | 1.1 | 8.0 | 12.0 | Q2 | # **PACKAGE MATERIALS INFORMATION** www.ti.com 8-May-2023 #### *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |-----------------|--------------|-----------------|------|------|-------------|------------|-------------| | TPS51216MRUKREP | WQFN | RUK | 20 | 3000 | 346.0 | 346.0 | 33.0 | 3 x 3, 0.4 mm pitch PLASTIC QUAD FLATPACK - NO LEAD This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details. INSTRUMENTS www.ti.com PLASTIC QUAD FLATPACK - NO LEAD #### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. - 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance. PLASTIC QUAD FLATPACK - NO LEAD NOTES: (continued) - 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271). - Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented. PLASTIC QUAD FLATPACK - NO LEAD NOTES: (continued) 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. ## 重要なお知らせと免責事項 TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス・デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。 これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。 上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。 TI の製品は、TI の販売条件、または ti.com やかかる TI 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。 お客様がいかなる追加条項または代替条項を提案した場合でも、TIはそれらに異議を唱え、拒否します。 郵送先住所:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated