

TPS62870, TPS62871, TPS62872, TPS62873 JAJSLY4A - JANUARY 2023 - REVISED OCTOBER 2023

TPS6287x 2.7V~6V 入力、6A、9A、12A、15A、高速過渡応答付きスタッカブ ル同期整流降圧コンバータ

1 特長

TEXAS

INSTRUMENTS

- 2.7V~6Vの入力電圧範囲
- ピン互換性のあるデバイス・ファミリ:6A、9A、12A、 15A
- 4 つの出力電圧範囲:
 - 1.25mV 刻みで 0.4V~0.71875V
 - 2.5mV 刻みで 0.4V~1.0375V
 - 5mV 刻みで 0.4V~1.675V
 - 10mV 刻みで 0.8V~3.35V
- **±1%**の出力電圧精度
- 7mΩ および 4.5mΩ のパワー MOSFET を内蔵 ٠
- 可変外部補償
- スタートアップ時の出力電圧を抵抗によって選択可能
- スイッチング周波数を抵抗によって選択可能
- パワー・セーブまたは強制 PWM 動作
- I²C 互換インターフェイス:最高 1MHz
- 差動リモート・センシング
- オプションのスタック動作により、出力電流能力を向上
- サーマル警告およびサーマル・シャットダウン ٠
- 高精度イネーブル入力
- アクティブ出力放電
- オプションのスペクトラム拡散クロッキング
- ウィンドウ・コンパレータによるパワー・グッド出力
- ウェッタブル・フランク付き 2.55mm × 3.55mm × 1mm の VQFN パッケージ
- -40℃~125℃の接合部温度範囲(T」)

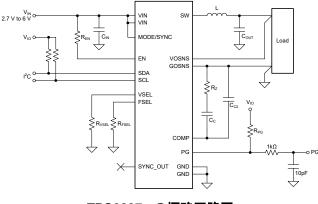
2 アプリケーション

- 光ネットワーク
- ストレージ
- FPGA、ASIC、デジタル・コア電源
- **DDR**メモリ電源

3 概要

TPS6287x は、差動リモート・センシング機能を搭載した ピン互換の 6A、9A、12A、15A 同期整流降圧 DC/DC コ ンバータのファミリです。各電流定格に、I²C インターフェ イス付きのフル機能のデバイス・バリエーションと |²C イン ターフェイスなしの制限機能付きデバイス・バリエーション があります。すべてのデバイスは、高い効率と使いやすさ を特長としています。低抵抗の電源スイッチにより、高い周 囲温度でも最大 15A の連続出力電流を供給できます。

これらのデバイスをスタック・モードで動作させることで、大 きな出力電流を供給することや、消費電力を複数のデバイ スに分散することが可能です。


TPS6287x ファミリは、固定周波数動作で高速過渡応答 をサポートする拡張 DCS 制御方式を実装しています。 デ バイスは、最大効率を達成するパワー・セーブ・モード、ま たは最高の過渡性能と最小の出力電圧リップルを実現す る強制 PWM モードで動作できます。

オプションのリモート・センシング機能は、POL (ポイント・ オブ・ロード)での電圧レギュレーションを最大化し、あらゆ る動作条件において ±1% 以内の DC 電圧精度を実現し ます。

製品情報						
部品番号 ⁽²⁾	電流定格	パッケージ ⁽¹⁾				
TPS62870	6A					
TPS62871	9A	RXS (VQFN-				
TPS62872	12A	FCRLF、16)				
TPS62873	15A					

利用可能なパッケージについては、このデータシートの末尾にあ (1)る注文情報を参照してください。

「デバイスのオプション」表を参照してください。 (2)

TPS6287x の概略回路図

このリソースの元の言語は英語です。翻訳は概要を便宜的に提供するもので、自動化ツール (機械翻訳)を使用していることがあり、TI では翻訳の正確性および妥当 め
低
性につきましては一切保証いたしません。実際の設計などの前には、ti.com で必ず最新の英語版をご参照くださいますようお願いいたします。

Table of Contents

1	特長	1
	アプリケーション	
	概要	1
4	Revision History	2
5	概要 (続き)	3
	Device Options	
7	Pin Configuration and Functions	4
8	Specifications	
	8.1 Absolute Maximum Ratings	6
	8.2 ESD Ratings_Catalog	
	8.3 Recommended Operating Conditions	6
	8.4 Thermal Information	7
	8.5 Electrical Characteristics	7
	8.6 I ² C Interface Timing Characteristics	
	8.7 Timing Requirements1	0
	8.8 Typical Characteristics1	1
9	Detailed Description1	3
	9.1 Overview1	3
	9.2 Functional Block Diagram1	
	9.3 Feature Description1	5

9.4 Device Functional Modes	30
9.5 Programming	31
9.6 Register Map	
10 Application and Implementation	
10.1 Application Information	
10.2 Typical Application	
10.3 Best Design Practices	
10.4 Power Supply Recommendations	
10.5 Layout	
11 Device and Documentation Support	
11.1 Device Support	
11.2 Documentation Support	
11.3ドキュメントの更新通知を受け取る方法	
11.4 サポート・リソース	52
11.5 Trademarks	
11.6 静電気放電に関する注意事項	
11.7 用語集	
12 Mechanical, Packaging, and Orderable	
Information	

4 Revision History

資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。

С	hanges from Revision * (January 2023) to Revision A (October 2023)	Page
•	Updated the Device Options Table	
	Changed the title of 🗵 8-5	
•	Updated 🗵 9-5 to add inductor value	
•	Updated 表 9-5 to reflect new available Orderable Part Number	21
•	Updated ⊠ 10-18 to show device performance up to 20 MHz	

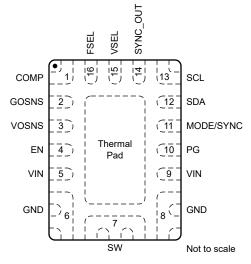
5 概要 (続き)

スイッチング周波数は、FSEL ピンに接続した抵抗により選択できます。スイッチング周波数は 1.5MHz、2.25MHz、 2.5MHz、3.0MHz のいずれかに設定できます。または、同じ周波数範囲の外部クロックに同期させることができます。

I²C 互換インターフェイスを使うと、各種の制御、監視、警告機能 (電圧の監視、温度に関連する警告など)を実現できます。出力電圧は、アプリケーションの性能要求に負荷の消費電力が適合するように、I²C 互換インターフェイスを使って素早く調整できます。デフォルトの起動電圧は、VSEL ピンに接続した抵抗により選択できます。

6 Device Options

Device Number	Output Current	Start-Up Voltage and I ² C Address ⁽¹⁾ ⁽²⁾	VSEL setting	Spread Spectrum Clocking	Soft-Start Time	
		0.800 V, 0x40	6.2 kΩ to GND			
TPS62873Z0WRXSR	15 A	0.750 V, 0x41	Short to GND	Default setting = off	Default setting = 1 ms	
1F30207320WRA3R	15 A	0.875 V, 0x42	Short to VIN		Delault setting – This	
		0.800 V, 0x43	47 k Ω to VIN			
		0.600 V, 0x40	6.2 kΩ to GND			
TPS62873Z1WRXSR	15 A	0.750 V, 0x41	Short to GND	Default setting = off	Default setting = 1 ms	
TF 30207 32 TWIXASIN	13 A	0.875 V, 0x42	Short to VIN		Delault Setting – This	
		0.900 V, 0x43	47 k Ω to VIN			
		0.800 V, 0x40	6.2kΩ to GND			
TPS62872Z0WRXSR	12 A	0.750 V, 0x41	Short to GND	Default setting = off	Default setting = 1 ms	
1F30207220WIXASIX	12 A	0.875 V, 0x42	Short to VIN	Delault Setting – Oli	Delault Setting – This	
		0.800 V, 0x43	47 k Ω to VIN			
	12 A	0.500 V, 0x40	$6.2 \text{ k}\Omega$ to GND		Default setting = 1 ms	
TPS62872Z2WRXSR		0.750 V, 0x41	Short to GND	Default setting = off		
1F3020722200KA3R		0.875 V, 0x42	Short to VIN	Delault setting – on	Delault setting – This	
		1.050 V, 0x43	47 k Ω to VIN	-		
	9 A	0.800 V, 0x40	6.2 kΩ to GND			
TPS62871Z0WRXSR		0.750 V, 0x41	Short to GND	Default setting = off		
1F30207120WRA3R	9 A	0.875 V, 0x42	Short to VIN		Default setting = 1 ms	
		0.800 V, 0x43	47 kΩ to VIN			
		0.800 V, 0x40	6.2 kΩ to GND			
TPS62870Z0WRXSR	6 A	0.750 V, 0x41	Short to GND	Default setting = off	Default setting = 1 ms	
IF30207020WRA3R	0 A	0.875 V, 0x42	Short to VIN	Delault setting – oli	Delault setting – This	
		0.800 V, 0x43	47 k Ω to VIN			
		0.850 V, 0x40	$6.2 \text{ k}\Omega$ to GND			
TPS62871Z4WRXSR	9 A	0.750 V, 0x41	Short to GND	Default setting = off	Default setting = 1 ms	
11 00207 124010000	37	0.875 V, 0x42	Short to VIN		Delaur setting - 1 ms	
		1.000 V, 0x43	47 kΩ to VIN			


(1) The I²C address is linked to the selected start-up voltage. The user cannot select the start-up voltage and I²C address independently.

(2) The user can use the VSEL pin to select which of the four start-up voltages the device uses. For more information, see $\frac{1}{5}$ 9-5 and $\frac{1}{5}$ 9-10.

Unless otherwise noted, device variants without I^2C operate with the same default settings as device variants with I^2C .

7 Pin Configuration and Functions

図 7-1. 16-Pin RXS VQFN Package (Top View)

表 7-1. Pin Functions

Pin		Type ⁽¹⁾	Description	
Name	No.	Type		
СОМР	1	_	Device compensation input. A resistor and capacitor from this pin to GOSNS define the compensation of the control loop. In stacked operation, connect the COMP pins of all stacked devices together and connect a resistor and capacitor between the common COMP node and GOSNS.	
GOSNS	2	I	Output ground sense (differential output voltage sensing)	
VOSNS	3	I	Output voltage sense (differential output voltage sensing)	
EN	4	I	This is the enable pin of the device. The user must connect to this pin using a series resistor of a east 15 k Ω . A low logic level on this pin disables the device and a high logic level on this pin enables the device. Do not leave this pin unconnected. For stacked operation, interconnect EN pins of all stacked devices with a resistor to the supply roltage or a GPIO of a processor. See $2023 \times 9.3.17$ for a detailed description.	
VIN	5, 9	Р	Power supply input. Connect the input capacitor as close as possible between VIN and GND.	
GND	6, 8	GND	Ground pin	
SW	7	0	This pin is the switch pin of the converter and is connected to the internal power MOSFETs.	
PG	10	I/O	Open-drain power-good output. Low impedance when not "power good," high impedance when "power good." This pin can be left open or be tied to GND when not used in single device operation. In stacked operation, interconnect the PG pins of all stacked devices. Only the PG pin of the primary converter in stacked operation is an open-drain output. For devices that are defined as secondary converters in stacked mode, this pin is an input pin. See セクション 9.3.17 for a detailed description.	
MODE/SYNC	11	I	The device runs in power save mode when this pin is pulled low. If the pin is pulled high, the device runs in forced-PWM mode. If unused, this pin can be left floating and an internal pulldown resistor will pull it low. The mode pin can also be used to synchronize the device to an external clock.	
SDA	12	I/O	I ² C serial data pin. Do not leave floating. Connect a pullup resistor to a logic high level. Connect to GND for secondary devices in stacked operation and for device variants without I ² C.	
SCL	13	I/O	$\rm I^2C$ serial clock pin. Do not leave this pin floating. Connect a pullup resistor to a logic high level. Connect this pin to GND for secondary devices in stacked operation and for device variants without $\rm I^2C$.	

表 7-1. Pin Functions (続き)

Pin		Type ⁽¹⁾	Description		
Name	No.	Type	Description		
SYNC_OUT	14	0	Internal clock output pin for synchronization in stacked mode. Leave this pin floating for single device operation. Connect this pin to the MODE/SYNC pin of the next device in the daisy-chain in stacked operation. <i>Do not use this pin to connect to a non-TPS6287x device</i> . During start-up, this pin is used to identify if a device must operate as a secondary converter in stacked operation. Connect a 47-k Ω resistor from this pin to GND to define a secondary converter in stacked operation. See $\pm 2 \sqrt{2} \le 9.3.17$ for a detailed description.		
VSEL 15			Start-up output voltage select pin. A resistor or short circuit to GND or V _{IN} defines the selected output voltage. See セクション 9.3.6.2.		
FSEL 16		_	Frequency select pin. A resistor or a short circuit to GND or V _{IN} determines the free-running switching frequency. See セクション 9.3.6.2.		
Exposed Thermal Pad -		_	The thermal pad must be soldered to GND to achieve an appropriate thermal resistance and for mechanical stability.		

(1) I = input, O = output, P = power, GND = ground

Copyright © 2023 Texas Instruments Incorporated

5

8 Specifications

8.1 Absolute Maximum Ratings

over operating temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
	VIN ⁽⁴⁾	- 0.3	6.5	
	SW (DC)	- 0.3	V _{IN} + 0.3	
	SW (AC, less than 10ns) ⁽³⁾	-3	10	
Voltage ⁽²⁾	VOSNS	- 0.3	3.8	V
	SCL, SDA	- 0.3	5.5	
	FSEL, VSEL, EN, MODE/SYNC	- 0.3	6.5	
	GOSNS	- 0.3	0.3	
Voltage ⁽²⁾	PG	- 0.3	6.5	
	SYNC_OUT	-1	1	
Current	COMP	-1	1	mA
	PG		5	
TJ	Junction temperature	-40	150	°C
T _{stg}	Storage temperature	-65	150	°C

(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

(2) All voltage values are with respect to the GND pin.

(3) While switching.

(4) The voltage at the pin can exceed the 6.5 V absolute max condition for a short period of time, but must remain less than 8 V. VIN at 8 V for a 100ms duration is equivalent to approximately 8 hours of aging for the device at room temperature.

8.2 ESD Ratings_Catalog

			VALUE	UNIT
	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	N/
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002 ⁽²⁾	±750	v

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

8.3 Recommended Operating Conditions

Over operating temperature range (unless otherwise noted)

			MIN	NOM MAX	UNIT	
V	Input voltage	VIN	2.7	6	V	
V _{IN}	Input voltage	SDA, SCL		5	v	
V _{OUT}	Output voltage		0.4	3.35 V or (V _{IN} - 1.4 V) ⁽¹⁾	V	
		TPS62870		6	A	
	Output ourropt	TPS62871		9		
IOUT	Output current	TPS62872		12		
		TPS62873		15		
	Inductance		110	330	nH	
L		$f_{SW} \ge 2.25 \text{ MHz}$ and $V_{OUT} \le 1.675 \text{ V}$	55	330		

8.3 Recommended Operating Conditions (続き)

Over operating temperature range (unless otherwise noted)

			MIN	NOM	MAX	UNIT
C _{IN}	Input capacitance (per pin) ⁽²⁾	VIN	5	10		μF
C _{OUT}	Output capacitance ⁽²⁾		40		(3)	
C _{PAR}	Denesitie eenesitenes	VSEL, FSEL			100	
	Parasitic capacitance	SYNC_OUT			20	pF
	Resistor tolerance	VSEL, FSEL			±2%	
TJ	Operating junction temperature		-40		125	°C

(1) Whichever value is lower.

(2) *Effective* capacitance.

(3) The maximum recommended output capacitance depends on the specific operating conditions of an application. Output capacitance values up to a few millifarad are typically possible, however.

8.4 Thermal Information

		TPS		
	THERMAL METRIC ⁽¹⁾	RXS (JEDEC)	RXS (EVM)	UNIT
		16 PINS	16 PINS	
R _{0JA}	Junction-to-ambient thermal resistance	43.2	28	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	19.2	N/A	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	7.7	N/A	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	0.5	1.5	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	7.7	9.3	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	6.3	N/A	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

8.5 Electrical Characteristics

over operating junction temperature (T_J = -40 °C to 125 °C) and V_{IN} = 2.7 V to 6 V. Typical values at V_{IN} = 3.3 V and T_J = 25 °C (unless otherwise noted).

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPL	SUPPLY						
Ι _Q	Supply current (VIN)	Operating	EN = high, I_{OUT} = 0 mA, $V_{(SW)}$ = 0 V, primary operation, device not switching, T_J = 25 °C		1.75	3	mA
		Standby	EN = low, V _(SW) = 0 V, T _J = 25 °C		16.5	3 40 2.7 2.6	μA
V _{IT+}	Positive-going UVLO th (VIN)	hreshold voltage		2.5	2.6	2.7	V
V _{IT-}	Negative-going UVLO (VIN)	threshold voltage		2.4	2.5	2.6	V
V _{hys}	UVLO hysteresis voltag	ge (VIN)		90			mV
V _{IT+}	Positive-going OVLO th (VIN)	hreshold voltage		6.1	6.3	6.5	V
V _{IT-}	Negative-going OVLO (VIN)	threshold voltage		6.0	6.2	6.4	V
V _{hys}	OVLO hysteresis volta	ge (VIN)		85			mV
V _{IT-}	Negative-going power-	on reset threshold		1.4			V

8.5 Electrical Characteristics (続き)

over operating junction temperature (T_J = -40 °C to 125 °C) and V_{IN} = 2.7 V to 6 V. Typical values at V_{IN} = 3.3 V and T_J = 25 °C (unless otherwise noted).

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Τ	Thermal shutdown threshold temperature	T _J rising		170		°C
T _{SD}	Thermal shutdown hysteresis			20		°C
r	Thermal warning threshold temperature	T _J rising		150		°C
Γ _W	Thermal warning hysteresis			20		°C
CONTRO	L and INTERFACE	-				
V _{IT+}	Positive-going input threshold voltage (EN)		0.97	1.0	1.03	V
V _{IT-}	Negative-going input threshold voltage (EN)		0.87	0.9	0.93	V
V _{hys}	Hysteresis voltage (EN)		95			mV
н	High-level input current (EN)	V _{IH} = V _{IN} , internal pulldown resistor disabled			200	nA
IIL	Low-level input current (EN)	V _{IL} = 0 V, internal pulldown resistor disabled	-200			nA
V _{IH}	High-level input voltage (SDA, SCL, MODE/SYNC, VSEL, FSEL, SYNC_OUT)		0.8			V
V _{IL}	Low-level input voltage (SDA, SCL, MODE/SYNC, VSEL, FSEL, SYNC_OUT)				0.4	V
		I _{OL} = 3 mA			0.4	V
V _{OL}	Low-level output voltage (SDA)	I _{OL} = 9 mA			0.4	V
		I _{OL} = 5 mA			0.2	V
он	High-level output current (SDA, SCL)	V _{OH} = 3.3 V			200	nA
IL	Low-level input current (MODE/SYNC)	V _{IL} = 0 V	-150		150	nA
ін	High-level input current (MODE/SYNC)	V _{IH} = V _{IN}			3	μA
IL	Low-level input current (SYNC_OUT)	V _{IL} = 0 V	-250			nA
ін	High-level input current (SYNC_OUT)	V _{IH} = 2 V			150	nA
d(EN)1	Enable delay time when EN tied to V_{IN}	Measured from when EN goes high to when device starts switching SR _{VIN} = 1 V/µs		175	500	μs
t _{d(EN)2}	Enable delay time when V _{IN} already applied	Measured from when EN goes high to when device starts switching			100	μs
			0.35	0.5	0.65	ms
	Output voltage romp time	Measured from when device starts	0.7	1	1.3	ms
d(RAMP)	Output voltage ramp time	switching to rising edge of PG	1.4	2	2.6	ms
			2.8	4	5.2	ms
	Time to lock external frequency			50		μs
	Internal pullup resistance (VSEL, FSEL)		5.5		9	kΩ
	Internal pulldown resistance (VSEL, FSEL)		1.3		2.2	kΩ
V _{T+}	Positive-going power good threshold voltage (output undervoltage)		94	96	98	%V _{OU}
V _{T-}	Negative-going power good threshold voltage (output undervoltage)		92	94	96	%V _{OU}
V _{T+}	Positive-going power good threshold voltage (output overvoltage)		104	106	108	%V _{OU}
V _{T-}	Negative-going power good threshold voltage (output overvoltage)		102	104	106	%V _{OU}

8.5 Electrical Characteristics (続き)

over operating junction temperature (T_J = -40 °C to 125 °C) and V_{IN} = 2.7 V to 6 V. Typical values at V_{IN} = 3.3 V and T_J = 25 °C (unless otherwise noted).

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
V _{OL}	Low-level output voltage	(PG)	I _{OL} = 1 mA			0.3	V	
I _{ОН}	High-level output current	: (PG)	V _{OH} = 3.3 V			200	nA	
V _{IH}	High-level input voltage (PG)		Device configured as a secondary device in stacked operation	0.8			V	
V _{IL}	Low-level input voltage (PG)	Device configured as a secondary device in stacked operation			0.4	V	
I _{IH}	High-level input current (PG)	Device configured as a secondary device in stacked operation			1	μA	
I _{IL}	Low-level input current (I	PG)	Device configured as a secondary device in stacked operation	-1			μA	
t _{d(PG)}	Deglitch time (PG)		High-to-low or low-to-high transition on the PG pin	34	40	46	μs	
Ουτρυτ	Γ							
V _{OUT}	Output accuracy		$V_{IN} \ge V_{OUT} + 1.4 V$	-1		1	%	
I _{IB}	Input bias current (GOSN	NS)	V _(GOSNS) = -100 mV to 100 mV	-6			μA	
I _{IB}	Input bias current (VOSN	IS)	V _(VOSNS) = 3.3 V, V _{IN} = 6 V			6	μA	
V _{ICR}	Input common-mode ran	ge (GOSNS)		-100		100	mV	
			f_{SW} = 1.5 MHz, PWM operation, V_{IN} 3.3 V, V_{OUT} = 0.75 V	1.35	1.5	1.65		
£	Switching from upper (SM	D	$\rm f_{SW}$ = 2.25 MHz, PWM operation, $\rm V_{IN}$ 3.3 V, $\rm V_{OUT}$ = 0.75 V	2.025	2.25	2.475	MHz	
f _{SW}	Switching frequency (SW	v)	f_{SW} = 2.5 MHz, PWM operation, V _{IN} 3.3 V, V _{OUT} = 0.75 V	2.25	2.5	2.75	IVITZ	
			f_{SW} = 3 MHz, PWM operation, V _{IN} 3.3 V, V _{OUT} = 0.75 V	2.7	3	3.3	3	
f _{mod}	Frequency of the spread	-spectrum sweep			f _{sw} /2048		kHz	
∆f _{SW}	Switching frequency vari spread-spectrum operati	•			±10%			
т	Emulated current time co	onstant			12.5		μs	
r _{DS(on)}	High-side FET static on-	state resistance	V _{IN} = 3.3 V		7	16	mΩ	
r _{DS(on)}	Low-side FET static on-state resistance		V _{IN} = 3.3 V		4.1	9.4	mΩ	
1	High-side FET off-state current		V _{IN} = 6 V, V _(SW) = 0 V, T _J = 25 °C	-1			μA	
(SW)(off)	Low-side FET off-state c	urrent	V _{IN} = 6 V, V _(SW) = 6 V, T _J = 25 °C			100	μΑ	
		TPS62870		9	12	14		
1	High-side FET forward	TPS62871		12	16	18	-	
I _{LIM}	switch current limit, DC	TPS62872		15	20	22	A	
		TPS62873		18	24	26		
	Low-side FET negative of	urrent limit, DC		7.5		12	А	

8.6 I²C Interface Timing Characteristics

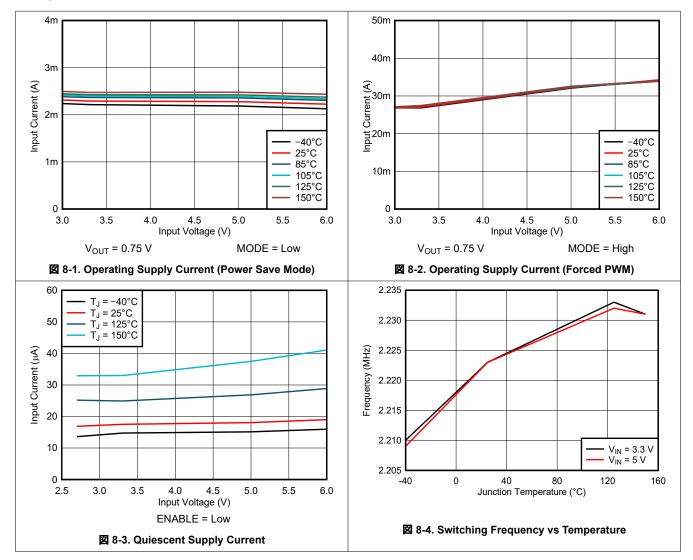
	PARAMETER	TEST CONDITIONS	MIN TYF	P MAX	UNIT
		Standard mode		100	
f _{SCL}	SCL clock frequency	Fast mode		400	kHz
		Fast mode plus		1000	

8.6 I²C Interface Timing Characteristics (続き)

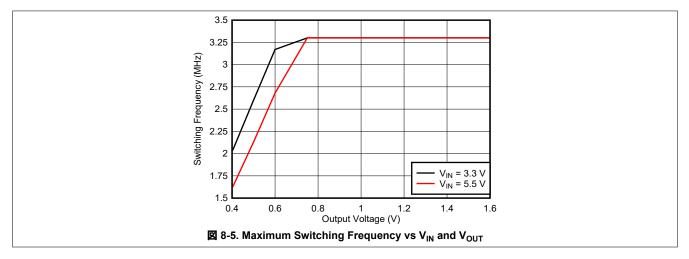
	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	
		Standard mode	4		
t _{HD;} t _{STA}	Hold time (repeated) START condition	Fast mode	0.6		μs
		Fast mode plus	0.26		_
		Standard mode	4.7		
t _{LOW}	LOW period of the SCL clock	Fast mode	1.3		μs
		Fast mode plus	0.5		
		Standard mode	4		
t _{HIGH}	HIGH period of the SCL clock	Fast mode	0.6		μs
		Fast mode plus	0.26		_
		Standard mode	4.7		
t _{SU;} t _{STA}	t _{STA} Setup time for a repeated START condition	Fast mode	0.6		μs
		Fast mode plus	0.26		
		Standard mode	0	3.4	5
t _{HD;} t _{DAT}	Data hold time	Fast mode	0	0.9) µs
		Fast mode plus	0		_
		Standard mode	250		
t _{SU;} t _{DAT}	Data setup time	Fast mode	100		ns
		Fast mode plus	50		-
		Standard mode		1000)
t _r	Rise time of both SDA and SCL signals	Fast mode	20	300) ns
		Fast mode plus		120)
		Standard mode		300)
f	Fall time of both SDA and SCL signals	Fast mode	20×V _{DD} /5.5V	300) ns
		Fast mode plus	20×V _{DD} /5.5V	120)
		Standard mode	4		
t _{su;} t _{sтo}	Setup time for STOP condition	Fast mode	0.6		μs
		Fast mode plus	0.26		_
t _{BUF}		Standard mode	4.7		
	Bus free time between a STOP and START condition	Fast mode	1.3		μs
		Fast mode plus	0.5		
		Standard mode		400)
C _b	Capacitive load for each bus line	Fast mode		400) pF
		Fast mode plus		550)

8.7 Timing Requirements

			MIN	NOM MAX	UNIT
f _(SYNC)	Synchronization clock frequency range (MODE/SYNC)	Nominal f _{SW} = 1.5 MHz	1.3	2.0	MHz
f _(SYNC)	Synchronization clock frequency range (MODE/SYNC)	Nominal f _{SW} = 2.25 MHz	1.8	2.7	MHz
f _(SYNC)	Synchronization clock frequency range (MODE/SYNC)	Nominal f _{SW} = 2.5 MHz	2.0	3.0	MHz
f _(SYNC)	Synchronization clock frequency range (MODE/SYNC)	Nominal f _{SW} = 3.0 MHz	2.5	3.3	MHz


Copyright © 2023 Texas Instruments Incorporated

JAJSLY4A - JANUARY 2023 - REVISED OCTOBER 2023


		MIN	NOM	MAX	UNIT
D _(SYNC)	Synchronization clock duty cycle range (MODE/SYNC)	45%		55%	

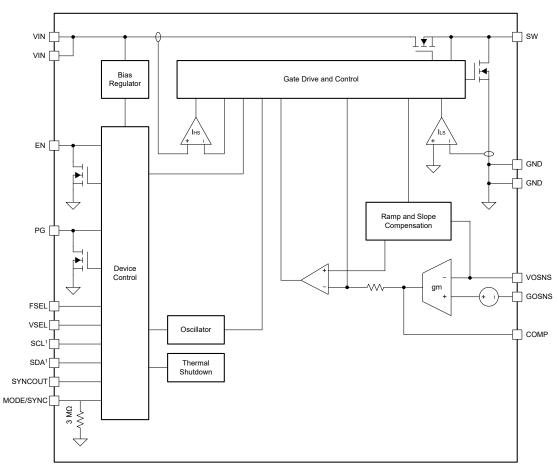
8.8 Typical Characteristics

8.8 Typical Characteristics (continued)

9 Detailed Description

9.1 Overview

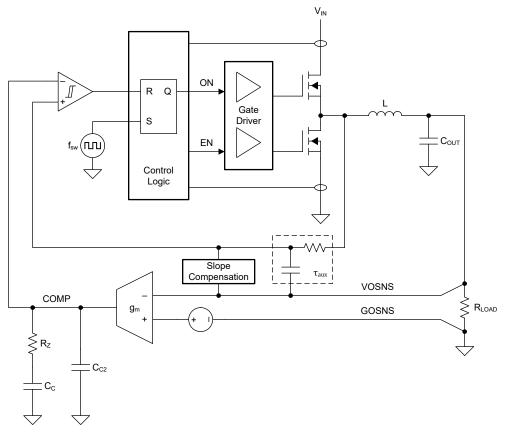
The TPS6287x devices are synchronous step-down (buck) DC/DC converters. These devices use an enhanced DCS control topology to achieve fast transient response while switching with a fixed frequency. Together, with their low output voltage ripple, high DC accuracy, and differential remote sensing, these devices are ideal for supplying the cores of modern high-performance processors.


The family of devices includes 6-A, 9-A, 12-A, and 15-A devices. To further increase the output current capability, the user can combine multiple devices in a "stack". For example, a stack of two TPS62873 devices have a current capability of 30 A. Each device of a stack must have the same current rating to avoid that one device enters current limit too early.

For each current rating, there are full-featured devices with an I^2C interface and limited-featured devices without an I^2C interface (see the *Device Options*). The user can use a device variant without I^2C in exactly the same way as a device variant with I^2C , except that:

- The user must connect the unused SCL and SDA pins to GND.
- The user must be aware of the (fixed) factory settings for parameters and functions that are programmable in the I²C device variants.

9.2 Functional Block Diagram

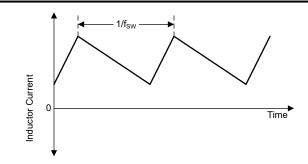

1. In device variants without I²C the SDA and SCL pins are internally connected, but their functionality is disabled.

9.3 Feature Description

9.3.1 Fixed-Frequency DCS Control Topology

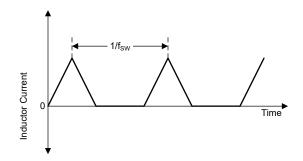
☑ 9-1 shows a simplified block diagram of the fixed-frequency enhanced DCS control topology used in the TPS6287x devices. This topology is comprised of an inner emulated current loop, a middle direct feedback loop, and an outer voltage-regulating loop.

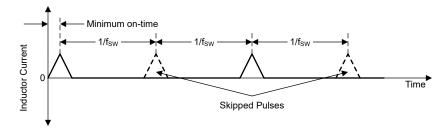
図 9-1. Fixed-Frequency DCS Control Topology (Simplified)


9.3.2 Forced PWM and Power Save Modes

The device can control the inductor current in three different ways to regulate the output:

- Pulse-width modulation with continuous inductor current (PWM-CCM)
- Pulse-width modulation with discontinuous inductor current (PWM-DCM)
- Pulse-frequency modulation with discontinuous inductor current and pulse skipping (PFM-DCM)

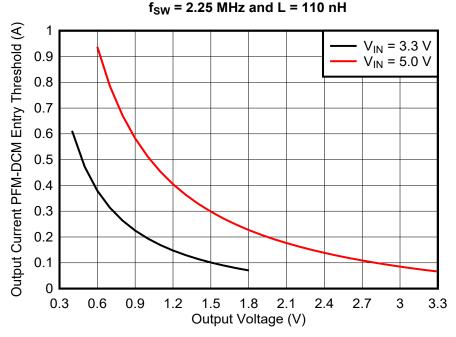

During PWM-CCM operation, the device switches at a constant frequency and the inductor current is continuous (see \boxtimes 9-2). PWM operation achieves the lowest output voltage ripple and the best transient performance.


2 9-2. Continuous Conduction Mode (PWM-CCM) Current Waveform

During PWM-DCM operation, the device switches at a constant frequency and the inductor current is discontinuous (see \boxtimes 9-3). In this mode, the device controls the peak inductor current to maintain the selected switching frequency while still being able to regulate the output.

2 9-3. Discontinuous Conduction Mode (PWM-DCM) Current Waveform

During PFM-DCM operation, the device keeps the peak inductor current constant (at a level corresponding to the minimum on time of the converter) and skips pulses to regulate the output (see \boxtimes 9-4). The switching pulses that occur during PFM-DCM operation are synchronized to the internal clock.


For very small output voltages, an absolute minimum on time of approximately 50 ns reduces the switching frequency from the set value. \boxtimes 8-5 shows the maximum switching frequency with 3.3-V and 5.5-V supplies.

Use $\not \equiv$ 1 to calculate the output current threshold at which the device enters PFM-DCM.

$$I_{OUT(PFM)} = \frac{(V_{IN} - V_{OUT})}{2L} t_{ON}^2 \left(\frac{V_{IN}}{V_{OUT}}\right) f_{sw}$$
(1)

☑ 9-5 shows how this threshold typically varies with V_{IN} and V_{OUT} for a switching frequency of 2.25 MHz.

図 9-5. Output Current PFM-DCM Entry Threshold

The user can configure the device to use either forced PWM (FPWM) mode or power save mode (PSM):

- In forced PWM mode, the device uses PWM-CCM at all times.
- In power save mode, the device uses PWM-CCM at medium and high loads, PWM-DCM at low loads, and PFM-DCM at very low loads. The transition between the different operating modes is seamless.

 $\frac{1}{8}$ 9-1 shows the function table of the MODE/SYNC pin and the FPWMEN bit in the CONTROL1 register, which control the operating mode of the device.

F1					
FPWMEN Bit	Operating Mode	Remark			
0	PSM	Do not use in a stacked configuration.			
1	FPWM				
Х	FPWM				
X	FPWM				
	FPWMEN Bit 0 1 X X	0PSM1FPWMXFPWM			

表 9-1. FPWM Mode and Power-Save Mode Selection

9.3.3 Precise Enable

The Enable (EN) pin is bidirectional and has two functions:

- As an input, EN enables and disables the DC/DC converter in the device.
- As an output, EN provides a SYSTEM_READY signal to other devices in a stacked configuration.

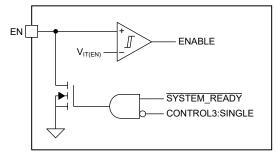


図 9-6. Enable Functional Block Diagram

Because there is an internal open-drain transistor connected to the EN pin, do not drive this pin directly from a low-impedance source. Instead, use a resistor to limit the current flowing into the EN pin (see $\frac{1}{2}2 = 10$).

When power is first applied to the VIN pin, the device pulls the EN pin low until it has loaded its default register settings from nonvolatile memory and read the state of the VSEL, FSEL, and SYNCOUT pins. The device also pulls EN low if a fault, such as thermal shutdown or overvoltage lockout, occurs. In stacked configurations, all devices share a common enable signal, which means that the DC/DC converters in the stack cannot start to switch until *all* devices in the stack have completed their initialization. Similarly, a fault in one or more devices in the stack disables *all* converters in the stack (see $\forall 2 \neq 2 \neq 2 > 9.3.17$).

In standalone (nonstacked) applications, the user can disable the active pulldown of the EN pin if the user sets SINGLE = 1 in the CONTROL3 register. Fault conditions have no effect on the EN pin when SINGLE = 1 (the EN pin is *always* pulled down during device initialization). In stacked applications, ensure that SINGLE = 0.

When the internal <u>SYSTEM_READY</u> signal is low (that is, initialization is complete and there are no fault conditions), the internal open-drain transistor is high impedance and the EN pin functions like a standard input. A high level on the EN pin enables the DC/DC converter in the device. A low level disables the DC/DC converter (the I²C interface is enabled as soon as the device has completed its initialization and is not affected by the state of the internal ENABLE or <u>SYSTEM_READY</u> signals).

A low level on the EN pin forces the device into shutdown. During shutdown, the MOSFETs in the power stage are off, the internal control circuitry is disabled, and the device consumes only 20 µA (typical).

The rising threshold voltage of the EN pin is 1.0 V and the falling threshold voltage is 0.9 V. The tolerance of the threshold voltages is $\pm 30 \text{ mV}$, which means that the user can use the EN pin to implement precise turn-on and turn-off behavior.

When power is applied to the VIN pin, the toggling of the EN pin does not reset the loaded default register settings.

9.3.4 Start-Up

When the voltage on the VIN pin exceeds the positive-going UVLO threshold, the device initializes as follows:

- The device pulls the EN pin low.
- The device enables the internal reference voltage.
- The device reads the state of the VSEL, FSEL, and SYNC_OUT pins.
- The device loads the default values into the device registers.

When initialization is complete, the device enables I²C communication and releases the EN pin. The external circuitry controlling the EN pin now determines the behavior of the device:

- If the EN pin is low, the device is disabled. The user can write to and read from the device registers, but the DC/DC converter does not operate.
- If the EN pin is high, the device is enabled. The user can write to and read from the device registers and, after a short delay, the DC/DC converter starts to ramp up its output.

 \boxtimes 9-7 shows the start-up sequence when the EN pin is pulled up to V_{IN}.

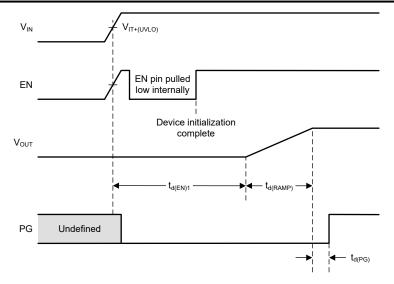
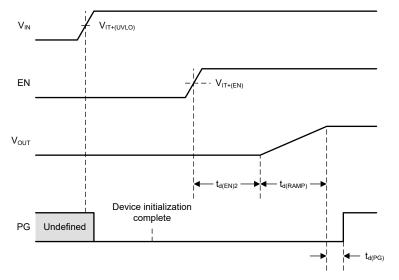
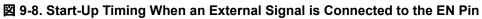
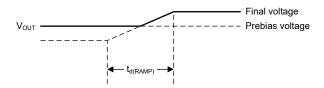




図 9-7. Start-Up Timing When EN is Pulled Up to VIN

9-8 shows the start-up sequence when an external signal is connected to the EN pin.

The SSTIME[1:0] bits in the CONTROL2 register select the duration of the soft-start ramp:

- t_{d(RAMP)} = 500 μs
- t_{d(RAMP)} = 1 ms (default)
- t_{d(RAMP)} = 2 ms
- t_{d(RAMP)} = 4 ms


The device ignores new values until the soft-start sequence is complete if the user programs the following when the device soft-start sequence has already started:

- A new output voltage setpoint (VOUT[7:0])
- An output voltage range (VRANGE[1:0])
- Soft-start time (SSTIME[1:0]) settings

If the user change the value of VSET[7:0] during soft start, the device first ramps to the value that VSET[7:0] had when the soft-start sequence began. Then, when soft start is complete, the device ramps up or down to the new value.

The device can start up into a prebiased output. In this case, only a portion of the internal voltage ramp is seen externally (see \boxtimes 9-9).

図 9-9. Start-Up into a Prebiased Output

Note that the device *always* operates in DCM during the start-up ramp, regardless of other configuration settings or operating conditions.

9.3.5 Switching Frequency Selection

During device initialization, a resistor-to-digital converter in the device determines the state of the FSEL pin and sets the switching frequency of the DC/DC converter according to $\frac{1}{5}$ 9-2.

FSEL Pin 1 Switching Frequency				
Short to GND	1.5 MHz			
6.2 kΩ to GND	2.25 MHz			
47 kΩ to V_{IN}	2.5 MHz			
Short to V _{IN}	3 MHz			

1. For a reliable voltage setting, ensure there is no stray current path connected to the FSEL pin and that the parasitic capacitance between the FSEL pin and GND is less than 100 pF.

図 9-10 shows a simplified block diagram of the R2D converter used to detect the state of the FSEL pin (an identical circuit detects the state of the VSEL pin – see セクション 9.3.6.2).

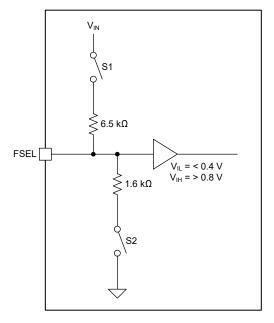


図 9-10. FSEL R2D Converter Functional Block Diagram

Detection of the state of the FSEL pin works as follows:

To detect the most significant bit (MSB), the circuit opens S1 and S2, and the input buffer detects if a high or a low level is connected to the FSEL pin.

To detect the least significant bit (LSB):

- If the MSB was 0, the circuit closes S1. If the input buffer detects a high level, LSB = 1. If the circuit detects a low level, LSB = 0.
- If the MSB was 1, the circuit closes S2. If the input buffer detects a low level, LSB = 0. If the circuit detects a high level, LSB = 1.

9.3.6 Output Voltage Setting

9.3.6.1 Output Voltage Range

The device has four different voltage ranges. The VRANGE[1:0] bits in the CONTROL1 register control which range is active (see $\frac{1}{5}$ 9-3). The default output voltage range after device initialization is 0.4 V to 1.675 V in 5-mV steps.

e
e
5-mV steps
-mV steps
nV steps
nV steps
1

表 9-3. Voltage Ranges

Note that every change to the VRANGE[1:0] bits must be followed by a write to the VSET register, even if the value of the VSET[7:0] bits does not change. This sequence is required for the device to start to use the new voltage range.

Also note that the 0.8-V to 3.35-V range uses a 0.8-V reference and the other ranges use a 0.4-V reference. Switching to and from the 0.8-V to 3.35-V range can therefore cause increased output voltage undershoot or overshoot while the device switches its internal reference.

In device variants that do not have I²C, the output voltage range is factory-set to 0.4 V to 1.675 V.

9.3.6.2 Output Voltage Setpoint

Together with the selected range, the VSET[7:0] bits in the VSET register control the output voltage setpoint of the device (see $\frac{1}{5}$ 9-4).

St 3-4. Otari-op Voltage Octaings					
VRANGE[1:0]	Output Voltage Setpoint				
0b00	0.4 V + VSET[7:0] × 1.25 mV				
0b01	0.4 V + VSET[7:0] × 2.5 mV				
0b10	0.4 V + VSET[7:0] × 5 mV				
0b11	0.8 V + VSET[7:0] × 10 mV				

表 9-4. Start-Up Voltage Settings

During initialization, the device reads the state of the VSEL pin and selects the default output voltage according to $\frac{1}{2}$ 9-5. Note that the VSEL pin also selects the l²C target address of the device (see $\frac{1}{2}$ 9-10).

表 9-5. Default Output Voltage Setpoints					
VSEL Pin ⁽¹⁾	Device Number	VSET[7:0]	Output Voltage Setpoint		
	TPS6287xZ0	0x50	800 mV		
	TPS6287xZ1	0x28	600 mV		
6.2 kΩ to GND	TPS6287xZ2	0x14	500 mV		
	TPS6287xZ4	0x5A	850 mV		
Short Circuit to GND All		0x46	750 mV		
Short Circuit to VIN	All	0x5F	875 mV		
	TPS6287xZ0	0x50	800 mV		
	TPS6287xZ1	0x64	900 mV		
47 kΩ to V _{IN}	TPS6287xZ2	0x82	1050 mV		
	TPS6287xZ4	0x78	1000 mV		

(1) For a reliable voltage setting, ensure there is no stray current path connected to the VSEL pin and that the parasitic capacitance between the VSEL pin and GND is less than 100 pF.

If the user programs new output voltage setpoint (VOUT[7:0]), output voltage range (VRANGE[1:0]), or soft-start time (SSTIME[1:0]) settings when the device has already begun its soft-start sequence, the device ignores the new values until the soft-start sequence is complete. If the user changes the value of VSET[7:0] during soft start, the device first ramps to the value that VSET[7:0] had when the soft-start sequence began. Then, when soft start is complete, ramps up or down to the new value.

If the user changes VOUT[7:0], VRAMP[1:0], or SSTIME[1:0] while EN is low, the device uses the new values the next time the user enables it.

During start-up, the output voltage ramps up to the target value set by the VSEL pin before ramping up or down to any new value programmed to the device over the I²C interface.

9.3.6.3 Non-Default Output Voltage Setpoint

If none of the default voltage range or voltage setpoint combinations are suitable for the application, the user can change these device settings through I²C before the user enables the device. Then, when the user pulls the EN pin high, the device starts up with the desired start-up voltage.

Note that if the user changes the device settings through I²C *while the device is ramping*, the device ignores the changes until the ramp is complete.

9.3.6.4 Dynamic Voltage Scaling

If the user changes the output voltage setpoint while the DC/DC converter is operating, the device ramps up or down to the new voltage setting in a controlled way.

The VRAMP[1:0] bits in the CONTROL1 register sets the slew rate when the device ramps from one voltage to another during DVS (see $\frac{1}{5}$ 9-6).

VRAMP[1:0]	DVS Slew Rate				
0b00	10 mV/μs (0.5 μs/step)				
0b01	5 mV/µs (1 µs/step)				
0b10	1.25 mV/µs (5 µs/step)				
0b11	0.5 mV/μs (10 μs/step)				

表 9-6. Dynamic Voltage Scaling Slew Rate

Note that ramping the output to a higher voltage requires additional output current, so that during DVS, the converter must generate a total output current given by:

$$I_{OUT} = I_{OUT(DC)} + C_{OUT} \frac{dV_{OUT}}{dt}$$

(2)

where

- I_{OUT} is the total current the converter must generate while ramping to a higher voltage.
- I_{OUT(DC)} is the DC load current.
- C_{OUT} is the total output capacitance.
- dV_{OUT}/dt is the slew rate of the output voltage (programmable in the range 0.5 mV/µs to 10 mV/µs).

For correct operation, ensure that the total output current during DVS does not exceed the current limit of the device.

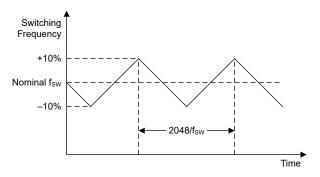
9.3.7 Compensation (COMP)

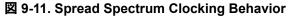
The COMP pin is the connection point for an external compensation network. A series-connected resistor and capacitor to GOSNS is sufficient for typical applications. The series-connected resistor also provides enough scope to optimize the loop response for a wide range of operating conditions.

When using multiple devices in a stacked configuration, all devices share a common compensation network, and the COMP pin makes sure there is equal current sharing between them (see $\pm 22 \pm 9.3.17$).

9.3.8 Mode Selection and Clock Synchronization (MODE/SYNC)

A high level on the MODE/SYNC pin selects forced PWM operation. A low level on the MODE/SYNC pin selects power save operation, in which, the device automatically transitions between PWM and PFM, according to the load conditions.


If the user applies a valid clock signal to the MODE/SYNC pin, the device synchronizes its switching cycles to the external clock and automatically selects forced PWM operation.


The MODE/SYNC pin is logically ORed with the FPWMEN bit in the CONTROL1 register (see 表 9-1).

When multiple devices are used together in a stacked configuration, the MODE/SYNC pin of the secondary devices is the input for the clock signal (see 2923293.17).

9.3.9 Spread Spectrum Clocking (SSC)

The device has a spread spectrum clocking function that can reduce electromagnetic interference (EMI). When the SSC function is active, the device modulates the switching frequency to approximately $\pm 10\%$ the nominal value. The frequency modulation has a triangular characteristic (see \boxtimes 9-11).

To use the SSC function, make sure that:

- SSCEN = 1 in the CONTROL1 register.
- The device is not synchronized to an external clock.

TI recommends to use FPWM operation when using SSC, but SSC is available with PSM operation. To disable the SSC function, make sure that SCCEN = 0 in the CONTROL1 register.

To use the SSC function with multiple devices in a stacked configuration, ensure that the primary converter runs from its internal oscillator and synchronize all secondary converters to the primary clock (see \boxtimes 9-14).

9.3.10 Output Discharge

The device has an output discharge function that ensures a defined ramp down of the output voltage when the device is disabled and keeps the output voltage close to 0 V while the device is off. The output discharge function is enabled when DISCHEN = 1 in the CONTROL1 register. The output discharge function is enabled by default.

If enabled, the device discharges the output under the following conditions:

- A low level is applied to the EN pin.
- SWEN = 0 in the CONTROL1 register.
- A thermal shutdown event occurs.
- A UVLO event occurs.
- An OVLO event occurs.

The output discharge function is not available until the user has enabled the device at least once after power up. During power down, the device continues to discharge the output for as long as the internal supply voltage is greater than approximately 1.8 V.

9.3.11 Undervoltage Lockout (UVLO)

The device has an undervoltage lockout function that disables the device if the supply voltage is too low for correct operation. The negative-going threshold of the UVLO function is 2.5 V (typical). If the supply voltage decreases below this value, the device stops switching and, if DISCHEN = 1 in the CONTROL1 register, turns on the output discharge.

9.3.12 Overvoltage Lockout (OVLO)

The device has an overvoltage lockout function that disables the DC/DC converter if the supply voltage is too high for correct operation. The positive-going threshold of the OVLO function is 6.3 V (typical). If the supply voltage increases above this value, the device stops switching and, if DISCHEN = 1 in the CONTROL1 register, turns on the output discharge.

The device automatically starts switching again – it begins a new soft-start sequence – when the supply voltage falls below 6.2 V (typical).

9.3.13 Overcurrent Protection

9.3.13.1 Cycle-by-Cycle Current Limiting

If the peak inductor current increases above the high-side current limit threshold, the device turns off the highside switch and turns on the low-side switch to ramp down the inductor current. The device only turns on the high-side switch again if the inductor current has decreased below the low-side current limit threshold.

Note that because of the propagation delay of the current limit comparator, the current limit threshold in practice can be greater than the DC value specified in the *Electrical Characteristics*. The current limit in practice is given by:

Product Folder Links: TPS62870 TPS62871 TPS62872 TPS62873

$$I_L = I_{LIMH} + \left(\frac{V_{IN} - V_{OUT}}{L} \right) t_{pd}$$

where:

- I_L is the inductor current.
- I_{LIMH} is the high-side current limit threshold measured at DC.
- V_{IN} is the input voltage.
- V_{OUT} is the output voltage.
- L is the effective inductance at the peak current level.
- t_{pd} is the propagation delay of the current limit comparator (typically 50 ns).

9.3.13.2 Hiccup Mode

To enable hiccup operation, ensure that HICCUPEN = 1 in the CONTROL1 register.

If hiccup operation is enabled and the high-side switch current exceeds the current limit threshold on 32 consecutive switching cycles, the device:

- Stops switching for 128 µs, after which it automatically starts switching again (it starts a new soft-start sequence)
- Sets the HICCUP bit in the STATUS register
- Pulls the PG pin low. The PG pin stays low until the overload condition goes away and the device can start up correctly and regulate the output voltage. Note that power-good function has a deglitch circuit, which delays the rising edge of the power-good signal by 40 µs (typical).

Hiccup operation continues in a repeating sequence of 32 cycles in current limit, followed by a pause of 128 µs, followed by a soft-start attempt for as long as the output overload condition exists.

The device clears the HICCUP bit if the user reads the STATUS register when the overload condition has been removed.

9.3.13.3 Current Limit Mode

To enable current limit mode, ensure that HICCUPEN = 0 in the CONTROL1 register.

When current limit operation is enabled, the device limits the high-side switch current cycle-by-cycle for as long as the overload condition exists. If the device limits the high-side switch current for four or more consecutive switching cycles, the device sets ILIM = 1 in the STATUS register.

The device clears the ILIM bit if the user reads the STATUS register when the overload condition no longer exits.

9.3.14 Power Good (PG)

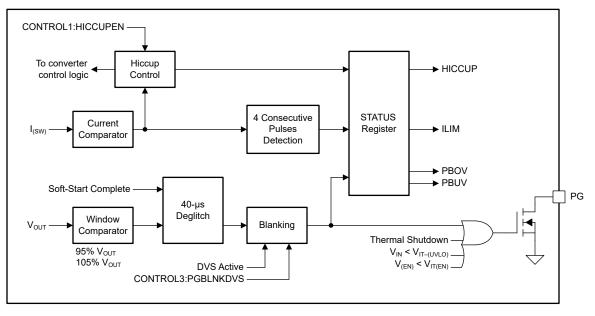
The power good (PG) pin is bidirectional and has two functions:

- In a standalone configuration and in the primary device of a stacked configuration, the PG pin is an opendrain output that indicates the status of the converter or stack.
- In a secondary device of a stacked configuration, the PG pin is an input that indicates when the soft-start sequence is complete and all converters in the stack can change from DCM switching to CCM switching.

9.3.14.1 Standalone or Primary Device Behavior

The primary purpose of the PG pin is to indicate if the output voltage is in regulation, but it also indicates if the device is in thermal shutdown or disabled. \gtrsim 9-7 summarizes the behavior of the PG pin in a standalone or primary device.

V _{IN}	EN	V _{OUT}	Soft Start	PGBLNKDVS	Τ _J	PG
2 V > V _{IN}	Х	Х	Х	Х	Х	Undefined
$V_{IT(UVLO)} \ge V_{IN} \ge 2 V$	Х	Х	Х	Х	Х	Low


表 9-7. Power-Good Function Table

				(
V _{IN}	EN	V _{OUT}	Soft Start	PGBLNKDVS	Tj	PG
	L	X	Х	Х	Х	Low
-	н	Х	Active	X	Х	Low
		V _{OUT} > V _{T(PGOV)}	Inactive	0	Х	low
$V_{IN} > V_{IT(UVLO)}$		or < V _{T(PGUV)} > V _{OUT}		1 (and DVS is active)	$T_J < T_{SD}$	Hi-Z
		$V_{T(PGOV)} > V_{OUT} > V_{T(PGUV)}$		X	$T_J < T_{SD}$	Hi-Z
	X	Х	Х	Х	$T_J > T_{SD}$	Low

表 9-7. Power-Good Function Table (続き)

 \boxtimes 9-12 shows a functional block diagram of the power-good function in a standalone or primary device. A window comparator monitors the output voltage, and the output of the comparator goes high if the output voltage is either less than 95% (typical) or greater than 105% (typical) of the nominal output voltage. The output of the window comparator is deglitched – the typical deglitch time is 40 µs – and then used to drive the open-drain PG pin.

図 9-12. Power-Good Functional Block Diagram (Standalone or Primary Device)

During DVS activity, when the DC/DC converter transitions from one output voltage setting to another, the output voltage can temporarily exceed the limits of the window comparator and pull the PG pin low. The device has a feature to disable this behavior. If PGBLNKDVS = 1 in the CONTROL3 register, the device ignores the output of the power-good window comparator while DVS is active.

Note that the PG pin is always low, regardless of the output of the window comparator, when:

- The device is in thermal shutdown.
- The device is disabled.
- The device is in undervoltage lockout.
- The device is in soft start.

9.3.14.2 Secondary Device Behavior

⊠ 9-13 shows a functional block diagram of the power-good function in a secondary device. During initialization, the device presets FF1 and FF2, which pulls down the PG pin and forces the device to operate in DCM. When the device completes its soft start, it resets FF2, which turns off Q1. However, in a stacked configuration, all

devices share the same PG signal, and therefore the PG pin stays low until *all* devices in the stack have completed their soft start. When that happens, FF1 is reset and the converters operate in CCM.

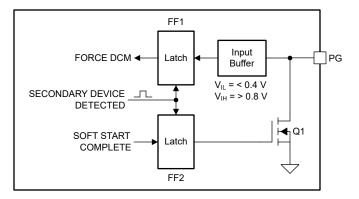


図 9-13. Power-Good Functional Block Diagram (Secondary Device)

9.3.15 Remote Sense

The device has two pins, VOSNS and GOSNS, to remotely sense the output voltage. Remote sensing lets the converter sense the output voltage directly at the point-of-load and increases the accuracy of the output voltage regulation.

9.3.16 Thermal Warning and Shutdown

The device has a two-level overtemperature detection function.

If the junction temperature rises above the thermal warning threshold of 150°C (typical), the device sets the TWARN bit in the STATUS register. The device clears the TWARN bit if the user reads the STATUS register when the junction temperature is below the TWARN threshold of 130°C (typical).

If the junction temperature rises above the thermal shutdown threshold of 170°C (typical), the device:

- Stops switching
- Pulls down the EN pin (if SINGLE = 0 in the CONTROL3 register)
- Enables the output discharge (if DISCHEN = 1 in the CONTROL1 register)
- Sets the TSHUT bit in the STATUS register
- Pulls the PG pin low

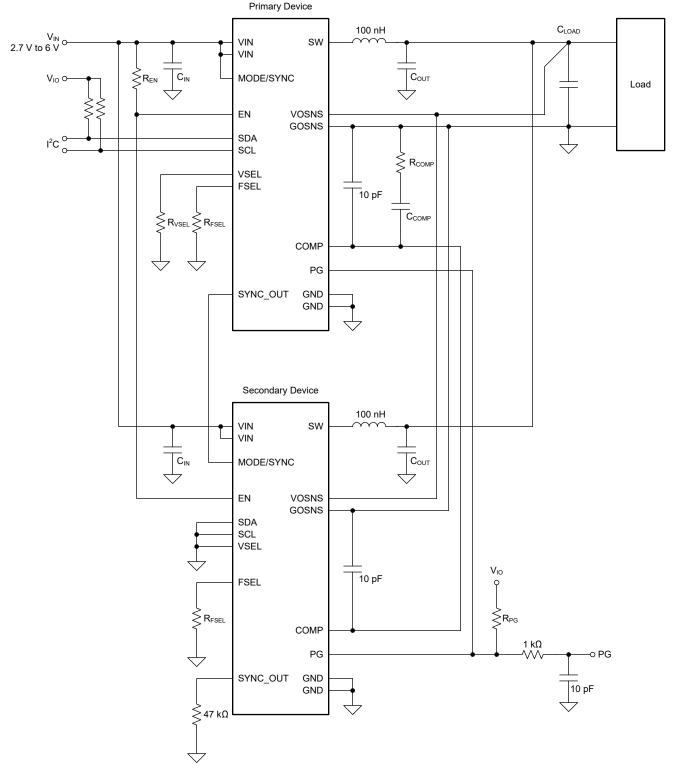
If the junction temperature falls below the thermal shutdown threshold of 150°C (typical), the device:

- · Starts switching again, starting with a new soft-start sequence
- Sets the EN pin to high impedance
- Sets the PG pin to high-impedance

The device clears the TSHUT bit if the user reads the STATUS register when the junction temperature is below the TSHUT threshold of 150°C (typical).

In a stacked configuration, in which all devices share a common enable signal, a thermal shutdown condition in one device disables the entire stack. When the hot device cools down, the whole stack automatically starts switching again.

9.3.17 Stacked Operation


The user can connect multiple devices in parallel in what is known as a "stack"; for example, to increase output current capability or reduce device junction temperature. A stack comprises one *primary* device and one or more *secondary* devices. During initialization, each device monitors its SYNC_OUT pin to determine if must operate as a primary device or a secondary device:

If there is a 47-kΩ resistor between the SYNC_OUT pin and ground, the device operates as a secondary device.

• If the SYNC_OUT pin is high impedance, the device operates as a primary device.

9-14 shows the recommended interconnections in a stack of two TPS6287x devices.

The key points to note are:

- All the devices in the stack share a common enable signal, which must be pulled up with a resistance of at least 15 k Ω .
- All the devices in the stack share a common power-good signal.
- All the devices in the stack share a common compensation signal.
- All secondary devices must connect a 47-kΩ resistor between the SYNC_OUT pin and ground.
- The remote sense pins (VOSNS and GOSNS) of each device must be connected (do not leave these pins floating).
- Each device must be configured for the same switching frequency.
- The primary device must be configured for forced PWM operation (secondary devices are automatically configured for forced PWM operation).
- A stacked configuration can support synchronization to an external clock or spread-spectrum clocking.
- Only the VSEL pin of the primary device is used to set the default output voltage. The VSEL pin of secondary devices is not used and must be connected to ground.
- The SDA and SCL pins of secondary devices are not used and must be connected to ground.
- A stacked configuration uses a daisy-chained clocking signal, in which each device switches with a phase
 offset of approximately 140° relative to the adjacent devices in the daisy-chain. To daisy-chain the clocking
 signal, connect the SYNC_OUT pin of the primary device to the MODE/SYNC pin of the first secondary
 device. Connect the SYNC_OUT pin of the first secondary device to the MODE/SYNC pin of the second
 secondary device. Continue this connection scheme for all devices in the stack, to daisy-chain them together.
- Hiccup overcurrent protection must not be used in a stacked configuration.

In a stacked configuration, the common enable signal also acts as a SYSTEM_READY signal (see 222 9.3.3). Each device in the stack can pull its EN pin low during device start-up or when a fault occurs. Thus, the stack is only enabled when all devices have completed their start-up sequence and are fault-free. A fault in any one device disables the whole stack for as long as the fault condition exists.

During start-up, the primary converter pulls the COMP pin low for as long as the enable signal (SYSTEM_READY) is low. When the enable signal goes high, the primary device actively controls the COMP pin and all converters in the stack follow the COMP voltage. During start-up, each device in the stack pulls its PG pin low while it initializes. When initialization is complete, each secondary device in the stack sets its PG pin to a high impedance and the primary device alone controls the state of the PG signal. The PG pin goes high when the stack has completed its start-up ramp and the output voltage is within specification. The secondary converters in the stack detect the rising edge of the power-good signal and switch from DCM operation to CCM operation. After the stack has successfully started up, the primary device controls the power-good signal in the normal way. In a stacked configuration, there are some faults that only affect individual devices, and other faults that affect all devices. For example, if one device enters current limit, only that device is affected. But a thermal shutdown or undervoltage lockout event in one device disables all devices through the shared enable (SYSTEM_READY) signal.

Functionality During Stacked Operation

Some device features are not available during stacked operation, or are only available in the primary converter. \ddagger 9-8 summarizes the available functionality during stacked operation.

A 3-6. Functionality During Stacked Operation					
Function Primary Device		Secondary Device	Remark		
UVLO	Yes	Yes	Common enable signal		
OVLO	Yes	Yes	Common enable signal		
OCP – Current Limit	Current Limit Yes Yes		Individual		
OCP – Hiccup OCP	No	No	Do not use during stacked operation.		
Thermal Shutdown	al Shutdown Yes Yes		Common enable signal		
Power-Good (Window Comparator)	Yes		Primary device only		

表 9-8. Functionality During Stacked Operation

A o of randitionality burning otdottod oporation (Muc)						
Function	Primary Device	Secondary Device	Remark			
I ² C Interface	Yes	No	Primary device only			
DVS	Through I ² C	No	Voltage loop controlled by primary device only			
SSC	SSC Through I ² C No		Daisy-chained from primary device to secondary devices			
SYNC	Yes	Yes	Synchronization clock applied to primary device			
Precise Enable	No	No	Only binary enable			
Output Discharge	Yes	Yes	Always enabled in secondary devices			

表 9-8. Functionality During Stacked Operation (続き)

Fault Handling During Stacked Operation

In a stacked configuration, there are some faults that only affect individual devices and other faults that affect all devices. For example, if one device enters current limit, only that device is affected. A thermal shutdown or undervoltage lockout event in one device disables all devices through the shared enable (SYSTEM_READY) signal. 表 9-9 summarizes the fault handling of the TPS6287x devices during stacked operation.

Fault Condition	Device Response	System Response				
UVLO						
OVLO	Enable signal pulled low	New soft start				
Thermal shutdown						
Current limit	Enable signal remains high	Error amplifier clamped				

表 9-9. Fault Handling During Stacked Operation

9.4 Device Functional Modes

9.4.1 Power-On Reset

The device operates in POR mode when the supply voltage is less than the POR threshold, 1.4 V (typical).

In POR mode, no functions are available and the content of the device registers is not valid.

The device leaves POR mode and enters UVLO mode when the supply voltage increases above the POR threshold.

9.4.2 Undervoltage Lockout

The device operates in UVLO mode when the supply voltage is between the POR and UVLO thresholds.

If the device enters UVLO mode from POR mode, no functions are available. If the device enters UVLO mode from standby mode, the output discharge function is available. The content of the device registers is valid in UVLO mode.

The device leaves UVLO mode and enters POR mode when the supply voltage decreases below the POR threshold. The device leaves UVLO mode and enters standby mode when the supply voltage increases above the UVLO threshold.

9.4.3 Standby

The device operates in standby mode when the supply voltage is greater than the UVLO threshold (and the device has completed its initialization) and any of the following conditions is true:

- A low level is applied to the EN pin.
- SWEN = 0 in the CONTROL1 register.
- The device junction temperature is greater than the thermal shutdown threshold.
- The supply voltage is greater than the OVLO threshold.

The device initializes for 400 μ s (typical) after the supply voltage increases above the UVLO threshold voltage following a device power-on reset. If the supply voltage decreases below the UVLO threshold but not below the POR threshold, the device does not reinitialize when the supply voltage increases again. During initialization, the device reads the state of the FSEL, VSEL, and SYNC_OUT pins.

The following functions are available in standby mode:

- I²C interface
- · Output discharge
- Power good

The device leaves standby mode and enters UVLO mode when the supply voltage decreases below the UVLO threshold. The device leaves standby mode and enters on mode when all of the following conditions are true:

- A high-level is applied to the EN pin.
- SWEN = 1 in the CONTROL1 register.
- The device junction temperature is below the thermal shutdown threshold.
- The supply voltage is below the OVLO threshold.

9.4.4 On

The device operates in on mode when the supply voltage is greater than the UVLO threshold and all of the following conditions are true:

- A high-level is applied to the EN pin.
- SWEN = 1 in the CONTROL1 register.
- The device junction temperature is below the thermal shutdown threshold.
- The supply voltage is below the OVLO threshold.

All functions are available in on mode.

The device leaves on mode and enters UVLO mode when the supply voltage decreases below the UVLO threshold. The device leaves on mode and enters standby mode when any of the following conditions is true:

- A low level is applied to the EN pin.
- SWEN = 0 in the CONTROL1 register.
- The device junction temperature is greater than the thermal shutdown threshold.
- The supply voltage is greater than the OVLO threshold.

9.5 Programming

9.5.1 Serial Interface Description

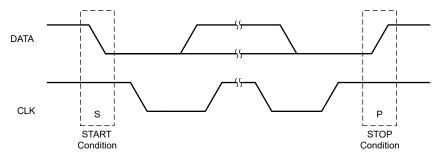
I²C is a 2-wire serial interface developed by Philips Semiconductor, now NXP Semiconductors (see I²C-Bus Specification and User Manual, Revision 6, 4 April 2014). The bus consists of a data line (SDA) and a clock line (SCL) with pullup structures. When the bus is *idle*, both SDA and SCL lines are pulled high. All I²C-compatible devices connect to the I²C bus through open-drain I/O pins, SDA and SCL. A *controller*, usually a microcontroller or a digital signal processor, controls the bus. The controller is responsible for generating the SCL signal and device addresses. The controller also generates specific conditions that indicate the START and STOP of data transfer. A *target* receives data, transmits data, or both on the bus under control of the controller.

The TPS6287x device operates as a target and supports the following data transfer *modes*, as defined in the I²C-Bus Specification: standard mode (100 kbps), fast mode (400 kbps), and fast mode plus (1 Mbps). The interface adds flexibility to the power supply solution, enabling most functions to be programmed to new values depending on the instantaneous application requirements. Register contents remain intact as long as the input voltage remains above 1.4 V.

The data transfer protocol for standard and fast modes is exactly the same, therefore, they are referred to as F/S-mode in this document. The device supports 7-bit addressing; general call addresses are not supported.

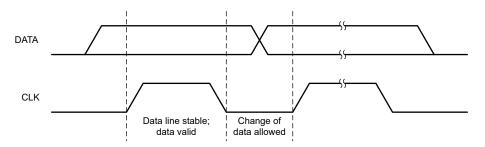
The state of the VSEL pin during power up defines the l²C target address of the device (see $\frac{1}{5}$ 9-10). Note that the VSEL pin also sets the default start-up voltage of the device (see $\frac{1}{5}$ 9-4).

VSEL Pin	I ² C Target Address ⁽¹⁾
6.2 kΩ to GND	0x40 or 0x30 or 0x20 or 0x10
Short Circuit to GND	0x41 or 0x31 or 0x21 or 0x11
Short Circuit to V _{IN}	0x42 or 0x32 or 0x22 or 0x12
47 kΩ to V _{IN}	0x43 or 0x33 or 0x23 or 13


表 9-10 I²C Interface Target Address Selection

(1) Available I²C address. This parameter is Device number dependent. Refer to the Device option Table in tz/2ション6

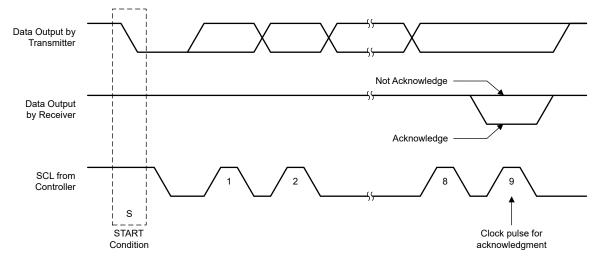
TI recommends that the I²C controller initiates a STOP condition on the I²C bus after the initial power up of SDA and SCL pullup voltages to ensure reset of the I²C engine.


9.5.2 Standard, Fast, Fast Mode Plus Protocol

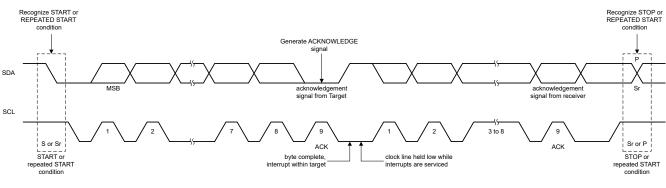
The controller initiates a data transfer by generating a start condition. The start condition is when a high-to-low transition occurs on the SDA line while SCL is high, as shown in 🗵 9-15. All I²C-compatible devices must recognize a start condition.

2 9-15. START and STOP Conditions

The controller then generates the SCL pulses, and transmits the 7-bit address and the read and write direction bit R/W on the SDA line. During all transmissions, the controller makes sure that data is valid. A valid data condition requires the SDA line to be stable during the entire high period of the clock pulse (see 29-16). All devices recognize the address sent by the controller and compare the address to their internal fixed addresses. Only the target with a matching address generates an acknowledge (see 29-17) by pulling the SDA line low during the entire high period of the ninth SCL cycle. Upon detecting this acknowledge, the controller knows that a communication link with a target has been established.


2 9-16. Bit Transfer on the Serial Interface

The controller generates further SCL cycles to either transmit data to the target (R/W bit 0) or receive data from the target (R/W bit 1). In either case, the target must acknowledge the data sent by the controller. So an acknowledge signal can either be generated by the controller or by the target, depending on which one is the receiver. 9-bit valid data sequences consisting of 8-bit data and 1-bit acknowledge can continue as long as necessary.



To signal the end of the data transfer, the controller generates a stop condition by pulling the SDA line from low to high while the SCL line is high (see \boxtimes 9-15). This stop condition releases the bus and stops the communication link with the addressed target. All I²C-compatible devices must recognize the stop condition. Upon the receipt of a stop condition, all devices know that the bus is released, and they wait for a start condition followed by a matching address.

Attempting to read data from register addresses not listed in this section will result in 0x00 being read out.

2 9-17. Acknowledge on the I²C Bus

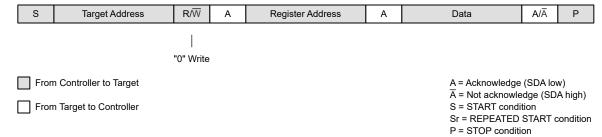
🛛 9-18. Bus Protocol

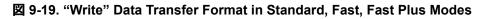
9.5.3 I²C Update Sequence

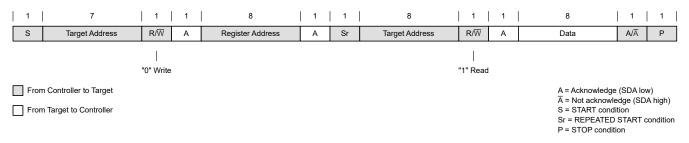
The following are required for a single update:

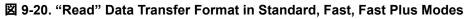
- A start condition
- A valid I²C address
- A register address byte
- A data byte

After the receipt of each byte, the receiving device acknowledges by pulling the SDA line low during the high period of a single clock pulse. A valid I²C address selects the target. The target performs an update on the falling edge of the acknowledge signal that follows the LSB byte.


Copyright © 2023 Texas Instruments Incorporated


TPS62870, TPS62871, TPS62872, TPS62873




8

JAJSLY4A – JANUARY 2023 – REVISED OCTOBER 2023

9.5.4 I²C Register Reset

The I²C registers can be reset by:

- Pulling the input voltage below 1.4 V (typical).
- Setting the RESET bit in the CONTROL register. When RESET = 1, all registers are reset to their default values and a new start-up begins immediately. After t_{d(EN)}, you can program the I²C registers again.

9.6 Register Map

 $\frac{1}{8}$ 9-11 lists the device registers. Consider all register offset addresses not listed in $\frac{1}{8}$ 9-11 as reserved locations. Do not modify the register contents.

	表 9-11. Device Registers				
Address	Acronym	Register Name	Section		
0h	VSET	Output Voltage Setpoint	Go		
1h	CONTROL1	Control 1	Go		
2h	CONTROL2	Control 2	Go		
3h	CONTROL3	Control 3	Go		
4h	STATUS	Status	Go		

Complex bit access types are encoded to fit into small table cells. \pm 9-12 shows the codes that are used for access types in this section.

a 9-12. Device Access Type Codes					
Access Type	Code	Description			
Read Type					
R	R	Read			
Write Type					
W	W	Write			
Reset or Default Value					
- n		Value after reset or the default value			

表 9-12. Device Access Type Codes

9.6.1 VSET Register (Address = 0h) [Reset = X]

VSET is shown in \boxtimes 9-21 and described in \cancel{a} 9-13.

Return to the Summary Table.

This register controls the output voltage setpoint.

図 9-21. VSET Register								
7	6 5 4 3 2 1 0							
VSET								
R/W-X								

Bit	Field	Туре	Reset	Description
7-0	VSET	R/W	x	Output voltage setpoint (see the range-setting bits in the CONTROL2 register.) Range 1: Output voltage setpoint = 0.4 V + VSET[7:0] × 1.25 mV Range 2: Output voltage setpoint = 0.4 V + VSET[7:0] × 2.5 mV Range 3: Output voltage setpoint = 0.4 V + VSET[7:0] × 5 mV Range 4: Output voltage setpoint = 0.8 V + VSET[7:0] × 10 mV The state of the VSEL pin during power up determines the reset value.

表 9-13. VSET Register Field Descriptions

9.6.2 CONTROL1 Register (Address = 1h) [Reset = 2Ah]

CONTROL1 is shown in \boxtimes 9-22 and described in $\cancel{5}$ 9-14.

Return to the Summary Table.

This register controls various device configuration options.

図 9-22. CONTROL1 Register								
7	6	5	4	3	2	1	0	
RESET	SSCEN	SWEN	FPWMEN	DISCHEN	HICCUPEN	VRAM	1P	
R/W-0b	R/W-0b	R/W-1b	R/W-0b	R/W-1b	R/W-0b	R/W-1	0b	

Bit	Field	Туре	Reset	Description
7	RESET	R/W	Ob	Reset device 0b = No effect 1b = Resets all registers to their default values Reading this bit always returns 0.
6	SSCEN	R/W	0b	Spread spectrum clocking enable 0b = SSC operation disabled 1b = SSC operation enabled
5	SWEN	R/W	1b	Software enable 0b = Switching disabled (register values retained) 1b = Switching enabled (without the enable delay)
4	FPWMEN	R/W	Ob	Forced PWM enable 0b = Power-save operation enabled 1b = Forced-PWM operation enabled This bit is logically ORed with the MODE/SYNC pin. If a high level or a synchronization clock is applied to the MODE/SYNC pin, the device operates in forced-PWM, regardless of the state of this bit.
3	DISCHEN	R/W	1b	Output discharge enable 0b = Output discharge disabled 1b = Output discharge enabled
2	HICCUPEN	R/W	Ob	Hiccup operation enable 0b = Hiccup operation disabled 1b = Hiccup operation enabled. Do not enable hiccup operation during stacked operation.
1-0	VRAMP	R/W	10b	Output voltage ramp speed when changing from one output voltage setting to another 00b = 10 mV/µs 01b = 5 mV/µs 10b = 1.25 mV/µs 11b = 0.5 mV/µs

表 9-14. CONTROL1 Register Field Descriptions

9.6.3 CONTROL2 Register (Address = 2h) [Reset = 9h]

CONTROL2 is shown in \boxtimes 9-23 and described in $\cancel{5}$ 9-15.

Return to the Summary Table.

This register controls various device configuration options.

図 9-23. CONTROL2 Register								
7	6	5	4	3	2	1	0	
RESERVED			VRA	NGE	SST	IME		
R-0000b			R/W-10b		R/W-01b			

Bit	Field	Туре	Reset	Description
7-4	RESERVED	R	0000b	Reserved for future use. For compatibility with future device variants, program these bits to 0.
3-2	VRANGE	R/W	10b	Output voltage range 00b = 0.4 V to 0.71875 V in 1.25-mV steps 01b = 0.4 V to 1.0375 V in 2.5-mV steps 10b = 0.4 V to 1.675 V in 5-mV steps 11b = 0.8 V to 3.35 V in 10-mV steps
1-0	SSTIME	R/W	01b	Soft-start ramp time 00b = 0.5 ms 01b = 1 ms 10b = 2 ms 11b = 4 ms

表 9-15. CONTROL2 Register Field Descriptions

9.6.4 CONTROL3 Register (Address = 3h) [Reset = 0h]

CONTROL3 is shown in \boxtimes 9-24 and described in $\cancel{5}$ 9-16.

Return to the Summary Table.

This register controls various device configuration options.

図 9-24. CONTROL3 Register								
7	6	5	4	3	2	1	0	
RESERVED						SINGLE	PGBLNKDVS	
R-00000b						R/W-0b	R/W-0b	

Bit	Field	Туре	Reset	Description			
7-2	RESERVED	R	00000b	Reserved for future use. For compatibility with future device variants, program these bits to 0.			
1	SINGLE	R/W	Ob	Single operation. This bit controls the internal EN pulldown and SYNCOUT functions. 0b = EN pin pulldown and SYNCOUT enabled 1b = EN pin pulldown and SYNCOUT disabled. Do not use during stacked operation.			
0	PGBLNKDVS	R/W	Ob	Power-good blanking during DVS 0b = PG pin reflects the output of the window comparator. 1b = PG pin is high impedance during DVS.			

表 9-16. CONTROL3 Register Field Descriptions

9.6.5 STATUS Register (Address = 4h) [Reset = 2h]

STATUS is shown in \boxtimes 9-25 and described in \cancel{a} 9-17.

Return to the Summary Table.

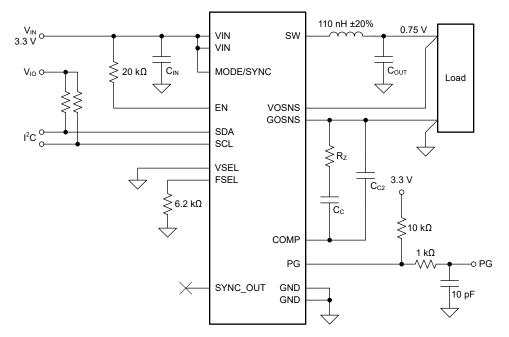
This register returns the device status flags.

図 9-25. STATUS Register							
7	6	5	4	3	2	1	0
RESE	ERVED	HICCUP	ILIM	TWARN	TSHUT	PBUV	PBOV
R-	-00b	R-0b	R-0b	R-0b	R-0b	R-1b	R-0b

Bit	Field	Туре	Reset	Description
7-6	RESERVED	R	00b	Reserved for future use. For compatibility with future device variants, ignore these bits.
5	HICCUP	R	Ob	Hiccup. This bit reports whether a hiccup event occurred since the last time the STATUS register was read. 0b = No hiccup event occurred 1b = A hiccup event occurred
4	ILIM	R	Ob	Current limit. This bit reports whether an current limit event occurred since the last time the STATUS register was read. 0b = No current limit event occurred 1b = An current limit event occurred
3	TWARN	R	Ob	Thermal warning. This bit reports whether a thermal warning event occurred since the last time the STATUS register was read. 0b = No thermal warning event occurred 1b = A thermal warning event occurred
2	TSHUT	R	Ob	Thermal shutdown. This bit reports whether a thermal shutdown event occurred since the last time the STATUS register was read. 0b = No thermal shutdown event occurred 1b = A thermal shutdown event occurred
1	PBUV	R	1b	Power-bad undervoltage. This bit reports whether a power-bad event (output voltage too low) occurred since the last time the STATUS register was read. 0b = No power-bad undervoltage event occurred 1b = A power-bad undervoltage event occurred
0	PBOV	R	Ob	Power-bad overvoltage. This bit reports whether a power-bad event (output voltage too high) occurred since the last time the STATUS register was read. 0b = No power-bad overvoltage event occurred 1b = A power-bad overvoltage event occurred

表 9-17. STATUS Register Field Descriptions

10 Application and Implementation


注

以下のアプリケーション情報は、TIの製品仕様に含まれるものではなく、TIではその正確性または完全性を保証いたしません。個々の目的に対する製品の適合性については、お客様の責任で判断していただくことになります。お客様は自身の設計実装を検証しテストすることで、システムの機能を確認する必要があります。

10.1 Application Information

The following section discusses selection of the external components to complete the power supply design for typical a application.

10.2 Typical Application

図 10-1. Typical Application Schematic

10.2.1 Design Requirements

 \pm 10-1 lists the operating parameters for this application example.

表(10-1. Desi	gn Parameters

Symbol	Parameter	Value
V _{IN}	Input voltage	3.3 V
V _{OUT}	Output voltage	0.75 V
TOL _{VOUT}	Output voltage tolerance allowed by the application	±3.3%
TOL _{DC}	Output voltage tolerance of the TPS6287x (DC accuracy)	±1%
Δl _{OUT}	Output current load step	±7.5 A
tt	Load step transition time	1 µs
f _{SW}	Switching frequency	2.25 MHz
L	Inductance	110 nH
TOL _{IND}	Inductor tolerance	±20%
g _m	Error amplifier transconductance	1.5 mS
Т	Internal timing parameter	12.5 µs

Copyright © 2023 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信 41

Product Folder Links: TPS62870 TPS62871 TPS62872 TPS62873

(4)

表 10-1. Design Parameters (続き)

Symbol	Parameter	Value
TOLT	Tolerance of the internal timing parameter	±30%
k _{BW}	Ratio of switching frequency to converter bandwidth (must be \geq 4)	4
Νφ	Number of phases	1

Preliminary Calculations

The maximum allowable deviation of the power supply is $\pm 3.3\%$. The DC accuracy of the TPS6287x is specified as $\pm 1\%$, therefore, the maximum output voltage variation during a transient is given by:

$$\Delta V_{OUT} = \pm V_{OUT} \times (3.3\% - 1\%) = \pm 17.25 \text{ mV}$$

10.2.2 Detailed Design Procedure

The following subsections describe how to calculate the external components required to meet the specified transient requirements of a given application. The calculations include the worst-case variation of components and use the RMS method to combine the variation of uncorrelated parameters.

10.2.2.1 Selecting the Inductor

The TPS6287x devices have been optimized for inductors in the range 50 nH to 300 nH. If the transient response of the converter is limited by the slew rate of the current in the inductor, using a smaller inductor can improve performance. However, the output ripple current increases as the value of the inductor decreases, and higher output current ripple generates higher output voltage ripple, which adds to the transient overshoot or undershoot. The optimal configuration for a given application is always a trade-off between a number of parameters. TI recommends a starting value of 110 nH for typical applications.

The peak-to-peak inductor current ripple is given by:

$$I_{L(PP)} = \frac{V_{OUT}}{V_{IN}} \left(\frac{V_{IN} - V_{OUT}}{N\phi \times L \times f_{sw}} \right)$$
(5)

$$I_{L(PP)} = \frac{0.75}{3.3} \left(\frac{3.3 - 0.75}{1 \times 110 \times 10^{-9} \times 2.25 \times 10^{6}} \right) = 2.342 \text{ A}$$
(6)

 \pm 10-2 lists a number of inductors suitable for use with this application. This list is not exhaustive and other inductors from other manufacturers can also be suitable.

Inductance	Current Rating Dimensions		DC Resistance	Part Number ⁽¹⁾
muuctance	(I _{SAT} at 25°C) (L × W × H)	DC Resistance	Fart Number	
92 nH	24 A	4 × 4 × 1.2 mm	5.2 mΩ (typical)	Coilcraft, XEL4012-920NE
100 nH	30 A	4 × 4 × 3.2 mm	1.5 mΩ (typical)	Coilcraft, XEL4030-101ME
110 nH	29 A	4 × 4 × 2.1 mm	1.4 mΩ (typical)	Coilcraft, XGL4020-111ME
110 nH	29 A	3.2 × 2.5 × 2.5 mm	1.9 mΩ (typical)	TDK, CLT32-R11
55 nH	39.5 A	3.2 × 2.5 × 2.5 mm	1.0 mΩ (typical)	TDK, CLT32-55N
110 nH	17.0 A	3.2 × 2.5 × 2.5 mm	3.0 mΩ (typical)	Cyntec, VCTA32252E-R11MS6
100 nH	25 A	4.2 × 4.0 × 2.1 mm	1.9 mΩ (typical)	Cyntec, VCHA042A-R10MS62M
100 nH	44 A	5.45 × 5.25 × 2.8 mm	0.8 mΩ (typical)	Cyntec, VCHW053T-R10NMS5

表 10-2. List of Recommended Inductors

(1) See the Third-Party Products Disclaimer.

10.2.2.2 Selecting the Input Capacitors

As with all buck converters, the input current of the TPS6287x devices is discontinuous. The input capacitors provide a low-impedance energy source for the device, and their value, type, and location are critical for correct operation. TI recommends low-ESR multilayer ceramic capacitors for best performance. In practice, the total input capacitance is typically comprised of a combination of different capacitors, in which larger capacitors provide the decoupling at lower frequencies and smaller capacitors provide the decoupling at higher frequencies.

The TPS6287x devices feature a *butterfly* layout with two pairs of VIN and GND pins on opposite sides of the package. This allows the input capacitors to be placed symmetrically on the PCB so that the electromagnetic fields generated cancel each other out, thereby reducing EMI.

The duty cycle of the converter is given by:

$$D = \frac{V_{OUT}}{\eta \times V_{IN}}$$
(7)

where

- V_{IN} is the input voltage.
- V_{OUT} is the output voltage.
- η is the efficiency.

$$D = \frac{0.75}{0.9 \times 3.3} = 0.253$$
(8)

The value of input capacitance needed to meet the input voltage ripple requirements is given by:

$$C_{IN} = \frac{D \times (1 - D) \times I_{OUT}}{V_{IN}(PP) \times f_{SW}}$$
(9)

where

- D is the duty cycle.
- f_{sw} is the switching frequency.
- · L is the inductance.
- I_{OUT} is the output current.

100mV is used as the input voltage ripple target.

$$C_{\rm IN} = \frac{0.253 \times (1 - 0.253) \times 11.3}{0.1 \times 2.25 \times 10^6} = 9.5 \,\mu \text{F}$$
(10)

The value of C_{IN} calculated with $\neq 9$ is the *effective* capacitance after all derating, tolerance, and aging effects have been considered. 5 µF effective capacitance per input pin is required. TI recommends multilayer ceramic capacitors with an X7R dielectric (or similar) for C_{IN} , and these capacitors must be placed as close to the VIN and GND pins as possible to minimize the loop area.

 \pm 10-3 lists a number of capacitors suitable for this application. This list is not exhaustive and other capacitors from other manufacturers can also be suitable.

Capacitance	Dimensions	Voltago Bating	Manufacturer, Part Number ⁽¹⁾		
Capacitance	mm (Inch)	Voltage Rating			
470 nF ±10%	1005 (0402)	10 V	Murata, GCM155C71A474KE36D		
470 nF ±10%	1005 (0402)	10 V	TDK, CGA2B3X7S1A474K050BB		
10 µF ±10%	2012 (0805)	10 V	Murata, GCM21BR71A106KE22L		
10 µF ±10%	2012 (0805)	10 V	TDK, CGA4J3X7S1A106K125AB		
22 µF ±10%	3216 (1206)	10 V	Murata, GCM31CR71A226KE02L		

表 10-3. List of Recommended Input Capacitors

	表 10-3. List of Recor	mmended input Capacit	ors (続さ)		
Capacitance	Dimensions	Voltage Rating	Manufacturer. Part Number ⁽¹⁾		
Capacitance	mm (Inch)	Voltage Rating			
22 µF ±20%	3216 (1206)	10 V	TDK, CGA5L1X7S1A226M160AC		

(1) See the Third-Party Products Disclaimer.

10.2.2.3 Selecting the Compensation Resistor

Use \neq 11 to calculate the recommended value of compensation resistor, R₇:

$$R_{Z} = \frac{1}{g_{m}} \left(\frac{\pi \times \left(\Delta I_{OUT} + \frac{I_{L}(PP)}{2} \right) \times \frac{L}{N\Phi}}{4 \times \tau \times \Delta V_{OUT}} - 1 \right) \left(1 + \sqrt{TOL_{IND}^{2} + TOL_{\tau}^{2}} \right)$$
(11)

$$R_{\rm Z} = \frac{1}{1.5 \times 10^{-3}} \left(\frac{\pi \times \left(7.5 + \frac{2.342}{2}\right) \times \frac{110 \times 10^{-9}}{1}}{4 \times 12.5 \times 10^{-6} \times 17.25 \times 10^{-3}} - 1 \right) \left(1 + \sqrt{20\%^2 + 30\%^2}\right) = 2.244 \text{ k}\Omega$$
(12)

Rounding up, the closest standard value from the E24 series is 2.4 k Ω .

10.2.2.4 Selecting the Output Capacitors

In practice, the total output capacitance is typically comprised of a combination of different capacitors, in which larger capacitors provide the load current at lower frequencies and smaller capacitors provide the load current at higher frequencies. The value, type, and location of the output capacitors are critical for correct operation. TI recommends low-ESR multilayer ceramic capacitors with an X7R dielectric (or similar) for best performance.

The TPS6287x devices feature a butterfly layout with two GND pins on opposite sides of the package. This allows the output capacitors to be placed symmetrically on the PCB such that the electromagnetic fields generated cancel each other out, thereby reducing EMI.

The transient response of the converter is limited by one of two criteria:

- The slew rate of the current through the inductor, in which case, the feedback loop of the converter saturates.
- The maximum allowed ratio of converter bandwidth to switching frequency, in which the converter remains in regulation (that is, its loop does not saturate). TI recommends a minimum ratio of four for typical applications.

Which of the above criteria applies in any given application depends on the operating conditions and component values used. Therefore, TI recommends that the user calculate the output capacitance for both cases, and select the higher of the two values.

If the converter remains in regulation, the minimum output required capacitance is given by:

$$C_{OUT(min)(reg)} = \left(\frac{\tau \times (1 + g_m \times R_Z)}{2 \times \pi \times \frac{L}{N\Phi} \times \frac{f_{SW}}{4}}\right) \left(1 + \sqrt{TOL_{\tau}^2 + TOL_{IND}^2 + TOL_{fSW}^2}\right)$$
(13)

$$C_{OUT(min)(reg)} = \left(\frac{12.5 \times 10^{-6} \times \left(1 + 1.5 \times 10^{-3} \times 2.4 \times 10^{3}\right)}{2 \times \pi \times \frac{110 \times 10^{-9}}{1} \times 10^{-9} \times \frac{2.25 \times 10^{6}}{4}}\right) \left(1 + \sqrt{30\%^{2} + 20\%^{2} + 10\%^{2}}\right) = 203.2 \,\mu\text{F}$$
(14)

If the converter loop saturates, the minimum output capacitance is given by:

$$C_{OUT(min)(sat)} = \frac{1}{\Delta V_{OUT}} \left(\frac{\frac{L}{N\Phi} \times \left(\Delta I_{OUT} + \frac{I_{L}(PP)}{2} \right)^2}{2 \times V_{OUT}} - \frac{\Delta I_{OUT} \times t_t}{2} \right) (1 + TOL_{IND})$$
(15)

44 資料に関するフィードバック(ご意見やお問い合わせ)を送信

Product Folder Links: TPS62870 TPS62871 TPS62872 TPS62873

$$C_{OUT(min)(sat)} = \frac{1}{17.25 \times 10^{-3}} \left(\frac{\frac{110 \times 10^{-9}}{1} \times \left(7.5 + \frac{2.342}{2}\right)^2}{2 \times 0.75} - \frac{7.5 \times 1 \times 10^{-6}}{2} \right) (1 + 20\%) = 122.7 \,\mu\text{F}$$
(16)

In this case, choose $C_{OUT(min)}$ = 203 µF as the larger of the two values for the output capacitance.

When calculating worst-case component values, use the value calculated above as the *minimum* output capacitance required. For ceramic capacitors, the *maximum* capacitance when considering tolerance, DC bias, temperature, and aging effects is typically two times the minimum capacitance. In this case, the maximum capacitance $C_{OUT(max)}$ is 406 µF.

			P
Capacitance	Dimensions	Voltage Rating	Manufacturer, Part Number ⁽¹⁾
Capacitance	mm (Inch)	Voltage Rating	Manufacturer, Fart Number V
22 µF ±20%	2012 (0805)	6.3 V	TDK, CGA4J1X7T0J226M125AC
22 µF ±10%	2012 (0805)	6.3 V	Murata, GCM31CR71A226KE02
47 μF ±20%	3216 (1206)	4 V	TDK, CGA5L1X7T0G476M160AC
47 μF ±20%	2012 (1210)	6.3 V	Murata, GCM32ER70J476ME19
100 µF ±20%	3225 (1210)	4 V	TDK, CGA6P1X7T0G107M250AC
100 µF ±20%	3216 (1210)	6.3 V	Murata, GRT32EC70J107ME13
•	. ,		

表 10-4. List of Recommended Output Capacitors

(1) See the *Third-Party Products Disclaimer*.

10.2.2.5 Selecting the Compensation Capacitor, C_C

First, use \neq 17 to calculate the bandwidth of the inner loop:

$$BW_{INNER} = \frac{\tau}{2\pi \times \frac{L}{N\Phi} \times C_{OUT(max)}}$$
(17)

$$BW_{INNER} = \frac{12.5 \times 10^{-6}}{2\pi \times \frac{110 \times 10^{-9}}{1} \times 203.2 \times 10^{-6}} = 89 \text{ kHz}$$
(18)

Next, calculate the product of $g_m R_Z$:

$$g_{\rm m} \times R_{\rm Z} = 1.5 \times 10^{-3} \times 2.4 \times 10^{3} = 3.6$$
 (19)

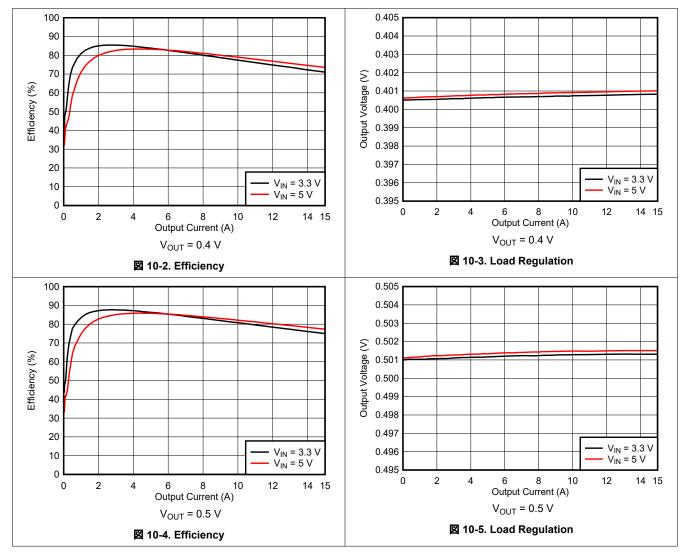
If $g_m R_Z$ > than 1, use $\neq 20$ to calculate the recommended value of C_C . If $g_m R_Z < 1$, use $\neq 22$ to calculate the recommended value of C_C .

$$C_{\rm C} = \frac{2}{\pi \times \rm BW_{\rm INNER} \times g_{\rm m} \times \rm R_Z^2}$$
(20)

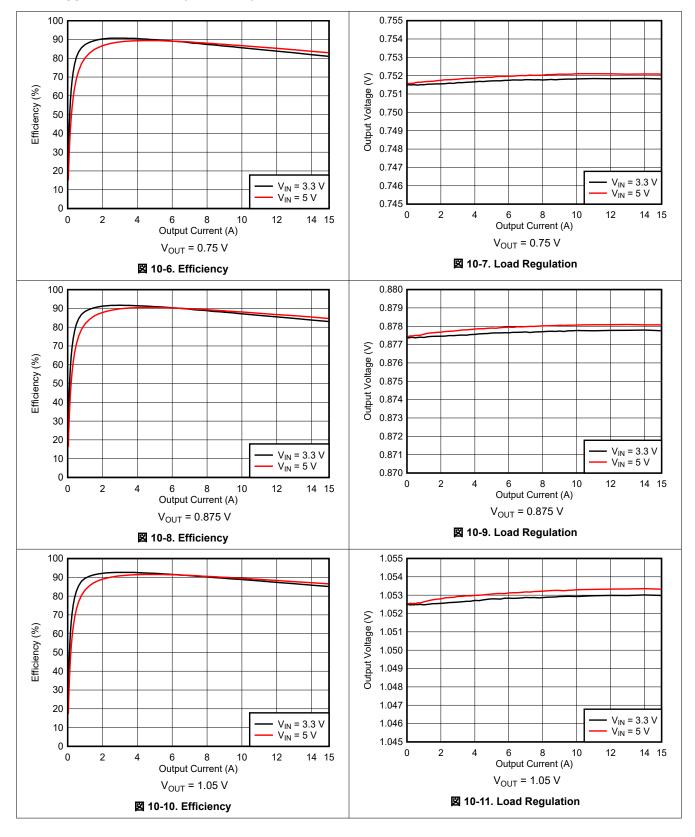
$$C_{\rm C} = \frac{2}{\pi \times 89 \times 10^3 \times 1.5 \times 10^{-3} \times \left(2.4 \times 10^3\right)^2} = 0.828 \,\mathrm{nF} \tag{21}$$

The closest standard value from the E12 series is 0.82 nF.

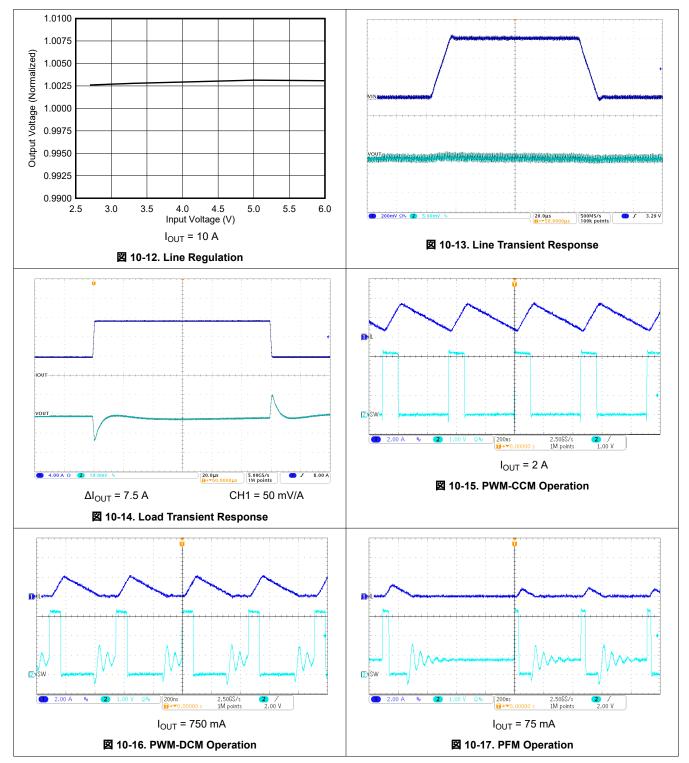
$$C_{\rm C} = \frac{2 \times g_{\rm m}}{\pi \times {\rm BW}_{\rm INNER}} \tag{22}$$


Copyright © 2023 Texas Instruments Incorporated

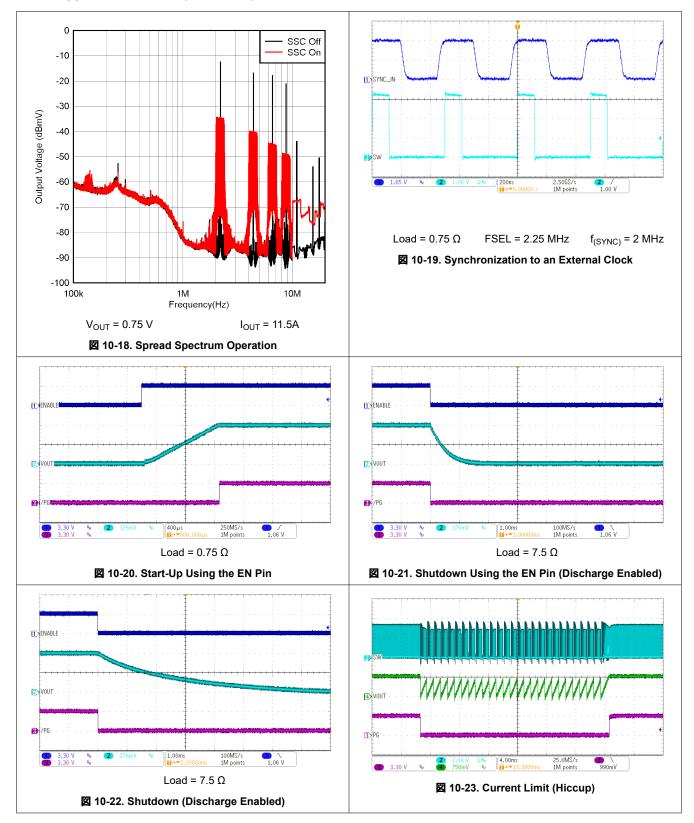
10.2.2.6 Selecting the Compensation Capacitor, C_{C2}


The compensation capacitor, C_{C2} , is an optional capacitor that TI recommends the user include to bypass high-frequency noise away from the COMP pin. The value of this capacitor is not critical; 10-pF or 22-pF capacitors are suitable for typical applications.

10.2.3 Application Curves

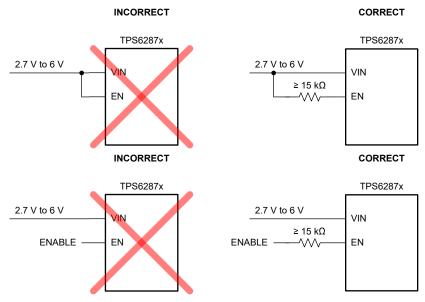

10.2.3 Application Curves (continued)

資料に関するフィードバック(ご意見やお問い合わせ)を送信 47



10.2.3 Application Curves (continued)

10.2.3 Application Curves (continued)



Copyright © 2023 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信 49

10.3 Best Design Practices

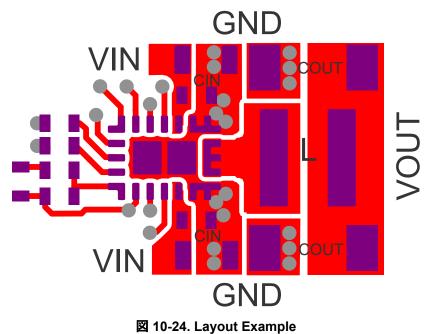
10.4 Power Supply Recommendations

The TPS6287x family has no special requirements for its input power supply. The output current rating of the input power supply must be rated according to the supply voltage and current requirements of the TPS6287x.

10.5 Layout

10.5.1 Layout Guidelines

Achieving the performance the TPS6287x devices are capable of requires proper PDN and PCB design. TI therefore recommends the user perform a power integrity analysis on their design. There are a number of commercially available power integrity software tools, and the user can use these tools to model the effects on performance of the PCB layout and passive components.


In addition to the use of power integrity tools, TI recommends the following basic principles:

- Place the input capacitors close to the VIN and GND pins. Position the input capacitors in order of increasing size, starting with the smallest capacitors closest to the VIN and GND pins. Use an identical layout for both VIN-GND pin pairs of the package, to gain maximum benefit from the butterfly configuration.
- Place the inductor close to the device and keep the SW node small.
- Connect the exposed thermal pad and the GND pins of the device together. Use multiple thermal vias to connect the exposed thermal pad of the device to one or more ground planes (TI's EVM uses nine 150-µm thermal vias).
- Use multiple power and ground planes.
- Route the VOSNS and GOSNS remote sense lines as a differential pair and connect them to the lowestimpedance point of the PDN. If the desired connection point is not the lowest impedance point of the PDN, optimize the PDN until it is. Do not route the VOSNS and GOSNS close to any of the switch nodes.
- Connect the compensation components between VOSNS and GOSNS. Do not connect the compensation components directly to power ground.
- Use multiple vias to connect each capacitor pad to the power and ground planes (TI's EVM typically uses four vias per pad).
- Use plenty of stitching vias to ensure a low impedance connection between different power and ground planes.

10.5.2 Layout Example

⊠ 10-24 shows the top layer of one of the evaluation modules for this device. It demonstrates the practical implementation of the PCB layout principles previously listed. The user can find a complete set drawings of all the layers used in this PCB in the evaluation module's user guide.

Copyright © 2023 Texas Instruments Incorporated

11 Device and Documentation Support

11.1 Device Support

11.1.1 サード・パーティ製品に関する免責事項

サード・パーティ製品またはサービスに関するテキサス・インスツルメンツの出版物は、単独またはテキサス・インスツルメンツの製品、サービスと一緒に提供される場合に関係なく、サード・パーティ製品またはサービスの適合性に関する是認、サード・パーティ製品またはサービスの是認の表明を意味するものではありません。

11.2 Documentation Support

11.2.1 Related Documentation

For related documentation see the following:

Texas Instruments, Semiconductor and IC Package Thermal Metrics application report

11.3 ドキュメントの更新通知を受け取る方法

ドキュメントの更新についての通知を受け取るには、ti.comのデバイス製品フォルダを開いてください。「更新の通知を受け取る」をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取れます。変更の詳細については、修正されたドキュメントに含まれている改訂履歴をご覧ください。

11.4 サポート・リソース

テキサス・インスツルメンツ E2E[™] サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。

リンクされているコンテンツは、各寄稿者により「現状のまま」提供されるものです。これらはテキサス・インスツルメンツの仕様を構成するものではなく、必ずしもテキサス・インスツルメンツの見解を反映したものではありません。テキサス・インスツ ルメンツの使用条件を参照してください。

11.5 Trademarks

テキサス・インスツルメンツ E2E[™] is a trademark of Texas Instruments. すべての商標は、それぞれの所有者に帰属します。

11.6 静電気放電に関する注意事項

この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うことを推奨します。正しい取り扱いおよび設置手順に従わない場合、デバイスを破損するおそれがあります。

ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずか に変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。

11.7 用語集

テキサス・インスツルメンツ用語集 この用語集には、用語や略語の一覧および定義が記載されています。

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty		Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		uly	(2)	(6)	(3)		(4/5)	
TPS62870Z0WRXSR	ACTIVE	VQFN-FCRLF	RXS	16	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	870Z0B	Samples
TPS62871Z0WRXSR	ACTIVE	VQFN-FCRLF	RXS	16	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	871Z0B	Samples
TPS62871Z4WRXSR	ACTIVE	VQFN-FCRLF	RXS	16	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	871Z4B	Samples
TPS62872Z0WRXSR	ACTIVE	VQFN-FCRLF	RXS	16	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	872Z0B	Samples
TPS62872Z2WRXSR	ACTIVE	VQFN-FCRLF	RXS	16	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	872Z2B	Samples
TPS62873Z0WRXSR	ACTIVE	VQFN-FCRLF	RXS	16	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	873Z0B	Samples
TPS62873Z1WRXSR	ACTIVE	VQFN-FCRLF	RXS	16	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	873Z1B	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

PACKAGE OPTION ADDENDUM

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

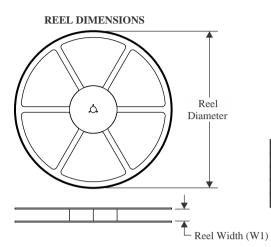
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TPS62870, TPS62871, TPS62872, TPS62873 :

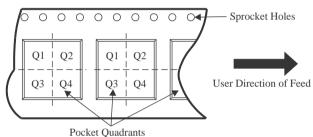
• Automotive : TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1

NOTE: Qualified Version Definitions:


• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

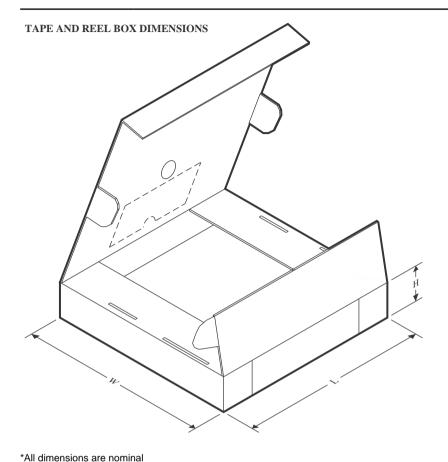
www.ti.com

Texas


STRUMENTS

TAPE AND REEL INFORMATION

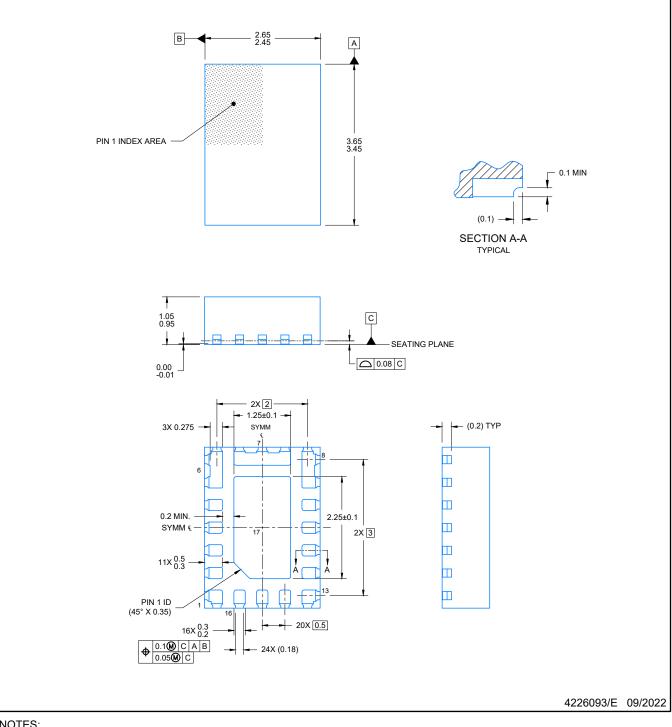
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS62870Z0WRXSR	VQFN- FCRLF	RXS	16	3000	330.0	12.4	2.8	3.8	1.2	4.0	12.0	Q1
TPS62871Z0WRXSR	VQFN- FCRLF	RXS	16	3000	330.0	12.4	2.8	3.8	1.2	4.0	12.0	Q1
TPS62871Z4WRXSR	VQFN- FCRLF	RXS	16	3000	330.0	12.4	2.8	3.8	1.2	4.0	12.0	Q1
TPS62872Z0WRXSR	VQFN- FCRLF	RXS	16	3000	330.0	12.4	2.8	3.8	1.2	4.0	12.0	Q1
TPS62872Z2WRXSR	VQFN- FCRLF	RXS	16	3000	330.0	12.4	2.8	3.8	1.2	4.0	12.0	Q1
TPS62873Z0WRXSR	VQFN- FCRLF	RXS	16	3000	330.0	12.4	2.8	3.8	1.2	4.0	12.0	Q1
TPS62873Z1WRXSR	VQFN- FCRLF	RXS	16	3000	330.0	12.4	2.8	3.8	1.2	4.0	12.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

7-Dec-2023



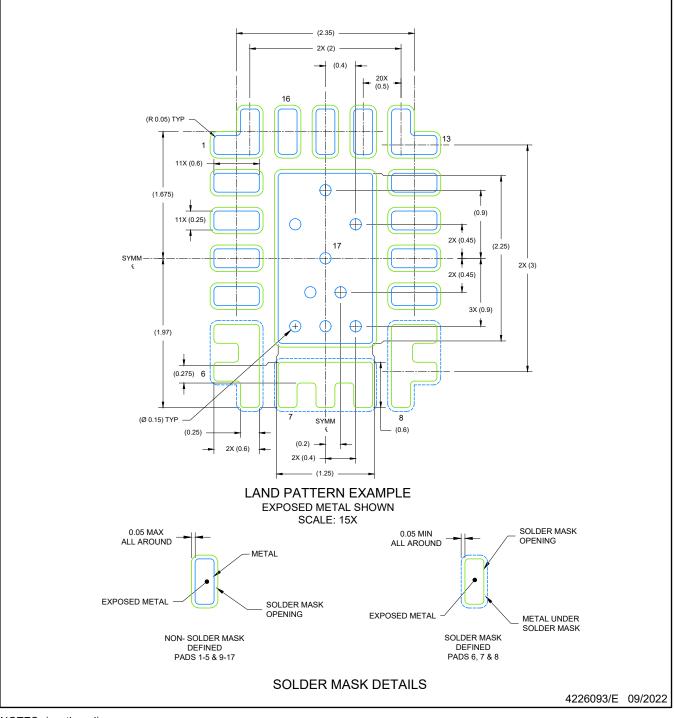
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS62870Z0WRXSR	VQFN-FCRLF	RXS	16	3000	338.0	355.0	50.0
TPS62871Z0WRXSR	VQFN-FCRLF	RXS	16	3000	338.0	355.0	50.0
TPS62871Z4WRXSR	VQFN-FCRLF	RXS	16	3000	338.0	355.0	50.0
TPS62872Z0WRXSR	VQFN-FCRLF	RXS	16	3000	338.0	355.0	50.0
TPS62872Z2WRXSR	VQFN-FCRLF	RXS	16	3000	338.0	355.0	50.0
TPS62873Z0WRXSR	VQFN-FCRLF	RXS	16	3000	338.0	355.0	50.0
TPS62873Z1WRXSR	VQFN-FCRLF	RXS	16	3000	338.0	355.0	50.0

RXS0016A

PACKAGE OUTLINE VQFN-FCRLF - 1.05 mm max height

PLASTIC QUAD FLAT PACK- NO LEAD

- NOTES:
- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.



RXS0016A

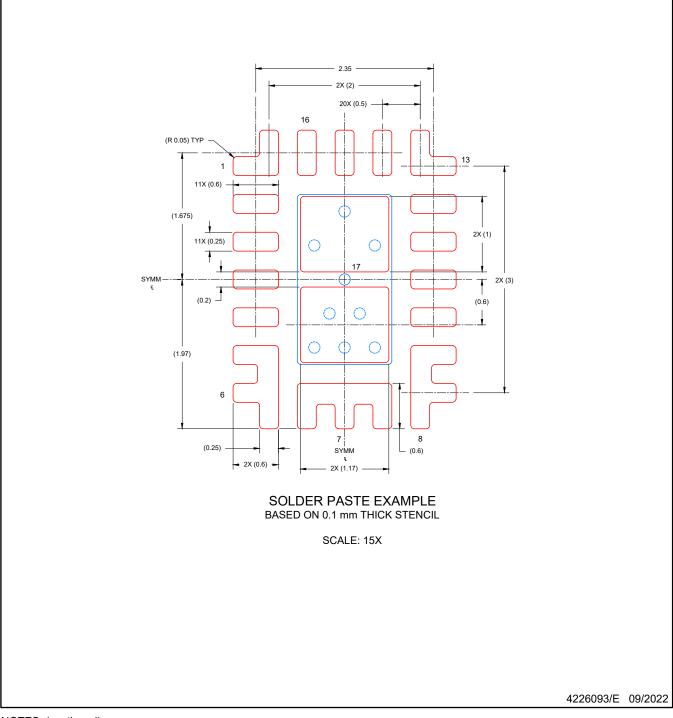
EXAMPLE BOARD LAYOUT

VQFN-FCRLF - 1.05 mm max height

PLASTIC QUAD FLAT PACK- NO LEAD

NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



RXS0016A

EXAMPLE STENCIL DESIGN

VQFN-FCRLF - 1.05 mm max height

PLASTIC QUAD FLAT PACK- NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要なお知らせと免責事項

TIは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス・デザインを含みます)、アプリケーションや 設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供してお り、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的に かかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあら ゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプ リケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載す ることは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを 自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TIの製品は、TIの販売条件、または ti.com やかかる TI 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供され ています。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありま せん。

お客様がいかなる追加条項または代替条項を提案した場合でも、TIはそれらに異議を唱え、拒否します。

郵送先住所:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated