

SN55HVD233-SEP Space EP Process Flow and Reliability Report

ABSTRACT

The SN55HVD233-SEP is used in applications employing the controller area network (CAN) serial communication physical layer in accordance with the ISO 11898 standard. As a CAN transceiver, the device provides, transmits, and receives capability between the differential CAN bus and a CAN controller, with signaling rates up to 1 Mbps. Designed for operation in especially harsh radiation environments, the SN55HVD233-SEP features crosswire, overvoltage, loss of ground protection to ± 16 V, and overtemperature (thermal shutdown) protection.

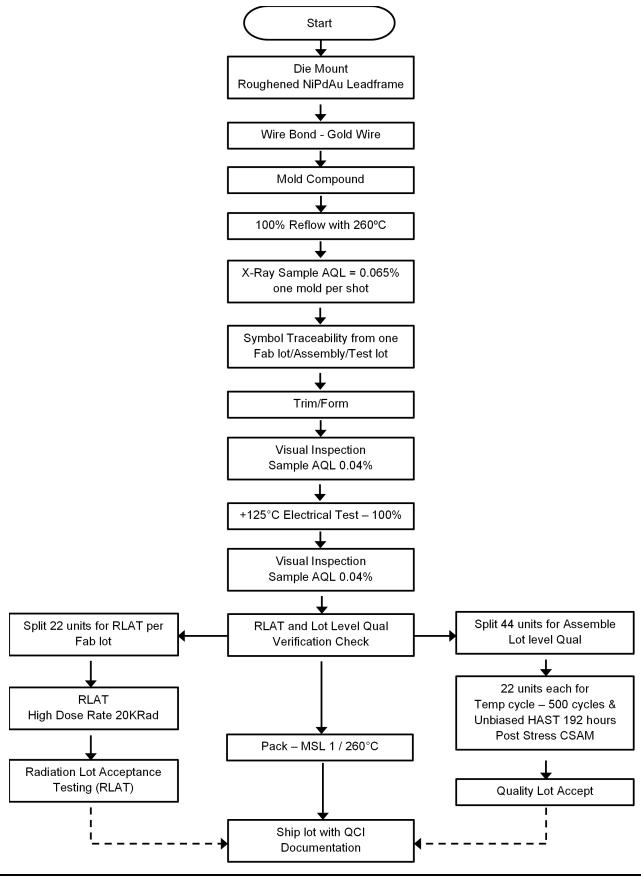
The device operates over a wide -7-V to 12-V common mode range. This transceiver is the interface between the host CAN controller on the microprocessor, FPGA, or ASIC, and the differential CAN bus used in satellite applications. The SN55HVD233-SEP is packaged in a space enhanced plastic for low outgassing characteristics and is single event latch-up (SEL) immune up to 43 MeV-cm²/mg, making the device suitable for low earth orbit space applications.

Contents

1	Device Introduction	2
2	SN55HVD233-SEP Production Flow	3
3	Device Qualification	4
4	Outgas Test Report	6

Trademarks

All trademarks are the property of their respective owners.


Device Introduction www.ti.com

1 Device Introduction

SN55HVD233-SEP is a Radiation Hardened device in plastic package which allow this device to be use in a space application. The device was verified immune to 43 MeV-cm²/mg at 125°C for single event latchup. Each Fab lot was tested according to MIL-STD-883 for Radiation Lot Acceptance Tested (RLAT) up to 20 krad(Si) and each Assembly and Test lot will go thru process flow as shown in Section 2. To ensure the quality of SN55HVD233-SEP, it is qualified with Space EP requirement which is explained in Section 3.

2 SN55HVD233-SEP Production Flow

Device Qualification www.ti.com

3 Device Qualification

The following is the device qualification summary:

Qualification by Similarity (Qualification Family)

A new device can be qualified either by performing full scale quality and reliability tests on the actual device or using previously qualified device(s) through "Qualification by Similarity" (QBS) rules. By establishing similarity between the new device and those qualified previously, repetitive tests will be eliminated, allowing for timely production release. When adopting QBS methodology, the emphasis is on qualifying the differences between a previously qualified product and the new product under consideration. The QBS rules for a technology, product, test parameters or package shall define which attributes are required to remain fixed in order for the QBS rules to apply. The attributes which are expected and allowed to vary will be reviewed and a QBS plan shall be developed, based on the reliability impact assessment above, specifying what subset of the full complement of environmental stresses is required to evaluate the reliability impact of those variations. Each new device shall be reviewed for conformance to the QBS rule sets applicable to that device. See JEDEC JESD47 for more information.

Table 1. SN55HVD233MDPSEP Device Baseline

Device Baseline ⁽¹⁾				
TI Device:	SN55HVD233MDPSEP		Assembly Site:	TI-FMX (Mexico)
DLA VID:	DLA VID: V62/18617-01XE		Test Site:	TI-FMX (Mexico)
Wafer Fab:	DFAB		Pin/Package Type:	SOIC (D) 8
Fab Process:	LBC3S		LeadFrame:	Cu
Fab Technology:	LBC3S		Termination Finish:	NiPdAu
Die Revision:	D		Bond Wire	24.3um Au
Die Name:	BLBDHVD233VDC		Moisture Sensitivity:	Level1-260°C
ESD CDM:	±500V			
ESD HBM:	±14000V			

⁽¹⁾ Baseline information in effect as of the date of this report.

Table 2. SN55HVD233MDTPSEP Device Baseline

Device Baseline ⁽¹⁾				
TI Device:	SN55HVD233MDTPSEP	Assembly Site:	TI-FMX (Mexico)	
DLA VID:	V62/18617-01XE	Test Site:	TI-FMX (Mexico)	
Wafer Fab:	DFAB	Pin/Package Type:	SOIC (D) 8	
Fab Process:	LBC3S	LeadFrame:	Cu	
Fab Technology:	LBC3S	Termination Finish:	NiPdAu	
Die Revision:	D	Bond Wire	24.3um Au	
Die Name:	BLBDHVD233VDC	Moisture Sensitivity:	Level1-260°C	
ESD CDM:	±500V			
ESD HBM:	±14000V			

⁽¹⁾ Baseline information in effect as of the date of this report.

www.ti.com Device Qualification

Table 3. Qualification Matrix

(Note that qualification by	similarity ("qualification fa	mily") per JEDEC JESD47	is allowed)	
Description	Condition	Sample Size Used/Rejects	Lots Required	Test Method
Electromigration	Maximum Recommended Operating Conditions	N/A	N/A	Per TI Design Rules
Wire Bond Life	Maximum Recommended Operating Conditions	N/A	N/A	Per TI Design Rules
Electrical Characterization	TI Data Sheet	10	3	N/A
Electrostatic Discharge Sensitivity	НВМ	3 units/voltage	1	EIA/JESD22-A114
	CDM			EIA/JESD22-C101
Latch-up	Per Technology	6/0	1	EIA/JESD78
Physical Dimensions	TI Data Sheet	5/0	1	EIA/JESD22- B100
Thermal Impedance	Theta-JA on board	Per Pin-Package	N/A	EIA/JESD51
Bias Life Test	125°C / 1000 hours or equivalent	77/0	3	JESD22-A108 ⁽¹⁾
Biased HAST	130°C / 85% / 96 hours	77/0	3	JESD22-A110 ⁽¹⁾
Extended Biased HAST	130°C / 85% / 250 hours	77/0	1	JESD22-A110 ⁽¹⁾
Unbiased HAST	130°C / 85% / 96 hours	77/0	3	JESD22-A.118 ⁽¹⁾
Temperature Cycle	-65°C to +150°C non- biased for 500 cycles	77/0	3	JESD22-A104 ⁽¹⁾
Solder Heat	260°C for 10 seconds	22/0	1	JESD22-B106
Resistance to Solvents	Ink symbol only	12/0	1	JESD22-B107
Solderability	Condition A (steam age for 8 hours)	22/0	1	ANSI/J-STD-002-92
Flammability	Method A / Method B	5/0	1	UL-1964
Bond Shear	Per wire size	5 units x 30/0 bonds	3	JESD22-B116
Bond Pull Strength	Per wire size	5 units x 30/0 bonds	3	ASTM F-459
Die Shear	Per die size	5/0	3	TM 2019
High Temp Storage	150°C / 1,000 hours	15/0	3	JESD22-A103-A ⁽¹⁾
Moisture Sensitivity	Surface Mount Only	12	1	J-STD-020-A ⁽¹⁾
Radiation Characterization	Total Ionization Dose and Single Event Latchup	5 units/dose level	1	MIL-STD-883, TM1019
Outgassing Characterization	TML (Total Mass Lost), CVCM (Collected Volatile Condensable material), WVR (Water vapor recorded)	5	1	ASTM E595

⁽¹⁾ Precondition performed per JEDEC Std. 22, Method A112/A113.

Outgas Test Report www.ti.com

4 Outgas Test Report

Outgassing test was performed on 5 units. A total mass loss (TML) of 1.00% and collected volatile condensable material (CVCM) of 0.10% were used as screening levels for rejection of spacecraft materials. The outgas test was performed in a vacuum environment of less than 5×10^{-5} torr according to ASTM E 595, for a duration of 24 hours, at 125°C. The TML, CVCM, and the amount of Water Vapor Recovered (WVR) were measured after the test.

RESULTS

: The following tables list the results of the testing:

Table 1:	Outgas to	est results.
----------	-----------	--------------

Sample	TML (%)	CVCM (%)	WVR (%)
	< 0.01	< 0.01	0.02

www.ti.com Outgas Test Report

Quality and Reliability Data Disclaimer

The attached quality and reliability information is specific to the TI Space Enhanced Plastic product family of plastic encapsulated commercial-off-the-shelf (COTS) semiconductor products and components. Due to possible differences in product assembly and test baselines, this information is NOT APPLICABLE to TI standard, industrial, or automotive catalog commercial products.

Plastic encapsulated TI semiconductor devices are not designed and are not warranted to be suitable for use in some military applications and/or military environments. Use of plastic encapsulated TI semiconductor devices in military applications and/or military environments, in lieu of hermetically sealed ceramic devices, is understood to be fully at the risk of Buyer.

Quality and reliability data provided by Texas Instruments is intended to be an estimate of product performance based upon history only. It does not imply that any performance levels reflected in such data can be met if the product is operated outside the conditions expressly stated in the latest published data sheet for a device.

Existing industry standards for plastic encapsulated microcircuit qualification and reliability monitors are based upon historical data, experiments, and field experience with the use of these devices in commercial and industrial applications. The applicability of these standards in determining the suitability for use and safety performance in military and aerospace applications has not been established. Due to the multiple variations in field operating conditions, a component manufacturer can only base estimates of product life on models and the results of package and die level qualification.

The buyer's use of this data, and all consequences of such use, is solely the buyer's responsibility. Buyer assumes full responsibility to perform sufficient engineering and additional qualification testing in order to properly evaluate the buyer's application and determine whether a candidate device is suitable for use in that application. The information provided by TI shall not be considered sufficient grounds on which to base any such determination.

THIS INFORMATION IS PROVIDED "AS IS" WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT OF INTELLECTUAL PROPERTY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT SHALL TI OR ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, LOSS OF INFORMATION) ARISING OUT OF THE USE OF OR INABILITY TO USE THE INFORMATION, EVEN IF TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

THIS INFORMATION SHOULD NOT BE USED TO ASSIST IN THE PRACTICE OF "UPRATING" OR "UPSCREENING" DEVICES FOR USE BEYOND THEIR RATED LIMITS.

TI may provide technical, applications or design advice, quality characterization, and reliability data or service providing these items shall not expand or otherwise affect TI's warranties as set forth in the Texas Instruments Incorporated Standard Terms and Conditions of Sale for Semiconductor Products and no obligation or liability shall arise from TI's provision of such items.

Quality and Reliability Data copyright © 2011, Texas Instruments Incorporated, all rights reserved.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated