
User’s Guide
Motor Control SDK Universal Project and Lab

ABSTRACT

This document explains the steps needed to run the motor drive evaluation kits with the Universal Motor Control
Lab project in MotorControlSDK, and how to migrate the lab project to a customization board, and how to port
the lab project to a new C2000™ device.

Table of Contents
1 Introduction...3
2 Running the Universal Lab on TI Hardware Kit..3

2.1 Supported TI Motor Evaluation Kits... 3
2.2 Hardware Board Setup...5
2.3 Lab Software Implementation.. 18
2.4 Monitoring Feedback or Control Variables... 26
2.5 Running the Project with Incremental Build... 30

3 Building Custom Board..54
3.1 Building New Custom Board.. 54
3.2 Supporting New BLDC Motor Driver Board..67
3.3 Porting Reference Code to New C2000 MCU..70

4 References.. 71

List of Figures
Figure 2-1. F28002x LaunchPad Board Overview and Switches Setting.. 6
Figure 2-2. F28002x controlCARD and Switches Setting..7
Figure 2-3. TMDSADAP180TO100 Adapter and Switches Setting... 7
Figure 2-4. LAUNCHXL-F280025C Connects BOOSTXL-DRV8323RH and DAC128S085EVM... 8
Figure 2-5. LAUNCHXL-F280025C Board Settings For Connecting BOOSTXL-DRV Board..9
Figure 2-6. BOOSTXL-DRV8323Rx Modification for Using Single Shunt Technology.. 9
Figure 2-7. LAUNCHXL-F280025C Connects BOOSTXL-DRV8323RS and DAC128S085EVM..10
Figure 2-8. LAUNCHXL-F280025C Connects DRV8353RS-EVM and DAC128S085EVM... 11
Figure 2-9. LAUNCHXL-F280025C Connects BOOSTXL-3PHGANINV and DAC128S085EVM... 12
Figure 2-10. LAUNCHXL-F280025C Connects DRV8316 REVM and DAC128S085EVM... 13
Figure 2-11. TMDSHVMTRINSPIN Connects TMDSCNCD280025C and TMDSADAP180TO100.. 14
Figure 2-12. TMDSHVMTRINSPIN Kit Jumpers and Connectors Diagram.. 16
Figure 2-13. Select the Right Build Configurations within CCS... 20
Figure 2-14. Select the Right Pre-define Symbols in Project Properties... 20
Figure 2-15. Project Structure Overview..21
Figure 2-16. Project Explorer View of the Example Lab.. 22
Figure 2-17. Project Software Flowchart Diagram...23
Figure 2-18. DATALOG Module Block Diagram...26
Figure 2-19. Graph window settings.. 27
Figure 2-20. PWMDAC Module Block Diagram...28
Figure 2-21. External RC Low-Lass Filter Connecting to PWM Pin in C2000 MCU..28
Figure 2-22. DAC128S Module Block Diagram... 29
Figure 2-23. DAC128S085EVM Evaluation Board.. 29
Figure 2-24. Build Level 1 Software Block Diagram - Offset Validation... 30
Figure 2-25. Build Level 1: Variables in Expressions Window...33
Figure 2-26. Build Level 1: PWM Output Waveforms.. 34
Figure 2-27. Build Level 2 Software Block Diagram - Open Loop Control...34
Figure 2-28. Build Level 2: Variables in Expressions Window...37
Figure 2-29. Build Level 2: Current Protection Setting.. 37
Figure 2-30. Build Level 2: Motor Phase Current Waveforms... 38

www.ti.com Table of Contents

SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Motor Control SDK Universal Project and Lab 1

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

Figure 2-31. Build Level 2: Motor Phase Voltage Waveforms Using Common SVM Mode...38
Figure 2-32. Build Level 2: Motor Phase Voltage Waveforms Using Minimum SVM Mode...39
Figure 2-33. Build Level 2: Motor Rotor Angle and Phase Current Waveforms.. 39
Figure 2-34. Build Level 2: Motor Phase Current Waveforms with Graph Tool... 40
Figure 2-35. Build Level 2: Motor Phase Voltage Waveforms with Graph Tool... 40
Figure 2-36. Build Level 2: Motor Rotor Angle Waveforms With Graph Tool...41
Figure 2-37. Build Level 3 Software Block Diagram - Current Close Loop Control... 42
Figure 2-38. Build Level 3: Variables in Expressions Window...44
Figure 2-39. Build Level 3: Motor Rotor Angle and Phase Current Waveforms on Oscilloscope.. 45
Figure 2-40. Build Level 4 Software Block Diagram - Speed and Current Close Loop Control...45
Figure 2-41. Build Level 4: Variables in Expressions Window...48
Figure 2-42. Build Level 4: Rotor Angle with FAST, Phase Current Waveforms at Forward Move..49
Figure 2-43. Build Level 4: Rotor Angle with FAST and eSMO, Phase Current Waveforms at Forward Rotation.................... 50
Figure 2-44. Build Level 4: Rotor Angle With FAST and eSMO, Phase Current Waveforms at Reversal Rotation...................50
Figure 2-45. Build Level 4: Rotor Angle with FAST and Encoder, Phase Current Waveforms at Forward Rotation................. 51
Figure 2-46. Build Level 4: Rotor Angle with FAST and Hall Sensor, Phase Current Waveforms at Forward Rotation............ 52
Figure 2-47. Build Level 4: Motor Rotor Angle with FAST and Hall Sensor, Phase Current Waveforms at Reversal

Rotation..52
Figure 2-48. Build Level 4: Rotor Angle with eSMO and Encoder, Phase Current Waveforms at Forward Rotation................ 53
Figure 3-1. HAL Configuration and Motor Control Setting State Machines... 54
Figure 3-2. PWM Connection Diagram..56
Figure 3-3. ADC Connection Diagram... 58
Figure 3-4. CMPSS Connection Diagram..59

List of Tables
Table 2-1. InstaSPIN-FOC Based Evaluation Kits Supported by Motor Control SDK... 4
Table 2-2. Motor Phase, Encoder, or Hall Sensors Connections for Reference Kits and Motors.. 5
Table 2-3. Key Jumpers, Connectors Explanation...17
Table 2-4. The Supporting Algorithms, Functions and Motors Matrix in Example Lab.. 19
Table 2-5. Using Motor Control Modules in Lab Project.. 24
Table 2-6. Motor Control Modules Used per Incremental Build... 25
Table 2-7. Supporting Estimator Algorithms in Lab Project... 26

Trademarks
C2000™, FAST™, InstaSPIN™, InstaSPIN-FOC™, Code Composer Studio™, LaunchPad™, NexFET™, and
BoosterPack™ are trademarks of Texas Instruments.
All trademarks are the property of their respective owners.

Trademarks www.ti.com

2 Motor Control SDK Universal Project and Lab SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

1 Introduction
The Universal Motor Control Lab project described in this guide is intended for you to not only experiment with
various motor control algorithms but to also use as a reference for your own design. The universal motor control
solution, as well as the lab project, is delivered within the MotorControl SDK.

The Universal Motor Control Lab project with example on F28002x series C2000 MCU. This is a single
project with build examples for different Sensorless (FAST™, eSMO, InstaSPIN™-BLDC), Sensored (Incremental
Encoder, Hall) motor control techniques (FOC, Trapezoidal), with included system features, and debug
interfaces that work across a set of three-phase inverter motor evaluation kits.

The FAST library implemented with InstaSPIN-FOC™ in this Universal Motor Control Lab project. This library
enables the use of the FAST observer for InstaSPIN-FOC with FPU enabled and C2000Ware-MotorControl-SDK
supported C2000 devices. The user no longer needs to use a C2000 device with special ROM content use FAST
or InstaSPIN-FOC.

In the lab project, you will learn how to modify “user_mtr1.h,” the header file that stores all of the user
parameters. Some of these parameters can be manipulated through CCS during run-time, but the parameters
must be updated in “user_mtr1.h” to be saved permanently in your project. You will learn how to migrate the lab
to your own hardware board, and port the lab project to the other C2000 MCU controllers by modifying "hal.h"
and "hal.c" files.

The lab project provides several interface functions to start/stop the motor and set the reference speed by using
push button, potentiometer, or CAN interface.

The Motor Control Universal Lab project is built in the MotorControl SDK and on top of C2000Ware. The
MotorControl SDK software includes firmware that runs on C2000 motor control evaluation modules (EVMs) and
TI designs (TIDs). A copy of C2000Ware is provided as part of the MotorControl SDK and offers device-specific
drivers and support software to complete example system applications.

The Universal MotorControl Lab requires:

• Code Composer Studio™ v10.4.0 or newer
• C2000 Compiler v20.2.5.LTS or newer
• C2000Ware MotorControl SDK V3.03.00 or newer

2 Running the Universal Lab on TI Hardware Kit

2.1 Supported TI Motor Evaluation Kits
The TMS320F28002x (F28002x) is a member of the C2000™ real-time Microcontroller family with IEEE 754
Floating-Point Unit (FPU) and Trigonometric Math Unit (TMU). The user can use LaunchPad™ development kits
or controlCARDs with the relevant motor drive evaluation board.

www.ti.com Introduction

SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Motor Control SDK Universal Project and Lab 3

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

Table 2-1 lists the current supporting evaluation kits with the motor control lab project in MotorControl SDK.

Table 2-1. InstaSPIN-FOC Based Evaluation Kits Supported by Motor Control SDK
Motor Drive Evaluation Board C2000 MCU

Evaluation Module
Current Sensing
Topology

Rotor Position
Sensing Method Tested MotorsPart Number Description

BOOSTXL-
DRV8323RH

6~54V, 15A 3-
ph inverter with
CSD88599Q5DC
NexFET™ power
blocks

LAUNCHXL-
F280025C

Three low-side
current shunt

FAST estimator
based sensorless-
FOC
eSMO observer
based sensorless-
FOC
QEP encoder based
sensored-FOC
Hall sensors based
sensored-FOC

LVSERVOMTR
(Encoder Embedded)
LVBLDCMTR (Hall
Sensors Embedded)

BOOSTXL-
DRV8323RS

6~54V, 15A 3-ph
inverter
with CSD88599Q5DC
NexFETTM power
blocks

LAUNCHXL-
F280025C

Three low-side
current shunt

FAST estimator
based sensorless-
FOC
eSMO observer
based sensorless-
FOC
QEP encoder based
sensored-FOC
Hall sensors based
sensored-FOC

LVSERVOMTR
(Encoder Embedded)
LVBLDCMTR (Hall
Sensors Embedded)

DRV8316REVM 4.5~35V, 8A peak
current 3-ph inverter
integrated MOSFET

LAUNCHXL-
F280025C

Integrated CSAs for
three-phase low-side
current

FAST estimator
based sensorless-
FOC
eSMO observer
based sensorless-
FOC
QEP encoder based
sensored-FOC
Hall sensors based
sensored-FOC

LVSERVOMTR
(Encoder Embedded)
LVBLDCMTR (Hall
Sensors Embedded)

DRV8353RS-EVM 9~95V, 15A 3-ph
inverter
with CSD19532Q5B
NexFETTM power
blocks

LAUNCHXL-
F280025C

Three low-side
current shunt

FAST estimator
based sensorless-
FOC
eSMO observer
based sensorless-
FOC
QEP encoder based
sensored-FOC
Hall sensors based
sensored-FOC

LVSERVOMTR
(Encoder Embedded)
LVBLDCMTR (Hall
Sensors Embedded)

BOOSTXL-3PHGANI
NV

12~60V, 3.5A 3-ph
GaN inverter

LAUNCHXL-
F280025C

Three shunt-based
inline motor phase
current sensing

FAST estimator
based sensorless-
FOC
eSMO observer
based sensorless-
FOC
QEP encoder based
sensored-FOC
Hall sensors based
sensored-FOC

LVSERVOMTR
(Encoder Embedded)
LVBLDCMTR (Hall
Sensors Embedded)

TMDSHVMTRINSPIN 400V, 10A 3-ph
inverter

TMDSCNCD280025C
+
TMDSADAP180TO10
0

Three low-side
current shunt

FAST estimator
based sensorless-
FOC
eSMO observer
based sensorless-
FOC
QEP encoder based
sensored-FOC

HVPMSMMTR
(Encoder Embedded)
HVBLDCMTR (Hall
Sensors Embedded)

Running the Universal Lab on TI Hardware Kit www.ti.com

4 Motor Control SDK Universal Project and Lab SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/tool/BOOSTXL-DRV8323RH
https://www.ti.com/tool/BOOSTXL-DRV8323RH
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/lvservomtr
https://www.ti.com/tool/lvservomtr
https://www.ti.com/tool/lvbldcmtr
https://www.ti.com/tool/lvbldcmtr
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/lvservomtr
https://www.ti.com/tool/lvservomtr
https://www.ti.com/tool/lvbldcmtr
https://www.ti.com/tool/lvbldcmtr
https://www.ti.com/tool/DRV8316REVM
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/lvservomtr
https://www.ti.com/tool/lvservomtr
https://www.ti.com/tool/lvbldcmtr
https://www.ti.com/tool/lvbldcmtr
https://www.ti.com/tool/DRV8353RS-EVM
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/lvservomtr
https://www.ti.com/tool/lvservomtr
https://www.ti.com/tool/lvbldcmtr
https://www.ti.com/tool/lvbldcmtr
https://www.ti.com/tool/BOOSTXL-3PHGANINV
https://www.ti.com/tool/BOOSTXL-3PHGANINV
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/lvservomtr
https://www.ti.com/tool/lvservomtr
https://www.ti.com/tool/lvbldcmtr
https://www.ti.com/tool/lvbldcmtr
https://www.ti.com/tool/TMDSHVMTRINSPIN
https://www.ti.com/tool/TMDSCNCD280025C
https://www.ti.com/tool/tmdsadap180to100
https://www.ti.com/tool/tmdsadap180to100
https://www.ti.com/tool/hvpmsmmtr
https://www.ti.com/tool/hvpmsmmtr
https://www.ti.com/tool/hvbldcmtr
https://www.ti.com/tool/hvbldcmtr
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

It is important to ensure that the physical connections are done correctly if the lab is set to use Encoder or
Hall based sensored-FOC. If the motor, encoder or hall wires are connected in the wrong order, the lab will not
function properly. It will result in the motor being unable to move. For the motor it is important to ensure that
the motor phases are connected to the right phase on the controller. Phase connections for the motors that are
provided with the TI Motor Control Reference Kits are provided in Table 2-2.

For the encoder, it is important to ensure that A is connected to A, B to B, and I to I. For the hall sensor, it is
important to ensure that A is connected to A, B to B, and C to C. Often +5V dc and ground connections are
required as well. Please refer to the information for your board in order to wire your encoder correctly.

It is important for the setup and configuration of the ENC module that the number of lines on the encoder
be provided. This allows the ENC module to correctly convert encoder counts into an angle. This value is
represented by USER_MOTOR1_NUM_ENC_SLOTS. This value needs to be defined in user.h as part of the
user motor definitions. This value must be updated to the correct value for your encoder. If this value is not
correct the motor will spin faster or slower depending on if the value you set. It is important to note that this
value should be set to the number of lines on the encoder, not the resultant number of counts after figuring the
quadrature accuracy.

Table 2-2. Motor Phase, Encoder, or Hall Sensors Connections for Reference Kits and Motors
LVSERVOMTR LVBLDCMTR HVPMSMMTR HVBLDCMTR

Motor Phase Lines U BLACK (16AWG) YELLOW RED YELLOW

V RED (16AWG) RED BLUE/BLACK RED

W WHITE (16AWG) BLACK WHITE BLACK

Encoder GND BLACK (J4-1) N/A, No support
encoder based
sensored-FOC

BLACK Not support encoder
based sensored-FOC+5V RED (J4-2) RED

I BROWN (J4-3) YELLOW

B ORANGE (J4-4) GREEN

A BLUE (J4-1) BLUE

Hall Sensors GND BLACK (J10-1) BLACK Not support hall
based sensored-FOC

BLACK

+5V RED (J10-2) RED RED

A GRAY-WHITE (J10-3) BLUE BLUE

B GREEN-WHITE
(J10-4)

GREEN GREEN

C GREEN (J10-5) WHITE WHITE

Get started with C2000™ Real-Time Control Microcontrollers (MCUs) to implement motor control.

• Step 1: Order the power inverter board, C2000 development kits and motors as shown in Table 2-1.
• Step 2: Download and always use latest version of MotorControl SDK.
• Step 3: Download and always use latest version of Code Composer Studio IDE.
• Step 4: Follow the instructions to setup the hardware and run the example lab in the following sections.
• Step 5: Search existing answers or ask your own question to get the quick design help you need in the TI

C2000 E2E forum.

2.2 Hardware Board Setup
This chapter describes how to set up hardware boars for motor control when combining the power inverter board
with the C2000 development tools. The following sections show the detailed operation procedure on different
power inverter board.

2.2.1 LAUNCHXL-F280025C Setup

LAUNCHXL-F280025C is a low-cost development board for TI C2000 real-time microcontrollers series of
F28002x devices. This LaunchPad™ kit offers extra pins for development and supports the connection of two
BoosterPack™ plug-in modules.

www.ti.com Running the Universal Lab on TI Hardware Kit

SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Motor Control SDK Universal Project and Lab 5

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/tool/lvservomtr
https://www.ti.com/tool/lvbldcmtr
https://www.ti.com/tool/hvpmsmmtr
https://www.ti.com/tool/hvbldcmtr
https://www.ti.com/tool/C2000WARE-MOTORCONTROL-SDK
https://www.ti.com/tool/CCSTUDIO
https://e2e.ti.com/support/microcontrollers/c2000-microcontrollers-group/c2000/f/c2000-microcontrollers-forum
https://e2e.ti.com/support/microcontrollers/c2000-microcontrollers-group/c2000/f/c2000-microcontrollers-forum
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

• Hardware files are in <install_location>\boards\LaunchPads\LAUNCHXL_F280025C folder of
C2000Ware.

• For more details about LAUNCHXL-F280025C, see F28002x Series LaunchPad™ Development Kit.
• Make sure that switches on LAUNCHXL-F280025C are set as described below shown in Figure 2-1.

– S5, position Q1->J12 for encoder interface on J12, position Q2->J13 for Hall sensor interface on J13.
– S3, position GPIO24->0, position GPIO32->1 to put F280025C into wait boot mode for reducing the risk of

connectivity issues or a previous loaded code execution.

Isolated USB Interface
with voltage regulator

(USB101, U101)

USB Power
Isolation Header

(JP1 – JP3)

JTAG/UART
Isolation Header
(J101)

40-pin Boosterpack
Connector Site 1

(J1 - J4)

VREFHI Header
(J15)

40-pin Boosterpack
Connector Site 2

(J5 - J8)

Encoder Interface
(J12 for QEP1,
J13 for QEP2)

CAN Interface
(J14)

S3, Boot Mode Select
Switch
(GPIO24=0, GPIO32=1
for wait boot mode)

F280025C
Microcontoller
(U1)

Reset Button
(S1)

XDS110 External
Debug Port
(J102)

XDS110 Debug
Probe
(U2)

S5, QEP Select Switch
(on DOWN for enabling
QEP/CAP on J12 and J13)

S2, UART Select
Switch

Up

Right

S4, CAN Select Switch

Figure 2-1. F28002x LaunchPad Board Overview and Switches Setting

2.2.2 TMDSCNCD280025C Setup

TMDSCNCD280025C is a low-cost evaluation and development board for TI C2000™ MCU series of
TMS320F28002x devices. It comes with a HSEC180 (180-pin High Speed Edge Connector) and can be used on
existing 100-Pin DIMM based TMDSHVMTRINSPIN with TMDSADAP180TO100 adapter

• Hardware Files are in<install_location>\boards\controlCARDs\TMDSCNCD280025C folder of
C2000Ware.

• For more details about on TMDSCNCD280025C , see TMS320F280025C controlCARD Information Guide.

Running the Universal Lab on TI Hardware Kit www.ti.com

6 Motor Control SDK Universal Project and Lab SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/tool/C2000WARE
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/lit/pdf/spruiw8
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/TMDSCNCD280025C
https://www.ti.com/microcontrollers/c2000-real-time-control-mcus/piccolo-entry-performance/overview.html
https://www.ti.com/tool/TMDSHVMTRINSPIN
https://www.ti.com/tool/tmdsadap180to100
https://www.ti.com/tool/C2000WARE
https://www.ti.com/tool/TMDSCNCD280025C
https://www.ti.com/lit/pdf/spruir3
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

• Make sure that switches on TMDSCNCD280025C are set as described below shown in Figure 2-2.
– S1:A, both positions are ON(up) for using the on-Card XDS100v2 emulator
– S4, position_1 (GPIO24)->0(down), position_2(GPIO32)->1(up) to put F280025C into wait boot mode for

reducing the risk of connectivity issues or a previous loaded code execution.
– S5, position_1->down, A8/C11 goes to HSEC pin 30, Position_2->up, enables the internal voltage

reference.
– S3, ON(up), enables external crystal.

S1:A �� Isolated

emulation and UART

communication enable

switches

(Both are ON/up)
J1:A �� USB

emulation/UART

connector

D1/D2 �� GPIO31

and GPIO34

Connected LEDs

S3 �� GPIO18 and

GPIO19 function

selection switch

(ON/up)

S4 �	 Boot Mode

selection switches

(Position_1=0/down,

Position_2=1/up)

S5
� A8/C11 HSEC Pin selection

and ADC VREFHI selection

switches

(Position_1=down, Position_2=up)

S1 �
 GPIO24 and

GPIO25 HSEC pin

selection switches

U1 �� C2000

F280025C

microcontroller

J1 �� FSI header

S2 �� GPIO26 and

GPIO27 HSEC pin

selection switches

D3 �� 3.3 V power

good LED

EVM Revision

Up

Right

Figure 2-2. F28002x controlCARD and Switches Setting

2.2.3 TMDSADAP180TO100 Setup

The TMDSADAP180TO100 adapter allows the use of 180-Pin C2000 controlCARDs with existing 100-Pin
DIMM based evaluation tools. The TMDSCNCD280025C needs TMDSADAP180TO100 to be used on
TMDSHVMTRINSPIN.

• Hardware files are in <install_location>\boards\controlCARDs\TMDSADAP180TO100 folder of
C2000Ware.

• Make sure that switches TMDSADAP180TO100 are set as described below or shown in Figure 2-3.
– S1 on the right side. S2, S3, and S4 on the left position

Up

Right

S1 �� cCard-30&33

Selection Switch

(On Right for HV-Kit)

S2 �� cCard-80&83

Selection Switch

(On Left)

S3 �� cCard-31&84

Selection Switch

(On Left)

S4 �� cCard-81&34

Selection Switch

(On Left)

Figure 2-3. TMDSADAP180TO100 Adapter and Switches Setting

www.ti.com Running the Universal Lab on TI Hardware Kit

SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Motor Control SDK Universal Project and Lab 7

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/tool/TMDSCNCD280025C
https://www.ti.com/tool/tmdsadap180to100
https://www.ti.com/tool/TMDSCNCD280025C
https://www.ti.com/tool/tmdsadap180to100
https://www.ti.com/tool/TMDSHVMTRINSPIN
https://www.ti.com/tool/C2000WARE
https://www.ti.com/tool/tmdsadap180to100
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

2.2.4 BOOSTXL-DRV8323RH Setup

BOOSTXL-DRV8323RH is a 15A, 3-phase brushless DC drive stage based on the DRV8323RH gate driver and
CSD88599Q5DC NexFETTM power blocks. The module has individual DC bus and three-phase voltage sense
as well as individual low-side current shunt amplifiers, making this board for BLDC/PMSM control with C2000
LaunchPad™ development kits suitable for use with sensorless InstaSPIN-FOC algorithm.

• BOOSTXL-DRV8323RH Hardware Files are on the BOOSTXL-DRV8323RH page within ti.com.
• For more details about BOOSTXL-DRV8323RH, see BOOSTXL-DRV8323Rx EVM User’s Guide.
• Make sure that the following items are set as described below, and then connect BOOSTXL-DRV8323RH to

J1/J3 and J4/J2 site of LAUNCHXL-F280025C as shown in Figure 2-4.
– Populate a 33nF capacitor to C9, C10, and C11.
– Make the J3-29, and J3-30 on LAUNCHXL-F280025C disconnect to BOOSTXL-DRV8323RH as shown in

Figure 2-5.
– Make the J5-42 on LAUNCHXL-F280025C disconnect to DAC128S085EVM if have DAC128S085EVM

board. This EVM board is only used for debugging to monitor the variables.
– Use a jumper wire connect the J3-29 of LAUNCHXL-F280025C to J3-11 of BOOSTXL-DRV8323RH if

want to use the POT on BOOSTXL-DRV8323RH for setting the reference speed.
• Connect the motor, encoder, and hall sensors to the kits as described in Table 2-2 and shown in Figure 2-4.
• Connect a supply voltage ranging from 6 to 54 V from a battery or a DC voltage source to the voltage supply

pins as shown in Figure 2-4. Power should only be applied when instructed to do so in Section 2.5 , keep
disconnected otherwise.

Populate a 47nF capacitor to

C9, C10, and C11 for

supporting InstaSPIN-FOC

Connect BOOSTXL-

DRV8323RH to LAUNCHXL-

F280025C J1/J3 and J2/J4

Connect DAC128S085EVM

to LAUNCHXL-F280025C

J5/J7 and J6/J8

Option: Connect J3-29 of LAUNCHXL-

F280025C to J3-11 of BOOSTXL-

DRV8323RH to enable POT

Connect JA-2 to JB-2 using a

wire for SPI of DAC

DC+

DC-

MOTOR_U

MOTOR_V

MOTOR_W

Motor Encoder

(J4)

Motor Hall

Sensors

(J10)

J1

J5

J13

J12

Figure 2-4. LAUNCHXL-F280025C Connects BOOSTXL-DRV8323RH and DAC128S085EVM

Running the Universal Lab on TI Hardware Kit www.ti.com

8 Motor Control SDK Universal Project and Lab SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/tool/BOOSTXL-DRV8323RH
https://www.ti.com/lit/zip/slvc691
https://www.ti.com/tool/BOOSTXL-DRV8323RH
https://www.ti.com/
https://www.ti.com/tool/BOOSTXL-DRV8323RH
https://www.ti.com/lit/pdf/slvub01
https://www.ti.com/tool/BOOSTXL-DRV8323RH
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/BOOSTXL-DRV8323RH
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/BOOSTXL-DRV8323RH
https://www.ti.com/tool/BOOSTXL-DRV8323RH
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

The switches and connections on LAUNCHXL-F280025C as shown in Figure 2-5 are fit for BOOSTXL-
DRV8323RH, BOOSTXL-DRV8323RS , and DRV8353RS-EVM.

Disconnect J3-29, J3-30 to BOOSTX-

DRV8323RS, BOOSTXL-DRV8323RH,

or DRV8353RS-EVM

Disconnect J5-42 to

DAC128S085EVM

Option: Connect J3-29 of LAUNCHXL-

F280025C to J3-11 of BOOSTXL-

DRV8323RH/RS to enable POT

On board USB isolation

JTAG emulator connector

J12 connects

to encoder

(J4)

J13 connects to

hall sensors

(J10)

Figure 2-5. LAUNCHXL-F280025C Board Settings For Connecting BOOSTXL-DRV Board

The modification on BOOSTXL-DRV8323RH as shown in Figure 2-6 is also fit for BOOSTXL-DRV8323RS to
implement single shunt.

Removing R6 and R10 on

BOOSTXL-DRV8323RX board

Connect the low side using two

jumper wires

Figure 2-6. BOOSTXL-DRV8323Rx Modification for Using Single Shunt Technology

www.ti.com Running the Universal Lab on TI Hardware Kit

SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Motor Control SDK Universal Project and Lab 9

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/tool/BOOSTXL-DRV8323RH
https://www.ti.com/tool/BOOSTXL-DRV8323RH
https://www.ti.com/tool/BOOSTXL-DRV8323RS
https://www.ti.com/tool/DRV8353RS-EVM
https://www.ti.com/tool/BOOSTXL-DRV8323RH
https://www.ti.com/tool/BOOSTXL-DRV8323RS
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

2.2.5 BOOSTXL-DRV8323RS Setup

BOOSTXL-DRV8323RS is a 15A, 3-phase brushless DC drive stage based on the DRV8323RH gate driver and
CSD88599Q5DC NexFETTM power blocks. The module has individual DC bus and three-phase voltage sense
as well as individual low-side current shunt amplifiers, making this board for BLDC/PMSM control with C2000
LaunchPad development kits suitable for use with sensorless InstaSPIN-FOC algorithm. The drive stage has
IDRIVE configuration, along with a fault pin and protection for short circuit, thermal, shoot-through, and under
voltage conditions through configurable SPI by C2000 MCUs.

• BOOSTXL-DRV8323RS Hardware Files are on the BOOSTXL-DRV8323RS page within ti.com.
• For more details about BOOSTXL-DRV8323RS, see the BOOSTXL-DRV8323Rx EVM User’s Guide.
• Make sure that the following items are set as described below, and then connect BOOSTXL-DRV8323RS to

J1/J3 and J4/J2 site of LAUNCHXL-F280025C as shown in Figure 2-7.
– Populate a 33nF capacitor to C9, C10, and C11.
– Make the J3-29, and J3-30 on LAUNCHXL-F280025C disconnect to BOOSTXL-DRV8323RS as shown in

Figure 2-5.
– Make the J5-42 on LAUNCHXL-F280025C disconnect to DAC128S085EVM if have DAC128S085EVM

board. This is an option for debugging to monitor the variables.
– Use a jumper wire connect the J3-29 of LAUNCHXL-F280025C to J3-11 of BOOSTXL-DRV8323RS if

want to use the POT on BOOSTXL-DRV8323RS for setting the reference speed.
• Connect the motor, encoder, and hall sensors to the kits as described in Table 2-2 and shown in Figure 2-7.
• Connect a supply voltage ranging from 6 to 54 V from a battery or a DC voltage source to the voltage supply

pins. Power should only be applied when instructed to do so in Section 2.5, keep disconnected otherwise.

Populate a 47nF capacitor

to C9, C10, and C11 for

supporting InstaSPIN-FOC

Connect BOOSTXL-

DRV8323RS to LAUNCHXL-

F280025C J1/J3 and J2/J4

Connect DAC128S085EVM

to LAUNCHXL-F280025C

J5/J7 and J6/J8

Option: Connect J3-29 of LAUNCHXL-

F280025C to J3-11 of BOOSTXL-

DRV8323RH to enable POT

Connect JA-2 to

JB-2 using a

jumper wire

Connect J4-4 to J4-18 using

a jumper wire for connecting

DRV_SCS to SPI_STE

DC+

DC-

MOTOR_U

MOTOR_V

MOTOR_W

J1

J5

Motor Encoder

(J4)

Motor Hall

Sensors

(J10)

J13

J12

Figure 2-7. LAUNCHXL-F280025C Connects BOOSTXL-DRV8323RS and DAC128S085EVM

Running the Universal Lab on TI Hardware Kit www.ti.com

10 Motor Control SDK Universal Project and Lab SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/tool/BOOSTXL-DRV8323RS
https://www.ti.com/lit/pdf/slvc691
https://www.ti.com/tool/BOOSTXL-DRV8323RS
https://www.ti.com/
https://www.ti.com/tool/BOOSTXL-DRV8323RS
https://www.ti.com/lit/pdf/slvub01
https://www.ti.com/tool/BOOSTXL-DRV8323RS
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/BOOSTXL-DRV8323RS
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/BOOSTXL-DRV8323RS
https://www.ti.com/tool/BOOSTXL-DRV8323RS
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

2.2.6 DRV8353RS-EVM Setup

DRV8353RS-EVM is a 15A, 3-phase brushless DC drive stage based on the DRV8353RS gate driver and
CSD19532Q5B NexFETTM power blocks. The module has individual DC bus and three-phase voltage sense
as well as individual low-side current shunt amplifiers, making this board for BLDC/PMSM control with C2000
LaunchPad development kits suitable for use with sensorless InstaSPIN-FOC algorithm. The drive stage is fully
protected with short circuit, thermal, shoot-through, and under voltage protection and easily configurable via the
devices SPI registers writed by C2000 MCUs.

• DRV8353Rx-EVM Design Files are on the DRV8353RS-EVM page within ti.com.
• For more details about DRV8353RS-EVM, see DRV8353Rx-EVM User’s Guide.
• Make sure that the following items are set as described below, and then connect DRV8353RS-EVM to J1/J3

and J4/J2 site of LAUNCHXL-F280025C as shown in Figure 2-8.
– Make the J1-17 (IDRIVE), and J1-19 (VDS) on DRV8353RS-EVM disconnect to LAUNCHXL-F280025C

as shown in Figure 2-5.
– Make the J5-42 on LAUNCHXL-F280025C disconnect to DAC128S085EVM if have DAC128S085EVM

board. This is an option for debugging to monitor the varaibles.
• Connect the motor, encoder, and hall sensors to the kits as described in Table 2-2 and shown in Figure 2-8.
• Connect a supply voltage ranging from 6 to 54 V from a battery or a DC voltage source to the voltage supply

pins. Power should only be applied when instructed to do so in Section 2.5 , keep disconnected otherwise.

Connect DRV8353RS-EVM

to LAUNCHXL-F280025C

J1/J3 and J2/J4

Connect DAC128S085EVM

to LAUNCHXL-F280025C

J5/J7 and J6/J8

Connect JA-2 to JB-2

using a jumper wire

Connect J2-12 to J2-19 using

a jumper wire for connecting

DRV_SCS to SPI_STE

Motor

Encoder (J4)

Motor Hall

Sensors

(J10)

J13

J12

D
C
+ D
C
-

M
O
T
O
R
_
U

M
O
T
O
R
_
V

M
O
T
O
R
_
W

J6 J5

Figure 2-8. LAUNCHXL-F280025C Connects DRV8353RS-EVM and DAC128S085EVM

www.ti.com Running the Universal Lab on TI Hardware Kit

SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Motor Control SDK Universal Project and Lab 11

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/tool/DRV8353RS-EVM
https://www.ti.com/lit/zip/slvc742
https://www.ti.com/tool/DRV8353RS-EVM
https://www.ti.com/
https://www.ti.com/tool/DRV8353RS-EVM
https://www.ti.com/lit/pdf/slvub79
https://www.ti.com/tool/DRV8353RS-EVM
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/DRV8353RS-EVM
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

2.2.7 BOOSTXL-3PHGANINV Setup

The BOOSTXL-3PHGANINV evaluation module features a 48-V/10-A three-phase GaN inverter with precision
in-line shunt-based phase current sensing for accurate control of precision drives such as servo drives. The
module has individual DC bus and three-phase voltage sense making this board for BLDC/PMSM control with
C2000 LaunchPad™ development kits suitable for use with sensorless InstaSPIN-FOC algorithm.

• Hardware files and more details are on BOOSTXL-3PHGANINV page within ti.com.
• Make sure that the following items are set as described below, and then connect BOOSTXL-3PHGANINV to

J1/J3 and J4/J2 site of LAUNCHXL-F280025C as shown in Figure 2-9.
– Make the J5-42 on LAUNCHXL-F280025C disconnect to DAC128S085EVM if have DAC128S085EVM

board. This is an option for debugging to monitor the variables.
• Connect the motor, encoder, and hall sensors to the kits as described in Table 2-2 and shown in Figure 2-9.
• Connect a supply voltage ranging from 6 to 54 V from a battery or a DC voltage source to the voltage supply

pins. Follow the operation instruction in Section 2.5 to turn on the power source.

Motor

Encoder (J4)

Motor Hall

Sensors

(J10)

J13

J12

D
C
+D
C
-

M
O
T
O
R
_
U

M
O
T
O
R
_
V

M
O
T
O
R
_
W

J3 J4

Figure 2-9. LAUNCHXL-F280025C Connects BOOSTXL-3PHGANINV and DAC128S085EVM

Running the Universal Lab on TI Hardware Kit www.ti.com

12 Motor Control SDK Universal Project and Lab SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/tool/BOOSTXL-3PHGANINV
https://www.ti.com/tool/BOOSTXL-3PHGANINV
https://www.ti.com/
https://www.ti.com/tool/BOOSTXL-3PHGANINV
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

2.2.8 DRV8316REVM Setup

DRV8316REVM provides three half-H-bridge integrated MOSFET drivers for driving a three-phase brushless DC
(BLDC) motor with 8-A Peak current drive. The DRV8316 device integrates current-sense amplifiers (CSA) for
three-phase low-side current measurement and individual DC bus and three-phase voltage sense on the module
that makes this board for BLDC/PMSM control with C2000 LaunchPad™ development kits suitable for use with
sensorless InstaSPIN-FOC algorithm

• DRV8316REVM Hardware Design Files are on the DRV8316REVM page within ti.com.
• For more details about DRV8316REVM, see DRV8316REVM Evaluation Module.
• Make sure that the following items are set as described below, and then connect BOOSTXL-3PHGANINV to

J1/J3 and J4/J2 site of LAUNCHXL-F280025C as shown in Figure 2-10.
– Make the J5-42 on LAUNCHXL-F280025C disconnect to DAC128S085EVM if have DAC128S085EVM

board. This is option for debugging to monitor the variables.
• Connect the motor, encoder, and hall sensors to the kits as described in Table 2-2 and shown in Figure 2-10.
• Connect a supply voltage ranging from 6 to 54 V from a battery or a DC voltage source to the voltage supply

pins. Power should only be applied when instructed to do so in Section 2.5, keep disconnected otherwise.

Connect BOOSTXL-DRV8323RH

to LAUNCHXL-F280025C J1/J3

and J2/J4

Connect DAC128S085EVM

to LAUNCHXL-F280025C

J5/J7 and J6/J8

Connect JA-2 to JB-2

using a jumper wire

Motor Inc

Encoder (J4)

Motor Hall

Sensors (J10)

J13

J12

DC+

DC-

MOTOR_U

MOTOR_V

MOTOR_W

J5

J6

Figure 2-10. LAUNCHXL-F280025C Connects DRV8316 REVM and DAC128S085EVM

www.ti.com Running the Universal Lab on TI Hardware Kit

SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Motor Control SDK Universal Project and Lab 13

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/tool/DRV8316REVM
https://www.ti.com/lit/pdf/sloc372
https://www.ti.com/tool/DRV8316REVM
https://www.ti.com/
https://www.ti.com/tool/DRV8316REVM
https://www.ti.com/lit/pdf/slvubz9
https://www.ti.com/tool/BOOSTXL-3PHGANINV
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

2.2.9 TMDSHVMTRINSPIN Setup

WARNING
• This EVM is meant to be operated in a lab environment only and is not considered by TI to be a

finished end-product fit for general consumer use.
• This EVM must be used only by qualified engineers and technicians familiar with risks associated

with handling high voltage electrical and mechanical components, systems and subsystems.
• This EVM operates at voltages and currents that can result in electrical shock, fire hazard and/or

personal injury if not properly handled. Equipment must be used with necessary caution and
appropriate safeguards must be employed to avoid personal injury or property damage.

• Always use caution when using the EVM electronics due to presence of high voltages! DC bus
Capacitors will remain charged for a long time after the mains supply is disconnected.

• The EVM can accept power from the AC Mains/wall power supply, only uses the live and
neutral line from the wall supply, the protective earth is unconnected (floating). The power
ground is floating from the protective earth ground, all of the ground planes are the same.
Hence appropriate caution must be taken and proper isolation requirements must be met before
connecting scopes and other test equipment to the board. Isolation transformers must be used
when connecting grounded equipment to the EVM.

• The power stages on the board are individually rated. It is the user’s responsibility to make sure
that these ratings (i.e. voltage, current and power levels) are well understood and complied with,
prior to connecting these power blocks together and energizing the board. When energized, the
EVM or components connected to the EVM should not be touched.

TMDSHVMTRINSPIN is a DIMM100 controlCARD based motherboard evaluation module showcasing control
of the most common types of high voltage, three phase motors including AC induction (ACI), brushless DC
(BLDC), and permanent magnet synchronous motors (PMSM). The High Voltage Motor Control Kit has individual
DC bus and three-phase voltage sense making this board for BLDC/PMSM control with C2000 LaunchPad™
development kits using sensorless InstaSPIN-FOC algorithm.

• Hardware Files are in <install_location>\solutions\tmdshvmtrinspin\hardware folder of
C2000WARE-MOTORCONTROL-SDK.

This section explains the steps needed to run the TMDSHVMTRINSPIN with the software supplied through
MotorControl SDK. The kit ships with the jumper and switch settings pre done for connecting with controlCARD.
Make sure that ensure that these settings are valid on the board as described below, and then insert
controlCARD with TMDSADAP180TO100 adapter into TMDSHVMTRINSPIN as shown in Figure 2-11.

Connect BS1 to BS5

using a jumper wire

Insert the ControlCard-

F280025C/F280049C with

a TMDSADAP180TO100

adapter to high voltage kit

M
O
T
O
R
_
U

M
O
T
O
R
_
V

M
O
T
O
R
_
W

J3

J4

AC or DC Power Supply

On card USB isolation

JTAG emulator connector

Figure 2-11. TMDSHVMTRINSPIN Connects TMDSCNCD280025C and TMDSADAP180TO100

Running the Universal Lab on TI Hardware Kit www.ti.com

14 Motor Control SDK Universal Project and Lab SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/tool/TMDSHVMTRINSPIN
https://www.ti.com/tool/C2000WARE-MOTORCONTROL-SDK
https://www.ti.com/tool/tmdsadap180to100
https://www.ti.com/tool/TMDSHVMTRINSPIN
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

Do not apply AC power to board before you have verified these settings!

• Make sure nothing is connected to the board, and no power is being supplied to the board.
• Insert the Control card with TMDSADAP180TO100 adapter into the [Main]-J1 controlCARD connector if not

already populated.
• Make sure the following jumpers & connector settings are valid as shown in Figure 2-12.

– [Main]-J3, J4, J5 and J8 are populated.
– [Main]-J9 and [M3]-J5 is not populated for using a controlCARD with its own onboard emulation to disable

the XDS100 on HVKIT.
– [Main]-J7 is populated between pins 2-3 (pins furthest from the DIMM 100 socket).
– Banana cable b/w [Main]-BS1 and [Main]-BS5 is installed to bypass the PFC.
– Make sure that the DC Fan shipped with the kit is connected to the DC Fan Jumper [Main]-J17 when

operating the motor under load > 150W.
• Two options to get DC Bus power are as below, recommend using the external 15V DC power supply.

– [Main]-J2 is not populated if using the +15V from external 15V DC power supply. Ensure that [M6]-SW1 is
in the “Off” position, connect 15V DC power supply to [M6]-JP1.

– [Main]-J2 is populated with a jumper b/w bridge and the middle pin if using the +15V power supply from
aux power supply module.

• Turn on [M6]-SW1. Now [M6]-LD1 should turn on. Notice the control card LED would light up as well
indicating the control card is receiving power from the board.

• Connect [Main]-BS1 and BS5 to each other using banana plug cord, and then connect one end of the AC
mains power or DC power to [Main]-P1.

• Connect the motor, encoder, and hall sensors to the kits as described in Table 2-2 and shown in Figure 2-12.
• Connect a supply voltage from an AC or a DC voltage source to the voltage supply pins. Power should only

be applied when instructed to do so in Section 2.5, keep disconnected otherwise.

www.ti.com Running the Universal Lab on TI Hardware Kit

SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Motor Control SDK Universal Project and Lab 15

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/tool/tmdsadap180to100
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

J3 J4 J5

QEP Encoder

CAP Hall Sensors

Main] TB3 – Motor

Connector

(220V 3Phase AC,

1.5KW Max)

[M6] JP1 –

DC Jack for 15V

DC power supply

[Main] P1 –

85-132VAC/

170-250VAC

(750W Max input)

[Main] H1 – CAP/QEP

and Hall sensor output

connector

[M3] J5 – On-board

emulation disable jumper

[Main] J9– JTAG

TRSTn Option Jumper

[M3] J2 – External JTAG

emulator interface

[Main] J1–controlCARD

connector

[Main] J3, J4, J5 –

jumper to enable

controller power (15, 5

and 3.3VDC) from the

15V DC power supply

[Main] J16 –

CAN Bus

Connector

[M3] JP1 - USB

Connection for

onboard emulation

[Main] J17 –

DC Fan

[Main] J14 –

DAC outputs

[M6] SW1 –

15, 5 , 3.3VDC

power switch

[M1] F1 –

AC input fuse

(250VAC 4 Amps

slow acting)

Main] BS1 –

Rectified AC Out

(750W Max Output)

Main] BS3 –

Banana Connector

jack for PFC input

(750W Max Input)

[Main] BS6

Banana Connector

jack for GND

[Main] BS4 –

Banana Connector

Jack for PFC

Output (750W

Max Output)

[Main] BS5 –

Banana Connector

Jack for Inverter

DC Bus (1.5KW

Max input)

[Main] BS2

Banana Connector

jack for GND

[Main] J7 –OCP

threshold setting jumper

[Main] J8 – IPM OCP

enable jumper

[Main] VR1 – OCP

threshold setting

VR1

[Main] J2 –

Aux power supply

input selection

jumper

Figure 2-12. TMDSHVMTRINSPIN Kit Jumpers and Connectors Diagram

Running the Universal Lab on TI Hardware Kit www.ti.com

16 Motor Control SDK Universal Project and Lab SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

Table 2-3 shows the various connections available on the board, illustrates the location of these connections on
the board with help of a board image as shown in Figure 2-12.

Table 2-3. Key Jumpers, Connectors Explanation
[Main]-P1 AC input connector (110V – 220V AC)

[Main]-TB3 Terminal Block to connect motor

[Main]-BS1 Banana Jack for Output from AC Rectifier

[Main]-BS2, BS6 Banana Jack for GND Connection

[Main]-BS3 Banana Jack for connecting an input voltage for the PFC stage,
this would typically be rectified AC voltage from the [Main]-BS1
connector.

[Main]-BS4 Banana Jack for connecting a load to the output from the PFC stage,
When using PFC+Motor project the output of the PFC stage would
connect to the input for the inverter bus i.e. [Main]-BS5

[Main]-BS5 Banana Jack for input of DC bus voltage for the inverter

[Main]-J2 Aux power supply module input voltage selection jumper,
• When jumper connected to Bridge position the aux power supply

module sources power from the AC rectifier bridge output.
• When Jumper connected to PFC position the aux power supply

module sources power from the output of the PFC stage.

[Main]-J3, J4, J5 Jumpers J3,J4 and J5 are used for sourcing 15V, 5V and 3.3V power
respectively for the board from the 15V DC Power supply.

[Main]-J7 J7 is used to select the over current protection threshold source

[Main]-J8 J8 is used to enable/disable the IPM over current protection

[Main]-J9 JTAG TRSTn disconnect jumper, populating the jumper enables
JTAG connection to the Microcontroller. The jumpers needs to be
unpopulated when no JTAG connection is required such as when
booting from FLASH.

[Main]-J14 PWMDAC outputs: Gives voltage outputs that result from a PWM
being attached to a first-order low-pass filter. Pins 1,2,3 and 4
are attached to low pass filtered PWM output pins respectively to
observe system variables on an oscilloscope.

[Main]-J16 Isolated CAN bus connector

[Main]-J17 Connector to supply power to the DC fan (shipped with the board)
that is attached to the IPM heat sink.

[Main]-H1 QEP connector: connects with a 0-5V QEP sensor to gather
information on a motor’s speed and position.
CAP/Hall effect sensor connector: connects with a 0-5V sensor to
gather information on a motor’s speed and position.

[M1]-F1 Fuse for the AC input

[M3]-JP1 USB connection for on-board emulation

[M3]-J2 External JTAG interface: this connector gives access to the JTAG
emulation pins. If external emulation is desired, place a jumper
across [M3]-J5 and connect the emulator to the board. To power
the emulation logic a USB connector will still need to be connected to
[M3]-JP1.

[M3]-J5 On-board emulation disable jumper: Place a jumper here to disable
the on-board emulator and give access to the external interface.

www.ti.com Running the Universal Lab on TI Hardware Kit

SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Motor Control SDK Universal Project and Lab 17

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

2.3 Lab Software Implementation
1. Download and install Code Composer Studio from the Code Composer Studio (CCS) Integrated

Development Environment (IDE) tools folder. Version 10.4 or above is recommended. More details about
CCS installation and implementation in CCS User's Guide..

2. Download and install C2000WARE-MOTORCONTROL-SDK software package from the link provided by TI,
install this Motor Control SDK software in its default folder. Install C2000WARE-MOTORCONTROL-SDK in
one of two ways:
a. Download the software through the C2000Ware MotorControl SDK tools folder.
b. Go to CCS and under View → Resource Explorer. Under the TI Resource Explorer, go to

Software→C2000Ware_MotorControl_SDK, and click on the install button.
3. Once installation complete, close CCS, and create a new workspace for importing the project. The software

project of this example lab is inside C2000Ware Motor Control SDK folder at
<install_location>\C2000Ware_MotorControl_SDK_<version>\solutions\universal_moto
rcontrol_lab. Follow these steps to build and run this code with different incremental builds as described
in the following sections.

2.3.1 Importing and Configuring Project

The example lab is an universal project that can support all the latest C28x CPU with FPU and TMU based
C2000 MCUs, and can run on different TI EVM kits by setting the build configurations and properties of the lab
project. In the following sections, use LAUNCHXL-F280025C with BOOSTXL-DRV8323RS based lab to show
how to import and run the example lab on this kit.

1. Import the project within CCS by clicking "Project" ➔"Import CCS Projects...", and then click "Browse..."
button to select search directory at
<install_location>\solutions\universal_motorcontrol_lab\f28002x\ccs\motor_contro
l\ to select the "universal_motorcontrol_lab_f28002x" project.

2. The lab project can be configured to create code and run on multiple kits. You may select one of these
kits. Select the right build configurations (such as Flash_lib_DRV8323RS) by right-clicking on the imported
project name as shown in Figure 2-13.

3. Configure the project to select the supporting functions in project by right-clicking on the imported project
name, and then click "Properties" command to set the pre-define symbols for the project as shown in Figure
2-14.
a. The pre-define symbol is active or disabled by removing or adding the "_N" in the name. For example,

enables field weakening control by removing the "_N" in "MOTOR1_FWC_N" to "MOTOR1_FWC",
disables field weakening control functions for motor 1 (Compressor) by changing "MOTOR1_FWC"
symbol name to "MOTOR1_FWC_N".

b. Select the right supporting motor control algorithm based on the motor and hardware board by enabling
the related pre-define symbol as above. The supporting algorithms and related motors matrix are as
shown in Table 2-4.

c. Select the right supporting functions by enabling the pre-define symbol as shown in Figure 2-14.
4. Select the right target configuration file (.ccxml) as shown in Figure 2-16 by right clicking on the file name to

select "Set as Active Target Configuration" and "Set as Default Target Configuration" on the pop-up menu.
a. TMS320F280025C_LaunchPad.ccxml is for the LAUNCHXL-F280025C based hardware kits.
b. TMS320F280025C.ccxml is for the TMDSCNCD280025C based hardware kits.

5. Select or define right motor model in the user_mtr1.h and user_common.h, make sure that the motor
parameters are in consonance with the connecting motor.

6. Set up the hardware kit, connect the motor, encoder, and/or hall sensor to the kit as described in the Section
2.2.

Running the Universal Lab on TI Hardware Kit www.ti.com

18 Motor Control SDK Universal Project and Lab SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/tool/CCSTUDIO
https://www.ti.com/tool/CCSTUDIO
https://software-dl.ti.com/ccs/esd/documents/users_guide_10.4.0/index.html
https://www.ti.com/tool/C2000WARE-MOTORCONTROL-SDK
https://www.ti.com/tool/C2000WARE-MOTORCONTROL-SDK
https://www.ti.com/tool/C2000WARE-MOTORCONTROL-SDK
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/BOOSTXL-DRV8323RS
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/TMDSCNCD280025C
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

Table 2-4. The Supporting Algorithms, Functions and Motors Matrix in Example Lab

Algorithms or
Functions Pre-Define Symbols LAUNCHXL-F280025C

TMDSCNCD280025C
+
TMDSADAP180TO10
0

BOOSTXL-
DRV8323RH

BOOSTXL-
DRV8323RS

DRV8353RS-EVM BOOSTXL-3PHGANI
NV

DRV8316REVM TMDSHVMTRINSPIN

FAST based
Sensorless FOC

MOTOR1_FAST ✔, LVSERVOMTR# ✔, LVSERVOMTR ✔, LVSERVOMTR ✔, LVSERVOMTR ✔, LVSERVOMTR ✔, HVPMSMMTR#

eSMO based
Sensorless FOC

MOTOR1_ESMO ✔, LVSERVOMTR ✔, LVSERVOMTR ✔, LVSERVOMTR ✔, LVSERVOMTR ✔, LVSERVOMTR ✔, HVPMSMMTR

QEP Encoder based
Sensored FOC

MOTOR1_ENC
QEP_ENABLE

✔, LVSERVOMTR ✔, LVSERVOMTR ✔, LVSERVOMTR ✔, LVSERVOMTR ✔, LVSERVOMTR ✔, HVPMSMMTR

Hall Sensors based
Sensored FOC

MOTOR1_HALL
HALL_ENABLE
HALL_CAL

✔, LVSERVOMTR,
LVBLDCMTR#

✔, LVSERVOMTR,
LVBLDCMTR

✔, LVSERVOMTR,
LVBLDCMTR

✔, LVSERVOMTR,
LVBLDCMTR

✔, LVSERVOMTR,
LVBLDCMTR

✔, HVBLDCMTR#

Trapezoidal
InstaSPIN-BLDC

MOTOR1_ISBLDC ✔* 1, LVSERVOMTR,
LVBLDCMTR

✔*, LVSERVOMTR,
LVBLDCMTR

✖ ✖ ✖ ✖

Single-Shunt Current
Sense

MOTOR1_DCLINKSS ✔** 1 ✔** ✖ ✖ ✖ ✖

Datalog with Graph
Tool

DATALOGF2_EN ✔ ✔ ✔ ✔ ✔ ✔

PWMDAC EPWMDAC_MODE ✖ ✖ ✖ ✖ ✖ ✔
External DAC DAC128S_ENABLE ✔ ✔ ✔ ✔ ✔ ✖

SFRA Tool SFRA_ENABLE ✔ ✔ ✔ ✔ ✔ ✔

Step Response with
Graph Tool

STEP_RP_EN ✔ ✔ ✔ ✔ ✔ ✔

1. *, ** means this board needs to be changed by removing two shunt resistors and connecting all of low sides of three phase half bridge with a jumper
wire as shown in Figure 2-6.

www.ti.com Running the Universal Lab on TI Hardware Kit

SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Motor Control SDK Universal Project and Lab 19

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/TMDSCNCD280025C
https://www.ti.com/tool/tmdsadap180to100
https://www.ti.com/tool/tmdsadap180to100
https://www.ti.com/tool/BOOSTXL-DRV8323RH
https://www.ti.com/tool/BOOSTXL-DRV8323RH
https://www.ti.com/tool/BOOSTXL-DRV8323RS
https://www.ti.com/tool/BOOSTXL-DRV8323RS
https://www.ti.com/tool/DRV8353RS-EVM
https://www.ti.com/tool/BOOSTXL-3PHGANINV
https://www.ti.com/tool/BOOSTXL-3PHGANINV
https://www.ti.com/tool/DRV8316REVM
https://www.ti.com/tool/TMDSHVMTRINSPIN
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

Right-click on project name with

CCS. Click “Build Configurations” to

select the right build configuration to

set it active

Figure 2-13. Select the Right Build Configurations within CCS

Select one of the

algorithm for the

hardware board

according the table

Enables the supporting

additional functions

Enables single shunt

based hardware board

Enables the debugging

functions

Right-click on project

name within CCS. Click

“Properties” on pop-up

menu, navigate to

“Predefined Symbols”

Select external

command and speed

input mode

Figure 2-14. Select the Right Pre-define Symbols in Project Properties

Running the Universal Lab on TI Hardware Kit www.ti.com

20 Motor Control SDK Universal Project and Lab SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

2.3.2 Lab Project Structure

The general structure of the project is shown in Figure 2-15. The device peripherals configuration is based
on C2000Ware driverlib. The users only need to change the codes and definitions in hal.c and hal.h, and the
parameters in user_mtr1.h if they want to migrate the reference design software to their own board.

C28x MCU

user_mtr1.c

 user_mtr1.h

motor_comm.c, motor1_drive.c

motor_comm.h, motor1_drive.h

Observer

Library

sys_settings.h

Build level setting

Board and Motor

specific parameters

hal.c

hal.h

Board specific

drivers configuration
FOC

Library

System solution specific files

Motor drive control specific files

sys_main.c, sys_xxx.c

sys_main.h, sys_xxx.h

InstaSPIN-FAST

InstaSPIN-BLDC

C2000Ware

Driverlib

Inverter

Gate Driver

drv83xx.c

 drv83xx.h

PI, PID,

CLARK

PARK/I-PARK

SVGEN

Trajectory

RAMPGEN

eSMO with PL

QEP Encoder

Hall Sensor

Figure 2-15. Project Structure Overview

Once the project is imported, the project explorer will appear inside CCS as shown in Figure 2-16.

The folder src_foc includes the typical FOC modules include transform, PID and estimators that consist of the
motor drive algorithm are independent on specific device and board.

The folder src_lib includes InstaSPIN-FOC library and math library that is independent of device and board.

The folder src_control includes motor drive control files that call motor control core algorithm functions within the
interrupt service routines and background tasks.

The folder src_sys includes some files reserved for system control that are independent on specific device and
board. The user can add their own codes for system control, communication, and so forth.

www.ti.com Running the Universal Lab on TI Hardware Kit

SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Motor Control SDK Universal Project and Lab 21

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

Board-specific, motor-specific and device-specific files are in the folder of src_board, these files consist of device
specific drivers to run the solution. If the user wants to migrate the project into their own board or other devices,
the user only needs to make changes to these header files, hal.c, hal.h, and user_mtr1.h based on the usage of
device peripherals for the board.

Project Name [Build Configuration]

Header files path for different components in the

project

System main file

Target Configuration for debugger connection,

select one to be active according to hardware

board

Hardware board drivers for the solution

Board and motor parameters definition files

Motor drive common functions files

Device support files based bit-field and linker

command files

Gate driver file

Motor drive and math libraries

Device support files based drivelib

System specific files reserved for the user

Motor drive control specific files

DAC driver file

SFRA specific files

Figure 2-16. Project Explorer View of the Example Lab

Running the Universal Lab on TI Hardware Kit www.ti.com

22 Motor Control SDK Universal Project and Lab SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

2.3.3 Lab Software Overview

Figure 2-17 shows the project software flow diagram of the firmware that includes one ISR for real time motor
control, a main loop for motor control parameters update in background loop. The ISR will be triggered by ADC
End of Conversion (EOC).

Setup device

Mem Copy

Setup PWMs

Setup ADCs

cinit_0

Initialize motor control parameters

Setup Fault Protection for motors

Setup Interrupts for motors control

Update motor control parameters

Main Loop

Save contexts and clear int flags

Enable nest interrupt EINT

C – ISR

(Motor Control)

Read ADC Result, current/voltage

calculation and clark transform

Run FAST/eSMO estimators or Encoder

Run speed trajectory control

Restore Context

Return

Motor Control Loop ISR

Motor Control ISR

ADC offset calibration for motors

Run motor control

Run speed loop compensator

Run IPD, FWC and MTPA

Id and Iq reference calculation

Run I-Park, SVGEN and PWM

Modulator

Run Id and Iq loop compensator

Figure 2-17. Project Software Flowchart Diagram

To simplify the system bring up and design the software is organized in four incremental builds, which makes
learning and getting familiar with the board and software easier. This approach is also good for debugging and
testing boards.

www.ti.com Running the Universal Lab on TI Hardware Kit

SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Motor Control SDK Universal Project and Lab 23

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

Table 2-5 lists the framework modules to be used in this lab project.

Table 2-5. Using Motor Control Modules in Lab Project
Module Names Explanation Algorithm
HAL_readADCData Returns ADC conversion values with floating-

point format
All Algorithms

HAL_writePWMData PWM drives for motor All Algorithms

ANGLE_GEN_run Ramp angle generator for open-loop running eSMO, ENC, HALL

CLARKE_run Clarke transformation for current or voltage FAST, eSMO, ENC, HALL

EST_setupTrajState Trajectory generator setup for current and
speed for motor identification

FAST

EST_runTraj Trajectory generator for current and speed for
motor identification

FAST

EST_run FAST estimator for sensorless-FOC FAST

ESMO_run Enhance Sliding Mode Observer (eSMO)for
sensorless-FOC

eSMO

ENC_run Calculate rotor angle based on encoder ENC

HALL_run Calculate rotor angle ans speed based on
hall sensors

HALL

IPARK_run Inverse Park transformation FAST, eSMO, ENC, HALL

PARK_run Park Transformation FAST, eSMO, ENC, HALL

PI_run PI Regulators for current and speed All Algorithms

SPDCALC_run Speed Measurement based on the angle
from encoder signal

ENC

SPDFR_run Speed measurement based on the angle
from observer

eSMO

SVGEN_run Space Vector PWM with quadrature control FAST, eSMO, ENC, HALL

TRAJ_run Trajectory for setting speed reference All Algorithms

VS_FREQ_run Generate vector voltage with v/f profile FAST, eSMO, ENC, HALL

collectRMSData, calculateRMSData Collect sampling values to calculate the RMS
value of phase current and voltage

FAST, eSMO, ENC, HALL

HAL_writePWMDACData Converts software variables into the PWM
signals

All Algorithms

DATALOGIF_update Stores the real-time values into for displaying
with graph tool

All Algorithms

DAC128S_writeData Converts and send software variables to
external DAC with SPI

All Algorithms

Running the Universal Lab on TI Hardware Kit www.ti.com

24 Motor Control SDK Universal Project and Lab SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

Table 2-6 summarizes the modules tested in each incremental system build.

Table 2-6. Motor Control Modules Used per Incremental Build
Software Module DMC_LEVEL_1 DMC_LEVEL_2 DMC_LEVEL_3 DMC_LEVEL_4

50% PWM duty,
verify ADC offset
calibration, PWM

output and phase shift

Open loop control
to check current

and voltage sensing
signals for the motor

Closed current loop to
check the hardware

settings

Closed-loop run with
estimators/observers

Motor parameters
identify with FAST

estimators

HAL_readADCData √√ √ 1 √ √ √

HAL_writePWMData √√ √ √ √ √

ANGLE_GEN_run √√ √ √(eSMO, ENC,
HALL)*

VS_FREQ_run √√

CLARKE_run
(current)

√ √ √ √

CLARKE_run
(voltage)

√ √ (FAST)* 2 √ (FAST)* √ (FAST)*

TRAJ_run √√ √ √√

EST_run √(FAST)* √ (FAST)* √√ (FAST)* √√ (FAST)*

EST_setupTrajState √√ (FAST)*

EST_runTraj √√ (FAST)*

ESMO_run √(eSMO)* √(eSMO)* √√ (eSMO)*

SPDFR_run √(eSMO)* √(eSMO)* √√ (eSMO)*

ENC_run √(ENC)* √(ENC)* √√(ENC)*

SPDCALC_run √(ENC)* √(ENC)* √√(ENC)*

HALL_run √(HALL)* √(HALL)* √√(HALL)*

PARK_run √ √ √ √

PI_run (Id) √√ √ √

PI_run (Iq) √√ √ √

PI_run (speed) √√ √

IPARK_run √√ √ √ √

SVGEN_run √√ √ √ √

HAL_writePWMDAC
Data

√** 3 √** √** √**

DATALOGIF_update √ √ √ √

DAC128S_writeData √** √** √** √**

1. √ means this module used. √√ means this module is being tested.
2. √(FAST)* means this module is only used by FAST. √ (eSMO)* means this module is only used by eSMO. √

(ENC)* means this module is only used by ENC. √ (HALL)* means this module is only used by HALL.
3. √** means this module is supported by some hardware kit as shown in Table 2-1.

www.ti.com Running the Universal Lab on TI Hardware Kit

SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Motor Control SDK Universal Project and Lab 25

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

The universal lab project can use one of the FOC algorithms separately for motor control, or use two of the FOC
algorithms simultaneously as shown in Table 2-7. The estimator in use can be switched smoothly on the fly if two
algorithm are implemented in lab project.

Table 2-7. Supporting Estimator Algorithms in Lab Project
FAST(MOTOR1_FAS

T)
eSMO

(MOTOR1_ESMO)
ENCODER

(MOTOR1_ENC)
HALL
(MOTOR1_HALL）

ISBLDC
(MOTOR1_ISBLDC)

FAST √ 1 √ √ √ ✕
eSMO √ √ √ ✕ ✕
ENCODER √ √ √ ✕ ✕
HALL √ ✕ ✕ √ ✕
ISBLDC ✕ ✕ ✕ √

1. √ means these two algorithms can be used simultaneously in project. ✕ means these two algorithms can not
be used simultaneously in project.

2.4 Monitoring Feedback or Control Variables
The continuous feedback or control variables can be monitored by using multiple methods, such as datalog with
graph tool, PWMDAC with an oscilloscope, external DAC with an oscilloscope.

2.4.1 Using DATALOG Function

The DATALOG module stores the real-time values of two user selectable software variables in the data RAM
provided on the C2000 MCU as shown in Figure 2-18. The two variables are selected by configuring the
module inputs, iptr[0], iptr[1] to the address of the two variables. The starting addresses of the two buffer RAM
locations, where the data values are stored, are set to datalogBuff1[0], datalogBuff1[1]. These Datalog buffers
are large arrays that contain value-triggered data that can then be displayed to a graph. The datalog prescalar is
configurable, which will allow the dlog function to only log one out of every prescalar samples. The DMA is used
to transfer the values to the previous data values in buffer RAM.

DATLOG

Update

GSx

RAM

H/W

datalog.iptr[0]

datalog.iptr[1]

Figure 2-18. DATALOG Module Block Diagram

Instancing one DATALOG object and handle, which is done in "datalogIF.c" file by adding pre-define name
"DATALOGF2_EN" in project properperies as shown in Figure 2-14.

DATALOG_Obj datalog;
DATALOG_Handle datalogHandle; //!< the handle for the Datalog object

Initializing and setting the datalog object, handle and parameters:

// Initialize Datalog
datalogHandle = DATALOGIF_init(&datalog, sizeof(datalog));
DATALOG_Obj *datalogObj = (DATALOG_Obj *)datalogHandle;

HAL_setupDMAforDLOG(halHandle, 0, &datalogBuff1[0], &datalogBuff1[1]);
HAL_setupDMAforDLOG(halHandle, 1, &datalogBuff2[0], &datalogBuff2[1]);

Configuring two module inputs, iptr[0] and iptr[1], point to the address of the two variables, the datalog buffers
point to different system variables depending on the build level.

datalogObj->iptr[0] = &motorVars_M1.adcData.I_A.value[0];
datalogObj->iptr[1] = &motorVars_M1.adcData.I_A.value[1];

Running the Universal Lab on TI Hardware Kit www.ti.com

26 Motor Control SDK Universal Project and Lab SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

Call update function for datalog in a periodic interrupt ISR.

if(DATALOGIF_enable(datalogHandle) == true)
{
 DATALOGIF_updateWithDMA(datalogHandle);

 // Force trig DMA channel to save the data
 HAL_trigDMAforDLOG(halHandle, 0);
 HAL_trigDMAforDLOG(halHandle, 1);
}

Note
If there is not enough RAM, the datalog will be not used in this software on the device.

The datalog module is used with graph tool, which provides a means to visually inspect the variables and judge
system performance. The graph tool is available in CCS, which can display arrays of data in various graphical
types. The arrays of data are stored in a device’s memory in various formats.

Open and setup time graph windows to plot the data log buffers as shown in Figure 2-19.
Alternatively, the user can import graph configurations files in the project folder. In order to
import them, Click: Tools -> Graph -> DualTime… and select import and browse to the following
location <install_location>\solutions\universal_motorcontrol_lab\common\debug and select
"motor_F12.graphProp" file. Hit OK, this should add the Graphs to your debug perspective. Click on Continuous

Refresh button on the top left corner of the graph tab.

The start address of the

data log buffer

Equals to the size of he data

log buffer

Set the data type as the

software variables

Equals to datalog update

frequency

Equals to the size of he data

log buffer

Import the example

.graphProp file

Figure 2-19. Graph window settings

www.ti.com Running the Universal Lab on TI Hardware Kit

SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Motor Control SDK Universal Project and Lab 27

Copyright © 2021 Texas Instruments Incorporated

https://software-dl.ti.com/ccs/esd/documents/users_guide/ccs_debug-graphs.html
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

2.4.2 Using PWMDAC Function

The PWMDAC module converts the software variables into the PWM signals in EPWM6A/6B/7A (EPWM
channels depending on the hardware kit) for C2000 MCU as shown in Figure 2-20.

PWMDAC

Update

PWM

H/W

pwmDACData.ptrData[0]
EPWM6A

pwmDACData.ptrData[1]

pwmDACData.ptrData[2]

EPWM6B

EPWM7A

Figure 2-20. PWMDAC Module Block Diagram

The PWMDAC module can be used to view the signal, represented by the variable, at the outputs of the related
pins through the external low-pass filters. Therefore, the external low-pass filters are necessary to view the
actual signal waveforms as seen in Figure 2-21. The (1st-order) RC low-pass filter can be simply used for filter
out the high frequency component embedded in the actual low frequency signals. To select R and C values, its
time constant can be expressed in term of cut-off frequency (fc) as following equations Equation 1 and Equation
2.

τ = RC = 12πfc (1)

fc = 2πRC (2)

470�

0.47μF

GND

PWM

Scope

Scope

Figure 2-21. External RC Low-Lass Filter Connecting to PWM Pin in C2000 MCU

In the example lab by adding pre-define name "EPWMDAC_MODE" in project properties as shown in Figure
2-14. Instancing one PWMDAC object as the following.

HAL_PWMDACData_t pwmDACData;

Initializing and setting the PWMDAC object, handle and parameters. Configuring three module inputs, ptrData[0],
ptrData[1], and ptrData[2], point to the address of the three variables, the PWMDAC data point to different
system variables depending on the build level.

// set DAC parameters
pwmDACData.periodMax =

 PWMDAC_getPeriod(halHandle->pwmDACHandle[PWMDAC_NUMBER_1]);

pwmDACData.ptrData[0] = &motorVars_M1.anglePLL_rad;
pwmDACData.ptrData[1] = &motorVars_M1.angleENC_rad;
pwmDACData.ptrData[2] = &motorVars_M1.adcData.I_A.value[0];

pwmDACData.offset[0] = 0.5f;
pwmDACData.offset[1] = 0.5f;
pwmDACData.offset[2] = 0.5f;

pwmDACData.gain[0] = 1.0f / MATH_TWO_PI;
pwmDACData.gain[1] = 1.0f / MATH_TWO_PI;
pwmDACData.gain[2] = 4096.0f / USER_MOTOR1_OVER_CURRENT_A;

Running the Universal Lab on TI Hardware Kit www.ti.com

28 Motor Control SDK Universal Project and Lab SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

Call update function for PWMDAC in a periodic interrupt ISR.

// connect inputs of the PWMDAC module.
HAL_writePWMDACData(halHandle, &pwmDACData);

2.4.3 Using External DAC Board

The DAC128S module converts any software variables to 12-bit integer value and transmit the data to the
digital-to-analog converter (DAC) on DAC128S085EVM shown in Figure 2-22.

DAC128S

WriteData

C2000

SPI

dac128s.ptrData[0] DACOUTA

DACOUTB

DACOUTC

SPI_CS

SPI_CLK

SPI_SDI

dac128s.ptrData[1]

dac128s.ptrData[2]

dac128s.ptrData[3]

DAC

SPI

DACOUTD

Scope

DAC128S

EVM

Board

Figure 2-22. DAC128S Module Block Diagram

The DAC128S085EVM can be connected to the LAUNCHXL-F280025C, or other C2000 LaunchPad™ as
shown in Figure 2-23.

SPI_SCS

SPI_SCLK

SPI_SDI

SPI_SDO

(Op�on)

Scope LAUNCHXL-F28002x/4x
Use a jumper wire to

connect these two pins

Figure 2-23. DAC128S085EVM Evaluation Board

Instancing one DAC128S object. In the example lab by adding pre-define name "DAC128S_ENABLE" in project
properties as shown in Figure 2-14

DAC128S_Handle dac128sHandle; //!< the DAC128S interface handle
DAC128S_Obj dac128s; //!< the DAC128S interface object

Initializing and setting the DAC128S object, handle and parameters. Configuring four module inputs, ptrData[0],
ptrData[1], ptrData[2] and ptrData[3], point to the address of the two variables, the dac128s data point to different
system variables depending on the build level.

// initialize the DAC128S
dac128sHandle = DAC128S_init(&dac128s);

// setup SPI for DAC128S
DAC128S_setupSPI(dac128sHandle);

dac128s.ptrData[0] = &motorVars_M1.angleGen_rad; // CH_A
dac128s.ptrData[1] = &motorVars_M1.angleEST_rad; // CH_B
dac128s.ptrData[2] = &motorVars_M1.adcData.I_A.value[0]; // CH_C
dac128s.ptrData[3] = &motorVars_M1.adcData.V_V.value[0]; // CH_F

www.ti.com Running the Universal Lab on TI Hardware Kit

SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Motor Control SDK Universal Project and Lab 29

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

Call update function for DAC128S in a periodic interrupt ISR.

// Write the variables data value to DAC128S085
DAC128S_writeData(dac128sHandle);

The DAC128S085 has octal 12-bit digital-to-analog converter (DAC) voltage-output, so the user can set the
output number between 1 and 8 in "dac128s085.h". Using 4 outputs is the default setting in this example lab
since most of the oscilloscope only has four probes. More outputs will occupy much more ISR time to convert
and transmit the data.

#define DAC_EN_CH_NUM (4) // 1~8

If change the DAC128S output number, need to configure the related number of the module inputs and
parameters.

2.5 Running the Project with Incremental Build
The system is gradually built up in order for the final system can be confidently operated. To select a particular
build option, select the corresponding BUILDLEVEL option in sys_settings.h. Once the build option is selected,
compile the project by right-clicking on the project name and clicking "Rebuild Project".

2.5.1 Level 1 Incremental Build

Objectives learned in this build level:
• Use the HAL object to initialize the peripherals of the MCU for inverter hardware.
• Verify the PWM and ADC driver modules
• Verify the ADC Offset validation
• Become familiar with the operation of CCS. More details about CCS can be found in CCS User's Guide.

In this build level, the board is executed in open loop mode with a fixed duty cycle. The duty cycles are set to
50%. This build level verifies the sensing of feedback values from the power stage and also operation of the
PWM gate driver and ensures there are no hardware issues. Additionally calibration of input and output voltage
sensing can be performed in this build level. During this process the motor must remain disconnected. The
software block diagram of this build level is shown in Figure 2-24.

PWM

Driver

HAL_writePwmData

Ta = 0

HAL_read

Mtr1ADCData

Tb = 0

Tc = 0

Ia

Ib

Ic

Va

Vb

Vc

Vbus

ADC

Driver

M

Figure 2-24. Build Level 1 Software Block Diagram - Offset Validation

Running the Universal Lab on TI Hardware Kit www.ti.com

30 Motor Control SDK Universal Project and Lab SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

http://software-dl.ti.com/ccs/esd/documents/users_guide/index.html
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

2.5.1.1 Build and Load Project

1. Set up the hardware board as described in Section 2.2, and connect the power supply to the board. Motor
should NOT be connected to the terminals in this build level.

2. Connect a USB cable to on-board USB connector to enable isolation JTAG emulation to the C2000 device.
3. Power on the hardware board with apply the right voltage to the bus voltage input terminal as described in

Section 2.2.
4. Import the project and select the right build configuration as described in Section 2.3.1. Open the

"sys_settings.h" file and set DMC_BUILDLEVEL to DMC_LEVEL_1. This will ensure the project is
configured to run the first incremental build.

5. In the Project Explorer make sure the correct target configuration file is set as Active as shown in Figure
2-16. Do verify this by viewing the ccxml file in the expanded project structure and a [Active/Default] written
next to it. By going to “View-> Target Configurations” you may edit existing target configurations or change
the default or active configuration. You can also link a target configuration to a project in the workspace by
right clicking on the Target configuration name and selecting Link to Project.

6. Now, right click on the project name and click on "Rebuild Project. Watch the Console window. Any errors in
the project will be displayed in the Console window.

7. On successful completion of the build, click on the Debug button or click Run → Debug. The IDE
will now automatically connect to the target, load the output file into the device and change to the Debug
perspective. Notice the CCS Debug icon in the upper right-hand corner, indicating that the user is now in the
Debug Perspective view. The program should be stopped at the start of main().

CAUTION
Do not click Cancel, turn off the power of the board, or disconnect the emulator when loading the
code to flash.

2.5.1.2 Setup Debug Environment Windows

It is standard debug practice to watch local and global variables while debugging code. There are various
methods for doing this in CCS, such as memory views and watch views. Additionally, CCS has the ability to
make time (and frequency) domain plots. This ability allows the user to view waveforms using graph tool.

1. Setup watch window: Click View → Expressions on the menu bar to open an Expressions watch window .
Move the mouse to the Expressions window to view the variables being used in the project. Add variables to
the Expressions window as shown in Figure 2-25, it uses the number format associated with variables during
declaration, shows an example of the Expressions window. You can select a desired number format for the
variable by right clicking on it and choosing.

2. Alternately, a group of variables can be imported into the Expressions window by right clicking
within Expressions window and clicking Import, and browse to the directory of the project
at <install_location>\solutions\universal_motorcontrol_lab\common\debug\ and pick
universal_lab_level1.txt and click OK to import the variables shown in Figure 2-25.

Note
Some of the variables have not been initialized at this point in the main code and may contain
some useless values.

3. The structure variables motorVars_M1 has references to most variables that are related to controlling motor
drive. By expanding this variable, you can see them all and edit as needed.

4. Click on the Continuous Refresh button on the top right corner of the Expressions Window tab to enable
periodic capture of data from the Microcontroller. By clicking the down arrow in this expressions window, you
may select “Customize Continuous Refresh Interval” and edit the refresh rate of the expressions window.
Note that choosing too fast an interval may affect performance.

www.ti.com Running the Universal Lab on TI Hardware Kit

SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Motor Control SDK Universal Project and Lab 31

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

2.5.1.3 Run the Code

1. Run the code by pressing on button , or click Run → Resume in the Debug tab.
2. The project should now run, and the values in the graph and watch window should keep updating.
3. In the Expressions window, set the variables motorVars_M1.flagEnableRunAndIdentify to 1 after

systemVars.flagEnableSystem was automatically set to 1 in the watch window.
4. The project should now run, and the values in the graphs and expressions window should continuously

update as shown in Figure 2-25 while using this project. You may want to re-size the windows according to
your preference.

5. In the watch view, the variables motorVars_M1.flagRunIdentAndOnLine should be set to 1 automatically if
there no any faults on the hardware kits. The ISRCount should be increasing continuously.

6. Check calibration offsets of the motor inverter board, the offset value of the motor phase current sensing
value should be equal to approximately half of the scale current of ADC as shown in Figure 2-25.

7. Probe the PWM output for motor drive control with an oscilloscope. The three PWMs duty are set to 50% in
this build level, the PWM output waveforms are as shown in Figure 2-26. The PWM switching frequency will
be the same as setting value, USER_M1_PWM_FREQ_kHz in user_mtr1.h.

8. Set the variables motorVars_M1.flagEnableRunAndIdentify to 0 to stop run the motor.
9. Once complete, the controller can now be halted, and the debug connection terminated. Fully halting the

controller by first clicking the Halt button on the toolbar or by clicking Target → Halt. Finally, reset the

controller by clicking on or clicking Run → Reset→CPU Reset.

10. Close CCS debug session by clicking the Terminate Debug Session or clicking Run → Terminate. This
will halt the program and disconnect Code Composer from the MCU.

11. It is not necessary to terminate the debug session each time the user changes or runs the code again.

Instead the following procedure can be followed. After rebuilding the project, pressing the button or

clicking Run → Reset→CPU Reset, and then pressing or clicking Run → Restart. Terminate the project
if the target device or the configuration is changed, and before shutting down CCS.

Running the Universal Lab on TI Hardware Kit www.ti.com

32 Motor Control SDK Universal Project and Lab SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

Click this button to enable periodic capture of

data from the microcontroller

The variable keeps increasing

Check if these variables meet the board,

estimator, library selection

Set this variable value equal to 1 to start the

motor

Three-phase PWM duty equals to 50%. The

CMPA value equals to half of the TBPRD

Voltage offset coefficients are about 0.5.

Current offset values are near 2048 (half of

12bit ADC scale value)

Current and voltage sampling values are near

0.0 with removing offset

The sensing conversion value should be equal

to the dc bus voltage

Figure 2-25. Build Level 1: Variables in Expressions Window

www.ti.com Running the Universal Lab on TI Hardware Kit

SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Motor Control SDK Universal Project and Lab 33

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

The C2000 PWM with deadband outputs to the input of the gate drive as shown in Figure 2-26

Three-phase PWM duty equals to 50% with deadtime between high and low sides

UH

UL

VH
WH

Figure 2-26. Build Level 1: PWM Output Waveforms

2.5.2 Level 2 Incremental Build

Objectives learned in this build level:

• Implements a simple scalar v/f control of motor to drive dual motor for validating current and voltage sensing
circuit, and gate driver circuit.

• Test InstaSPIN-FOC FAST or eSMO modules for motor control.

This system is running with open-loop control, the ADC measured values are only used for instrumentation
purposes in this build level. The software flow for this build level is shown in Figure 2-27.

RG

SVM
INV

PARK

CLARKE

CLARKE

Traj

Ramp

PWM

Driver

HAL_writePwmData

User_Vq

User_Vd

V�_out

V�_out

Ta

Tb

Tc

Ia

Ib

Ic

Va

Vb

Vc

Vbus

V�_in

V�_in

�ref

I�_in

I�_in

Angle

Speed

Flux

Torque

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

�
�

SpdRef

Var1

Var3

DACs

or

PWMDAC

DATALOG
DlogCh1

DlogCh2
Scope

Graph

Window

Var2

Var4

HAL_read

Mtr1ADCData

FAST

or

eSMO

or

ENC

or

HALL

ADC

Driver

MOnly FAST outputs

Flux and Torque

Figure 2-27. Build Level 2 Software Block Diagram - Open Loop Control

2.5.2.1 Build and Load Project

Connect the motor to the related terminals on the power inverter board. Follow the operation steps in Section
2.5.1.1 to build and load project by setting DMC_BUILDLEVEL to DMC_LEVEL_2 in sys_settings.h file.

CAUTION
Do not click Cancel, turn off the power of the board, or disconnect the emulator when loading the
code to flash.

Running the Universal Lab on TI Hardware Kit www.ti.com

34 Motor Control SDK Universal Project and Lab SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

2.5.2.2 Setup Debug Environment Windows

Follow operation steps in Section 2.5.1.2 to import the variables into the Expressions window by picking
universal_lab_level2.txt. The Expressions window appears as shown in Figure 2-28.

2.5.2.3 Run the Code

1. Power on the AC or DC power supply, gradually increase output voltage at power supply to get an
appropriate DC-bus voltage.

2. Run the project by clicking on button , or click Run → Resume in the Debug tab. The
systemVars.flagEnableSystem should be set to 1 after a fixed time, that means the offsets calibration has
been done. The fault flags, motorVars_M1.faultMtrUse.all should be equal to 0 , if not, the user have to
check the current and voltage sensing circuit as described in Section 2.5.1.3.

3. To verify current and voltage sensing circuit of the inverter, set the variable
motorVars_M1.flagEnableRunAndIdentify to 1 in the Expressions window as shown in Figure 2-28. The
motor will run with v/f open loop. Tune the v/f profile parameters in user_mtr1.h as below according to the
specification of the motor if the motor doesn't spin smoothly.

#define USER_MOTOR1_FREQ_LOW_HZ (5.0) // Hz
#define USER_MOTOR1_FREQ_HIGH_HZ (400.0) // Hz
#define USER_MOTOR1_VOLT_MIN_V (1.0) // Volt
#define USER_MOTOR1_VOLT_MAX_V (24.0) // Volt

4. After that, the motor spins with a setting speed in the variable motorVars_M1.speedRef_Hz, check the value
of motorVars_M1.speed_Hz in Expressions window, the values of these two variables should be very close
as shown in Figure 2-28.

5. Using PWMDAC or DAC128S module to as described in Section 2.4.2 or Section 2.4.3. Connect
oscilloscope voltage probes to the outputs of the PWMDAC or DAC128S085EVM board to monitor the
angle, current, voltage signals. Connect an oscilloscope current probe to the motor phase current to
measure the motor phase current.
a. Configuring DAC128S module four inputs as the following codes. The current waveforms on the

oscilloscope as shown in Figure 2-30. The sampling current waveform by using a DAC to output on
oscilloscope should be the same as the phase current waveform capture by a current probe, that means
the current sensing circuit is good for motor control.

dac128s.ptrData[0] = &motorVars_M1.adcData.I_A.value[0]; // CH_A
dac128s.ptrData[1] = &motorVars_M1.adcData.I_A.value[1]; // CH_B
dac128s.ptrData[2] = &motorVars_M1.adcData.I_A.value[2]; // CH_C
dac128s.ptrData[3] = &motorVars_M1.angleGen_rad; // CH_D

b. Configuring DAC128S module four inputs as the following codes. The sampling voltage waveform by
using a DAC to output on oscilloscope should be the similar as shown in Figure 2-31 or Figure 2-32, that
means the voltage sensing circuit is good for motor control.

dac128s.ptrData[0] = &motorVars_M1.adcData.V_V.value[0]; // CH_A
dac128s.ptrData[1] = &motorVars_M1.adcData.V_V.value[1]; // CH_B
dac128s.ptrData[2] = &motorVars_M1.adcData.V_V.value[2]; // CH_C
dac128s.ptrData[3] = &motorVars_M1.angleGen_rad; // CH_D

c. Configuring DAC128S module four inputs as the following codes. The angle from the force angle
generator or estimator waveforms on the oscilloscope as shown in Figure 2-33. Notice that the angle of
the force angle generator is very similar as the estimated rotor angle of the FAST or eSMO estimator,
only a little bit shift error could be between these two angles. That means the FAST or eSMO estimator
works as expected with the motor parameters and the sampling current and voltage signals.

dac128s.ptrData[0] = &motorVars_M1.angleGen_rad; // CH_A
dac128s.ptrData[1] = &motorVars_M1.angleEST_rad; // CH_B
dac128s.ptrData[2] = &motorVars_M1.adcData.I_A.value[0]; // CH_C
dac128s.ptrData[3] = &motorVars_M1.adcData.V_V.value[0]; // CH_D

www.ti.com Running the Universal Lab on TI Hardware Kit

SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Motor Control SDK Universal Project and Lab 35

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

6. Using datalog module with graph tool to check the current, voltage sensing signals, and the angles output as
described in Section 2.4.1.
a. Configuring DATALOG module four inputs as the following codes. The phase current sampling signals

waveform on graph tool as shown in Figure 2-34.

datalogObj->iptr[0] = &motorVars_M1.adcData.I_A.value[0];
datalogObj->iptr[1] = &motorVars_M1.adcData.I_A.value[1];

b. Configuring DATALOG module four inputs as the following codes. The phase voltage sampling signals
waveform on graph tool as shown in Figure 2-35.

datalogObj->iptr[0] = &motorVars_M1.adcData.V_V.value[0];
datalogObj->iptr[1] = &motorVars_M1.adcData.V_V.value[1];

c. Configuring DATALOG module four inputs as the following codes. The angle from the force angle
generator or estimator waveforms on the graph tool as shown in Figure 2-36. Notice that the angle of the
force angle generator is very similar as the estimated rotor angle of the FAST or eSMO estimator.

datalogObj->iptr[0] = &motorVars_M1.angleFOC_rad;
datalogObj->iptr[1] = &motorVars_M1.angleEST_rad;

7. Verify the over current fault protection by decreasing the value of the variable motorVars_M1.overCurrent_A,
the over current protection is implemented by the CMPSS modules. The over current fault will be trigger
if the motorVars_M1.overCurrent_A is set to a value less than the motor phase current actual value,
the PWM output will be disabled, the motorVars_M1.flagEnableRunAndIdentify is cleared to 0, and the
motorVars_M1.faultMtrUse.all will be set to 0x10 (16) as shown in Figure 2-29.

8. Set the variables motorVars_M1.flagEnableRunAndIdentify to 0 to stop run the motor.
9. Once complete, the controller can now be halted, and the debug connection terminated. Fully halting the

controller by first clicking the Halt button on the toolbar or by clicking Target → Halt. Finally, reset the

controller by clicking on or clicking Run → Reset.

10. Close CCS debug session by clicking on Terminate Debug Session or clicking Run → Terminate.
11. Power off the power supply to the inverter kit.

Running the Universal Lab on TI Hardware Kit www.ti.com

36 Motor Control SDK Universal Project and Lab SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

Click this button to enable periodic capture of

data from the microcontroller

The variable keeps increasing

Check if these variables meet the board,

estimator, library selection

Set this variable value equal to 1 to start the

motor

Three-phase PWM duty equals to 50%. The

CMPA value equals to half of the TBPRD

Voltage offset coefficients are about 0.5.

Current offset values are near 2048 (half of

12bit ADC scale value)

Current and voltage sampling values are near

0.0 with removing offset

The sensing conversion value should be equal

to the dc bus voltage

Figure 2-28. Build Level 2: Variables in Expressions Window

Adjust the value of motorVars_M1.overCurrent_A in Expression window to trigger the over current fault as
shown in Figure 2-29.

The value will be non-zero if

there is an over-current fault

The values will be non-zero if

there is an over-current fault

Set the right current threshold

value to verify the over

current function

Figure 2-29. Build Level 2: Current Protection Setting

www.ti.com Running the Universal Lab on TI Hardware Kit

SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Motor Control SDK Universal Project and Lab 37

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

Use DAC128S085EVM with an oscilloscope to monitor three phase sensing current of the motor and compare
the sampling value to the measurement value with a current probe as shown in Figure 2-30.

The feedback current sensing value

output with PWMDAC or DAC128S

CH1 (Yellow) - Phase A current

CH2 (Green) - Phase B current

CH3 (Purple) - Phase C current

The phase A current capture by

a current probe of oscilloscope

Figure 2-30. Build Level 2: Motor Phase Current Waveforms

Use DAC128S085EVM with an oscilloscope to monitor three phase sensing voltage of the motor, and use
common mode SVPWM by setting motorVars_M1.svmMode equal to SVM_COM_C as shown in Figure 2-31.

The feedback voltage sensing value

output with PWMDAC or DAC128S

CH1 (Yellow) - Phase A voltage

CH2 (Green) - Phase B voltage

CH3 (Purple) - Phase C voltage

The phase A current capture by

a current probe of oscilloscope

SVM is COMMON mode

Figure 2-31. Build Level 2: Motor Phase Voltage Waveforms Using Common SVM Mode

Running the Universal Lab on TI Hardware Kit www.ti.com

38 Motor Control SDK Universal Project and Lab SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

Use DAC128S085EVM with an oscilloscope to monitor three phase sensing voltage of the motor, and use
minimum mode SVPWM by setting motorVars_M1.svmMode equal to SVM_MIN_C as shown in Figure 2-32.

The feedback voltage sensing value

output with PWMDAC or DAC128S

CH1 (Yellow) - Phase A voltage

CH2 (Green) - Phase B voltage

CH3 (Purple) - Phase C voltage

The phase current capture by

a current probe of oscilloscope

SVM is MINIMUM mode

Figure 2-32. Build Level 2: Motor Phase Voltage Waveforms Using Minimum SVM Mode

Use DAC128S085EVM with an oscilloscope to monitor the rotor angle of the motor from the angle generator and
the angle from the FAST estimator as shown in Figure 2-33.

The rotor angle value output with

PWMDAC or DAC128S

CH1 (Yellow) – Angle for generator

CH2 (Green) - Angle from estimator

The phase A current

capture by a current

probe of oscilloscope

The phase A current

sensing value output

with PWMDAC or

DAC128S

Figure 2-33. Build Level 2: Motor Rotor Angle and Phase Current Waveforms

www.ti.com Running the Universal Lab on TI Hardware Kit

SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Motor Control SDK Universal Project and Lab 39

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

Use Datalog with Graph Tool to monitor three phase sensing current of the motor as shown in Figure 2-34.

Phase B current sampling

values of the motor

Phase A current sampling

values of the motor

Reset the graph for

changing display scale

Phase A current sampling

values of the motor

Figure 2-34. Build Level 2: Motor Phase Current Waveforms with Graph Tool

Use Datalog with Graph Tool to monitor three phase sensing voltage of the motor as shown in Figure 2-35.

Phase B voltage sampling

values of the motor

Phase A voltage sampling

values of the motor

Figure 2-35. Build Level 2: Motor Phase Voltage Waveforms with Graph Tool

Running the Universal Lab on TI Hardware Kit www.ti.com

40 Motor Control SDK Universal Project and Lab SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

Use Datalog with Graph Tool to monitor rotor angle of the motor from the angle generator and angle from the
FAST estimator as shown in Figure 2-36.

Motor rotor angle from

estimator

Motor rotor angle from the

force angle generator

Figure 2-36. Build Level 2: Motor Rotor Angle Waveforms With Graph Tool

www.ti.com Running the Universal Lab on TI Hardware Kit

SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Motor Control SDK Universal Project and Lab 41

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

2.5.3 Level 3 Incremental Build

Objectives learned in this build level:

• Evaluate the closed current loop operation of the motor.
• Verify the current sensing parameters settings

In this build level, the motor is controlled by using i/f control that the rotor angle is generated from ramp
generator module. The software flow for this build level is shown in Figure 2-37.

SVM

Iq

PI

INV

PARK

CLARKE

CLARKE

PARK

Id

PI

FAST

or

eSMO

or

ENC

or

HALL

PWM

Driver

HAL_writePwmData

Vq

Vd

V�_out

V�_out

Ta

Tb

Tc

Ia

Ib

Ic

Va

Vb

Vc

Vbus

V�_in

V�_in

user_Iq_ref

Iq

user_Id_ref

Id

Id

Iq

I�_in

I�_in

Angle

Speed

Flux

Torque

EST_run

Rs

�

�s
�

Lsd

�

Lsq
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

RG
Traj

Ramp

�ref
SpdRef

Var1

Var3

DACs

or

PWMDAC

DATALOG
DlogCh1

DlogCh2Scope
Graph

Window

Var2

Var4

HAL_read

Mtr1ADCData

ADC

Driver

M
Only FAST outputs

Flux and Torque

Figure 2-37. Build Level 3 Software Block Diagram - Current Close Loop Control

2.5.3.1 Build and Load Project

Connect the motor to the related terminals on the power inverter board. Follow the operation steps in Section
2.5.1.1 to build and load project by setting DMC_BUILDLEVEL to DMC_LEVEL_3 in sys_settings.h file.

CAUTION
Do not click Cancel, turn off the power of the board, or disconnect the emulator when loading the
code to flash.

2.5.3.2 Setup Debug Environment Windows

Follow operation steps in Section 2.5.1.2 to import the variables into the Expressions window by picking
universal_lab_level3.txt. The Expressions window appears as shown in Figure 2-38.

2.5.3.3 Run the Code

1. Power on the AC or DC power supply, gradually increase output voltage at power supply to get an
appropriate DC-bus voltage.

2. Run the project by clicking on button , or click Run → Resume in the Debug tab. The
systemVars.flagEnableSystem should be set to '1' after a fixed time, that means the offsets calibration
have been done. The fault flags motorVars_M1.faultMtrUse.all should be equal to '0' , if not, the user have to
check the current and voltage sensing circuit as described in Section 2.5.1.

3. To verify run the motor with current closed-loop control, set the variable
motorVars_M1.flagEnableRunAndIdentify to '1' in the Expressions window as shown in Figure 2-38. The
motor will run with a closed-loop control using the angle from the angle generator at a setting speed in the
variable motorVars_M1.speedRef_Hz. Check the value of motorVars_M1.speed_Hz in Expressions window,
The values of both variables should be very close.

Running the Universal Lab on TI Hardware Kit www.ti.com

42 Motor Control SDK Universal Project and Lab SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

4. Connect oscilloscope probes to the EPWMDAC or DAC128S outputs and motor phase line to probe the
angles and current signals, and current. These waveforms on the oscilloscope appear as shown in Figure
2-39. Change the Idq_set_A.value[1] in the Expressions window to set the reference torque current, the
motor phase current will be increasing with the same percentage accordingly.

5. If the motor can not run with current-closed loop and appear a over current fault, check if the
sign of motorVars_M1.adcData.current_sf and the value of userParams_M1.current_sf are set correctly
according to the hardware board. The values of both variables are related to the definition constant
USER_M1_ADC_FULL_SCALE_CURRENT_A in user_mtr1.h file.

6. Set the variables motorVars_M1.flagEnableRunAndIdentify to 0 to stop run the motor.
7. Once complete, the controller can now be halted and the debug connection terminated. Fully halting the

controller by first clicking the Halt button on the toolbar or by clicking Target → Halt. Finally, reset the

controller by clicking on or clicking Run → Reset.

8. Close CCS debug session by clicking on Terminate Debug Session or clicking Run → Terminate.

www.ti.com Running the Universal Lab on TI Hardware Kit

SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Motor Control SDK Universal Project and Lab 43

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

Click this button to enable periodic

capture of data from the microcontroller

Check if these variables meet the board,

estimator, library selections

Set this variable value equal to 1 to start

run the motor

Tune these Kp or Ki of current

regulators to achieve the required

response

Set the reference torque current value to

this varaible

Means the inverter/controller has fault

when run the motor if the variable value

is not zero

Set target speed value (Hz) to this

variable

The sensing conversion value should be

equal to the dc bus voltage

Check if the estimation speed (Hz) is

equal/close to the setting traget speed

(Hz)

The threshold value of the over current

protection

Figure 2-38. Build Level 3: Variables in Expressions Window

Running the Universal Lab on TI Hardware Kit www.ti.com

44 Motor Control SDK Universal Project and Lab SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

Use DAC128S085EVM with an oscilloscope to monitor rotor angle of the motor from the angle generator and
rotor angle from the FAST estimator, and a phase current of the motor as shown in Figure 2-39.

The rotor angle value output with

PWMDAC or DAC128S

CH1 (Yellow) – Angle for generator

CH2 (Green) - Angle from estimator

The phase A current

capture by a current

probe of oscilloscope

The phase A current

sensing value output

with PWMDAC or

DAC128S

Figure 2-39. Build Level 3: Motor Rotor Angle and Phase Current Waveforms on Oscilloscope

2.5.4 Level 4 Incremental Build

Objectives learned in this build level:

• Evaluate motor identification with FAST estimators.
• Evaluate the complete motor drive with Fast based sensorless-FOC, eSMO based sensorless-FOC, encoder

based sensored-FOC or hall based sensored-FOC.
• Evaluate the additional features, such as field weakening control, flying start, MTPA, and braking.

In this build level, the outer speed loop is closed with the inner current loop for motor that the rotor angle is from
FAST, eSMO, encoder or hall sensors modules. The software flow for this build level is shown in Figure 2-40.

SVM

Iq

PI

Speed

PI

INV

PARK

CLARKE

CLARKE

PARK

Id

PI

Traj

Ramp

FAST

or

eSMO

or

ENC

or

HALL

PWM

Driver

ADC

Driver

HAL_writePwmData

+

+

Vq

Vd

V�_out

V�_out

Ta

Tb

Tc

Ia

Ib

Ic

Va

Vb

Vc

Vbus

V�_in

V�_in

Iq_ref

Iq

Id_ref

Id

�ref

Id

Iq

I�_in

I�_in

Angle

Speed

Flux

Torque

Rs
�

�s
�

Lsd
�

Lsq
�

�
�

�
�

��

�
�

�
�

�
�

�
�

Irated

�

�
�

�
�

�
�

Is_ref

FWC

FWC

�
�

SpdRef

�
�

Lq

Ld

Vs

Vref

�1

�2

MTPA

HAL_read

Mtr1ADCData

Var1

Var3

DACs

or

PWMDAC

DATALOG
DlogCh1

DlogCh2
Scope Graph

Window

Var2

Var4

MOnly FAST outputs

Flux and Torque

Figure 2-40. Build Level 4 Software Block Diagram - Speed and Current Close Loop Control

www.ti.com Running the Universal Lab on TI Hardware Kit

SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Motor Control SDK Universal Project and Lab 45

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

2.5.4.1 Build and Load Project

Connect the motor to the related terminals on the power inverter board. Follow the operation steps in Section
2.5.1.1 to build and load project by setting DMC_BUILDLEVEL to DMC_LEVEL_4 in sys_settings.h file.

CAUTION
Do not click Cancel, turn off the power of the board, or disconnect the emulator when loading the
code to flash.

2.5.4.2 Setup Debug Environment Windows

Follow operation steps in Section 2.5.1.2 to import the variables into the Expressions window by picking
universal_lab_level4.txt. The Expressions window appears as shown in Figure 2-41.

2.5.4.3 Run the Code

1. Set the AC source output to 0 V at 50/60Hz, turn on the AC power supply, slowly increase the input voltage
from 0-V to 220-V AC.

2. The required motor parameters must be defined in the header files user_mtr1.h as shown in the following
example codes. If the motor parameters are not well know by the user, the motor identification can be used
to achieve the motor parameters if the FAST estimator is implemented in the example lab.

#define USER_MOTOR1_TYPE MOTOR_TYPE_PM
#define USER_MOTOR1_NUM_POLE_PAIRS (4)
#define USER_MOTOR1_Rr_Ohm (NULL)
#define USER_MOTOR1_Rs_Ohm (0.38157931f)
#define USER_MOTOR1_Ls_d_H (0.000188295482f)
#define USER_MOTOR1_Ls_q_H (0.000188295482f)
#define USER_MOTOR1_RATED_FLUX_VpHz (0.0396642499f)

3. Changes the userParams.flag_bypassMotorId value to "false" to enable the motor identification as the
following example code.

// true->enable identification, false->disable identification
 userParams_M1.flag_bypassMotorId = false;

4. Set the right identification variables value in the user_mtr1.h according to the motor specification.

 #define USER_MOTOR1_RES_EST_CURRENT_A (1.5f) // A - 10~30% of rated current of the
motor
#define USER_MOTOR1_IND_EST_CURRENT_A (-1.0f) // A - 10~30% of rated current of the
motor, just enough to enable rotation
#define USER_MOTOR1_MAX_CURRENT_A (4.5f) // A - 30~150% of rated current of the
motor
#define USER_MOTOR1_FLUX_EXC_FREQ_Hz (40.0f) // Hz - 10~30% of rated frequency of the
motor

5. Rebuild the project and load the code into the controller, run the project by clicking on button , or click
Run → Resume in the Debug tab. The systemVars.flagEnableSystem should be set to 1 after a fixed time,
that means the offsets calibration have been done and the power relay for inrush is turned on. The fault flags
motorVars_M1.faultMtrUse.all should be equal to '0' , if not, the user should check the current and voltage
sensing circuit as described in Section 2.5.1.

6. Set the variable motorVars_M1.flagEnableRunAndIdentify to' 1 in the Expressions window as shown in
Figure 2-41, the motor identification will be executed, the whole process will take about 150s. Once
motorVars_M1.flagEnableRunAndIdentify is equal to 0 and the motor is stopping, the motor parameters
have been identified. Copy the variables value in the watch window to replace the defined motor parameters
in user_mtr1.h as follows:
• USER_MOTOR1_Rs_Ohm = motorSetVars_M1.Rs_Ohm’s value
• USER_MOTOR1_Ls_d_H = motorSetVars_M1.Ls_d_H’s value
• USER_MOTOR1_Ls_q_H = motorSetVars_M1.Ls_q_H’s value
• USER_MOTOR1_RATED_FLUX_VpHz = motorSetVars_M1.flux_VpHz’s value

7. Set userParams_M1.flag_bypassMotorId value to 'true' to disable identification after successfully identify the
motors parameters, rebuild the project and load the code into the controller.

Running the Universal Lab on TI Hardware Kit www.ti.com

46 Motor Control SDK Universal Project and Lab SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

8. The example can support online identify the motor without reloading the code as the following steps.
a. Set the motorVars_M1.flagEnableRunAndIdentify to' 0' to stop run the motor.
b. Set the motorVars_M1.flagEnableMotorIdentify to '1' to enable identification.
c. Set the motorVars_M1.flagEnableRunAndIdentify to' 1' to start identify motor parameters. The

motorVars_M1.flagEnableMotorIdentify will be set to '0' automatically that means the identification is
in processing.

d. As described in the step 6 above, the new motor parameters will be identified.
9. Once complete motor parameters identification or set the correct the motor parameters in user_mtr1.h file.

To start run the motor as the following steps.
a. Set the variables motorVars_M1.flagEnableRunAndIdentify equal to 1 again to start run the motor.
b. Set the target speed value to the variable motorVars_M1.speedRef_Hz and watch how the motor shaft

speed will follow the setting speed.
c. To change the acceleration, enter a different acceleration value for the variable

motorVars_M1.accelerationMax_Hzps.
d. Use PWMDAC or DAC128S module to display the monitoring variables as described in Section 2.4.2 or

Section 2.4.3. The motor angle and current waveforms are shown in Figure 2-42.
10. The default proportional gain (Kp) and integral gain (Ki) for the current controllers of the FOC system

are calculated in the function setupControllers(). After setupControllers() is called, the global variables
motorSetVars_M1.Kp_Id, motorSetVars_M1.Ki_Id, motorSetVars_M1.Kp_Iq, and motorSetVars_M1.Ki_Iq
are initialized with the newly calculated Kp and Ki gains. Tune the Kp and Ki value of these four variables
in Expressions Watch Window as shown in Figure 2-41 for the current controllers to achieve the expected
current control bandwidth and response. The Kp gain creates a zero that cancels the pole of the motor’s
stator and can easily be calculated. The Ki gain adjusts the bandwidth of the current controller-motor system.
When a speed controlled system is needed for a certain damping, the Kp gain of the current controller will
relate to the time constant of the speed controlled system.

11. The default proportional gain (Kp) and integral gain (Ki) for the speed controllers of the FOC system are
also calculated in the function setupControllers(). After setupControllers() is called, the global variables
motorSetVars_M1.Kp_spd and motorSetVars_M1.Ki_spd are initialized with the newly calculated Kp and Ki
gains. Tune the Kp and Ki value of these two variables in Expressions Watch Window as shown in Figure
2-41 for the speed controllers to achieve the expected current control bandwidth and response. Tuning the
speed controller has more unknowns than when tuning a current controller, the default calculated Kp and Ki
is just a reference value as a starting point.

12. Set the variables motorVars_M1.flagEnableRunAndIdentify to '0' to stop run the motor.
13. Once complete, the controller can now be halted and the debug connection terminated. Fully halting the

controller by first clicking the Halt button on the toolbar or by clicking Target → Halt. Finally, reset the

controller by clicking on or clicking Run → Reset.

14. Close CCS debug session by clicking on Terminate Debug Session or clicking Run → Terminate.

www.ti.com Running the Universal Lab on TI Hardware Kit

SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Motor Control SDK Universal Project and Lab 47

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

Click this button to enable periodic

capture of data from the

microcontroller

Supporting estimators

Set this variable value equal to 1 to

start motor

Setting/Identified motor electrical

parameters

Set target speed value (Hz) to this

variable

Estimation feedback speed (Hz)

The threshold value of the over

current protection

Tune these Kp or Ki of current and

speed regulators to achieve the

required response

Estimator state

Motor operation state

Using estimator

Using SVM mode

Figure 2-41. Build Level 4: Variables in Expressions Window

Running the Universal Lab on TI Hardware Kit www.ti.com

48 Motor Control SDK Universal Project and Lab SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

Use DAC128S085EVM with an oscilloscope to monitor rotor angle of the motor from the FAST estimator,
feedback speed of the motor, and a phase current of the motor as shown in Figure 2-42 when the motor is
running at forward rotation by setting motorVars_M1.speedRef_Hz to a positive reference value.

Rotor angle

value output

with DAC128S

Phase A current

capture by a

current probe

Phase A current

sensing value output

with DAC128S

Feedback speed

value output with

DAC128S

Figure 2-42. Build Level 4: Rotor Angle with FAST, Phase Current Waveforms at Forward Move

As illustrated in Section 2.3.4, multiple FOC algorithms can be supported in the example lab. The user can use
one or two algorithm for motor control in the lab project as shown in Table 2-7.

The user can implement FAST and eSMO estimators in the project simultaneously by adding the pre-define
name 'MOTOR1_FAST' and 'MOTOR1_ESMO' in project properties as described in Section 2.3.1. Rebuild, load
and run the project as the operation steps above. The settings will be as shown in Figure 2-41.

• The systemVars.estType value equals to EST_TYPE_FAST_ESMO that means FAST and eSMO estimators
are enabled in this project.

• The motorVars_M1.estimatorMode equals to ESTIMATOR_MODE_FAST that means the FAST estimator is
using for sensorless-FOC, equals to ESTIMATOR_MODE_ESMO that means the eSMO estimator is using
for sensorless-FOC.

• The estimated rotor angles from FAST and eSMO are shown in Figure 2-43. The motor is running with FAST
at forward rotation by setting motorVars_M1.speedRef_Hz to a positive value.

• The estimated rotor angles from FAST and eSMO are shown in Figure 2-47. The motor is running with FAST
at reversal rotation by setting motorVars_M1.speedRef_Hz to a negative value.

• The user can change the value to ESTIMATOR_MODE_ESMO to select the eSMO estimator for sensorless-
FOC. And also the user can change the value to switch the using estimator on the fly.

www.ti.com Running the Universal Lab on TI Hardware Kit

SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Motor Control SDK Universal Project and Lab 49

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

Use DAC128S085EVM with an oscilloscope to monitor rotor angle of the motor from the FAST and eSMO
estimator, and a phase current of the motor as shown in Figure 2-43 when the motor is running at forward
rotation by setting motorVars_M1.speedRef_Hz to a positive reference value.

Using rotor angle

value output with

DAC128S

Phase A current

capture by a

current probe

FAST rotor angle

value output with

DAC128S

eSMO rotor angle

value output with

DAC128S

Figure 2-43. Build Level 4: Rotor Angle with FAST and eSMO, Phase Current Waveforms at Forward
Rotation

Use DAC128S085EVM with an oscilloscope to monitor rotor angle of the motor from the FAST and eSMO
estimator, and a phase current of the motor as shown in Figure 2-44 when the motor is running at reversal
rotation by setting motorVars_M1.speedRef_Hz to a negative reference value.

Using rotor angle

value output with

DAC128S

Phase A current

capture by a

current probe

FAST rotor angle

value output with

DAC128S

eSMO rotor angle

value output with

DAC128S

Figure 2-44. Build Level 4: Rotor Angle With FAST and eSMO, Phase Current Waveforms at Reversal
Rotation

Running the Universal Lab on TI Hardware Kit www.ti.com

50 Motor Control SDK Universal Project and Lab SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

The user can implement FAST and Encoder estimators in the project simultaneously by adding the pre-define
name 'MOTOR1_FAST' and 'MOTOR1_ENC' in project properties as described in Section 2.3.1. Rebuild, load
and run the project as the operation steps above.

• The systemVars.estType value equals to EST_TYPE_FAST_ENC that means FAST and Encoder estimators
are enabled in this project.

• The motorVars_M1.estimatorMode equals to ESTIMATOR_MODE_FAST that means the FAST estimator is
using for sensorless-FOC, equals to ESTIMATOR_MODE_ENC that means the encoder estimator is using
for sensored-FOC.

• The estimated rotor angles from FAST and Encoder are shown in Figure 2-45. The motor is running with
FAST at forward rotation by setting motorVars_M1.speedRef_Hz to a positive value.

• The user can change the value to ESTIMATOR_MODE_ENC to select the Encoder estimator for sensored-
FOC. And also the user can change the value to switch the using estimator on the fly.

Use DAC128S085EVM with an oscilloscope to monitor rotor angle of the motor from the FAST estimator and
encoder, and a phase current of the motor as shown in Figure 2-45 when the motor is running at forward rotation
by setting motorVars_M1.speedRef_Hz to a positive reference value.

Using rotor angle

value output with

DAC128S

Phase A current

capture by a

current probe

FAST rotor angle

value output with

DAC128S

Encoder rotor

angle value output

with DAC128S

Figure 2-45. Build Level 4: Rotor Angle with FAST and Encoder, Phase Current Waveforms at Forward
Rotation

The user can implement FAST and Hall sensor estimators in the project simultaneously by adding the pre-define
name 'MOTOR1_FAST' and 'MOTOR1_HALL' in project properties as described in Section 2.3.1. Rebuild, load
and run the project as the operation steps above.

• The systemVars.estType value equals to EST_TYPE_FAST_HALL that means FAST and Hall sensor
estimators are enabled in this project.

• The motorVars_M1.estimatorMode equals to ESTIMATOR_MODE_FAST that means the FAST estimator is
using for sensorless-FOC, equals to ESTIMATOR_MODE_HALL that means the hall sensor estimator is
using for sensored-FOC.

• The estimated rotor angles from FAST and Hall sensor are shown in Figure 2-46. The motor is running with
FAST at forward rotation by setting motorVars_M1.speedRef_Hz to a positive value.

• The estimated rotor angles from FAST and Hall sensor are shown in Figure 2-46. The motor is running with
Hall sensor at reversal rotation by setting motorVars_M1.speedRef_Hz to a negative value.

• The user can change the value to ESTIMATOR_MODE_HALL to select the Hall sensor estimator for
sensored-FOC. And also the user can change the value to switch the using estimator on the fly.

www.ti.com Running the Universal Lab on TI Hardware Kit

SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Motor Control SDK Universal Project and Lab 51

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

Use DAC128S085EVM with an oscilloscope to monitor rotor angle of the motor from the FAST estimator and hall
sensor, and a phase current of the motor as shown in Figure 2-46 when the motor is running at forward rotation
by setting motorVars_M1.speedRef_Hz to a positive reference value.

Using rotor angle

value output with

DAC128S

Phase A current

capture by a

current probe

FAST rotor angle

value output with

DAC128S

HALL rotor angle

value output with

DAC128S

Figure 2-46. Build Level 4: Rotor Angle with FAST and Hall Sensor, Phase Current Waveforms at Forward
Rotation

Use DAC128S085EVM with an oscilloscope to monitor rotor angle of the motor from the FAST estimator and hall
sensor, and a phase current of the motor as shown in Figure 2-47 when the motor is running at reversal rotation
by setting motorVars_M1.speedRef_Hz to a negative reference value.

Using rotor angle

value output with

DAC128S

Phase A current

capture by a

current probe

FAST rotor angle

value output with

DAC128S

HALL rotor angle

value output with

DAC128S

Figure 2-47. Build Level 4: Motor Rotor Angle with FAST and Hall Sensor, Phase Current Waveforms at
Reversal Rotation

Running the Universal Lab on TI Hardware Kit www.ti.com

52 Motor Control SDK Universal Project and Lab SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

The user can implement eSMO and Encoder estimators in the project simultaneously by adding the pre-define
name 'MOTOR1_ESMO' and 'MOTOR1_ENC' in project properties as described in Section 2.3.1. Rebuild, load
and run the project as the operation steps above.

• The systemVars.estType value equals to EST_TYPE_ESMO_ENC that means eSMO and Encoder
estimators are enabled in this project.

• The motorVars_M1.estimatorMode equals to ESTIMATOR_MODE_ESMO that means the eSMO estimator is
using for sensorless-FO, equals to ESTIMATOR_MODE_ENC that means the encoder estimator is using for
sensored-FOC.

• The estimated rotor angles from eSMO and Encoder are shown in Figure 2-48. The motor is running with
eSMO at forward rotation by setting motorVars_M1.speedRef_Hz to a positive value.

• The user can change the value to ESTIMATOR_MODE_ENC to select the Encoder estimator for sensored-
FOC. And also the user can change the value to switch the using estimator on the fly.

Use DAC128S085EVM with an oscilloscope to monitor rotor angle of the motor from the eSMO estimator and
encoder, and a phase current of the motor as shown in Figure 2-48 when the motor is running at forward rotation
by setting motorVars_M1.speedRef_Hz to a positive reference value.

Using rotor angle

value output with

DAC128S

Phase A current

capture by a

current probe

FAST rotor angle

value output with

DAC128S

Encoder rotor

angle value output

with DAC128S

Figure 2-48. Build Level 4: Rotor Angle with eSMO and Encoder, Phase Current Waveforms at Forward
Rotation

www.ti.com Running the Universal Lab on TI Hardware Kit

SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Motor Control SDK Universal Project and Lab 53

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

3 Building Custom Board
3.1 Building New Custom Board
This sections discusses how the user can design their own application board to drive a motor, and migrate the
motor control SDK software to their own board.

3.1.1 Hardware Setup

If using a TI hardware kit, please follow the steps in Section 2 to set up the inverter board and LaunchPad or
controlCARD.

If using a customization board, please make sure that the power supply to C2000 controller and gate driver is
correct, and the JTAG emulator can be connected successfully. Migrate the reference code to customization
board as described in the following sections, and then run the code from build level 1 first to build level as
illustrated in Section 2.5.

3.1.2 Migrating Reference Code to Customization Board

To migrate the reference code to a new TI hardware kits or a customization board, the user needs to set the
hardware and motor control parameters according to the hardware circuit in user_mtr1.h file, and configure the
related peripherals in hal.h and hal.c files as described in the following sections.

The following state machine summarizes the related HAL configuration and motor control settings functions calls
as shown in Figure 3-1.

In this lab project, there are several HAL functions that are called only once, related to the configuration of the
Hardware. All of these functions deal with configuration of either a peripheral, or a driver IC.

Initialize the HAL Handle: HAL_init()

(call in sys_main.c, define in hal.c)

Project Start

Setup HAL with user parameters:

HAL_MTR_setParams()

(call in sys_main.c, define in hal.c)

initialize motor control parameters:

initMotor1CtrlParameters()

(call in sys_main.c, define in motor1_drive.c)

Configure DRV device (if applicable)

HAL_enableDRV()

HAL_setupDRVSPI()

(call in motor1_drive.c, define in hal.c)

Configure MCU’s peripherals:

HAL_initIntVectorTable()

HAL_enableCtrlInts()

HAL_enableGlobalInts()

HAL_enableDebugInt()

(call in sys_main.c, define in hal.c)

Setup faults depending on board used:

HAL_setupFaults()

HAL_disablePWM()

(call in motor1_drive.c, define in hal.c)

Forever Loop Start

run offset calibration: runMotor1OffsetsCalculation()

(call in sys_main.c, define in motor1_drive.c)

Figure 3-1. HAL Configuration and Motor Control Setting State Machines

Building Custom Board www.ti.com

54 Motor Control SDK Universal Project and Lab SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

3.1.2.1 Setting Hardware Board Parameters

The user_mtr1.h is where all user parameters are stored for motor control. The maximum phase current and
phase voltage at the input to the AD converter, these values are hardware dependent and should be based on
the current and voltage sensing and scaling to the ADC input. The number of phase current sensors and phase
voltage sensors used are defined in user_mtr1.h that are hardware dependent.

All of the configurable parameters are defined in the user_mtr1.h file, which can be calculated using the Motor
Control Parameters Calculation.xlsx Excel® spreadsheet. This file is included with the archive file at
the folder: \solutions\universal_motorcontrol_lab\doc and copy these parameters marked bold to
user_mtr1.h as shown in the following codes.

//! \brief Defines the maximum voltage at the AD converter
#define USER_M1_ADC_FULL_SCALE_VOLTAGE_V (57.52845691f)

//! \brief Defines the analog voltage filter pole location, Hz
#define USER_M1_VOLTAGE_FILTER_POLE_Hz (680.4839141f) // 47nF

//! \brief Defines the maximum current at the AD converter
#define USER_M1_ADC_FULL_SCALE_CURRENT_A (47.14285714f) // gain=10

3.1.2.2 Modifying Motor Control Parameters

The parameters provided in user_mtr1.h file for PMSM/BLDC motor are listed as shown in the following codes.
The motor parameters can be identified if the FAST technique is implemented on this motor or getting from the
motor data sheet.

#define USER_MOTOR1_TYPE MOTOR_TYPE_PM
#define USER_MOTOR1_NUM_POLE_PAIRS (4)

#define USER_MOTOR1_Rs_Ohm (0.38157931f)
#define USER_MOTOR1_Ls_d_H (0.000188295482f)
#define USER_MOTOR1_Ls_q_H (0.000188295482f)
#define USER_MOTOR1_RATED_FLUX_VpHz (0.0396642499f)
#define USER_MOTOR1_MAX_CURRENT_A (6.0f)

3.1.2.3 Changing Pin Assignment

The HAL_setupGPIOs() function of hal.c configures the alternate function of the GPIO pins and sets the direction
and mode of the specified pin according to the hardware board/kit used. Be careful to set the pad configuration
for the specified pin, especially GPIOs will be used as PWM output function.

 // GPIO0->EPWM1A->M1_UH*
 GPIO_setPinConfig(GPIO_0_EPWM1_A);
 GPIO_setDirectionMode(0, GPIO_DIR_MODE_OUT);
 GPIO_setPadConfig(0, GPIO_PIN_TYPE_STD);

3.1.2.4 Configuring PWM Module

The HAL module configures the PWM channels. The application parameters to control the motors are written as
#define configuring the PWM modules base address in “hal.h” according to the board, and the base address will
be assigned to the PWM handles in hal.c. For example, the connection diagram on LAUNCHXL-F280025C and
BOOSTXL-DRV8323RScombination as shown in Figure 3-2.

www.ti.com Building Custom Board

SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Motor Control SDK Universal Project and Lab 55

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/BOOSTXL-DRV8323RS
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

LaunchXL-F280025C and Boostxl-drv8323RS

Combination

INHA/UHGPIO0/EPWM1A

GPIO1/EPWM1B

GPIO2/EPWM2A

GPIO3/EPWM2B

GPIO4/EPWM3A

GPIO15/EPWM3B

INLA/UL

INHB/VH

INLB/VL

INHC/WH

INLC/WL

Figure 3-2. PWM Connection Diagram

Which is configured as shown in following steps (Changes are bold for a customer's board), taken from
hal.h and hal.c located in the following location: solutions\universal_motorcontrol_lab\f28002x\drivers\include
and \source:

1. Defines the PWM modules base address in "hal.h".

//! \ Motor 1
#define MTR1_PWM_U_BASE EPWM1_BASE
#define MTR1_PWM_V_BASE EPWM2_BASE
#define MTR1_PWM_W_BASE EPWM3_BASE

2. Sets up the GPIOs as PWM outputs in HAL_setupGpios() in hal.c.

 // GPIO0->EPWM1A->M1_UH*
 GPIO_setPinConfig(GPIO_0_EPWM1_A);
 GPIO_setDirectionMode(0, GPIO_DIR_MODE_OUT);
 GPIO_setPadConfig(0, GPIO_PIN_TYPE_STD);

 // GPIO1->EPWM1B->M1_UL*
 GPIO_setPinConfig(GPIO_1_EPWM1_B);
 GPIO_setDirectionMode(1, GPIO_DIR_MODE_OUT);
 GPIO_setPadConfig(1, GPIO_PIN_TYPE_STD);

 // GPIO2->EPWM2A->M1_VH*
 GPIO_setPinConfig(GPIO_2_EPWM2_A);
 GPIO_setDirectionMode(2, GPIO_DIR_MODE_OUT);
 GPIO_setPadConfig(2, GPIO_PIN_TYPE_STD);

 // GPIO3->EPWM2B->M1_VL*
 GPIO_setPinConfig(GPIO_3_EPWM2_B);
 GPIO_setDirectionMode(3, GPIO_DIR_MODE_OUT);
 GPIO_setPadConfig(3, GPIO_PIN_TYPE_STD);

 // GPIO4->EPWM3A->M1_WH*
 GPIO_setPinConfig(GPIO_4_EPWM3_A);
 GPIO_setDirectionMode(4, GPIO_DIR_MODE_OUT);
 GPIO_setPadConfig(4, GPIO_PIN_TYPE_STD);

 // GPIO15->EPWM3B->M1_WL*
 GPIO_setPinConfig(GPIO_15_EPWM3_B);
 GPIO_setDirectionMode(15, GPIO_DIR_MODE_OUT);
 GPIO_setPadConfig(15, GPIO_PIN_TYPE_STD);

3. Assigns the address of the PWM modules used to the PWM handle in HAL_MTR1_init() in hal.c. Don't need
to change the following code, it's just to show how to link the PWM module.

 // initialize PWM handles for Motor 1
 obj->pwmHandle[0] = MTR1_PWM_U_BASE; //!< the PWM handle
 obj->pwmHandle[1] = MTR1_PWM_V_BASE; //!< the PWM handle
 obj->pwmHandle[2] = MTR1_PWM_W_BASE; //!< the PWM handle

4. Configures the PWM in HAL_setupPWMs() in hal.c. Notice that the desired PWM
period (USER_M1_PWM_TBPRD_NUM) for setting PWM frequency, the SOC event prescale
number (USER_M1_PWM_TBPRD_NUM) and the dead-band values (MTR1_PWM_DBRED_CNT,

Building Custom Board www.ti.com

56 Motor Control SDK Universal Project and Lab SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

MTR1_PWM_DBFED_CNT) are defined in hal.h, change these parameters according to the hardware board
and control requirement. And also set up the PWM counter mode, PWM action qualifier outputs based on
the hardware board.

void HAL_setupPWMs(HAL_MTR_Handle handle)
{
 HAL_MTR_Obj *obj = (HAL_MTR_Obj *)handle;
 uint16_t cnt;

 uint16_t pwmPeriodCycles = (uint16_t)(USER_M1_PWM_TBPRD_NUM);
 uint16_t numPWMTicksPerISRTick = USER_M1_NUM_PWM_TICKS_PER_ISR_TICK;
... ...
 for(cnt=0; cnt<3; cnt++)
 {
 // setup the Time-Base Control Register (TBCTL)
 EPWM_setTimeBaseCounterMode(obj->pwmHandle[cnt],
 EPWM_COUNTER_MODE_UP_DOWN);
... ...
 // setup the Action-Qualifier Output A Register (AQCTLA)
 EPWM_setActionQualifierAction(obj->pwmHandle[cnt],
 EPWM_AQ_OUTPUT_A,
 EPWM_AQ_OUTPUT_HIGH,
 EPWM_AQ_OUTPUT_ON_TIMEBASE_UP_CMPA);

 EPWM_setActionQualifierAction(obj->pwmHandle[cnt],
 EPWM_AQ_OUTPUT_A,
 EPWM_AQ_OUTPUT_HIGH,
 EPWM_AQ_OUTPUT_ON_TIMEBASE_PERIOD);

 EPWM_setActionQualifierAction(obj->pwmHandle[cnt],
 EPWM_AQ_OUTPUT_A,
 EPWM_AQ_OUTPUT_LOW,
 EPWM_AQ_OUTPUT_ON_TIMEBASE_DOWN_CMPA);

 EPWM_setActionQualifierAction(obj->pwmHandle[cnt],
 EPWM_AQ_OUTPUT_A,
 EPWM_AQ_OUTPUT_LOW,
 EPWM_AQ_OUTPUT_ON_TIMEBASE_ZERO);
... ...
 // setup the Dead-Band Generator Control Register (DBCTL)
 EPWM_setDeadBandDelayMode(obj->pwmHandle[cnt], EPWM_DB_RED, true);
 EPWM_setDeadBandDelayMode(obj->pwmHandle[cnt], EPWM_DB_FED, true);

 // select EPWMA as the input to the dead band generator
 EPWM_setRisingEdgeDeadBandDelayInput(obj->pwmHandle[cnt],
 EPWM_DB_INPUT_EPWMA);

 // configure the right polarity for active high complementary config.
 EPWM_setDeadBandDelayPolarity(obj->pwmHandle[cnt],
 EPWM_DB_RED,
 EPWM_DB_POLARITY_ACTIVE_HIGH);
 EPWM_setDeadBandDelayPolarity(obj->pwmHandle[cnt],
 EPWM_DB_FED,
 EPWM_DB_POLARITY_ACTIVE_LOW);

 // setup the Dead-Band Rising Edge Delay Register (DBRED)
 EPWM_setRisingEdgeDelayCount(obj->pwmHandle[cnt], MTR1_PWM_DBRED_CNT);

 // setup the Dead-Band Falling Edge Delay Register (DBFED)
 EPWM_setFallingEdgeDelayCount(obj->pwmHandle[cnt], MTR1_PWM_DBFED_CNT);
... ...
 }
... ...
 // setup the Event Trigger Selection Register (ETSEL)
 EPWM_setInterruptSource(obj->pwmHandle[0], EPWM_INT_TBCTR_ZERO);

 EPWM_enableInterrupt(obj->pwmHandle[0]);

 EPWM_setADCTriggerSource(obj->pwmHandle[0],
 EPWM_SOC_A, EPWM_SOC_TBCTR_D_CMPC);

 EPWM_enableADCTrigger(obj->pwmHandle[0], EPWM_SOC_A);
... ...

 return;
} // end of HAL_setupPWMs() function

www.ti.com Building Custom Board

SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Motor Control SDK Universal Project and Lab 57

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

5. Sets up the event trigger for ADC as above code snippet which must accommodate the definition in hal.h.

// Three-shunt
#define MTR1_ADC_TIGGER_SOC ADC_TRIGGER_EPWM1_SOCA // EPWM1_SOCA

3.1.2.5 Configuring ADC Module

Similar to the previous PWM section, the ADC can also be changed to accommodate another board compared
to the TI motor control kits. The HAL module configures the ADC channels according to the using hardware
board. For example, the connection diagram on Launchxl-f280025c and Boostxl-drv8323rs combination as
shown in Figure 3-3. The ADC modules configuration is described as following steps (Changes are highlighted
for a customer's board). The step 1 and 2 are must-do for new hardware to run the motor.

LaunchXL-F280025C and Boostxl-drv8323RS

Combination

ADCINA14/C4*

ADCINA15/C7*

ADCINA6*

ADCINA3*/C5

ADCINA2/C9*

ADCINC6*

ISENA

ISENB

ISENC

VSENA

VSENB

VSENC

ADCINA11*/C0

VSENVM

* means using ADC channel

Figure 3-3. ADC Connection Diagram

Which is configured as shown in following steps (Changes are highlighted for a customer's board), taken from
hal.h and hal.c located in the following location: solutions\universal_motorcontrol_lab\f28002x\drivers\include
and \source:

1. Defines the ADC modules base address, assigned channels and SOCs in "hal.h"

#define MTR1_IU_ADC_BASE ADCA_BASE // ADCA-A11*/C0
#define MTR1_IV_ADC_BASE ADCC_BASE // ADCC-A14/C4*
#define MTR1_IW_ADC_BASE ADCC_BASE // ADCC-A15/C7*
#define MTR1_VU_ADC_BASE ADCA_BASE // ADCA-A6*
#define MTR1_VV_ADC_BASE ADCA_BASE // ADCC-A3*/C5
#define MTR1_VW_ADC_BASE ADCC_BASE // ADCA-A2/C9*
#define MTR1_VDC_ADC_BASE ADCC_BASE // ADCC-C6*
#define MTR1_POT_ADC_BASE ADCA_BASE // ADCA-A12*/C1

#define MTR1_IU_ADCRES_BASE ADCARESULT_BASE // ADCA-A11*/C0
#define MTR1_IV_ADCRES_BASE ADCCRESULT_BASE // ADCC-A14/C4*
#define MTR1_IW_ADCRES_BASE ADCCRESULT_BASE // ADCC-A15/C7*
#define MTR1_VU_ADCRES_BASE ADCARESULT_BASE // ADCA-A6*
#define MTR1_VV_ADCRES_BASE ADCARESULT_BASE // ADCC-A3*/C5
#define MTR1_VW_ADCRES_BASE ADCCRESULT_BASE // ADCA-A2/C9*
#define MTR1_VDC_ADCRES_BASE ADCCRESULT_BASE // ADCC-C6*
#define MTR1_POT_ADCRES_BASE ADCARESULT_BASE // ADCA-A12*/C1

#define MTR1_IU_ADC_CH_NUM ADC_CH_ADCIN11 // ADCA-A11*/C0
#define MTR1_IV_ADC_CH_NUM ADC_CH_ADCIN4 // ADCC-A14/C4*
#define MTR1_IW_ADC_CH_NUM ADC_CH_ADCIN7 // ADCC-A15/C7*
#define MTR1_VU_ADC_CH_NUM ADC_CH_ADCIN6 // ADCA-A6*
#define MTR1_VV_ADC_CH_NUM ADC_CH_ADCIN3 // ADCC-A3*/C5
#define MTR1_VW_ADC_CH_NUM ADC_CH_ADCIN9 // ADCA-A2/C9*
#define MTR1_VDC_ADC_CH_NUM ADC_CH_ADCIN6 // ADCC-C6*
#define MTR1_POT_ADC_CH_NUM ADC_CH_ADCIN12 // ADCA-A12*/C1

#define MTR1_IU_ADC_SOC_NUM ADC_SOC_NUMBER1 // ADCA-A11*/C10-SOC1-PPB1
#define MTR1_IV_ADC_SOC_NUM ADC_SOC_NUMBER1 // ADCC-A14/C4* -SOC1-PPB1
#define MTR1_IW_ADC_SOC_NUM ADC_SOC_NUMBER2 // ADCC-A15/C7* -SOC2-PPB2
#define MTR1_VU_ADC_SOC_NUM ADC_SOC_NUMBER4 // ADCA-A6* -SOC4

Building Custom Board www.ti.com

58 Motor Control SDK Universal Project and Lab SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

#define MTR1_VV_ADC_SOC_NUM ADC_SOC_NUMBER5 // ADCC-A3*/C5 -SOC5
#define MTR1_VW_ADC_SOC_NUM ADC_SOC_NUMBER5 // ADCA-A2/C9* -SOC5
#define MTR1_VDC_ADC_SOC_NUM ADC_SOC_NUMBER6 // ADCC-C6* -SOC6
#define MTR1_POT_ADC_SOC_NUM ADC_SOC_NUMBER6 // ADCA-A12*/C1 -SOC6

#define MTR1_IU_ADC_PPB_NUM ADC_PPB_NUMBER1 // ADCA-A11*/C10-SOC1-PPB1
#define MTR1_IV_ADC_PPB_NUM ADC_PPB_NUMBER1 // ADCC-A14/C4* -SOC1-PPB1
#define MTR1_IW_ADC_PPB_NUM ADC_PPB_NUMBER2 // ADCC-A15/C7*- SOC2-PPB2

2. Defines the interrupt sources for ISR in "hal.h".

// interrupt
#define MTR1_PWM_INT_BASE MTR1_PWM_U_BASE // EPWM1

#define MTR1_ADC_INT_BASE ADCC_BASE // ADCC-C6 -SOC6
#define MTR1_ADC_INT_NUM ADC_INT_NUMBER1 // ADCC_INT1-SOC6
#define MTR1_ADC_INT_SOC ADC_SOC_NUMBER6 // ADCC_INT1-SOC6

#define MTR1_PIE_INT_NUM INT_ADCC1 // ADCC_INT1-SOC6
#define MTR1_CPU_INT_NUM INTERRUPT_CPU_INT1 // ADCC_INT1-CPU_INT1
#define MTR1_INT_ACK_GROUP INTERRUPT_ACK_GROUP1 // ADCC_INT1-CPU_INT1

3. Sets up ADC module in HAL_setupADCs() in hal.c if needed. If the users want to add any ADC channels to
sample additional signals. This is done in function HAL_setupAdcs() of hal.c file as follows:

// POT_M1
ADC_setupSOC(MTR1_POT_ADC_BASE, MTR1_POT_ADC_SOC_NUM, MTR1_ADC_TIGGER_SOC,
 MTR1_POT_ADC_CH_NUM, MTR1_ADC_V_SAMPLEWINDOW);

4. Read the ADC result in HAL_readMtr1ADCData() of hal.h file as follows if the users need to add additional
signals as above.

// read POT adc value
pADCData->potAdc = ADC_readResult(MTR1_POT_ADCRES_BASE, MTR1_POT_ADC_SOC_NUM);

3.1.2.6 Configuring CMPSS Module

Configure the connections between ADC pin and CMPSS modules in “hal.h” based on the hardware. For
details, see the Analog Pins and Internal Connections table in the TMS320F28002x Real-Time Microcontrollers
Technical Reference Manual (Rev. A).

The HAL module configures the CMPSS modules according to the using hardware board. For example, the
connection diagram on Launchxl-f280025c and Boostxl-drv8323rs combination as shown in Figure 3-4. The
CMPSS modules configuration is described as following steps (Changes are bold for a customer's board).

LaunchXL-F280025C and Boostxl-drv8323RS Combination

ADCINA14/C4*

ADCINA15/C7*

ISENA

ISENB

ISENC

ADCINA11*/C0

* means using ADC channel

CMP1_HP

CTRIP1L

Comparator 1

Digital

Filter

Digital

Filter

DAC12

DAC12

CMP1_LP

CTRIP1H

CMP3_HP

CTRIP3L

Comparator 3

Digital

Filter

Digital

Filter

DAC12

DAC12

CMP3_LP

CTRIP3H

Figure 3-4. CMPSS Connection Diagram

www.ti.com Building Custom Board

SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Motor Control SDK Universal Project and Lab 59

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/spruin7
https://www.ti.com/lit/pdf/spruin7
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

1. Defines the CMPSS modules base address, assigned channels and SOCs in "hal.h" file.

#define MTR1_CMPSS_U_BASE CMPSS1_BASE
#define MTR1_CMPSS_V_BASE CMPSS3_BASE
#define MTR1_CMPSS_W_BASE CMPSS1_BASE

2. Defines the selection value for CMPSS in hal.h file as following.

// CMPSS
#define MTR1_IDC_CMPHP_SEL ASYSCTL_CMPHPMUX_SELECT_3 // CMPSS3-A14/C4*
#define MTR1_IDC_CMPLP_SEL ASYSCTL_CMPLPMUX_SELECT_3 // CMPSS3-A14/C4*

#define MTR1_IDC_CMPHP_MUX 4 // CMPSS3-A14/C4*
#define MTR1_IDC_CMPLP_MUX 4 // CMPSS3-A14/C4*

#define MTR1_IU_CMPHP_SEL ASYSCTL_CMPHPMUX_SELECT_1 // CMPSS1-A11
#define MTR1_IU_CMPLP_SEL ASYSCTL_CMPLPMUX_SELECT_1 // CMPSS1-A11, N/A

#define MTR1_IV_CMPHP_SEL ASYSCTL_CMPHPMUX_SELECT_3 // CMPSS3-C4
#define MTR1_IV_CMPLP_SEL ASYSCTL_CMPLPMUX_SELECT_3 // CMPSS3-C4

#define MTR1_IW_CMPHP_SEL ASYSCTL_CMPHPMUX_SELECT_1 // CMPSS1-C7, N/A
#define MTR1_IW_CMPLP_SEL ASYSCTL_CMPLPMUX_SELECT_1 // CMPSS1-C7

#define MTR1_IU_CMPHP_MUX 1 // CMPSS1-A11
#define MTR1_IU_CMPLP_MUX 1 // CMPSS1-A11

#define MTR1_IV_CMPHP_MUX 4 // CMPSS3-C4
#define MTR1_IV_CMPLP_MUX 4 // CMPSS3-C4

#define MTR1_IW_CMPHP_MUX 3 // CMPSS1-C7
#define MTR1_IW_CMPLP_MUX 3 // CMPSS1-C7

3. Sets up ADC module in HAL_setupCMPSSs() of hal.c file according to the using hardware. In this example,
the CMPSS1_HP is linked to phase A current, and CMPSS1_LP is linked to phase C current, so the
CMPSS1 is configured twice to simplify the codes. The user may refer to the codes for High Voltage kit to
configure the CMPSS modules, respectively.

void HAL_setupCMPSSs(HAL_MTR_Handle handle)
{
 HAL_MTR_Obj *obj = (HAL_MTR_Obj *)handle;
... ...
 for(cnt=0; cnt<3; cnt++)
 {
 // Enable CMPSS and configure the negative input signal to come from the DAC
 CMPSS_enableModule(obj->cmpssHandle[cnt]);

 // NEG signal from DAC for COMP-H
 CMPSS_configHighComparator(obj->cmpssHandle[cnt], CMPSS_INSRC_DAC);

 // NEG signal from DAC for COMP-L
 CMPSS_configLowComparator(obj->cmpssHandle[cnt], CMPSS_INSRC_DAC);

 // Configure the output signals. Both CTRIPH and CTRIPOUTH will be fed by
 // the asynchronous comparator output.
 // Dig filter output ==> CTRIPH, Dig filter output ==> CTRIPOUTH
 CMPSS_configOutputsHigh(obj->cmpssHandle[cnt],
 CMPSS_TRIP_FILTER |
 CMPSS_TRIPOUT_FILTER);

 // Dig filter output ==> CTRIPL, Dig filter output ==> CTRIPOUTL
 CMPSS_configOutputsLow(obj->cmpssHandle[cnt],
 CMPSS_TRIP_FILTER |
 CMPSS_TRIPOUT_FILTER |
 CMPSS_INV_INVERTED);

 // Configure digital filter. For this example, the maxiumum values will be
 // used for the clock prescale, sample window size, and threshold.
 CMPSS_configFilterHigh(obj->cmpssHandle[cnt], 32, 32, 30);
 CMPSS_initFilterHigh(obj->cmpssHandle[cnt]);

 // Initialize the filter logic and start filtering
 CMPSS_configFilterLow(obj->cmpssHandle[cnt], 32, 32, 30);
 CMPSS_initFilterLow(obj->cmpssHandle[cnt]);

 // Set up COMPHYSCTL register

Building Custom Board www.ti.com

60 Motor Control SDK Universal Project and Lab SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

 // COMP hysteresis set to 2x typical value
 CMPSS_setHysteresis(obj->cmpssHandle[cnt], 1);

 // Use VDDA as the reference for the DAC and set DAC value to midpoint for
 // arbitrary reference
 CMPSS_configDAC(obj->cmpssHandle[cnt],
 CMPSS_DACREF_VDDA | CMPSS_DACVAL_SYSCLK | CMPSS_DACSRC_SHDW);

 // Set DAC-H to allowed MAX +ve current
 CMPSS_setDACValueHigh(obj->cmpssHandle[cnt], cmpsaDACH);

 // Set DAC-L to allowed MAX -ve current
 CMPSS_setDACValueLow(obj->cmpssHandle[cnt], cmpsaDACL);

 // Clear any high comparator digital filter output latch
 CMPSS_clearFilterLatchHigh(obj->cmpssHandle[cnt]);

 // Clear any low comparator digital filter output latch
 CMPSS_clearFilterLatchLow(obj->cmpssHandle[cnt]);
 }
 return;
}

3.1.2.7 Configuring Fault Protection Function

Configure the trip signals from CMPSS and trip input to be passed to EPWM in “hal.h” based on the hardware,
the details refer to ePWM X-BAR Mux Configuration Table and OUTPUT X-BAR Mux Configuration Table in
TMS320F28002x Real-Time Microcontrollers Technical Reference Manual .

1. Defines the GPIOs linked to fault signal for trip input in "hal.h" file as following:

//! \brief Defines the gpio for the nFAULT of Power Module
#define MTR1_PM_nFAULT_GPIO 34

2. Defines ePWM X-BAR to link the signals from CMPSS and GPIO to trip zone sub module of ePWM in "hal.h"
file as following:

#define MTR1_XBAR_TRIP_ADDRL XBAR_O_TRIP7MUX0TO15CFG
#define MTR1_XBAR_TRIP_ADDRH XBAR_O_TRIP7MUX16TO31CFG

#define MTR1_IDC_XBAR_EPWM_MUX XBAR_EPWM_MUX05_CMPSS3_CTRIPL // CMPSS3-LP
#define MTR1_IDC_XBAR_MUX XBAR_MUX05 // CMPSS3-LP

#define MTR1_IU_XBAR_EPWM_MUX XBAR_EPWM_MUX00_CMPSS1_CTRIPH // CMPSS1-HP
#define MTR1_IV_XBAR_EPWM_MUX XBAR_EPWM_MUX04_CMPSS3_CTRIPH_OR_L // CMPSS3-HP&LP
#define MTR1_IW_XBAR_EPWM_MUX XBAR_EPWM_MUX01_CMPSS1_CTRIPL // CMPSS1-LP

#define MTR1_IU_XBAR_MUX XBAR_MUX00 // CMPSS1-HP
#define MTR1_IV_XBAR_MUX XBAR_MUX04 // CMPSS3-HP&LP
#define MTR1_IW_XBAR_MUX XBAR_MUX01 // CMPSS1-LP

#define MTR1_XBAR_INPUT1 XBAR_INPUT1
#define MTR1_TZ_OSHT1 EPWM_TZ_SIGNAL_OSHT1

#define MTR1_XBAR_TRIP XBAR_TRIP7
#define MTR1_DCTRIPIN EPWM_DC_COMBINATIONAL_TRIPIN7

3. Configures ePWM X-BAR and trip mechanism for motor control in HAL_setupMtrFaults() of "hal.c" file as
following:

void HAL_setupMtrFaults(HAL_MTR_Handle handle)
{
... ...
 XBAR_setEPWMMuxConfig(MTR1_XBAR_TRIP, MTR1_IU_XBAR_EPWM_MUX);

 // Configure TRIP7 to be CTRIP1H and CTRIP1L using the ePWM X-BAR
 XBAR_setEPWMMuxConfig(MTR1_XBAR_TRIP, MTR1_IV_XBAR_EPWM_MUX);

 // Configure TRIP7 to be CTRIP3H and CTRIP3L using the ePWM X-BAR
 XBAR_setEPWMMuxConfig(MTR1_XBAR_TRIP, MTR1_IW_XBAR_EPWM_MUX);

 // Disable all the mux first
 XBAR_disableEPWMMux(MTR1_XBAR_TRIP, 0xFFFF);

 // Enable Mux 0 OR Mux 4 to generate TRIP

www.ti.com Building Custom Board

SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Motor Control SDK Universal Project and Lab 61

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/spruin7
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

 XBAR_enableEPWMMux(MTR1_XBAR_TRIP, MTR1_IU_XBAR_MUX |
 MTR1_IV_XBAR_MUX | MTR1_IW_XBAR_MUX);
... ...
 // configure the input x bar for TZ2 to GPIO, where Over Current is connected
 XBAR_setInputPin(INPUTXBAR_BASE, MTR1_XBAR_INPUT1, MTR1_PM_nFAULT_GPIO);
 XBAR_lockInput(INPUTXBAR_BASE, MTR1_XBAR_INPUT1);
 for(cnt=0; cnt<3; cnt++)
 {
 EPWM_enableTripZoneSignals(obj->pwmHandle[cnt], MTR1_TZ_OSHT1);

 EPWM_enableTripZoneSignals(obj->pwmHandle[cnt],
 EPWM_TZ_SIGNAL_CBC6);

 //enable DC TRIP combinational input
 EPWM_enableDigitalCompareTripCombinationInput(obj->pwmHandle[cnt],
 MTR1_DCTRIPIN, EPWM_DC_TYPE_DCAH);

 EPWM_enableDigitalCompareTripCombinationInput(obj->pwmHandle[cnt],
 MTR1_DCTRIPIN, EPWM_DC_TYPE_DCBH);

 // Trigger event when DCAH is High
 EPWM_setTripZoneDigitalCompareEventCondition(obj->pwmHandle[cnt],
 EPWM_TZ_DC_OUTPUT_A1,
 EPWM_TZ_EVENT_DCXH_HIGH);

 // Trigger event when DCBH is High
 EPWM_setTripZoneDigitalCompareEventCondition(obj->pwmHandle[cnt],
 EPWM_TZ_DC_OUTPUT_B1,
 EPWM_TZ_EVENT_DCXL_HIGH);

 // Configure the DCA path to be un-filtered and asynchronous
 EPWM_setDigitalCompareEventSource(obj->pwmHandle[cnt],
 EPWM_DC_MODULE_A,
 EPWM_DC_EVENT_1,
 EPWM_DC_EVENT_SOURCE_FILT_SIGNAL);

 // Configure the DCB path to be un-filtered and asynchronous
 EPWM_setDigitalCompareEventSource(obj->pwmHandle[cnt],
 EPWM_DC_MODULE_B,
 EPWM_DC_EVENT_1,
 EPWM_DC_EVENT_SOURCE_FILT_SIGNAL);

 EPWM_setDigitalCompareEventSyncMode(obj->pwmHandle[cnt],
 EPWM_DC_MODULE_A,
 EPWM_DC_EVENT_1,
 EPWM_DC_EVENT_INPUT_NOT_SYNCED);

 EPWM_setDigitalCompareEventSyncMode(obj->pwmHandle[cnt],
 EPWM_DC_MODULE_B,
 EPWM_DC_EVENT_1,
 EPWM_DC_EVENT_INPUT_NOT_SYNCED);

 // Enable DCA as OST
 EPWM_enableTripZoneSignals(obj->pwmHandle[cnt], EPWM_TZ_SIGNAL_DCAEVT1);

 // Enable DCB as OST
 EPWM_enableTripZoneSignals(obj->pwmHandle[cnt], EPWM_TZ_SIGNAL_DCBEVT1);

 // What do we want the OST/CBC events to do?
 // TZA events can force EPWMxA
 // TZB events can force EPWMxB
 EPWM_setTripZoneAction(obj->pwmHandle[cnt],
 EPWM_TZ_ACTION_EVENT_TZA,
 EPWM_TZ_ACTION_LOW);

 EPWM_setTripZoneAction(obj->pwmHandle[cnt],
 EPWM_TZ_ACTION_EVENT_TZB,
 EPWM_TZ_ACTION_LOW);
 }
... ...
 return;
} // end of HAL_setupMtrFaults() function

3.1.3 Adding Additional Functionality to Motor Control Project

The example lab project provides several interface functions to start/stop the motor and set the reference speed
by using push button, potentiometer, or communication bus like SCI or CAN.

Building Custom Board www.ti.com

62 Motor Control SDK Universal Project and Lab SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

3.1.3.1 Adding Push Buttons Functionality

It is often useful to read push buttons to allow a motor to run, stop, or simply to change the state of a global
variable when pushing a button. As an example, the GPIO23 is connected to a button, enables the pre-define
symbol CMD_SWITCH_EN in project build properties as shown in Figure 2-14. The reading GPIO state will be
assigned to motorVars_M1.flagEnableRunAndIdentify to start/stop the motor.

Follow the following steps to connect a button to the other GPIO.

1. Defines GPIO number in hal.h file

#define MTR1_CMD_SWITCH_GPIO 23

2. Configure the GPIO in HAL_setupGpios() function of hal.c file to allow this pin to be inputs.

 // GPIO23->Command Switch Button
 GPIO_setPinConfig(GPIO_23_GPIO23);
 GPIO_setDirectionMode(23, GPIO_DIR_MODE_IN);
 GPIO_setPadConfig(23, GPIO_PIN_TYPE_PULLUP);
 GPIO_setQualificationMode(23, GPIO_QUAL_3SAMPLE);
 GPIO_setQualificationPeriod(23, 4);

3. Reads a GPIO with a digital filter as follows in updateCmdSwitch() in motor_common.c file.

 if(GPIO_readPin(MTR1_CMD_SWITCH_GPIO) == 0)
 {
 objMtr->cmdSwtich.lowTimeCnt++;

 if(objMtr->cmdSwtich.lowTimeCnt > objMtr->cmdSwtich.delayTimeSet)
 {
 objMtr->cmdSwtich.flagCmdRun = true;
 }

 if(objMtr->cmdSwtich.highTimeCnt > 0)
 {
 objMtr->cmdSwtich.highTimeCnt--;
 }
 }
 else
 {
 objMtr->cmdSwtich.highTimeCnt++;

 if(objMtr->cmdSwtich.highTimeCnt > objMtr->cmdSwtich.delayTimeSet)
 {
 objMtr->cmdSwtich.flagCmdRun = false;
 }

 if(objMtr->cmdSwtich.lowTimeCnt > 0)
 {
 objMtr->cmdSwtich.lowTimeCnt--;
 }
 }

4. Links the state to the motor start/stop variable in updateCmdSwitch() of motor_common.c file.

 if((objMtr->cmdSwtich.flagEnablCmd == true) && (objMtr->faultMtrUse.all == 0))
 {
 objMtr->flagEnableRunAndIdentify = objMtr->cmdSwtich.flagCmdRun;
 }

www.ti.com Building Custom Board

SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Motor Control SDK Universal Project and Lab 63

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

3.1.3.2 Adding Potentiometer Read Functionality

A potentiometer is often used to allow a motor to run, stop and set the reference speed. As an
example, the ADCA12 is connected to a potentiometer, enables the pre-define symbol CMD_POT_EN in
project build properties as shown in Figure 2-14. The reading ADC result will be converted to a setting
speed and assigned to the variables motorVars_M1.flagEnableRunAndIdentify to start/stop the motor and to
motorVars_M1.speedRef_Hz to set the reference speed. The detailed steps are as the follows.

1. Defines ADC channel for connecting to potentiometer in hal.h file as follows:

#define MTR1_POT_ADC_BASE ADCA_BASE
#define MTR1_POT_ADCRES_BASE ADCARESULT_BASE
#define MTR1_POT_ADC_CH_NUM ADC_CH_ADCIN12
#define MTR1_POT_ADC_SOC_NUM ADC_SOC_NUMBER6

2. Configure ADC channel in function HAL_setupAdcs() of hal.c file as follows:

 // POT_M1
 ADC_setupSOC(MTR1_POT_ADC_BASE, MTR1_POT_ADC_SOC_NUM, MTR1_ADC_TIGGER_SOC,
 MTR1_POT_ADC_CH_NUM, MTR1_ADC_V_SAMPLEWINDOW);

3. Reads the ADC result register and scales the value in HAL_readMtr1ADCData() of hal.h file as follows:

 // read POT adc value
 pADCData->potAdc = ADC_readResult(MTR1_POT_ADCRES_BASE, MTR1_POT_ADC_SOC_NUM);

4. Convert the reading value to the setting speed in updateExtCmdPotFreq() of motor_common.c file.

3.1.3.3 Adding CAN Functionality

The CAN functionality is added into he lab project as communication bus for setting the start/stop command and
getting the feedback running states. Enables the pre-define symbol CMD_CAN_EN in project build properties as
shown in Figure 2-14. The detailed steps are as the followings.

1. Add the CAN source files to the project. Right-click on the project name in the CCS project explorer window,
and select “Add Files.” Next, navigate to the following folder and select “Link to Files”.

<Installation\c2000ware\driverlib\f28002x\driverlib\can.c
2. Edit the HAL_Obj to add canHandle in “hal_obj.h” header file.

typedef struct _HAL_Obj_
{
 uint32_t adcHandle[2]; //!< the ADC handles
... ...
 uint32_t canHandle; //!< the CAN handle
... ...
} HAL_Obj;

3. Initialize the CAN handles in the HAL_init() function in hal.c file.

HAL_Handle HAL_init(void *pMemory,const size_t numBytes)
{
... ...
 // initialize CAN handle
 obj->canHandle = CANA_BASE; //!< the CAN handle
... ...
 return(handle);
} // end of HAL_init() function

4. Prototype the CAN setup function in "communication.h" file as the following code.

//! \brief Sets up the CANA
//! \param[in] handle The hardware abstraction layer (HAL) handle
extern void HAL_setupCANA(HAL_Handle handle);

5. Define the CAN setup functions in "communication.c" file as the following code.

void HAL_setupCANA(HAL_Handle halHandle)
{
 HAL_Obj *obj = (HAL_Obj *)halHandle;

Building Custom Board www.ti.com

64 Motor Control SDK Universal Project and Lab SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

 // Initialize the CAN controller
 CAN_initModule(obj->canHandle);

 // Set up the CAN bus bit rate to 200kHz
 // Refer to the Driver Library User Guide for information on how to set
 // tighter timing control. Additionally, consult the device data sheet
 // for more information about the CAN module clocking.
 CAN_setBitRate(obj->canHandle, DEVICE_SYSCLK_FREQ, 500000, 16);

 // Initialize the transmit message object used for sending CAN messages.
 // Message Object Parameters:
 // Message Object ID Number: 1
 // Message Identifier: 0x1
 // Message Frame: Standard
 // Message Type: Transmit
 // Message ID Mask: 0x0
 // Message Object Flags: Transmit Interrupt
 // Message Data Length: 8 Bytes
 CAN_setupMessageObject(CANA_BASE, TX_MSG_OBJ_ID, 0x1, CAN_MSG_FRAME_STD,
 CAN_MSG_OBJ_TYPE_TX, 0, CAN_MSG_OBJ_TX_INT_ENABLE,
 MSG_DATA_LENGTH);

 // Initialize the receive message object used for receiving CAN messages.
 // Message Object Parameters:
 // Message Object ID Number: 2
 // Message Identifier: 0x1
 // Message Frame: Standard
 // Message Type: Receive
 // Message ID Mask: 0x0
 // Message Object Flags: Receive Interrupt
 // Message Data Length: 8 Bytes
 CAN_setupMessageObject(obj->canHandle, RX_MSG_OBJ_ID, 0x1, CAN_MSG_FRAME_STD,
 CAN_MSG_OBJ_TYPE_RX, 0, CAN_MSG_OBJ_RX_INT_ENABLE,
 MSG_DATA_LENGTH);

 // Start CAN module operations
 CAN_startModule(obj->canHandle);

 return;
} // end of HAL_setupCANA() function

Note
The various CAN module parameters are to be initialized according to the system needs, and the
above is just a simple reference.

6. Enable the appropriate CAN peripheral clocks in the HAL setup clocks function HAL_setupPeripheralClks()
of hal.c file.

 SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_CANA);

7. Configure the related GPIOs to CAN function in HAL_setupGpios() function of hal.c.

 // GPIO33->CAN_TX
 GPIO_setPinConfig(GPIO_32_CANA_TX);
 GPIO_setDirectionMode(32, GPIO_DIR_MODE_OUT);
 GPIO_setPadConfig(32, GPIO_PIN_TYPE_STD);
 GPIO_setQualificationMode(32, GPIO_QUAL_ASYNC);

 // GPIO33->CAN_RX
 GPIO_setPinConfig(GPIO_33_CANA_RX);
 GPIO_setDirectionMode(33, GPIO_DIR_MODE_IN);
 GPIO_setPadConfig(33, GPIO_PIN_TYPE_STD);
 GPIO_setQualificationMode(33, GPIO_QUAL_ASYNC);

8. Prototypes the CAN interrupt setup function in "communication.h" file.

extern void HAL_enableCANInts(HAL_Handle handle);

9. Define the CAN interrupt setup function.

void HAL_enableCANInts(HAL_Handle handle)
{
 HAL_Obj *obj = (HAL_Obj *)handle;

www.ti.com Building Custom Board

SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Motor Control SDK Universal Project and Lab 65

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

 // Enable CAN test mode with external loopback
// CAN_enableTestMode(CANA_BASE, CAN_TEST_EXL); // Only for debug

 // Enable interrupts on the CAN peripheral.
 CAN_enableInterrupt(obj->canHandle, CAN_INT_IE0 | CAN_INT_ERROR |
 CAN_INT_STATUS);

 // enable the PIE interrupts associated with the CAN interrupts
 Interrupt_enable(INT_CANA0);

 CAN_enableGlobalInterrupt(obj->canHandle, CAN_GLOBAL_INT_CANINT0);

 // enable the cpu interrupt for CAN interrupts
 Interrupt_enableInCPU(INTERRUPT_CPU_INT9);

 return;
} // end of HAL_enableCANInts() function

10. Call the CAN setup function and the CAN interrupt setup function in sys_main.c.

 // setup the CAN
 HAL_setupCANA(halHandle);
 // setup the CAN interrupt
 HAL_enableCANInts(halHandle);

11. Prototype the CAN interrupt service (ISR) routine in "communication.h" file.

extern __interrupt void canaISR(void);

12. Add the CAN interrupt service (ISR) routine vector to the PIE table in initCANCOM() in "communication.c"
file.

 Interrupt_register(INT_CANA0, &canaISR);

13. To place the CAN ISR code in flash and run from RAM for accelerating the execution speed by adding the
following code in "communication.c" file.

#pragma CODE_SECTION(canaISR, ".TI.ramfunc");

14. Define the CAN interrupt routine canaISR() in "communication.c" file. Define the “canaISR” function that
has been prototyped and passed to the PIE vector table. The example code below provides a function to
receive/transmit the message data with CAN and clears the interrupt in the PIE, allowing the CAN interrupt
to be triggered again.

__interrupt void canaISR(void)
{
... ...
 // Check if the cause is the transmit message object 1
 // Check if the cause is the transmit message object 1
 else if(status == TX_MSG_OBJ_ID)
 {
 //
 // Getting to this point means that the TX interrupt occurred on
 // message object 1, and the message TX is complete. Clear the
 // message object interrupt.
 //
 CAN_clearInterruptStatus(CANA_BASE, TX_MSG_OBJ_ID);

 // Increment a counter to keep track of how many messages have been
 // sent. In a real application this could be used to set flags to
 // indicate when a message is sent.
 canComVars.txMsgCount++;

 // Since the message was sent, clear any error flags.
 canComVars.errorFlag = 0;
 }

 // Check if the cause is the receive message object 2
 else if(status == RX_MSG_OBJ_ID)
 {

Building Custom Board www.ti.com

66 Motor Control SDK Universal Project and Lab SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

 //
 // Get the received message
 //
 CAN_readMessage(halHandle->canHandle, RX_MSG_OBJ_ID,
 (uint16_t *)(&canComVars.rxMsgData[0]));

 // Getting to this point means that the RX interrupt occurred on
 // message object 2, and the message RX is complete. Clear the
 // message object interrupt.
 CAN_clearInterruptStatus(halHandle->canHandle, RX_MSG_OBJ_ID);

 canComVars.rxMsgCount++;
 canComVars.flagRxDone = true;

 // Since the message was received, clear any error flags.
 canComVars. errorFlag = 0;
 }
... ...
 // Clear the global interrupt flag for the CAN interrupt line
 CAN_clearGlobalInterruptStatus(halHandle->canHandle, CAN_GLOBAL_INT_CANINT0);

 // Acknowledge this interrupt located in group 9
 Interrupt_clearACKGroup(INTERRUPT_ACK_GROUP9);

 return;
}

15. Prototype and define updateCANCmdFreq() in "communication.h" file and "communication.c" file separately.
The CAN bus received and transmitting data is processed and linked to motor control variables in
updateCANCmdFreq().

void updateCANCmdFreq(MOTOR_Handle handle)
{
...
}

16. Call updateCANCmdFreq() in forever loop.

 updateCANCmdFreq(motorHandle_M1);

 if((motorVars_M1.cmdCAN.flagEnablCmd == true) && (motorVars_M1.faultMtrUse.all == 0))
 {
 canComVars.flagCmdTxRun = motorVars_M1.cmdCAN.flagCmdRun;
 canComVars.speedSet_Hz = motorVars_M1.cmdCAN.speedSet_Hz;

 if(motorVars_M1.cmdCAN.flagEnablSyncLead == true)
 {
 motorVars_M1.flagEnableRunAndIdentify = motorVars_M1.cmdCAN.flagCmdRun;
 motorVars_M1.speedRef_Hz = motorVars_M1.cmdCAN.speedSet_Hz;
 }
 else
 {
 motorVars_M1.flagEnableRunAndIdentify = canComVars.flagCmdRxRun;
 motorVars_M1.speedRef_Hz = canComVars.speedRef_Hz;
 }
 }

3.2 Supporting New BLDC Motor Driver Board
C2000 MCUs can be used with BLDC motor driver for driving three-phase BLDC or PMSM motor applications.
This universal lab project can support various BLDC motor drivers. The user can refer to the example code in the
lab project and follow the steps described in this section to implement the newer or other BLDC motor drivers. In
this section, uses DRV8323RS with SPI device as an example.

1. Design the driver file for the new BLDC motor driver EVM board.

If the BLDC motor driver is an SPI supporting device, you might refer to the existing BLDC motor driver file,
drv8323s.h and drv8323s.c to change the registers and API functions definitions in drv8xxx.h and drv8xxx.c.
The detailed description of the BLDC motor driver register maps can be found in the data sheet of the BLDC
motor driver device.

Create a new folder to locate the driver file as DRV8323 ("\libraries\drvic\drv8323\include" and
"\libraries\drvic\drv8323\source").

www.ti.com Building Custom Board

SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Motor Control SDK Universal Project and Lab 67

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

2. Add the BLDC motor driver source files to the motor control project.

First, add the BLDC motor driver source files to the project you are working. There are two methods to add
the files.

Using an Editor to open the "universal_motorcontrol_lab.projectspec" projectspec file, add the files to the
project as the following

<file action="link" path="SDK_ROOT/libraries/drvic/drv8323/source/drv8323s.c"
targetDirectory="src_board" applicableConfigurations="Flash_lib_DRV8323RS" />
<file action="link" path="SDK_ROOT/libraries/drvic/drv8323/include/drv8323s.h"
targetDirectory="src_board" applicableConfigurations="Flash_lib_DRV8323RS" />

Or right-click on the project name in the CCS project explorer window, and select “Add Files.” Next, navigate
to the following folder and select the designed driver files from " \libraries\drvic\drv8323\source", and then
select "Link to Files".

3. Add the inlcude header file in hal_obj.h file.

#include "drv8323s.h"

To ensure that the header files can be correctly found, add the directory to the header files in "Project
Properties"->"Build"->"C2000 Compiler"->"Include Options"->"Add dir to #include search path"

Or add the directory to the header files by adding the following content in the
"universal_motorcontrol_lab.projectspec" projectspec file.

-I${SDK_ROOT}/libraries/drvic/drv8323/include

4. Edit the HAL_Obj to add the drvic interface handle and SPI handle.

Refer to DRV8323 to add the supporting codes as the following steps.

Add the defines in hal_obj.h file.

#define DRAdd the defines in hal_obj.h fileVIC_Obj DRV8323_Obj
#define DRVIC_VARS_t DRV8323_VARS_t
#define DRVIC_Handle DRV8323_Handle
#define DRVICVARS_Handle DRV8323VARS_Handle

#define DRVIC_init DRV8323_init
#define DRVIC_enable DRV8323_enable
#define DRVIC_writeData DRV8323_writeData
#define DRVIC_readData DRV8323_readData

#define DRVIC_setupSPI DRV8323_setupSPI

#define DRVIC_setSPIHandle DRV8323_setSPIHandle
#define DRVIC_setGPIOCSNumber DRV8323_setGPIOCSNumber
#define DRVIC_setGPIOENNumber DRV8323_setGPIOENNumber

Add the drvic interface handle and SPI handle to HAL_Obj:

 uint32_t spiHandle; //!< the SPI handle

 DRVIC_Handle drvicHandle; //!< the drvic interface handle
 DRVIC_Obj drvic; //!< the drvic interface object

 uint32_t gateEnableGPIO;
 // BSXL8353RS_REVA

5. Configure SPI for communication with the BLDC motor driver.

When using a motor driver with SPI, the SPI must be configured correctly from the MCU to match the format
needed and communicate with the BLDC motor driver device properly.

Building Custom Board www.ti.com

68 Motor Control SDK Universal Project and Lab SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

Configure the related GPIOs to SPI function in HAL_setupGPIOs() of "hal.c" file. Ensure to check the BLDC
motor driver data sheet to determine if each SPI pin requires an external pullup or pull down resistor, or if it is
configured as a push-pull pin.

 // GPIO5->Connect to GPIO5 using a jumper wire->M1_DRV_SCS
 GPIO_setPinConfig(GPIO_5_SPIA_STE);
 GPIO_setDirectionMode(5, GPIO_DIR_MODE_OUT);
 GPIO_setPadConfig(5, GPIO_PIN_TYPE_STD);

 // GPIO09->M1_DRV_SCLK*
 GPIO_setPinConfig(GPIO_9_SPIA_CLK);
 GPIO_setDirectionMode(9, GPIO_DIR_MODE_OUT);
 GPIO_setPadConfig(9, GPIO_PIN_TYPE_PULLUP);

 // GPIO10->SPIA_SOMI->M1_DRV_SDO*
 GPIO_setPinConfig(GPIO_10_SPIA_SOMI);
 GPIO_setDirectionMode(10, GPIO_DIR_MODE_IN);
 GPIO_setPadConfig(10, GPIO_PIN_TYPE_PULLUP);

 // GPIO11->SPIA_SIMO->M1_DRV_SDI*
 GPIO_setPinConfig(GPIO_11_SPIA_SIMO);
 GPIO_setDirectionMode(11, GPIO_DIR_MODE_OUT);
 GPIO_setPadConfig(11, GPIO_PIN_TYPE_PULLUP);

Configure the SPI control registers for baud rate, data frame in HAL_setupSPI() in "hal.c":

 // Must put SPI into reset before configuring it
 SPI_disableModule(obj->spiHandle);

 // SPI configuration. Use a 500kHz SPICLK and 16-bit word size, 25MHz LSPCLK
 SPI_setConfig(obj->spiHandle, DEVICE_LSPCLK_FREQ, SPI_PROT_POL0PHA0,
 SPI_MODE_MASTER, 400000, 16);

 SPI_disableLoopback(obj->spiHandle);

 SPI_setEmulationMode(obj->spiHandle, SPI_EMULATION_FREE_RUN);

 SPI_enableFIFO(obj->spiHandle);
 SPI_setTxFifoTransmitDelay(obj->spiHandle, 0x10);

 SPI_clearInterruptStatus(obj->spiHandle, SPI_INT_TXFF);

 // Configuration complete. Enable the module.
 SPI_enableModule(obj->spiHandle);

6. Configure the GPIOs for the other input and output pins, such as ENABLE, nFAULT. You might refer to the
example codes in HAL_setupGPIOs() , HAL_setupGate() of "hal.c" and the defines in "hal.h" files as the
following:

//! \brief Defines the gpio for enabling Power Module
#define MTR1_GATE_EN_GPIO 29

//! \brief Defines the gpio for the nFAULT of Power Module
#define MTR1_PM_nFAULT_GPIO 34

7. Call in HAL_setupSPI() and HAL_setupGate() functions in HAL_MTR_setParams() of "hal.c":

 // setup the spi for drv8323/drv8353/drv8316
 HAL_setupSPI(handle);

 // setup the drv8323s/drv8353s/drv8316s interface
 HAL_setupGate(handle);

8. Call the drivers functions in "motor1_drive.c" as the following:

 // turn on the DRV8323/DRV8353/DRV8316 if present
 HAL_enableDRV(obj->halMtrHandle);

 // initialize the DRV8323/DRV8353/DRV8316 interface
 HAL_setupDRVSPI(obj->halMtrHandle, &drvicVars_M1);

www.ti.com Building Custom Board

SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Motor Control SDK Universal Project and Lab 69

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

9. Change the default setting value for the BLDC motor driver, if needed.

 drvicVars_M1.ctrlReg05.bit.VDS_LVL = DRV8323_VDS_LEVEL_1P700_V;
 drvicVars_M1.ctrlReg05.bit.OCP_MODE = DRV8323_AUTOMATIC_RETRY;
 drvicVars_M1.ctrlReg05.bit.DEAD_TIME = DRV8323_DEADTIME_100_NS;
 drvicVars_M1.ctrlReg06.bit.CSA_GAIN = DRV8323_Gain_10VpV;

 drvicVars_M1.ctrlReg06.bit.LS_REF = false;
 drvicVars_M1.ctrlReg06.bit.VREF_DIV = true;
 drvicVars_M1.ctrlReg06.bit.CSA_FET = false;

 drvicVars_M1.writeCmd = 1;
 HAL_writeDRVData(obj->halMtrHandle, &drvicVars_M1);

3.3 Porting Reference Code to New C2000 MCU
The Motor Control Universal Lab project can be easily to ported to other FPU and TMU enabled C2000 MCU
controllers. For example, port the lab from F28002x to F28004x. The detailed steps are described in the
following.

1. Browse to "<installation>\solutions\universal_motorcontrol_lab", copy the whole "f28002x" folder and paste it
in this directory, change the folder name to "f28004x".

2. Browse to "<installation>\solutions\universal_motorcontrol_lab\f28004x\cmd", change the two ".cmd" files
names in this folder to "f28004x_dcsm_lnk_eabi.cmd" and "f28004x_flash_lib_is_eabi.cmd".

3. Browse to "<installation>\solutions\universal_motorcontrol_lab\f28004x\ccs\motor_control", use an editor to
open the projectspec file.

Change the text marked bold below for F28004x based project.

name="universal_motorcontrol_lab_f28004x"
 device="TMS320F280049C" cgtVersion="20.2.5.LTS" outputFormat="ELF" launchWizard="False"
linkerCommandFile="" enableSysConfigTool="true" sysConfigBuildOptions="--product $
{C2000WARE_ROOT}/.metadata/sdk.json --device F28004x --package 100PZ --part F28004x_100PZ"

Find "--idiv_support=idiv0" and replace it with a space since the F28004x doesn't support "idiv" function.

Open the "replace" in the editor menu, to find and replace all of the "28002x" with "28004x", and the
"280025C" with "280049C" in "universal_motorcontrol_lab.projectspec" file.

4. Import the "universal_motorcontrol_lab_f28004x" project into CCS, open the
"f28004x_flash_lib_is_eabi.cmd" file to change the memory map according to the used F28004x device.
The generic C2000Ware cmd files can be used as a reference.

5. Modify the GPIO, PWM, ADC, and CMPSS modules and channels defines in "hal.h" file according to
F28004x based hardware kit as described in Section 3.1.2.

6. Modify the GPIO, PWM, ADC, and CMPSS assigned modules configurations in "hal.h" file according to
F28004x based hardware kit.

7. Rebuild the lab project, any errors in the project will be displayed in the CCS Console window, follow the
prompting messages to fixed the errors and warnings. There are a few difference on the APIs of driverlib
between F28002x and F28004x.

8. Refer to the example functions in C2000Ware or MotorControlSDK to add the function for PGA peripheral, if
needed.

Building Custom Board www.ti.com

70 Motor Control SDK Universal Project and Lab SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

4 References
• Texas Instruments: Getting Started With C2000™ Real-Time Control Microcontrollers (MCUs)
• Texas Instruments: The Essential Guide for Developing With C2000 Real-Time Microcontrollers
• Texas Instruments: Hardware Design Guidelines for TMS320F28xx and TMS320F28xxx
• Texas Instruments: C2000 MCU JTAG Connectivity Debug
• Texas Instruments: Using PWM Output as a Digital-to-Analog Converter on a TMS320F280x
• Texas Instruments: Sensorless-FOC for PMSM With Single DC-Link Shunt
• Texas Instruments: C2000™ Software Frequency Response Analyzer (SFRA) Library User’s Guide
• Texas Instruments: C2000Ware motor control SDK getting started guide
• General information on C2000 real-time MCUs - C2000™ Overview
• C2000 Products - C2000™ Products
• C2000 Design and Development Resources – C2000™ Design & Development

www.ti.com References

SPRUJ26 – SEPTEMBER 2021
Submit Document Feedback

Motor Control SDK Universal Project and Lab 71

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/spruiv6
https://www.ti.com/lit/pdf/spracn0
https://www.ti.com/lit/pdf/SPRAAS1
https://www.ti.com/lit/pdf/spracf0
https://www.ti.com/lit/pdf/spraa88
https://www.ti.com/lit/pdf/spract7
https://www.ti.com/lit/pdf/spruik4
https://www.ti.com/lit/pdf/spruio7
http://ti.com/C2000
https://www.ti.com/microcontrollers/c2000-real-time-control-mcus/products.html
https://www.ti.com/microcontrollers/c2000-real-time-control-mcus/design-development.html
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,
costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2021, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

	Table of Contents
	1 Introduction
	2 Running the Universal Lab on TI Hardware Kit
	2.1 Supported TI Motor Evaluation Kits
	2.2 Hardware Board Setup
	2.2.1 LAUNCHXL-F280025C Setup
	2.2.2 TMDSCNCD280025C Setup
	2.2.3 TMDSADAP180TO100 Setup
	2.2.4 BOOSTXL-DRV8323RH Setup
	2.2.5 BOOSTXL-DRV8323RS Setup
	2.2.6 DRV8353RS-EVM Setup
	2.2.7 BOOSTXL-3PHGANINV Setup
	2.2.8 DRV8316REVM Setup
	2.2.9 TMDSHVMTRINSPIN Setup

	2.3 Lab Software Implementation
	2.3.1 Importing and Configuring Project
	2.3.2 Lab Project Structure
	2.3.3 Lab Software Overview

	2.4 Monitoring Feedback or Control Variables
	2.4.1 Using DATALOG Function
	2.4.2 Using PWMDAC Function
	2.4.3 Using External DAC Board

	2.5 Running the Project with Incremental Build
	2.5.1 Level 1 Incremental Build
	2.5.1.1 Build and Load Project
	2.5.1.2 Setup Debug Environment Windows
	2.5.1.3 Run the Code

	2.5.2 Level 2 Incremental Build
	2.5.2.1 Build and Load Project
	2.5.2.2 Setup Debug Environment Windows
	2.5.2.3 Run the Code

	2.5.3 Level 3 Incremental Build
	2.5.3.1 Build and Load Project
	2.5.3.2 Setup Debug Environment Windows
	2.5.3.3 Run the Code

	2.5.4 Level 4 Incremental Build
	2.5.4.1 Build and Load Project
	2.5.4.2 Setup Debug Environment Windows
	2.5.4.3 Run the Code

	3 Building Custom Board
	3.1 Building New Custom Board
	3.1.1 Hardware Setup
	3.1.2 Migrating Reference Code to Customization Board
	3.1.2.1 Setting Hardware Board Parameters
	3.1.2.2 Modifying Motor Control Parameters
	3.1.2.3 Changing Pin Assignment
	3.1.2.4 Configuring PWM Module
	3.1.2.5 Configuring ADC Module
	3.1.2.6 Configuring CMPSS Module
	3.1.2.7 Configuring Fault Protection Function

	3.1.3 Adding Additional Functionality to Motor Control Project
	3.1.3.1 Adding Push Buttons Functionality
	3.1.3.2 Adding Potentiometer Read Functionality
	3.1.3.3 Adding CAN Functionality

	3.2 Supporting New BLDC Motor Driver Board
	3.3 Porting Reference Code to New C2000 MCU

	4 References

