
Reference Guide
TMS320F28P65x Flash API Version 3.00.02.00

ABSTRACT

Flash is an electrically erasable/programmable non-volatile memory that can be programmed and erased many
times to ease code development. Flash memory can be used primarily as a program memory for the core, and
secondarily as static data memory. This guide describes the usage of the flash API library to perform erase,
program and verify operations for the on-chip Flash memory of TMS320F28P65x devices.

Table of Contents
1 Introduction...2

1.1 Reference Material...2
1.2 Function Listing Format..2

2 TMS320F28P65x Flash API Overview... 3
2.1 Introduction.. 3
2.2 API Overview..3
2.3 Using API... 4

3 API Functions..8
3.1 Initialization Functions..8
3.2 Flash State Machine Functions..8
3.3 Read Functions.. 25
3.4 Informational Functions..26
3.5 Utility Functions..27

4 Recommended FSM Flows.. 30
4.1 New Devices From Factory..30
4.2 Recommended Erase Flow..30
4.3 Recommended Bank Erase Flow...31
4.4 Recommended Program Flow... 32

A Flash State Machine Commands.. 33
B Typedefs, Defines, Enumerations and Structure.. 34

B.1 Type Definitions... 34
B.2 Defines...34
B.3 Enumerations...34
B.4 Structures.. 35

C Summary of Changes From v3.00.01 to v3.00.02..37

Trademarks
Arm® is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
All trademarks are the property of their respective owners.

www.ti.com Table of Contents

SPRUJB8 – APRIL 2024
Submit Document Feedback

TMS320F28P65x Flash API Version 3.00.02.00 1

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJB8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJB8&partnum=

1 Introduction
This reference guide provides a detailed description of Texas Instruments' TMS320F28P65x Flash API
Library (FAPI_F28P65x _EABI_v3.00.02.lib or FAPI_F28P65x _COFF_v3.00.02.lib) functions that can be
used to erase, program and verify Flash on TMS320F28P65x devices. Note that Flash API V3.00.XX.XX
should be used only with TMS320F28P65x devices. The Flash API Library is provided in C2000Ware at
C2000Ware_x_xx_xx_xx\libraries\flash_api\F28P65x.

TMS320F28P65x devices have up to five flash banks. Out of these five banks, the user application can map any
bank to any CPU (CPU1 or CPU2) as per the application’s requirement using the BANKMUXSEL register. Since
there is only one flash wrapper (and only one flash pump) in this device, only one bank can be erased/
programmed at a time. A semaphore (called as FLASHCTLSEM or FLASHSEM) is provided to manage the
ownership of the flash wrapper between the two CPUs. Before performing any flash erase/program operations, a
given CPU has to gain the ownership of the flash wrapper by using this semaphore. Once the erase and
program operations are complete, the respective CPU should relinquish the ownership of the flash wrapper
using this semaphore to allow the other CPU to gain the ownership of the flash wrapper when needed. For more
details on the BANKMUXSEL and the FLASHCTLSEM (also called as FLASHSEM) registers, see the
TMS320F28P65x Real-Time Microcontrollers Technical Reference Manual. Note that the flash API library does
not configure these registers. Before performing any flash erase/program operations using the flash API library,
the user application should configure these registers as per the application’s requirement. The flash API usage
example provided in the C2000Ware uses the IPC_claimFlashSemaphore() to configure the FLASHCTLSEM
and SysCtl_allocateFlashBank() configure the BANKMUXSEL. These functions are provided in the driverlib.
Refer to the flash programming example provided in C2000Ware at
“C2000Ware_.....\driverlib\F28P65x\examples\....\flash\flashapi_128bit_programming\flashapi_cpu1_128bitprogr
amming.c”

1.1 Reference Material
Use this guide in conjunction with TMS320F28P65x Microcontrollers Data Manual and TMS320F28P65x
Microcontrollers Technical Reference Manual.

1.2 Function Listing Format
This is the general format of an entry for a function, compiler intrinsic, or macro. A short description of what
function_name() does.

Synopsis

Provides a prototype for function_name().

 <return_type> function_name(
 <type_1> parameter_1,
 <type_1> parameter_2,
 <type_n>parameter_n
)

Parameters

parameter_1 [in] Type details of parameter_1
parameter_2 [out] Type details of parameter_2
parameter_n [in/out] Type details of parameter_3

Parameter passing is categorized as follows:
• in — Indicates the function uses one or more values in the parameter that you give it without storing any

changes.
• out — Indicates the function saves one or more of the values in the parameter that you give it. You can

examine the saved values to find out useful information about your application.
• in/out — Indicates the function changes one or more of the values in the parameter that you give it and saves

the result. You can examine the saved values to find out useful information about your application.

Introduction www.ti.com

2 TMS320F28P65x Flash API Version 3.00.02.00 SPRUJB8 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/C2000WARE
https://www.ti.com/lit/pdf/SPRUIZ1
https://www.ti.com/lit/pdf/SPRSP69
https://www.ti.com/lit/pdf/spruiz1
https://www.ti.com/lit/pdf/spruiz1
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJB8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJB8&partnum=

Description

Describes the function. This section also describes any special characteristics or restrictions that might apply:

• Function blocks or might block the requested operation under certain conditions
• Function has pre-conditions that might not be obvious
• Function has restrictions or special behavior

Restrictions

Specifies any restrictions in using this function.

Return Value

Specifies any value or values returned by the function.

See Also

Lists other functions or data types related to the function.

Sample Implementation

Provides an example (or a reference to an example) that illustrates the use of the function. Along with the Flash
API functions, these examples may use the functions from the device_support folder or driverlib folder provided
in C2000Ware, to demonstrate the usage of a given Flash API function in an application context.

2 TMS320F28P65x Flash API Overview

2.1 Introduction
The Flash API is a library of routines, that when called with the proper parameters in the proper sequence,
erases, programs, or verifies Flash memory. The Flash API can be used to program the OTP memory as well.

Note
Read the data manual for the Flash and OTP memory map and Flash waitstate specifications. Note
that this reference guide assumes that the user has already read the Flash and OTP Memory chapter
in the TMS320F28P65x Microcontrollers Technical Reference Manual. Also, pay special attention to
the functions Fapi_issueAsyncCommand(), Fapi_setupBankSectorEnable(),
Fapi_issueBankEraseCommand() on this device. Usage of these functions is demonstrated in the
flash API usage example provided in C2000Ware at
“C2000Ware_.....\driverlib\F28P65x\examples\....\flash\flashapi_128bit_programming\flashapi_cpu1_1
28bitprogramming.c".

2.2 API Overview
Table 2-1. Summary of Initialization Functions

API Function Description
Fapi_initializeAPI() Initializes the API for first use or frequency change

Table 2-2. Summary of Flash State Machine (FSM) Functions
API Function Description
Fapi_setActiveFlashBank() Initializes Flash Wrapper and bank for an erase or program

command.

Fapi_setupBankSectorEnable() Configures the Write/Erase protection for the sectors.

Fapi_issueBankEraseCommand() Issues bank erase command to the Flash State Machine for the
given bank address.

Fapi_issueAsyncCommandWithAddress() Issues an erase sector command to FSM for the given address

Fapi_issueProgrammingCommand() Sets up the required registers for programming and issues the
command to the FSM

www.ti.com TMS320F28P65x Flash API Overview

SPRUJB8 – APRIL 2024
Submit Document Feedback

TMS320F28P65x Flash API Version 3.00.02.00 3

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/spruiz1
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJB8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJB8&partnum=

Table 2-2. Summary of Flash State Machine (FSM) Functions (continued)
API Function Description
Fapi_issueProgrammingCommandForEccAddress() Remaps an ECC address to the main data space and then call

Fapi_issueProgrammingCommand() to program ECC

Fapi_issueAutoEcc512ProgrammingCommand() S Sets up the required registers for 512-bit (32 16-bit words)
programming with AutoECC generation mode and issues the
command to the FSM

Fapi_issueDataAndEcc512ProgrammingCommand() Sets up the required registers for 512-bit (32 16-bit words)
programming with user provided flash data and ECC, and issues the
command to the FSM

Fapi_issueDataOnly512ProgrammingCommand() Sets up the required registers for 512-bit (32 16-bit words)
programming with user provided flash data and issues the command
to the FSM

Fapi_issueEccOnly64ProgrammingCommand() Sets up the required registers for 64-bit (4 16-bit words) ECC
programming with user provided ECC data and issues the command
to the FSM

Fapi_issueAsyncCommand() Issues a command (Clear Status) to FSM for operations that do not
require an address

Fapi_checkFsmForReady() Returns whether or not the Flash state machine (FSM) is ready or
busy

Fapi_getFsmStatus() Returns the STATCMD status register value from the Flash Wrapper

Table 2-3. Summary of Read Functions
API Function Description
Fapi_doBlankCheck() Verifies specified Flash memory range against erased state

Fapi_doVerify() Verifies specified Flash memory range against supplied values

Note
Fapi_calculatePsa() and Fapi_doPsaVerify() are deprecated.

Table 2-4. Summary of Information Functions
API Function Description
Fapi_getLibraryInfo() Returns the information specific to the compiled version of the API

library

Table 2-5. Summary of Utility Functions
API Function Description
Fapi_flushPipeline() Flushes the data cache in Flash Wrapper

Fapi_calculateEcc() Calculates the ECC for the supplied address and 64-bit word

Fapi_isAddressEcc() Determines if the address falls in ECC ranges

Fapi_remapEccAddress() Remaps an ECC address to corresponding main address

Fapi_calculateFletcherChecksum() Function calculates a Fletcher checksum for the memory range
specified. Fapi_calculateFletcherChecksum() will be deprecated in
future.

2.3 Using API
This section describes the flow for using various API functions.

2.3.1 Initialization Flow

2.3.1.1 After Device Power Up

After the device is first powered up, the Fapi_initializeAPI() function must be called before any other API function
(except for the Fapi_getLibraryInfo() function) can be used. This procedure configures the Flash Wrapper based
on the user specified operating system frequency.

TMS320F28P65x Flash API Overview www.ti.com

4 TMS320F28P65x Flash API Version 3.00.02.00 SPRUJB8 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJB8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJB8&partnum=

2.3.1.2 Flash Wrapper and Bank Setup

Before performing a Flash operation for the first time, the Fapi_setActiveFlashBank() function must be called.

2.3.1.3 On System Frequency Change

If the System operating frequency is changed after the initial call to the Fapi_initializeAPI() function, this function
must be called again before any other API function (except the Fapi_getLibraryInfo() function) can be used. This
procedure will update the API internal state variables

2.3.2 Building With the API

2.3.2.1 Object Library Files

The Flash API object file is distributed in the Arm® standard EABI elf and COFF object formats

Note
Compilation requires the "Enable support for GCC extensions" option to be enabled. Compiler version
6.4.0 and onwards have this option enabled by default.

2.3.2.2 Distribution Files

The following API files are distributed in the C2000Ware\libraries\flash_api\F28P65x\ folder:

• Library Files
– TMS320F28P65x Flash API is NOT embedded into the Boot ROM of this device, it is wholly

software. The software libraries provided are in EABI elf (FAPI_F28P65x_EABI_v3.00.02.lib) and COFF
(FAPI_F28P65x_COFF_v3.00.02.lib) object formats. In order for the application to be able to erase or
program the Flash/OTP, one of these two library files should be included in the application, depending on
the output object format the application is using.

• FAPI_F28P65x_EABI_v3.00.02.lib – This is the Flash API EABI elf object format library (FPU32 flag enabled
for build) for TMS320F28P65x devices.

• FAPI_F28P65x_COFF_v3.00.02.lib – This is the Flash API COFF object format library (FPU32 flag enabled
for build) for TMS320F28P65x devices.

• Fixed point version of the API library is not provided.
• Include Files:

– FlashTech_F28P65x_C28x.h – The master include file for TMS320F28P65x devices. This file sets up
compile specific defines and then includes the FlashTech.h master include file.

– hw_flash_command.h – Definitions of the flash write/erase protection registers
• The following include files should not be included directly by the user’s code, but are listed here for user

reference:
– FlashTech.h – This include file lists all public API functions and includes all other include files.
– Registers.h – Definitions common to all register implementations and includes the appropriate register

include file for the selected device type.
– Registers_C28x.h – Containts Little Endian and Flash memory controller registers structure.
– Types.h – Contains all the enumerations and structures used by the API.
– Constants/F28P65x.h – Constant definitions for F28P65x devices.

2.3.3 Key Facts for Flash API Usage

Here are some important facts about API usage:

• Names of the Flash API functions start with a prefix “Fapi_”.
• Flash API does not configure PLL. The user application should configure the PLL as needed and pass

the configured CPUCLK value to Fapi_initializeAPI() function (details of this function are given later in this
document). Note that the flash API library does not support flash erase/program operations when the system
frequency is less than or equal to 20MHz.

• Flash API does not check the PLL configuration to confirm the user input frequency. This is up to the system
integrator - TI suggests to use the DCC module to check the system frequency. For example, implementation,
see the C2000Ware driverlib clock configuration function.

www.ti.com TMS320F28P65x Flash API Overview

SPRUJB8 – APRIL 2024
Submit Document Feedback

TMS320F28P65x Flash API Version 3.00.02.00 5

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJB8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJB8&partnum=

• Flash API does not configure BANKMUXSEL, FLASHCTLSEM (FLASHSEM) and CLKSEM (Clock
configuration control semaphore) registers. User application should configure them as needed. For details
of these registers, see the TMS320F28P65x Real-Time Microcontrollers Technical Reference Manual.

• Always configure waitstates as per the device-specific data manual before calling the Flash API functions.
The Flash API will issue an error if the waitstate configured by the application is not appropriate for the
operating frequency of the application.

• Flash API execution is interruptible. However, there should not be any read/fetch access from the Flash bank
on which an erase/program operation is in progress. Therefore, the Flash API functions, the user application
functions that call the Flash API functions, and any ISRs (Interrupt service routines,) must be executed from
RAM or the flash bank on which there is no any active erase/program operation in progress. For example,
the above mentioned conditions apply to the entire code-snippet shown below in addition to the Flash API
functions. The reason for this is because the Fapi_issueAsyncCommandWithAddress() function issues the
erase command to the FSM, but it does not wait until the erase operation is over. As long as the FSM is busy
with the current operation, the Flash bank being erased should not be accessed.

//
// Erase a Sector
//
oReturnCheck = Fapi_issueAsyncCommandWithAddress(Fapi_EraseSector,(uint32*)0x0080000);
//
// Wait until the erase operation is over
//
while (Fapi_checkFsmForReady() != Fapi_Status_FsmReady){}

• Flash API does not configure (enable/disable) watchdog. The user application can configure watchdog and
service it as needed.

• The Main Array flash programming must be aligned to 64-bit address boundaries (alignment on 128-bit
address boundary is suggested) and each 64-bit word may only be programmed once per write/erase cycle.

• It is permissible to program the data and ECC separately. However, each 64-bit dataword and the
corresponding ECC word may only be programmed once per write/erase cycle.

• ECC should not be programmed for link-pointer locations. The API skips programming the ECC when the
start address provided for the program operation is any of the three link-pointer addresses. API will use
Fapi_DataOnly mode for programming these locations even if the user passes Fapi_AutoEccGeneration or
Fapi_DataAndEcc mode as the programming mode parameter. The Fapi_EccOnly mode is not supported for
programming these locations. The user application should exercise caution here. Care should be taken to
maintain a separate structure/section for link-pointer locations in the application. Do not mix these fields with
other DCSM OTP settings. If other fields are mixed with link-pointers, API will skip programming ECC for the
non-link-pointer locations as well. This will cause ECC errors in the application.

• When using 128-bit DCSM OTP programming, the DCSM OTP address must be aligned to 128-bit address
boundaries and each 128-bit word may only be programmed once. The exceptions are:
– The DCSM Zx-LINKPOINTER1 and Zx-LINKPOINTER2 values in the DCSM OTP should be programmed

together, and may be programmed 1 bit at a time as required by the DCSM operation.
– The DCSM Zx-LINKPOINTER3 values in the DCSM OTP may be programmed 1 bit at a time as required

by the DCSM operation.
– Users can program JLM_Enable separately if needed. If users want to program all the 64-

bits together, users must read the link-pointer (ZxOTP_LINKPOINTER1, ZxOTP_LINKPOINTER2,
ZxOTP_LINKPOINTER3) and program that value along with the JLM_Enable value.

– 64-bits can be programmed in a given aligned 128-bit word when the other aligned 64-bits are reserved.

Note
Programing DCSM OTP is allowed in some 512-bit programming modes except for link-pointers
range (0x00078000 to 0x00078008 and 0x00078200 to 0x00078208). Table 2-6 show the
programing link pointer locations that you should use for Fapi_issueProgrammingCommand() with
AutoECCGeneration mode.

TMS320F28P65x Flash API Overview www.ti.com

6 TMS320F28P65x Flash API Version 3.00.02.00 SPRUJB8 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SPRUIZ1
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJB8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJB8&partnum=

Table 2-6. Programming Pointer Locations
512-Bit Programming Functions Programing of DCSM OTP and Link Pointer Range
Fapi_issueAutoEcc512ProgrammingCommand() DCSM OTP allowed, link pointer not allowed

Fapi_issueDataAndEcc512ProgrammingCommand() DCSM OTP allowed, link pointer not allowed

Fapi_issueDataOnly512ProgrammingCommand() DCSM OTP and link pointer not allowed

Fapi_issueEccOnly64ProgrammingCommand() ECC DCSM OTP allowed, ECC link pointers not allowed

• In order to avoid conflict between zone1 and zone2, a semaphore (FLSEM) is provided in the DCSM
registers to configure Flash registers. The user application should configure this semaphore register
before initializing the Flash and calling the Flash API functions. For more details on this register, see the
TMS320F28P65x Microcontrollers Technical Reference Manual.

• Note that the Flash API functions do not configure any of the DCSM registers. The user application should
be sure to configure the required DCSM settings. For example, if a zone is secured, then Flash API should
be executed from the same zone in order to be able to erase or program the Flash sectors of that zone. Or
the zone should be unlocked. If not, Flash API’s writes to Flash registers will not succeed. Flash API does not
check whether the writes to the Flash registers are going through or not. It writes to them as required for the
erase/program sequence and returns back assuming that the writes went through. This will cause the Flash
API to return false success status. For example, Fapi_issueAsyncCommandWithAddress(Fapi_EraseSector,
Address) when called, can return the success status but it does not mean that the sector erase is successful.
Erase status should be checked using Fapi_getFSMStatus() and Fapi_doBlankCheck().

• Note that there should not be any access to the Flash bank/OTP on which the Flash erase/program operation
is in progress.

www.ti.com TMS320F28P65x Flash API Overview

SPRUJB8 – APRIL 2024
Submit Document Feedback

TMS320F28P65x Flash API Version 3.00.02.00 7

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/spruiz1
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJB8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJB8&partnum=

3 API Functions

3.1 Initialization Functions

3.1.1 Fapi_initializeAPI()

Initializes the Flash API

Synopsis

Fapi_StatusType Fapi_initializeAPI(
 Fapi_FmcRegistersType *poFlashControlRegister,
 uint32 u32HclkFrequency
)

Parameters

poFlashControlRegister [in] Pointer to the Flash Wrapper Registers' base address. Use
FlashTech_CPU0_BASE_ADDRESS.

u32HclkFrequency [in] System clock frequency in MHz

Description

This function is required to initialize the Flash API before any other Flash API operation is performed. This
function must also be called if the System frequency or RWAIT is changed.

Note

RWAIT register value must be set before calling this function.

Return Value
• Fapi_Status_Success (success)

• Fapi_Error_InvalidHclkValue (failure: System clock does not match specified wait value)

Sample Implementation

(Please refer to the flash programming example provided in C2000Ware at
“C2000Ware_.....\driverlib\F28P65x\examples\....\flash\flashapi_128bit_programming\flashapi_cpu1_128bitprogr
amming.c”)

3.2 Flash State Machine Functions

3.2.1 Fapi_setActiveFlashBank()

Initializes the Flash Wrapper for erase and program operations.

Synopsis

Fapi_StatusType Fapi_setActiveFlashBank(
 Fapi_FlashBankType oNewFlashBank
)

API Functions www.ti.com

8 TMS320F28P65x Flash API Version 3.00.02.00 SPRUJB8 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJB8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJB8&partnum=

Parameters

oNewFlashBank [in] Bank number to set as active. Always use Fapi_FlashBank0
irrespective of which flash bank is targeted for erase/program
operations on any CPU.

Description

This function sets the Flash Wrapper for further operations to be performed on the bank. This function is required
to be called after the Fapi_initializeAPI() function and before any other Flash API operation is performed.

Note

Irrespective of which flash bank is targeted for the erase and program operations, the user application
needs to call this only once and that can be with Fapi_FlashBank0.

Return Value
• Fapi_Status_Success (Success)
• Fapi_Status_FsmBusy (failure: FSM busy with another command)
• Fapi_Error_InvalidBaseRegCntlAddress (failure: Flash control register base address provided by user

does not match the expected address)
• Fapi_Error_InvalidBank (failure: Bank specified does not exist on device)
• Fapi_Error_InvalidHclkValue (failure: System clock does not match specified wait value)

Sample Implementation

(Please refer to the flash programming example provided in C2000Ware at
“C2000Ware_.....\driverlib\F28P65x\examples\....\flash\flashapi_128bit_programming\flashapi_cpu1_128bitprogr
amming.c”)

3.2.2 Fapi_setupBankSectorEnable()

Configures Write(program)/Erase protection for the sectors.

Synopsis

Fapi_StatusType Fapi_setupBankSectorEnable(
 uint32 WEPROT_register,
 uint32 oSectorMask
)

Parameters

pu32StartAddress [in] Register address for Write/Erase protection configuration.
Use
FLASH_WRAPPER_PROGRAM_BASE+FLASH_O_CMDWEPROT
A for the first 32 (0-31) sectors.
Use
FLASH_WRAPPER_PROGRAM_BASE+FLASH_O_CMDWEPROT
B for the remaining main-array (32-127) sectors.
Use
FLASH_WRAPPER_PROGRAM_BASE+FLASH_O_CMDWEPROT
_UO for the USER OTP.

OSectorMask [in] 32-bit mask indicating which sectors to mask from the erase and
program operations.

www.ti.com API Functions

SPRUJB8 – APRIL 2024
Submit Document Feedback

TMS320F28P65x Flash API Version 3.00.02.00 9

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJB8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJB8&partnum=

Description

On this device, all of the flash main-array sectors and the USER OTP are protected from the erase and program
operations by default. User application has to disable the protection for the sectors on which it wants to perform
erase and/or program operations. This function can be used to enable/disable the protection. This function
should be called before each erase and program command as shown in the flash API usage example provided
in the C2000Ware.

First input parameter for this function can be the address of any of these three registers: CMDWEPROTA,
CMDWEPROTB, CMDWEPROT_UO

CMDWEPROTA register is used to configure the protection for the first 32 sectors (0 to 31). Each bit in this
register corresponds to each sector – Example: Bit 0 of this register is used to configure the protection for
Sector 0 and Bit 31 of this register is used to configure the protection for Sector 31. A 32-bit user-provided
sector mask (second parameter passed to this function) indicates which sectors the user wants to mask from
the erase and program operations, that is, sectors that will not be erased and programmed. If a bit in the mask
is 1, that particular sector will not be erased/programmed. If a bit in the mask is 0, that particular sector will be
erased/programmed.

CMDWEPROTB register is used to configure the protection for the 32 – 127 sectors in the main-array flash
bank. However, please note that each bit in this register is used to configure protection for 8 sectors together.
This means, bit 0 is used to configure the protection for all of the sectors 32 to 39 together, bit 1 is used to
configure the protection for all of the sectors 40 to 47 together, and so on. A 32-bit user-provided sector mask
(second parameter passed to this function) indicates which sectors the user wants to mask from the erase and
program operations, that is, sectors that will not be erased and programmed. If a bit in the mask is 1, that
particular set of sectors will not be erased/programmed. If a bit in the mask is 0, that particular set of sectors will
be erased/programmed.

CMDWEPROT_UO register is used to configure the protection for the USER OTP. Bit 0 in this register is used
to configure the protection for the USER OTP. This means, if bit 0 is configured as 1, USER OTP will not be
programmed. If bit 0 is configured as 0, USER OTP will be programmed. Other bits of this register can be
configured as 1s. Since USER OTP is not erasable, the CMDWEPROT_UO register protection is not applicable
for erase operations. This should be configured only for the program operation as needed.

Note

There are no separate dedicated CMDWEPROT_x registers for each bank. Hence, these registers
should be configured before each and every flash erase and program command for any bank.

Return Value
• Fapi_Status_Success (success)

Sample Implementation

(Please refer to the flash programming example provided in C2000Ware at
“C2000Ware_.....\driverlib\F28P65x\examples\....\flash\flashapi_128bit_programming\flashapi_cpu1_128bitprogr
amming.c”)

3.2.3 Fapi_issueAsyncCommandWithAddress()

Issues an erase command to the Flash State Machine along with a user-provided sector address.

Synopsis

Fapi_StatusType Fapi_issueAsyncCommandWithAddress(
 Fapi_FlashStateCommandsType oCommand,
 uint32 *pu32StartAddress
)

API Functions www.ti.com

10 TMS320F28P65x Flash API Version 3.00.02.00 SPRUJB8 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJB8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJB8&partnum=

Parameters

oCommand [in] Command to issue to the FSM. Use Fapi_EraseSector

pu32StartAddress [in] Flash sector address for erase operation

Description

This function issues an erase command to the Flash State Machine for the user-provided sector address. This
function does not wait until the erase operation is over; it just issues the command and returns back. Hence, this
function always returns success status when the Fapi_EraseSector command is used. The user application must
wait for the Flash Wrapper to complete the erase operation before returning to any kind of Flash accesses. The
Fapi_checkFsmForReady() function can be used to monitor the status of an issued command.

Note

This function does not check STATCMD after issuing the erase command. The user application must
check the STATCMD value when FSM has completed the erase operation. STATCMD indicates
if there is any failure occurrence during the erase operation. The user application can use the
Fapi_getFSMStatus function to obtain the STATCMD value. Also, the user application should use
the Fapi_doBlankCheck() function to verify that the Flash is erased.

Return Value
• Fapi_Status_Success (success)
• Fapi_Status_FsmBusy (FSM busy)
• Fapi_Error_InvalidBaseRegCntlAddress (failure: Flash control register base address provided by user

does not match the expected address)
• Fapi_Error_FeatureNotAvailable (failure: User requested a command that is not supported).
• Fapi_Error_FlashRegsNotWritable (failure: Flash register write failed. The user should make sure that the

API is executing from the same zone as that of the target address for flash operation OR the user should
unlock before the flash operation).

• Fapi_Error_InvalidAddress (failure: User provided an invalid address. For the valid address range), see the
TMS320F28P65x Microcontrollers Data Manual.

Sample Implementation

(Please refer to the flash programming example provided in C2000Ware at
“C2000Ware_.....\driverlib\F28P65x\examples\....\flash\flashapi_128bit_programming\flashapi_cpu1_128bitprogr
amming.c”)

3.2.4 Fapi_issueBankEraseCommand()

Issues a bank erase command to the Flash State Machine along with a user-provided sector mask.

Synopsis

Fapi_StatusType Fapi_issueBankEraseCommand(
 uint32 *pu32StartAddress
)

Parameters
pu32StartAddress [in] Flash bank address for bank erase operation

www.ti.com API Functions

SPRUJB8 – APRIL 2024
Submit Document Feedback

TMS320F28P65x Flash API Version 3.00.02.00 11

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SPRSP69
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJB8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJB8&partnum=

Description

This function issues a bank erase command to the Flash state machine for the user-provided bank address. If
the FSM is busy with another operation, the function returns indicating the FSM is busy, otherwise it proceeds
with the bank erase operation.

Return Value
• Fapi_Status_Success (success) • Fapi_Status_FsmBusy (FSM busy)
• Fapi_Error_FlashRegsNotWritable (Flash registers not writable)
• Fapi_Error_InvalidBaseRegCntlAddress (failure: Flash control register base address provided by user

does not match the expected address)

Sample Implementation

(Please refer to the flash programming example provided in C2000Ware at
“C2000Ware_.....\driverlib\F28P65x\examples\....\flash\flashapi_128bit_programming\flashapi_cpu1_128bitprogr
amming.c”)

3.2.5 Fapi_issueProgrammingCommand()

Sets up data and issues program command to valid Flash or OTP memory addresses

Synopsis

Fapi_StatusType Fapi_issueProgrammingCommand(
 uint32 *pu32StartAddress,
 uint16 *pu16DataBuffer,
 uint16 u16DataBufferSizeInWords,
 uint16 *pu16EccBuffer,
 uint16 u16EccBufferSizeInBytes,
 Fapi_FlashProgrammingCommandType oMode
)

Parameters
pu32StartAddress [in] Start address in Flash for the data and ECC to be programmed.

Also, the start address should always be even.

pu16DataBuffer [in] Pointer to the Data buffer address. Data buffer should be 128-bit
aligned.

u16DataBufferSizeInWords [in] Number of 16-bit words in the Data buffer

pu16EccBuffer [in] Pointer to the ECC buffer address

u16EccBufferSizeInBytes [in] Number of 8-bit bytes in the ECC buffer

Note
The pu16EccBuffer should contain ECC corresponding to the data at the 128-bit aligned main
array/OTP address. The LSB of the pu16EccBuffer corresponds to the lower 64 bits of the main
array and the MSB of the pu16EccBuffer corresponds to the upper 64 bits of the main array.

Description

This function sets up the programming registers of the Flash State Machine based on the supplied parameters.
It offers four different programming modes to the user for use in different scenarios as mentioned in Table 3-1.
This function sets up the programming registers of the Flash State Machine based on the supplied parameters. It
offers four different programming modes to the user for use in different scenarios as mentioned in Table 3-1.

API Functions www.ti.com

12 TMS320F28P65x Flash API Version 3.00.02.00 SPRUJB8 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJB8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJB8&partnum=

Table 3-1. Uses of Different Programming Modes
Programming Mode (oMode) Arguments Used Usage Purpose
Fapi_DataOnly pu32StartAddress,

pu16DataBuffer,
u16DataBufferSizeInWords

Used when any custom programming utility
or an user application (that embed/use Flash
API) has to program data and corresponding
ECC separately. Data is programmed using
Fapi_DataOnly mode and then the ECC
is programmed using Fapi_EccOnly mode.
Generally most of the programming utilities
do not calculate ECC separately and
instead use Fapi_AutoEccGeneration mode.
However, some Safety applications may
require to insert intentional ECC errors in
their Flash image (which is not possible
when Fapi_AutoEccGeneration mode is
used) to check the health of the SECDED
(Single Error Correction and Double Error
Detection) module at run time. In such case,
ECC is calculated separately (using the
Fapi_calculateEcc() function as applicable).
Application may want to insert errors in either
main array data or in the ECC as needed.
In such scenarios, after the error insertion,
Fapi_DataOnly mode and Fapi_EccOnly
modes can be used to program the data and
ECC respectively.

Fapi_AutoEccGeneration pu32StartAddress,
pu16DataBuffer,
u16DataBufferSizeInWords

Used when any custom programming utility
or user application (that embed/use Flash
API to program Flash at run time to store
data or to do a firmware update) has to
program data and ECC together without
inserting any intentional errors. This is the
most prominently used mode.

Fapi_DataAndEcc pu32StartAddress,
pu16DataBuffer,
u16DataBufferSizeInWords,
pu16EccBuffer,
u16EccBufferSizeInBytes

Purpose of this mode is not different than that
of using Fapi_DataOnly and Fapi_EccOnly
modes together. However, this mode is
beneficial when both the data and the
calculated ECC can be programmed at the
same time.

Fapi_EccOnly pu16EccBuffer,
u16EccBufferSizeInBytes

See the usage purpose given for
Fapi_DataOnly mode.

Table 3-2 shows the allowed programming range for the function.

Table 3-2. Permitted Programming Range for Fapi_issueProgrammingCommand()
Flash API Main Array DCSM OTP ECC Link Pointer
Fapi_issueProgrammingC
ommand() 128-bit,
Fapi_AutoEccGeneration
mode

Allowed Allowed Allowed Allowed (Flash API
will program it as
Fapi_DataOnly)

Fapi_issueProgrammingC
ommand() 128-bit,
Fapi_DataOnly mode

Allowed Allowed (Flash API
will program it as
Fapi_AutoEccGeneration)

Not allowed Allowed

Fapi_issueProgrammingC
ommand() 128-bit,
Fapi_DataAndEcc mode

Allowed Allowed Allowed Allowed (Flash API
will program it as
Fapi_DataOnly)

Fapi_issueProgrammingC
ommand() 128-bit,
Fapi_EccOnly mode

Not allowed Not allowed Allowed Not allowed

Note
Users must always program ECC for their flash image since ECC check is enabled at power up.

www.ti.com API Functions

SPRUJB8 – APRIL 2024
Submit Document Feedback

TMS320F28P65x Flash API Version 3.00.02.00 13

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJB8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJB8&partnum=

Programming modes:

Fapi_DataOnly – This mode will only program the data portion in Flash at the address specified. It can program
from 1-bit up to 8 16-bit words. However, review the restrictions provided for this function to know the limitations
of flash programming data size. The supplied starting address to program at plus the data buffer length cannot
cross the 128-bit aligned address boundary. Arguments 4 and 5 are ignored when using this mode.

Fapi_AutoEccGeneration – This mode will program the supplied data in Flash along with automatically
generated ECC. The ECC is calculated for every 64-bit data aligned on a 64-bit memory boundary. Hence, when
using this mode, all the 64 bits of the data should be programmed at the same time for a given 64-bit aligned
memory address. Data not supplied is treated as all 1s (0xFFFF). Once ECC is calculated and programmed for a
64-bit data, those 64 bits can not be reprogrammed (unless the sector is erased) even if it is programming a bit
from 1 to 0 in that 64-bit data, since the new ECC value will collide with the previously programmed ECC value.
When using this mode, if the start address is 128-bit aligned, then either 8 or 4 16-bit words can be programmed
at the same time as needed. If the start address is 64-bit aligned but not 128-bit aligned, then only 4 16-bit
words can be programmed at the same time. The data restrictions for Fapi_DataOnly also exist for this option.
Arguments 4 and 5 are ignored.

Note
Fapi_AutoEccGeneration mode will program the supplied data portion in Flash along with
automatically generated ECC. The ECC is calculated for 64-bit aligned address and the corresponding
64-bit data. Any data not supplied is treated as 0xFFFF. Note that there are practical implications
of this when writing a custom programming utility that streams in the output file of a code project
and programs the individual sections one at a time into flash. If a 64-bit word spans more than one
section (that is, contains the end of one section, and the start of another), values of 0xFFFF cannot be
assumed for the missing data in the 64-bit word when programming the first section. When you go to
program the second section, you will not be able to program the ECC for the first 64-bit word since it
was already (incorrectly) computed and programmed using assumed 0xFFFF for the missing values.
One way to avoid this problem is to align all sections linked to flash on a 64-bit boundary in the linker
command file for your code project.

Here is an example:

SECTIONS
 {
 .text : > FLASH, ALIGN(4)
 .cinit : > FLASH, ALIGN(4)
 .const : > FLASH, ALIGN(4)
 .init_array : > FLASH, ALIGN(4)
 .switch : > FLASH, ALIGN(4)
 }

If you do not align the sections in flash, you would need to track incomplete 64-bit words in a section and
combine them with the words in other sections that complete the 64-bit word. This will be difficult to do. So it is
recommended to align your sections on 64-bit boundaries.

Some 3rd party Flash programming tools or TI Flash programming kernel examples (C2000Ware) or any custom
Flash programming solution may assume that the incoming data stream is all 128-bit aligned and may not expect
that a section might start on an unaligned address. Thus it may try to program the maximum possible (128-bits)
words at a time assuming that the address provided is 128-bit aligned. This can result in a failure when the
address is not aligned. So, it is suggested to align all the sections (mapped to Flash) on a 128-bit boundary.

Fapi_DataAndEcc – This mode will program both the supplied data and ECC in Flash at the address specified.
The data supplied must be aligned on a 64-bit memory boundary and the length of data must correlate to the
supplied ECC. That means, if the data buffer length is 4 16-bit words, the ECC buffer must be 1 byte. If the data
buffer length is 8 16-bit words, the ECC buffer must be 2 bytes in length. If the start address is 128-bit aligned,
then either 8 or 4 16-bit words should be programmed at the same time as needed. If the start address is 64-bit
aligned but not 128-bit aligned, then only 4 16-bit words should be programmed at the same time.

The LSB of pu16EccBuffer corresponds to the lower 64-bits of the main array and the MSB of pu16EccBuffer
corresponds to the upper 64-bits of the main array.

API Functions www.ti.com

14 TMS320F28P65x Flash API Version 3.00.02.00 SPRUJB8 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/C2000WARE
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJB8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJB8&partnum=

The Fapi_calculateEcc() function can be used to calculate ECC for a given 64-bit aligned address and the
corresponding data.

Fapi_EccOnly – This mode will only program the ECC portion in Flash ECC memory space at the address
(Flash main array address should be provided for this function and not the corresponding ECC address)
specified. It can program either 2 bytes (both LSB and MSB at a location in ECC memory) or 1 byte (LSB
at a location in ECC memory). The LSB of pu16EccBuffer corresponds to the lower 64-bits of the main array
and the MSB of pu16EccBuffer corresponds to the upper 64-bits of the main array. Arguments two and three are
ignored when using this mode.

Note
The length of pu16DataBuffer and pu16EccBuffer cannot exceed 8 and 2, respectively.

Note
This function does not check STATCMD after issuing the program command. The user application
must check the STATCMD value when FSM has completed the program operation. STATCMD
indicates if there is any failure occurrence during the program operation. The user application can
use the Fapi_getFsmStatus function to obtain the STATCMD value.
Also, the user application should use the Fapi_doVerify() function to verify that the Flash is
programmed correctly.

This function does not wait until the program operation is over; it just issues the command and returns back.
Hence, the user application must wait for the Flash Wrapper to complete the program operation before returning
to any kind of Flash accesses. The Fapi_checkFsmForReady() function should be used to monitor the status of
an issued command.

Restrictions
• As described above, this function can program only a max of 128-bits (given the address provided is 128-bit

aligned) at a time. If the user wants to program more than that, this function should be called in a loop to
program 128-bits (or 64-bits as needed by application) at a time.

• The Main Array flash programming must be aligned to 64-bit address boundaries and each 64-bit word may
only be programmed once per write or erase cycle.

• It is alright to program the data and ECC separately. However, each 64-bit dataword and the corresponding
ECC word may only be programmed once per write or erase cycle.

• ECC should not be programmed for linkpointer locations. The API will issue the Fapi_DataOnly command
for these locations even if the user chooses Fapi_AutoEccGeneration mode or Fapi_DataAndEcc mode.
Fapi_EccOnly mode is not supported for linkpointer locations.

• Fapi_EccOnly mode should not be used for Bank0 DCSM OTP space. If used, an error will be returned. For
the DCSM OTP space, either Fapi_AutoEccGeneration or Fapi_DataAndEcc programming modes should be
used.

Return Value
• Fapi_Status_Success (success)
• Fapi_Status_FsmBusy (FSM busy)
• Fapi_Error_InvalidBaseRegCntlAddress (failure: Flash control register base address provided by user

does not match the expected address)
• Fapi_Error_AsyncIncorrectDataBufferLength (failure: Data buffer size specified is incorrect. Also, this

error will be returned if Fapi_EccOnly mode is selected when programming the Bank0 DCSM OTP space)
• Fapi_Error_AsyncIncorrectEccBufferLength (failure: ECC buffer size specified is incorrect)
• Fapi_Error_AsyncDataEccBufferLengthMismatch (failure: Data buffer size either is not 64-bit aligned or

data length crosses the 128-bit aligned memory boundary)
• Fapi_Error_FlashRegsNotWritable (failure: Flash register writes failed. The user should make sure that the

API is executing from the same zone as that of the target address for flash operation OR the user should
unlock before the flash operation.

• Fapi_Error_FeatureNotAvailable (failure: User passed a mode that is not supported)

www.ti.com API Functions

SPRUJB8 – APRIL 2024
Submit Document Feedback

TMS320F28P65x Flash API Version 3.00.02.00 15

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJB8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJB8&partnum=

• Fapi_Error_InvalidAddress (failure: User provided an invalid address. For the valid address range, see the
TMS320F28P65x Real-Time Microcontrollers Data Manual.

Sample Implementation

For more details, see the flash programming example provided in C2000Ware at:
“C2000Ware_.....\driverlib\F28P65x\examples\....\flash\flashapi_128bit_programming\flashapi_cpu1_128bitprogr
amming.c”.

3.2.6 Fapi_issueProgrammingCommandForEccAddresses()

Remaps an ECC address to data address and calls Fapi_issueProgrammingCommand().

Synopsis

Fapi_StatusType Fapi_issueProgrammingCommandForEccAddresses(
 uint32 *pu32StartAddress,
 uint16 *pu16EccBuffer,
 uint16 u16EccBufferSizeInBytes
)

Parameters

pu32StartAddress [in] ECC start address in Flash for the ECC to be programmed

pu16EccBuffer [in] Pointer to the ECC buffer address

u16EccBufferSizeInBytes [in] number of bytes in the ECC buffer If the number of bytes is 1, LSB
(ECC for lower 64 bits) gets programmed. MSB alone cannot be
programmed using this function. If the number of bytes is 2, both
LSB and MSB bytes of ECC get programmed.

Description

This function will remap an address in the ECC memory space to the corresponding data address space
and then call Fapi_issueProgrammingCommand() to program the supplied ECC data. The same limitations
for Fapi_issueProgrammingCommand() using Fapi_EccOnly mode applies to this function. The LSB of
pu16EccBuffer corresponds to the lower 64 bits of the main array and the MSB of pu16EccBuffer corresponds to
the upper 64 bits of the main array.

Note

The length of the pu16EccBuffer cannot exceed 2.

Note

This function does not check STATCMD after issuing the program command. The user application
must check the STATCMD value when FSM has completed the program operation. STATCMD
indicates if there is any failure occurrence during the program operation. The user application can
use the Fapi_getFSMStatus function to obtain the STATCMD value.

Note

Fapi_EccOnly mode should not be used for Bank0 DCSM OTP space. If used, an error will
be returned. For the DCSM OTP space, either Fapi_AutoEccGeneration or Fapi_DataAndEcc
programming modes should be used.

Return Value
• Fapi_Status_Success (success)

API Functions www.ti.com

16 TMS320F28P65x Flash API Version 3.00.02.00 SPRUJB8 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/sprsp69
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJB8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJB8&partnum=

• Fapi_Status_FsmBusy (FSM busy)
• Fapi_Error_InvalidBaseRegCntlAddress (failure: Flash control register base address provided by user

does not match the expected address)
• Fapi_Error_AsyncIncorrectEccBufferLength (failure: Data buffer size specified is incorrect)
• Fapi_Error_FlashRegsNotWritable (failure: Flash register writes failed. The user should make sure that the

API is executing from the same zone as that of the target address for flash operation OR the user should
unlock before the flash operation.

• Fapi_Error_InvalidAddress (failure: User provided an invalid address. For the valid address range, see the
TMS320F28P65x Microcontrollers Data Manual.

3.2.7 Fapi_issueAutoEcc512ProgrammingCommand()

Sets up data and issues 512-bit (32 16-bit words) AutoEcc generation mode program command to valid Flash or
OTP memory addresses.

Synopsis

SECTIONS
 {
 .text : > FLASH, ALIGN(32)
 .cinit : > FLASH, ALIGN(32)
 .const : > FLASH, ALIGN(32)
 .init_array : > FLASH, ALIGN(32)
 .switch : > FLASH, ALIGN(32)
 }

Parameters

pu32StartAddress [in] Start address in Flash for the data and ECC to be programmed.

pu16DataBuffer [in] Pointer to the Data buffer address. Address of the Data buffer should be 512-bit aligned.

u16DataBufferSizeInWords [in] Number of 16-bit words in the Data buffer. Max Databuffer size in words should not exceed 32.

Description

This function automatically generates 8 bytes of ECC data for the user provided 512-bit data (second parameter)
and programs the data and ECC together at the user provided 512-bit aligned flash address (first parameter).
When this command is issued, the flash state machine will program all of the 512 bits along with ECC. Hence,
when using this mode, data not supplied is treated as all 1s (0xFFFF). Once ECC is calculated and programmed
for a 512-bit data, those 512 bits cannot be reprogrammed (unless the sector is erased) even if it is programming
a bit from 1 to 0 in that 512-bit data, since the new ECC value will collide with the previously programmed ECC
value.

Note

Fapi_issueAutoEcc512ProgrammingCommand() function will program the supplied data portion in
Flash along with automatically generated ECC. The ECC is calculated for 512-bit aligned address
and the corresponding 512-bit data. Any data not supplied is treated as 0xFFFF. Note that there are
practical implications of this when writing a custom programming utility that streams in the output file
of a code project and programs the individual sections one at a time into flash. If a 512-bit word spans
more than one section (that is, contains the end of one section, and the start of another), values
of 0xFFFF cannot be assumed for the missing data in the 64-bit word when programming the first
section. When you go to program the second section, you will not be able to program the ECC for
the first 512-bit word since it was already (incorrectly) computed and programmed using assumed
0xFFFF for the missing values. One way to avoid this problem is to align all sections linked to flash on
a 512-bit boundary in the linker command file for your code project.

www.ti.com API Functions

SPRUJB8 – APRIL 2024
Submit Document Feedback

TMS320F28P65x Flash API Version 3.00.02.00 17

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SPRSP69
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJB8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJB8&partnum=

Here is an example:

SECTIONS
 {
 .text : > FLASH, ALIGN(32)
 .cinit : > FLASH, ALIGN(32)
 .const : > FLASH, ALIGN(32)
 .init_array : > FLASH, ALIGN(32)
 .switch : > FLASH, ALIGN(32)
 }

If you do not align the sections in flash, you would need to track incomplete 512-bit words in a section and
combine them with the words in other sections that complete the 512-bit word. This will be difficult to do. Hence,
it is recommended to align your sections on 512-bit boundaries.

Some 3rd party Flash programming tools or TI Flash programming kernel examples (C2000Ware) or any
custom Flash programming solution may assume that the incoming data stream is all 512-bit aligned
and may not expect that a section might start on an unaligned address. Thus, it may try to program
the maximum possible (512-bits) words at a time assuming that the address provided is 512-bit aligned.
This can result in a failure when the address is not aligned. So, it is suggested to align all the sections
(mapped to Flash) on a 512-bit boundary.

Refer below Table 3-3 for allowed programming range for the function.

Table 3-3. Permitted programming range for Fapi_issueAutoEcc512ProgrammingCommand()
Flash API Main Array DCSM OTP ECC Link Pointer

Fapi_issueAutoEcc512Pro
grammingCommand()

Allowed Allowed Allowed Not allowed

Note

The length of pu16DataBuffer cannot exceed 32.

Note

This function does not check STATCMD after issuing the program command. The user application
must check the STATCMD value when FSM has completed the program operation. STATCMD
indicates if there is any failure occurrence during the program operation. The user application can
use the Fapi_getFsmStatus function to obtain the STATCMD value.

Also, the user application should use the Fapi_doVerify() function to verify that the Flash is
programmed correctly.

This function does not wait until the program operation is over; it just issues the command and returns back.
Hence, the user application must wait for the Flash Wrapper to complete the program operation before returning
to any kind of Flash accesses. The Fapi_checkFsmForReady() function should be used to monitor the status of
an issued command.

Restrictions
• As described above, this function can program only a max of 512-bits (given the address provided is 512-bit

aligned) at a time. If the user wants to program more than that, this function should be called in a loop to
program 512-bits at a time.

• The Main Array flash programming must be aligned to 512-bit address boundaries and 32 16-bit word may
only be programmed once per write or erase cycle.

• 512-bit address range starting with link pointer address shall always be programmed using 128-bit
Fapi_issueProgrammingCommand().

API Functions www.ti.com

18 TMS320F28P65x Flash API Version 3.00.02.00 SPRUJB8 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJB8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJB8&partnum=

Return Value
• Fapi_Status_Success (success) • Fapi_Status_FsmBusy (FSM busy)
• Fapi_Error_AsyncIncorrectDataBufferLength (failure: Data buffer size specified is incorrect. Also, this

error will be returned if Fapi_EccOnly mode is selected when programming the Bank0 DCSM OTP space)
• Fapi_Error_FlashRegsNotWritable (failure: Flash register writes failed. The user should make sure that the

API is executing from the same zone as that of the target address for flash operation OR the user should
unlock before the flash operation.

• Fapi_Error_FeatureNotAvailable (failure: User passed a mode that is not supported)
• Fapi_Error_InvalidAddress (failure: User provided an invalid address. For the valid address range, see the

TMS320F28P65x Microcontrollers Data Manual.)

Sample Implementation

(Please refer to the flash programming example provided in C2000Ware at
“C2000Ware_.....\driverlib\F28P65x\examples\....\flash\flashapi_512bit_programming\flashapi_cpu1_512bitprogr
amming.c”)

3.2.8 Fapi_issueDataAndEcc512ProgrammingCommand()

Sets up the flash state machine registers for the 512-bit (32 16-bit words) programming with user provided flash
data and ECC data and issues the programing command to valid Flash and OTP memory.

Synopsis

Fapi_StatusType Fapi_issueDataAndEcc512ProgrammingCommand(
 uint32 *pu32StartAddress,
 uint16 *pu16DataBuffer,
 uint16 u16DataBufferSizeInWords,
 uint16 *pu16EccBuffer,
 uint16 u16EccBufferSizeInBytes
)

Parameters

pu32StartAddress [in] 512-bit aligned flash address to program the provided data and ECC.

pu16DataBuffer [in] Pointer to the Data buffer address. Address of the Data buffer should
be 512-bit aligned.

u16DataBufferSizeInWords [in] Number of 16-bit words in the Data buffer. Max Databuffer size in
words should not exceed 32.

pu16EccBuffer [in] Pointer to the ECC buffer address

u16EccBufferSizeInBytes [in] Number of 8-bit bytes in the ECC buffer. Max Eccbuffer size in words
should not exceed 8

Description

This function programs both the user provided 512-bit data (second parameter) and 8 bytes of ECC data (fourth
parameter) together at the user provided 512-bit aligned flash address. The address of data provided must be
aligned on a 512-bit memory boundary and the length of data must correlate to the supplied ECC. That means,
if the data buffer length is 32 16-bit words, the ECC buffer must be 8 bytes (1 ECC bytes corresponding to 64-bit
data).

Each byte of pu16EccBuffer corresponds to each 64-bit of the main array data provided in the pu16DataBuffer.
Refer Table 3-6 for more details.

The Fapi_calculateEcc() function can be used to calculate ECC for a given 64-bit aligned address and the
corresponding data.

Refer below Table 3-4 for allowed programming range for the function.

www.ti.com API Functions

SPRUJB8 – APRIL 2024
Submit Document Feedback

TMS320F28P65x Flash API Version 3.00.02.00 19

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SPRSP69
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJB8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJB8&partnum=

Table 3-4. Permitted programming range for Fapi_issueDataAndEcc512ProgrammingCommand()
Flash API Main Array DCSM OTP ECC Link Pointer

Fapi_issueDataAndEcc51
2ProgrammingCommand()

Allowed Allowed Allowed Not allowed

Restrictions
• As described above, this function can program only a max of 512-bits (given the address provided is 512-bit

aligned) at a time. If the user wants to program more than that, this function should be called in a loop to
program 512-bits at a time.

• The Main Array flash programming must be aligned to 512-bit address boundaries and 32 16-bit word may
only be programmed once per write or erase cycle.

• 512-bit address range starting with link pointer address shall always be programmed using 128-bit
Fapi_issueProgrammingCommand().

Return Value
• Fapi_Status_Success (success)
• Fapi_Status_FsmBusy (FSM busy)
• Fapi_Error_AsyncIncorrectDataBufferLength (failure: Data buffer size specified is incorrect. Also, this

error will be returned if Fapi_EccOnly mode is selected when programming the Bank0 DCSM OTP space)
• Fapi_Error_AsyncIncorrectEccBufferLength (failure: ECC buffer size specified is incorrect)
• Fapi_Error_AsyncDataEccBufferLengthMismatch (failure: Data buffer size either is not 64-bit aligned or

data length crosses the 128-bit aligned memory boundary)
• Fapi_Error_FlashRegsNotWritable (failure: Flash register writes failed. The user should make sure that the

API is executing from the same zone as that of the target address for flash operation OR the user should
unlock before the flash operation.

• Fapi_Error_FeatureNotAvailable (failure: User passed a mode that is not supported)
• Fapi_Error_InvalidAddress (failure: User provided an invalid address. For the valid address range, see the

TMS320F28P65x Microcontrollers Data Manual.)

Sample Implementation

(Please refer to the flash programming example provided in C2000Ware at
“C2000Ware_.....\driverlib\F28P65x\examples\....\flash\flashapi_512bit_programming\flashapi_cpu1_512bitprogr
amming.c”)

3.2.9 Fapi_issueDataOnly512ProgrammingCommand()

Sets up the flash state machine registers for the 512-bit (32 16-bit words) programming with user provided flash
data and issues the programing command to valid Flash.

Synopsis

Fapi_StatusType Fapi_issueDataOnly512ProgrammingCommand(
 uint32 *pu32StartAddress,
 uint16 *pu16DataBuffer,
 uint16 u16DataBufferSizeInWords
)

Parameters

pu32StartAddress [in] 512-bit aligned flash address to program the provided data.

pu16DataBuffer [in] Pointer to the Data buffer address. Data buffer should be 512-bit
aligned.

API Functions www.ti.com

20 TMS320F28P65x Flash API Version 3.00.02.00 SPRUJB8 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SPRSP69
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJB8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJB8&partnum=

u16DataBufferSizeInWords [in] Number of 16-bit words in the Data buffer. Max Databuffer size in
words should not exceed 32.

Description

This function will only program the data portion in Flash at the address specified. It can program 512-bit
data (Second parameter) at the user provided 512-bit aligned flash address. This function is used when
a user application (that embed/use Flash API) has to program 512- bit of data and corresponding 64-bit
of ECC data separately. 512-bit Data is programmed using Fapi_issueDataOnly512ProgrammingCommand ()
function and then the 64-bit ECC is programmed using Fapi_issueEccOnly64ProgrammingCommand() function.
Generally, most of the programming utilities do not calculate ECC separately and instead use function
Fapi_issueAutoEcc512ProgrammingCommand(). However, some Safety applications may require to insert
intentional ECC errors in their Flash image (which is not possible when Fapi_AutoEccGeneration mode is used)
to check the health of the SECDED (Single Error Correction and Double Error Detection) module at run time.
In such case, ECC is calculated separately (using the Fapi_calculateEcc() function as applicable). Application
may want to insert errors in either main array data or in the ECC as needed. In such scenarios, after the error
insertion, Fapi_issueDataOnly512ProgrammingCommand () API and then the 64-bit ECC is programmed using
Fapi_issueEccOnly64ProgrammingCommand() API can be used to program the data and ECC respectively.

Refer Table 3-5 for allowed programming range for the function

Table 3-5. Permitted programming range for Fapi_issueDataOnly512ProgrammingCommand()
Flash API Main Array DCSM OTP ECC Link Pointer

Fapi_issueDataOnly512Pr
ogrammingCommand()

Allowed Not allowed Not allowed Not allowed

Restrictions
• As described above, this function can program only a max of 512-bits (given the address provided is 512-bit

aligned) at a time. If the user wants to program more than that, this function should be called in a loop to
program 512-bits at a time.

• The Main Array flash programming must be aligned to 512-bit address boundaries and 32 16-bit word may
only be programmed once per write or erase cycle.

• 512-bit address range starting with link pointer address shall always be programmed using 128-bit
Fapi_issueProgrammingCommand().

Return Value
• Fapi_Status_Success (success) • Fapi_Status_FsmBusy (FSM busy)
• Fapi_Error_AsyncIncorrectDataBufferLength (failure: Data buffer size specified is incorrect. Also, this

error will be returned if Fapi_EccOnly mode is selected when programming the Bank0 DCSM OTP space)
• Fapi_Error_FlashRegsNotWritable (failure: Flash register writes failed. The user should make sure that the

API is executing from the same zone as that of the target address for flash operation OR the user should
unlock before the flash operation.

• Fapi_Error_FeatureNotAvailable (failure: User passed a mode that is not supported)
• Fapi_Error_InvalidAddress (failure: User provided an invalid address. For the valid address range, see the

TMS320F28P65x Microcontrollers Data Manual.)

Sample Implementation

(Please refer to the flash programming example provided in C2000Ware at
“C2000Ware_.....\driverlib\F28P65x\examples\....\flash\flashapi_512bit_programming\flashapi_cpu1_512bitprogr
amming.c”)

www.ti.com API Functions

SPRUJB8 – APRIL 2024
Submit Document Feedback

TMS320F28P65x Flash API Version 3.00.02.00 21

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SPRSP69
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJB8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJB8&partnum=

3.2.10 Fapi_issueEccOnly64ProgrammingCommand()

Sets up the flash state machine registers for the 64-bit (4 16-bit words) programming with user provided ECC
data and issues the programing command to valid Flash and OTP memory.

Synopsis

Fapi_StatusType Fapi_issueEccOnly64ProgrammingCommand(
 uint32 *pu32StartAddress,
 uint16 *pu16EccBuffer,
 uint16 u16EccBufferSizeInBytes
)

Parameters

pu32StartAddress [in] 512-bit aligned flash address to program the provided ECC data.

pu16EccBuffer [in] Pointer to the ECC buffer address

u16EccBufferSizeInBytes [in] Number of 8-bit bytes in the ECC buffer. Max Eccbuffer size in words
should not exceed 8.

Description

This function will only program the ECC portion in Flash ECC memory space at the address (Flash main array
address should be provided for this function and not the corresponding ECC address) specified. It can program
64-bit of ECC data (Second parameter) at the ECC address corresponding to the user provided 512-bit aligned
flash address. 64-bit ECC data can be split as 8 bytes ECC data correlated to 512-bit aligned data (4 * 128, each
2 bytes corresponding to each 128 data).

Refer Table 3-6 below

Table 3-6. 64-bit ECC data interpretation
512 bits data (4 * 128bits)

1st 128-bit data 2nd 128-bit data 3rd 128-bit data 4th 128-bit data

LSB of pu16EccBuffer[0] LSB of pu16EccBuffer[1] LSB of pu16EccBuffer[2] LSB of pu16EccBuffer[3]

MSB of pu16EccBuffer[0] MSB of pu16EccBuffer[1] MSB of pu16EccBuffer[2] MSB of pu16EccBuffer[3]

Refer below Table 3-7 for allowed programming range for the function.

Table 3-7. Permitted programming range for Fapi_issueEccOnly64ProgrammingCommand()
Flash API Main Array DCSM OTP ECC Link Pointer

Fapi_issueEccOnly64Prog
rammingCommand()

Not allowed Not allowed Allowed Not allowed

Restrictions
• As described above, this function can program only a max of 64-bits ECC at a time. If the user wants to

program more than that, this function should be called in a loop to program 64-bits at a time.
• The Main Array flash programming must be aligned to 512-bit address boundaries and 64-bit ECC word may

only be programmed once per write or erase cycle.
• ECC should not be programmed for link pointer locations. 512-bit address range starting with link pointer

address shall always be programmed using 128-bit Fapi_issueProgrammingCommand().

Return Value
• Fapi_Status_Success (success) • Fapi_Status_FsmBusy (FSM busy)
• Fapi_Error_AsyncDataEccBufferLengthMismatch (failure: Data buffer size either is not 64-bit aligned or

data length crosses the 128-bit aligned memory boundary)

API Functions www.ti.com

22 TMS320F28P65x Flash API Version 3.00.02.00 SPRUJB8 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJB8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJB8&partnum=

• Fapi_Error_FlashRegsNotWritable (failure: Flash register writes failed. The user should make sure that the
API is executing from the same zone as that of the target address for flash operation OR the user should
unlock before the flash operation.

• Fapi_Error_FeatureNotAvailable (failure: User passed a mode that is not supported)
• Fapi_Error_InvalidAddress (failure: User provided an invalid address. For the valid address range, see the

TMS320F28P65x Microcontrollers Data Manual)

Sample Implementation

(Please refer to the flash programming example provided in C2000Ware at
“C2000Ware_.....\driverlib\F28P65x\examples\....\flash\flashapi_512bit_programming\flashapi_cpu1_512bitprogr
amming.c”)

3.2.11 Fapi_issueAsyncCommand()

Issues a command to the Flash State Machine. See the description for the list of commands that can be issued
by this function.

Synopsis

Fapi_StatusType Fapi_issueAsyncCommand(
 Fapi_FlashStateCommandsType oCommand
)

Parameters

oCommand [in] Command to issue to the FSM. Use Fapi_ClearStatus command.

Description

This function issues a command to the Flash State Machine for commands not requiring any additional
information (such as address). On this device, Fapi_ClearStatus command should be issued to the Flash
State Machine using this function. Note that Fapi_ClearStatus command should be issued (only if STATCMD is
not zero) before each program and erase command as shown in the flash programming example provided in
C2000Ware. A new program or erase command can be given only when the STATCMD is zero (achieved by
issuing the Fapi_ClearStatus command).

Return Value
• Fapi_Status_Success (success)
• Fapi_Status_FsmBusy (FSM busy)
• Fapi_Error_FeatureNotAvailable (failure: User passed a command that is not supported)

Sample Implementation

(Please refer to the flash programming example provided in C2000Ware at
“C2000Ware_.....\driverlib\F28P65x\examples\....\flash\flashapi_128bit_programming\flashapi_cpu1_128bitprogr
amming.c”)

3.2.12 Fapi_checkFsmForReady()

Returns the status of the Flash State Machine

Synopsis

Fapi_StatusType Fapi_checkFsmForReady(void)

www.ti.com API Functions

SPRUJB8 – APRIL 2024
Submit Document Feedback

TMS320F28P65x Flash API Version 3.00.02.00 23

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SPRSP69
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJB8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJB8&partnum=

Parameters

None

Description

This function returns the status of the Flash State Machine indicating if it is ready to accept a new command or
not. The primary use is to check if an Erase or Program operation has finished.

Return Value
• Fapi_Status_FsmBusy (FSM is busy and cannot accept new command except for suspend commands)
• Fapi_Status_FsmReady (FSM is ready to accept new command)

3.2.13 Fapi_getFsmStatus()

Returns the value of the STATCMD register

Synopsis

Fapi_FlashStatusType Fapi_getFsmStatus(void)

Parameters

None

Description

This function returns the value of the STATCMD register. This register allows the user application to determine
whether an erase or program operation is successfully completed or in progress or suspended or failed. The
user application should check the value of this register to determine if there is any failure after each erase and
program operation.

Return Value
Table 3-8. STATCMD Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FAILMI
SC

FAILIN
VDATA

FAILIL
LADD

R

FAILVE
RIFY

FAILW
EPRO

T

CMDIN
PROG
RESS

CMDP
ASS

CMDD
ONE

RO(1) -
0x0

RO -
0x0

RO -
0x0

RO -
0x0

RO -
0x0

RO -
0x0

RO -
0x0

RO -
0x0

(1) RO – Read Only

Table 3-9. STATCMD Register Field Descriptions
Bit Name Description Reset value

12 FAILMISC

Command failed due to error other than write/erase
protect violation or verify error.
0: No Fail
1: Fail

0x0

8 FAILINVDATA

Program command failed because an attempt was
made to program a stored 0 value to a 1.
0: No Fail
1: Fail

0x0

6 FAILILLADDR
Command failed due to the use of an illegal address.
0: No Fail
1: Fail

0x0

API Functions www.ti.com

24 TMS320F28P65x Flash API Version 3.00.02.00 SPRUJB8 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJB8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJB8&partnum=

Table 3-9. STATCMD Register Field Descriptions (continued)
Bit Name Description Reset value

5 FAILVERIFY
Command failed due to verify error.
0: No Fail
1: Fail

0x0

4 FAILWEPROT

Command failed due to Write/Erase Protect Sector
violation.
0: No Fail
1: Fail

0x0

2 CMDINPROGRESS
Command in Progress
0: Command complete
1: Command is in progress

0x0

1 CMDPASS
Command Pass - valid when CMD_DONE field is 1
0: Fail
1: Pass

0x0

0 CMDDONE
Command Done
0: Command not Done
1: Command Done

0x0

3.3 Read Functions

3.3.1 Fapi_doBlankCheck()

Verifies region specified is erased value

Synopsis

Fapi_StatusType Fapi_doBlankCheck(
 uint32 *pu32StartAddress,
 uint32 u32Length,
 Fapi_FlashStatusWordType *poFlashStatusWord
)

Parameters

pu32StartAddress [in] Start address for region to blank check

u32Length [in] Length of region in 32-bit words to blank check

poFlashStatusWord [out] Returns the status of the operation if result is not
Fapi_Status_Success
->au32StatusWord[0] Address of first non-blank location
->au32StatusWord[1] Data read at first non-blank location
->au32StatusWord[2] Value of compare data (always 0xFFFFFFFF)
->au32StatusWord[3] N/A

Description

This function checks if the flash is blank (erased state) starting at the specified address for the length of
32-bit words specified. If a non-blank location is found, corresponding address and data will be returned in the
poFlashStatusWord parameter.

Restrictions

None

Return Value
• Fapi_Status_Success (success) - specified Flash locations are found to be in erased state
• Fapi_Error_Fail (failure: region specified is not blank)

www.ti.com API Functions

SPRUJB8 – APRIL 2024
Submit Document Feedback

TMS320F28P65x Flash API Version 3.00.02.00 25

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJB8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJB8&partnum=

• Fapi_Error_InvalidAddress (failure: User provided an invalid address. For the valid address range), see the
TMS320F28P65x Microcontrollers Data Manual.

3.3.2 Fapi_doVerify()

Verifies region specified against supplied data

Synopsis

Fapi_StatusType Fapi_doVerify(
 uint32 *pu32StartAddress,
 uint32 u32Length,
 uint32 *pu32CheckValueBuffer,
 Fapi_FlashStatusWordType *poFlashStatusWord
)

Parameters

pu32StartAddress [in] start address for region to verify

u32Length [in] length of region in 32-bit words to verify

pu32CheckValueBuffer [in] address of buffer to verify region against. Data buffer should be
128-bit aligned.

poFlashStatusWord [out] returns the status of the operation if result is not
Fapi_Status_Success
->au32StatusWord[0] address of first verify failure location
->au32StatusWord[1] data read at first verify failure location
->au32StatusWord[2] value of compare data
->au32StatusWord[3] N/A

Description

This function verifies the device against the supplied data starting at the specified address for the length of
32- bit words specified. If a location fails to compare, these results will be returned in the poFlashStatusWord
parameter.

Restrictions

None

Return Value
• Fapi_Status_Success (success: region specified matches supplied data)
• Fapi_Error_Fail (failure: region specified does not match supplied data)
• Fapi_Error_InvalidAddress (failure: User provided an invalid address. For the valid address range, see the

TMS320F28P65x Microcontrollers Data Manual.

3.4 Informational Functions

3.4.1 Fapi_getLibraryInfo()

Returns information about this compile of the Flash API

Synopsis

Fapi_LibraryInfoType Fapi_getLibraryInfo(void)

Parameters

None

API Functions www.ti.com

26 TMS320F28P65x Flash API Version 3.00.02.00 SPRUJB8 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SPRSP69
https://www.ti.com/lit/pdf/SPRSP69
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJB8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJB8&partnum=

Description

This function returns information specific to the compile of the Flash API library. The information is returned in a
struct Fapi_LibraryInfoType. The members are as follows:

• u8ApiMajorVersion – Major version number of this compile of the API. This value is 3.
• u8ApiMinorVersion – Minor version number of this compile of the API. Minor version is 00 for F28P65x

devices.
• u8ApiRevision – Revision version number of this compile of the API.

Revision number is 02 for this release.

• oApiProductionStatus – Production status of this compile (Alpha_Internal, Alpha, Beta_Internal, Beta,
Production).

Production status is Production for this release.

• u32ApiBuildNumber – Build number of this compile.
• u8ApiTechnologyType – Indicates the Flash technology supported by the API. This field returns a value of

0x5.
• u8ApiTechnologyRevision – Indicates the revision of the technology supported by the API
• u8ApiEndianness – This field always returns as 1 (Little Endian) for F28P65x devices.
• u32ApiCompilerVersion – Version number of the Code Composer Studio code generation tools used to

compile the API

Return Value
• Fapi_LibraryInfoType (gives the information retrieved about this compile of the API)

3.5 Utility Functions

3.5.1 Fapi_flushPipeline()

Flushes the Flash Wrapper pipeline buffers

Synopsis

void Fapi_flushPipeline(void)

Parameters

None

Description

This function flushes the Flash Wrapper data cache. The data cache must be flushed before the first non-API
Flash read after an erase or program operation.

Return Value

None

3.5.2 Fapi_calculateEcc()

Calculates the ECC for the supplied address and 64-bit value

Synopsis

uint8 Fapi_calculateEcc(
 uint32 u32Address,
 uint64 u64Data
)

www.ti.com API Functions

SPRUJB8 – APRIL 2024
Submit Document Feedback

TMS320F28P65x Flash API Version 3.00.02.00 27

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJB8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJB8&partnum=

Parameters

u32Address [in] Address of the 64-bit value to calculate the ECC

u64Data [in] 64-bit value to calculate ECC on (should be in little endian order)

Description

This function will calculate the ECC for a 64-bit aligned word including address. There is no need to provide a
left-shifted address to this function anymore. TMS320F28P65x Flash API takes care of it.

Return Value
• 8-bit calculated ECC (upper 8 bits of the 16-bit return value should be ignored)
• If an error occurs, the 16-bit return value is 0xDEAD

3.5.3 Fapi_isAddressEcc()

Indicates is an address is in the Flash Wrapper ECC space

Synopsis

boolean Fapi_isAddressEcc(
 uint32 u32Address
)

Parameters

u32Address [in] Address to determine if it lies in ECC address space

Description

This function returns True if address is in ECC address space or False if it is not.

Return Value
• FALSE (Address is not in ECC address space)
• TRUE (Address is in ECC address space)

3.5.4 Fapi_remapEccAddress()

Takes ECC address and remaps it to main address space

Synopsis

uint32 Fapi_remapEccAddress(
 uint32 u32EccAddress
)

Parameters

u32EccAddress [in] ECC address to remap

Description

This function returns the main array Flash address for the given Flash ECC address. When the user wants to
program ECC data at a known ECC address, this function can be used to obtain the corresponding main array
address. Note that the Fapi_issueProgrammingCommand() function needs a main array address and not the
ECC address (even for the Fapi_EccOnly mode).

API Functions www.ti.com

28 TMS320F28P65x Flash API Version 3.00.02.00 SPRUJB8 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJB8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJB8&partnum=

Return Value

32-bit Main Flash Address

3.5.5 Fapi_calculateFletcherChecksum()

Calculates the Fletcher checksum from the given address and length.

Synopsis

uint32 Fapi_calculateFletcherChecksum(
 uint16 *pu16Data,
 uint16 u16Length
)

Parameters

pu16Data [in] Address to start calculating the checksum from

u16Length [in] Number of 16-bit words to use in calculation

Description

This function generates a 32-bit Fletcher checksum starting at the supplied address for the number of 16-bit
words specified. Note that only the flash main-array address range can be used for this function. DCSM OTP
address range should not be provided.

Return Value
• 32-bit Fletcher Checksum value

www.ti.com API Functions

SPRUJB8 – APRIL 2024
Submit Document Feedback

TMS320F28P65x Flash API Version 3.00.02.00 29

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJB8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJB8&partnum=

4 Recommended FSM Flows

4.1 New Devices From Factory
Devices are shipped erased from the factory. It is recommended, but not required, to do a blank check on
devices received to verify that they are erased.

4.2 Recommended Erase Flow
Figure 4-1 describes the flow for erasing a sector(s) on a device. For further information, see 3.2.11 , 3.2.2,
3.2.3.

Yes

Yes

No

No

- Configure system clock frequency

- Configure wait-states

- Configure watchdog (if needed)

- Configure the BANKMUXSEL and

FLASHCTLSEM (FLASHSEM)

Call Fapi_initializeAPI()

Call Fapi_setActiveFlashBank()

Call Fapi_ClearStatus()

Call Fapi_issueAsyncCommandWithAddress()

Supplying command and starting address

Fapi_checkFsmForReady() !=

Fapi_Status_FsmBusy

Fapi_getFsmStatus() == 0 DUT fails Erase

Done

Start

Erase another sector?
Yes

No

Figure 4-1. Recommended Erase Flow

Recommended FSM Flows www.ti.com

30 TMS320F28P65x Flash API Version 3.00.02.00 SPRUJB8 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJB8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJB8&partnum=

4.3 Recommended Bank Erase Flow
Figure 4-2 describes the flow for erasing a Flash bank. For further information, see 3.2.11, 3.2.2, 3.2.4.

Yes

Yes

No

No

- Configure system clock frequency

- Configure wait-states

- Configure watchdog (if needed)

- Configure the BANKMUXSEL and FLASHCTLSEM

(FLASHSEM)

Call Fapi_initializeAPI()

Call Fapi_setActiveFlashBank()

Call Fapi_ClearStatus()

Call Fapi_issueBankEraseCommand()

supplying starting address and sector mask

Fapi_checkFsmForReady() !=

Fapi_Status_FsmBusy

Fapi_getFsmStatus() == 0 DUT fails Erase

Done

Start

Figure 4-2. Recommended Bank Erase Flow

www.ti.com Recommended FSM Flows

SPRUJB8 – APRIL 2024
Submit Document Feedback

TMS320F28P65x Flash API Version 3.00.02.00 31

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJB8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJB8&partnum=

4.4 Recommended Program Flow
Figure 4-3 describes the flow for programming a device. This flow assumes the user has already erased all
affected sectors or bank following the Recommended Erase Flow. For further information, see 3.2.11, 3.2.2,
3.2.5.

Yes

Yes

No

No

- Configure system clock frequency

- Configure wait-states

- Configure watchdog (if needed)

- Configure the BANKMUXSEL and

FLASHCTLSEM (FLASHSEM)

Call Fapi_initializeAPI()

Call Fapi_setActiveFlashBank()

Call Fapi_ClearStatus()

Call Fapi_issueProgrammingCommand()

supplying starting address, data, and mode

Fapi_checkFsmForReady() !=

Fapi_Status_FsmBusy

Fapi_getFsmStatus() == 0 DUT fails Program

Done

Start

More data to program?
Yes

No

Figure 4-3. Recommended Program Flow

Recommended FSM Flows www.ti.com

32 TMS320F28P65x Flash API Version 3.00.02.00 SPRUJB8 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJB8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJB8&partnum=

A Flash State Machine Commands
Table A-1. Flash State Machine Commands

Command Description Enumeration Type API Call(s)
Program
Data

Used to program data to any
valid Flash address

Fapi_ProgramData Fapi_issueProgrammingCommand()

Fapi_issueDataAndEcc512ProgrammingCommand()
Fapi_issueAutoEcc512ProgrammingCommand()
Fapi_issueDataOnly512ProgrammingCommands()
Fapi_issueDataAndEcc512ProgrammingCommand()
Fapi_issueEccOnly65ProgrammingCommand()

Erase
Sector

Used to erase a Flash
sector located by the specified
address

Fapi_EraseSector Fapi_issueAsyncCommandWithAddress()

Erase Bank Used to erase a Flash bank Fapi_EraseBank Fapi_issueBankEraseCommand()

Clear Status Clears the status register Fapi_ClearStatus Fapi_issueAsyncCommand()

www.ti.com Flash State Machine Commands

SPRUJB8 – APRIL 2024
Submit Document Feedback

TMS320F28P65x Flash API Version 3.00.02.00 33

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJB8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJB8&partnum=

B Typedefs, Defines, Enumerations and Structure

B.1 Type Definitions

#if defined(__TMS320C28XX__)
typedef unsigned char boolean;
typedef unsigned int uint8; /*This is 16 bits in C28x*/
typedef unsigned int uint16;
typedef unsigned long int uint32;
typedef unsigned long long int uint64;
#endif

B.2 Defines

#if (defined(__TMS320C28xx__) && __TI_COMPILER_VERSION__ < 6004000)
#if !defined(__GNUC__)
#error “F65 Flash API requires GCC language extensions. Use the –gcc option.”
#endif
#endif
#if defined(__ICCARM__) /* IAR EWARM Compiler */
#define ATTRIBUTE_PACKED __packed
#elif defined(__TMS320C28XX__) /* TI CGT C28xx compilers */
#define ATTRIBUTE_PACKED
#else /* all other compilers */
#define ATTRIBUTE_PACKED __attribute__((packed))
#endif
#define HIGH_BYTE_FIRST 0
#define LOW_BYTE_FIRST 1
#ifndef TRUE
 #define TRUE 1
#endif
#ifndef FALSE
 #define FALSE 0
#endif

B.3 Enumerations

B.3.1 Fapi_FlashProgrammingCommandsType

This contains all the possible modes used in the Fapi_IssueProgrammingCommand().

typedef enum
{
Fapi_AutoEccGeneration, /* This is the default mode for the command and will auto generate the
ecc for the provided data buffer */
Fapi_DataOnly, /* Command will only process the data buffer */
Fapi_EccOnly, /* Command will only process the ecc buffer */
Fapi_DataAndEcc /* Command will process data and ecc buffers */
} ATTRIBUTE_PACKED Fapi_FlashProgrammingCommandsType;

B.3.2 Fapi_FlashBankType

This is used to indicate which Flash bank is being used.

typedef enum
{
 Fapi_FlashBank0,
 Fapi_FlashBank1,
 Fapi_FlashBank2,
 Fapi_FlashBank3,
 Fapi_FlashBank4
} ATTRIBUTE_PACKED Fapi_FlashBankType;

B.3.3 Fapi_FlashStateCommandsType

This contains all the possible Flash State Machine commands.

typedef enum
{
Fapi_ProgramData = 0x0002,

Typedefs, Defines, Enumerations and Structure www.ti.com

34 TMS320F28P65x Flash API Version 3.00.02.00 SPRUJB8 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJB8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJB8&partnum=

Fapi_EraseSector = 0x0006,
Fapi_EraseBank = 0x0008,
Fapi_ClearStatus = 0x0010,
} ATTRIBUTE_PACKED Fapi_FlashStateCommandsType;

B.3.4 Fapi_StatusType

This is the master type containing all possible returned status codes.

typedef enum {
 Fapi_Status_Success=0, /* Function completed successfully */
 Fapi_Status_FsmBusy, /* FSM is Busy */
 Fapi_Status_FsmReady, /* FSM is Ready */
 Fapi_Status_AsyncBusy, /* Async function operation is Busy */
 Fapi_Status_AsyncComplete, /* Async function operation is Complete */
 Fapi_Error_Fail=500, /* Generic Function Fail code */
 Fapi_Error_StateMachineTimeout, /* State machine polling never returned ready and timed out */
 Fapi_Error_OtpChecksumMismatch, /* Returned if OTP checksum does not match expected value */
 Fapi_Error_InvalidDelayValue, /* Returned if the Calculated RWAIT value exceeds 15 - Legacy
Error */
 Fapi_Error_InvalidHclkValue, /* Returned if FClk is above max FClk value - FClk is a
calculated from HClk and RWAIT/EWAIT */
 Fapi_Error_InvalidCpu, /* Returned if the specified Cpu does not exist */
 Fapi_Error_InvalidBank, /* Returned if the specified bank does not exist */
 Fapi_Error_InvalidAddress, /* Returned if the specified Address does not exist in Flash or
OTP */
 Fapi_Error_InvalidReadMode, /* Returned if the specified read mode does not exist */
 Fapi_Error_AsyncIncorrectDataBufferLength,
 Fapi_Error_AsyncIncorrectEccBufferLength,
 Fapi_Error_AsyncDataEccBufferLengthMismatch,
 Fapi_Error_FeatureNotAvailable, /* FMC feature is not available on this device */
 Fapi_Error_FlashRegsNotWritable, /* Returned if Flash registers are not writable due to security
*/
 Fapi_Error_InvalidCPUID /* Returned if OTP has an invalid CPUID */
} ATTRIBUTE_PACKED Fapi_StatusType;

B.3.5 Fapi_ApiProductionStatusType

This lists the different production status values possible for the API.

typedef enum {
Alpha_Internal, /* For internal TI use only. Not intended to be used by customers */
Alpha, /* Early Engineering release. May not be functionally complete */
Beta_Internal, /* For internal TI use only. Not intended to be used by customers */
Beta, /* Functionally complete, to be used for testing and validation */
Production /* Fully validated, functionally complete, ready for production use */
} ATTRIBUTE_PACKED Fapi_ApiProductionStatusType;

B.4 Structures

B.4.1 Fapi_FlashStatusWordType

This structure is used to return status values in functions that need more flexibility:

typedef struct
{
uint32 au32StatusWord[4];
} ATTRIBUTE_PACKED Fapi_FlashStatusWordType;

B.4.2 Fapi_LibraryInfoType

This is the structure used to return API information:

typedef struct
{
uint8 u8ApiMajorVersion;
uint8 u8ApiMinorVersion;
uint8 u8ApiRevision;
Fapi_ApiProductionStatusType oApiProductionStatus;
uint32 u32ApiBuildNumber;
uint8 u8ApiTechnologyType;
uint8 u8ApiTechnologyRevision;

www.ti.com Typedefs, Defines, Enumerations and Structure

SPRUJB8 – APRIL 2024
Submit Document Feedback

TMS320F28P65x Flash API Version 3.00.02.00 35

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJB8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJB8&partnum=

uint8 u8ApiEndianness;
uint32 u32ApiCompilerVersion;
} Fapi_LibraryInfoType;

Typedefs, Defines, Enumerations and Structure www.ti.com

36 TMS320F28P65x Flash API Version 3.00.02.00 SPRUJB8 – APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJB8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJB8&partnum=

C Summary of Changes From v3.00.01 to v3.00.02
v3.00.02:

• Updated paths for the 128-bit and 512-bit programming examples in C2000Ware.
• Updated library version number to v3.00.02. v3.00.02 allows programming all banks using 512-bit

programming.
• Updated Section 3.4.1 “Fapi_getLibraryInfo()” function with u8ApiRevision to 2.

v3.00.01:
• Added functions for 512-bit programming:

– Section 3.2.7 Fapi_issueAutoEcc512ProgrammingCommand()
– Section 3.2.8 Fapi_issueDataAndEcc512ProgrammingCommand()
– Section 3.2.9 Fapi_issueDataOnly512ProgrammingCommand()
– Section 3.2.10 Fapi_issueEccOnly64ProgrammingCommand()

Note
Users who do not need 512-bit programming can continue to use the Flash API library
FAPI_F28P65x_EABI_v3.00.00.lib provided in C2000ware version C2000Ware_5_00_00_00 for
TMS320F28P65x devices.

• Updated library version number from v3.00.00 to v3.00.01
• Updated Section 2.3.2.3 "Key Facts For Flash API Usage" to add 512-bit allowed link pointer range
• Updated Section 3.4.1 “Fapi_getLibraryInfo()” function with u8ApiRevision and oApiProductionStatus

www.ti.com Summary of Changes From v3.00.01 to v3.00.02

SPRUJB8 – APRIL 2024
Submit Document Feedback

TMS320F28P65x Flash API Version 3.00.02.00 37

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJB8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJB8&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2024, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	Table of Contents
	Trademarks
	1 Introduction
	1.1 Reference Material
	1.2 Function Listing Format

	2 TMS320F28P65x Flash API Overview
	2.1 Introduction
	2.2 API Overview
	2.3 Using API
	2.3.1 Initialization Flow
	2.3.1.1 After Device Power Up
	2.3.1.2 Flash Wrapper and Bank Setup
	2.3.1.3 On System Frequency Change

	2.3.2 Building With the API
	2.3.2.1 Object Library Files
	2.3.2.2 Distribution Files

	2.3.3 Key Facts for Flash API Usage

	3 API Functions
	3.1 Initialization Functions
	3.1.1 Fapi_initializeAPI()

	3.2 Flash State Machine Functions
	3.2.1 Fapi_setActiveFlashBank()
	3.2.2 Fapi_setupBankSectorEnable()
	3.2.3 Fapi_issueAsyncCommandWithAddress()
	3.2.4 Fapi_issueBankEraseCommand()
	3.2.5 Fapi_issueProgrammingCommand()
	3.2.6 Fapi_issueProgrammingCommandForEccAddresses()
	3.2.7 Fapi_issueAutoEcc512ProgrammingCommand()
	3.2.8 Fapi_issueDataAndEcc512ProgrammingCommand()
	3.2.9 Fapi_issueDataOnly512ProgrammingCommand()
	3.2.10 Fapi_issueEccOnly64ProgrammingCommand()
	3.2.11 Fapi_issueAsyncCommand()
	3.2.12 Fapi_checkFsmForReady()
	3.2.13 Fapi_getFsmStatus()

	3.3 Read Functions
	3.3.1 Fapi_doBlankCheck()
	3.3.2 Fapi_doVerify()

	3.4 Informational Functions
	3.4.1 Fapi_getLibraryInfo()

	3.5 Utility Functions
	3.5.1 Fapi_flushPipeline()
	3.5.2 Fapi_calculateEcc()
	3.5.3 Fapi_isAddressEcc()
	3.5.4 Fapi_remapEccAddress()
	3.5.5 Fapi_calculateFletcherChecksum()

	4 Recommended FSM Flows
	4.1 New Devices From Factory
	4.2 Recommended Erase Flow
	4.3 Recommended Bank Erase Flow
	4.4 Recommended Program Flow

	A Flash State Machine Commands
	B Typedefs, Defines, Enumerations and Structure
	B.1 Type Definitions
	B.2 Defines
	B.3 Enumerations
	B.3.1 Fapi_FlashProgrammingCommandsType
	B.3.2 Fapi_FlashBankType
	B.3.3 Fapi_FlashStateCommandsType
	B.3.4 Fapi_StatusType
	B.3.5 Fapi_ApiProductionStatusType

	B.4 Structures
	B.4.1 Fapi_FlashStatusWordType
	B.4.2 Fapi_LibraryInfoType

	C Summary of Changes From v3.00.01 to v3.00.02

