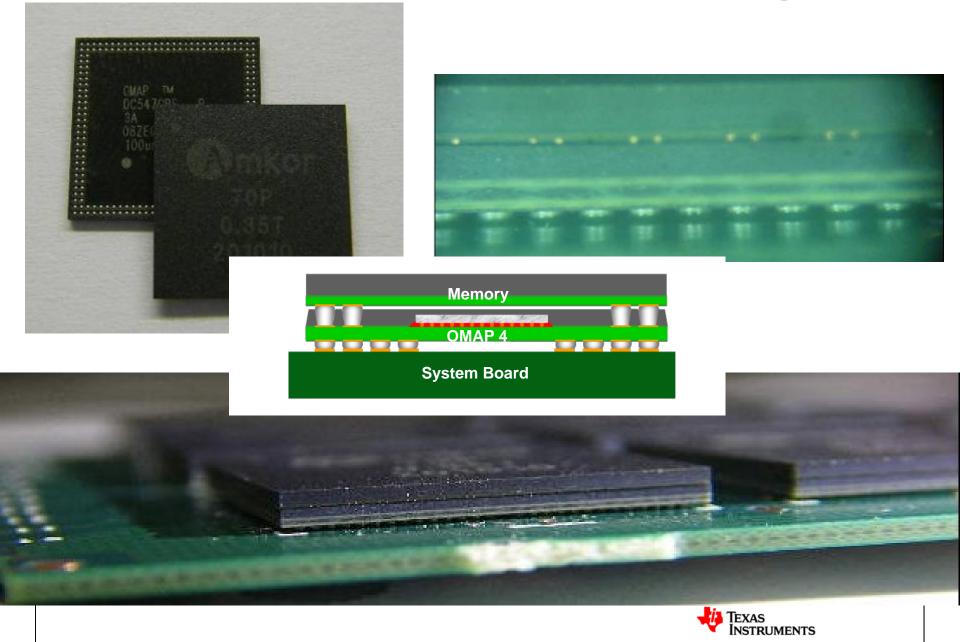
TI OMAP4xxx POP SMT Design Guideline

Michael Chen (TITL PKG) Kenji Masumoto (HIJI PKG) Shawn Wu (TITL PKG) Kurt Wachtler (WTBU PKG) We Support One Make

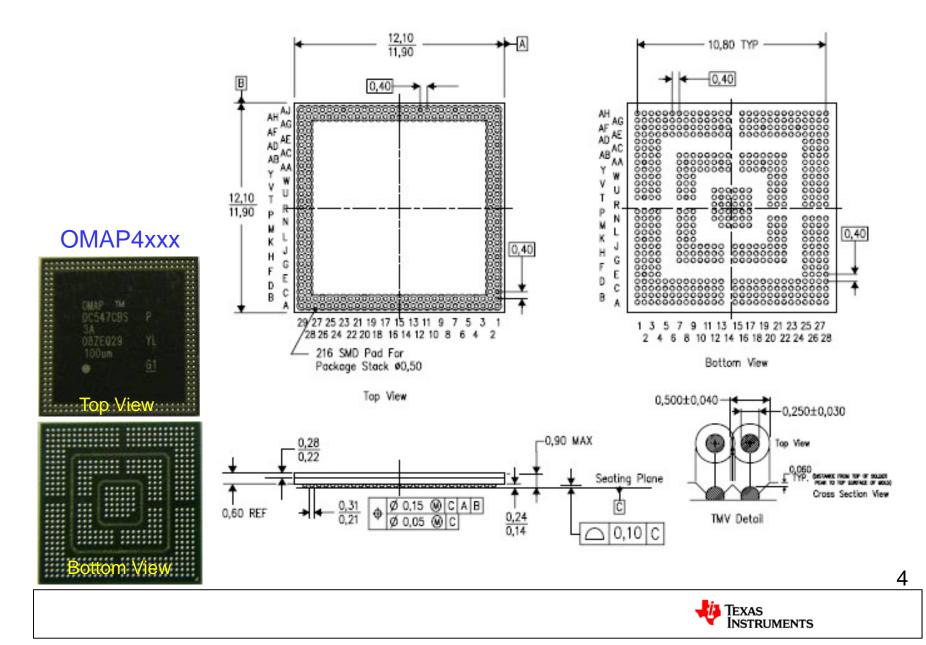
Index:

Package Introduction

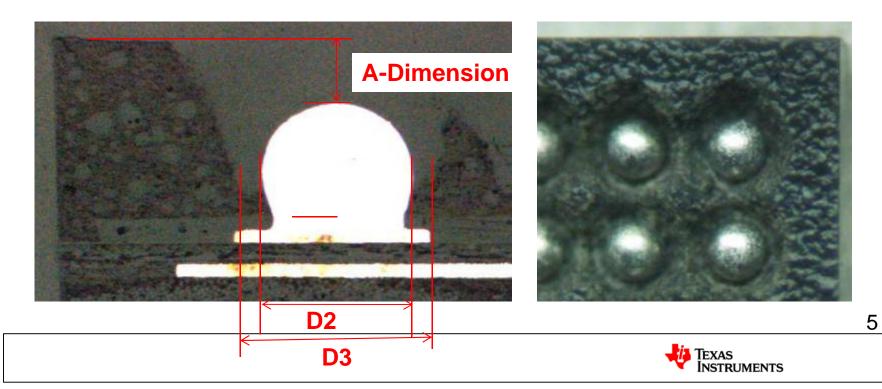
ℵ OMAP4 SMT Process sharing


- ✓ Stencil/PCB design guide
- Memory chip flux/solder dipping in 1-step mounting
- ✓The example of Pick & Place machine condition setting
- Reflow profile recommendation
- ✓ SMT experiment examples

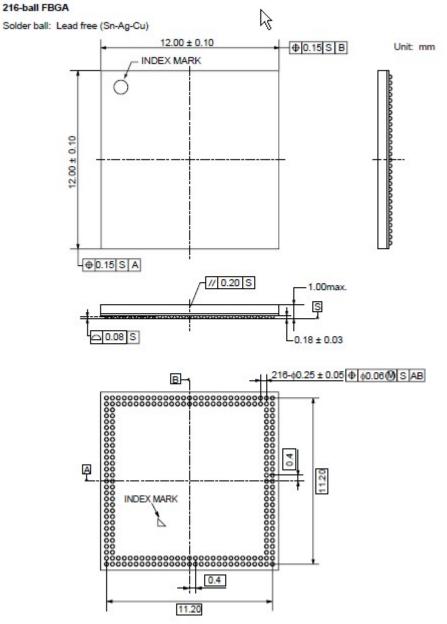
x Appendix


- Through molded via solder rework methods
- ✓X-ray examples
- ✓ Screen print material and tool examples
- ✓ Package warpage affect examples

OMAP4XXX POP Packages



Mechanical Drawing of OMAP4xxx CBS (TMV)



OMAP4xxx TMV

Mechanical Drawing of Memory Chip

Memory Chip

Bottom View

Texas Instruments 6

Agenda:

Package Introduction

OMAP4 SMT Process sharing

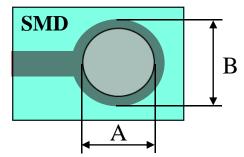
✓ Stencil/PCB design guide

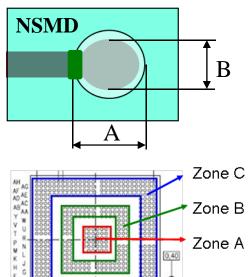
Memory chip flux/solder dipping in 1-step mounting

The example of Pick & Place machine condition setting

Reflow profile recommendation

✓SMT experiment examples


80 Q& A 😪


Stencil/PCB design guide for P0.4 OMAP4

PWB Land & Stencil aperture design Recommendation for pitch 0.4mm

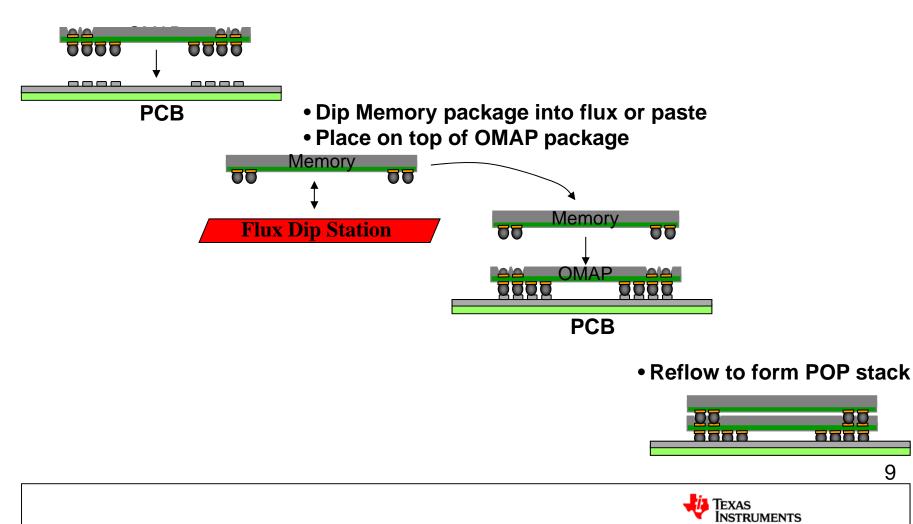
Solder Mask Defined

Non Solder Mask Defined

1 3 5 7 9 11 13 15 17 19 21 23 25 27

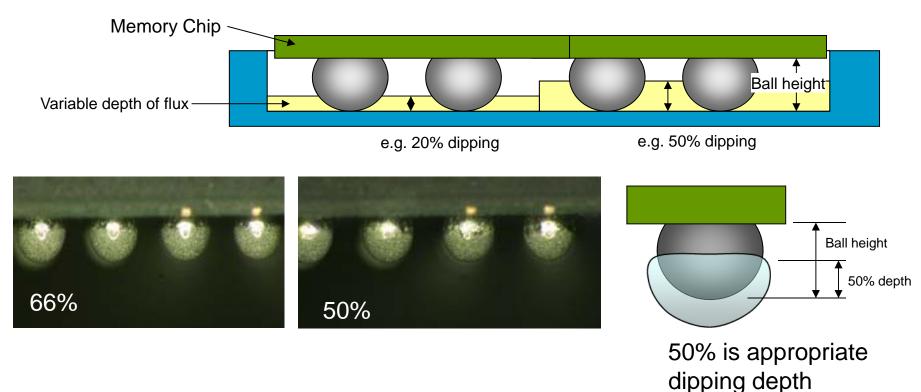
<u>Ball Pitch</u>		PWB I A	<u>Design</u> <u>B</u>	Stencil Thickness	Design Opening	
	SMD*	0.23	0.28	0.08/0.1	0.25	(Zone C)
0.4mm				0.08/0.1	0.20	(Zone A+B)
	NSMD	0.28	0.23	0.08/0.1	0.25	(Zone C)
				0.08/0.1	0.20	(Zone A+B)

- Avoid VIP(Via in Pad) design. If should do it, the plugged via with flatten surface is recommended.
- SMD design is more suggested than NSMD to prevent the solder starvation form trace neck or irregular joint shape.
- Trace design: No big ground with several pads connection or wide trace neck.
- Square opening of Stencil can get more volume for joint print.



Package on Package (POP) Surface Mount Assembly Process Flow

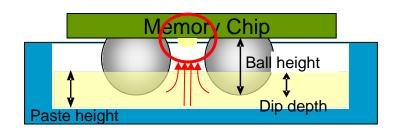
8886

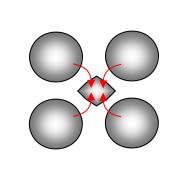

9

- Screen print solder paste to PCB
- Pick and place OMAP BGA

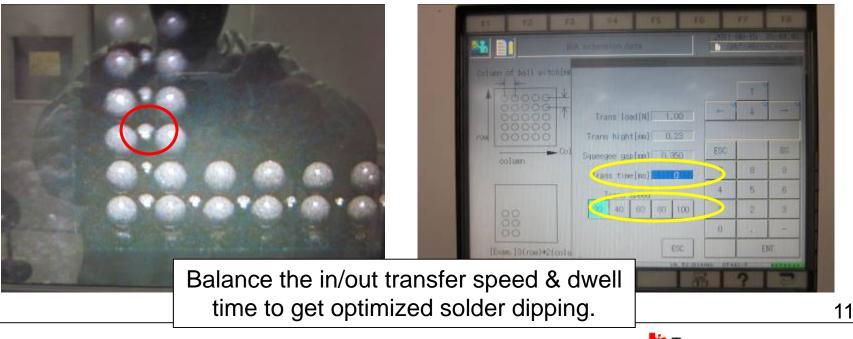
Memory chip flux/solder dipping recommendation in 1-step mounting

"A" memory DC package, is dipped into flux with variable depth




Flux/solder past dip depth:

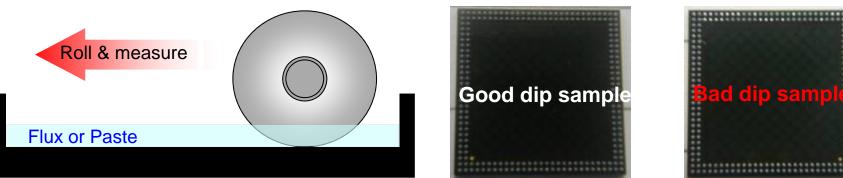
From the evaluation, the optimal results at 50-70 % flux dip and solder paste.



Memory Paste dipping & SMT Machine Control Setting

Memory Dip too fast + paste suppress by 4 balls and extrude the additional paste up & attached on the bottom of substrate surface.





Flux/Solder Paste Depth Measurement

Flux/paste dipping depth was measured by using height gauge shown in below picture.

The dipping performance contributed the top level soldering yield directly.

Measurement of flux depth (Example)

Wet Film Thickness Gauge 433

ISO, BS

One instrument only for 4 measuring ranges: 5 - 100 microns, 100 - 500 microns, 300 - 700 microns, 700 - 1500 microns. This comb-shaped instrument, made of stainless steel, stands out for high accuracy.

Wet Film Thickness Gauge 234

DIN, ASTM, BS, ISO, NF

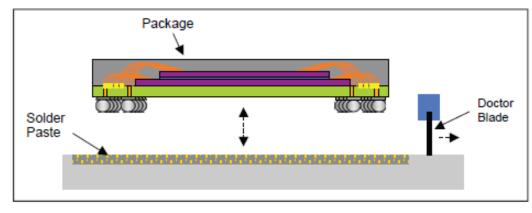
A hardened and ground double wheel with an eccentric cam in the middle is rolled over a newly applied film. The wetting line on the middle cam is read off on a scale as wet film thickness. Total measuring range: 1500 microns, available in 8 different sub-ranges.

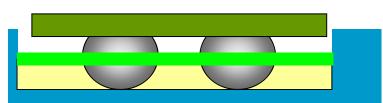
Condition of PnP M/C setting (example)

Placement Parameters:

- ✓ SMT M/C Brand: Panasonic
- ✓Type: NPM
- Device Placement: OMAP4 + Memory Chip
- Placement method: By 1-step
- Fiducial marks recognition for placement:
 - By Board fiducial
- Pick up Nozzle type: 1004
- ✓Nozzle size: ~8mm (with robber tip)
- Memory Vision sequence: Pickup + Camera
 vision + Memory Dipping + Placement
- ✓Dwell time of memory dipping: 400ms ~1 sec
- Placement Force (N) or placement depth (um):
 For OMAP4: package height+1~2.5N (push down)
 For Memory Chip: package height+1~2.5N (push down)

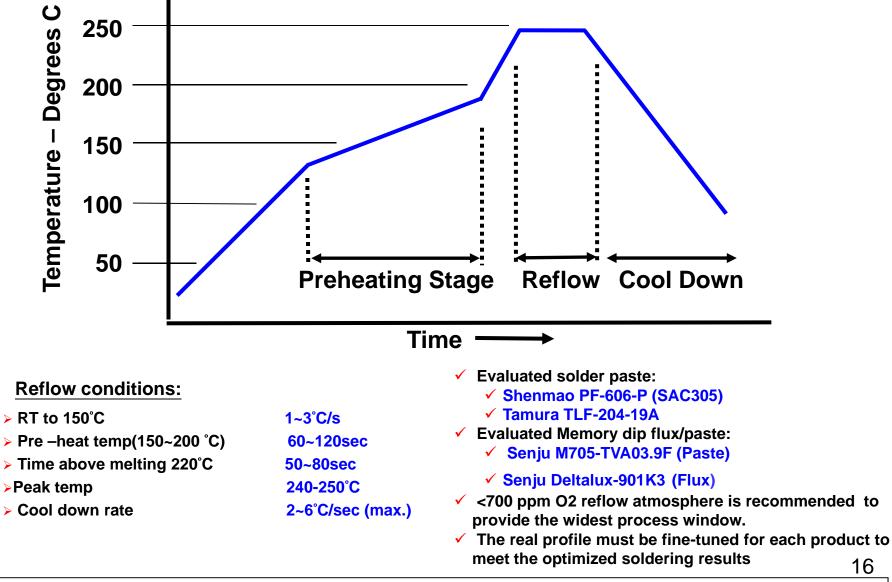
Nozzle type: 1004


Bottom and Top BGA Placement

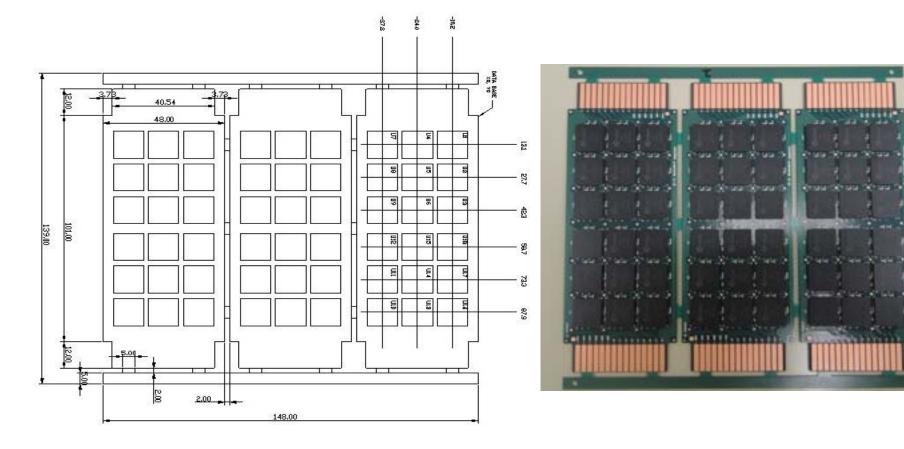


Surface Mounter: Fuji NXT

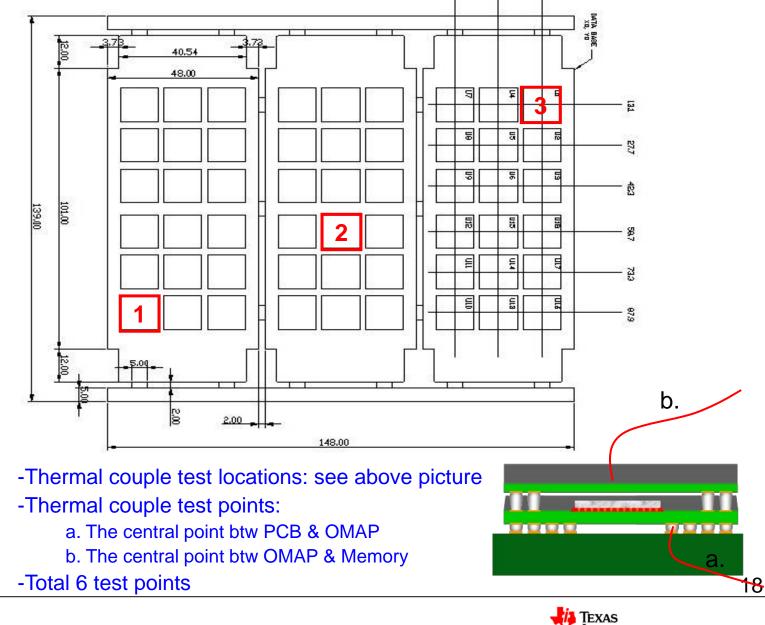
Memory Package Flux Dipping Reservoir



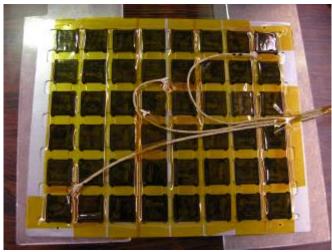
Ideal Flux Depth = 50-60%


TEXAS INSTRUMENTS

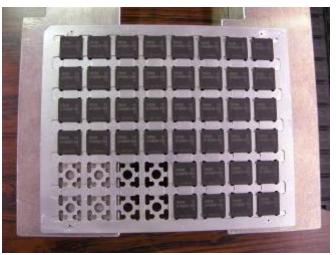
Profile Recommendation for OMAP4xxx (TMV)



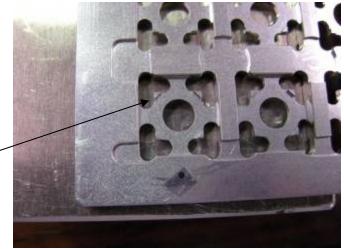
PCB panel



POP profile test board example


INSTRUMENTS

2-pass reflow: Pre-stack tray for FCPOP



To check temperature profile

Bottom POP is supported by this rib to depopulated ball area

Pre-stack tray designed for TI OMAP3430

Pre-stack tray designed for TI OMAP3430 19

Agenda:

Package Introduction

ℵ OMAP4 SMT Process sharing

- ✓ Stencil/PCB design guide
- Memory chip flux/solder dipping in 1-step mounting
- The example of Pick & Place machine condition setting

Reflow profile recommendation

SMT experiment examples

80 Q& A

OMAP4xxx SMT Evaluation

Preliminary experiments performed concurrent to package design and material selection

Experiments	1	2	3	4	5	6	7
Dippable mat'l	Senju 529D-1	Senju 529D-1	Senju 529D-1	Senju 529D-1	Senju M705- TVA03.9-F	Senju Deltalux- 901K3	Senju Deltalux- 901K3
Dinning plate denth	Flux	Flux	Flux	Flux	Paste	Flux	Flux
Dipping plate depth Reflow Atmosphere	<u>170um</u> Air	170um N2	<u>170um</u> N2	170um Air	140um N2	<u>170um</u> N2	<u>160um</u> N2
Reflow preheat time (sec)	80-90	80-90	60-65	60-65	70-80	70-80	70-80
Dwell time for TMV package placement (ms)	300	300	300	300	300	300	300
Dwell time for memory package dipping (ms)	300	300	300	300	600	600	300
Dwell time for memory package placement (ms)	300	300	300	300	500	500	500
Sample Size	1635	204	2310	1700	972	216	700
Rejects	114	0	5	37	0	3	8
Yield	93%	100%	100%	98%	100%	99%	99%

Total Air Atmosphere							
Sample Size	3335						
Rejects	151						
Yield	95.5%						
Total N2 Atmosphere							
Sample Size	4402						
Rejects	16						
Yield	99.6%						

Summary:

- Nitrogen atmosphere better than air
- Senju 901K3 better in air than Senju 529D-1*
- Dipping depth too deep*

*reference follow up tests in this report

OMAP4xxx DOE Experiments

OMAP4xxx DC (TMV) SMT Evaluation DOE1

DOE1 Set Up

	Flux Dipping	Paste Dipping			
OMAP4 Package	OMAP4 CBS Daisy Chain	OMAP4 CBS Daisy Chain			
Memory Package	Mock Up	Mock Up			
SMT Board	NSMD Pads	SMD Pads			
Bottom BGA Paste	Shenmao PF-606-P (SAC305)	Shenmao PF-606-P (SAC305)			
Top BGA Flux or Paste	Senju Deltalux-901K3 (No-Clean dipping flux)	Senju M705-TVA03.9F (SAC305, No-Clean dipping paste)			
Solder Stencil	Laser and electro-polished	Laser and electro-polished			
Thickness (um)	80	80			
Shape	Round	Round			
Outer Four Rows Diameter (um)	250	250			
Inner Rows Diameter (um)	200	200			
Memory Package Dipping Depth (um)	120 - 140um	See other table			
Reflow Profile					
Pre-heat time	70-80 sec	70-80 sec			
Time above Liquid	65 - 75 sec	65 - 75 sec			
Peak temp and time	245-250oC	245-250oC			
Reflow Atmosphere	Nitrogen (700 O2 ppm)	Nitrogen (700 O2 ppm)			
Sample Size	540 packages	270			
Yield					
Opens (DC net test)	0/540	See other table			
Shorts (X-Ray)	0/540	See other table			

24

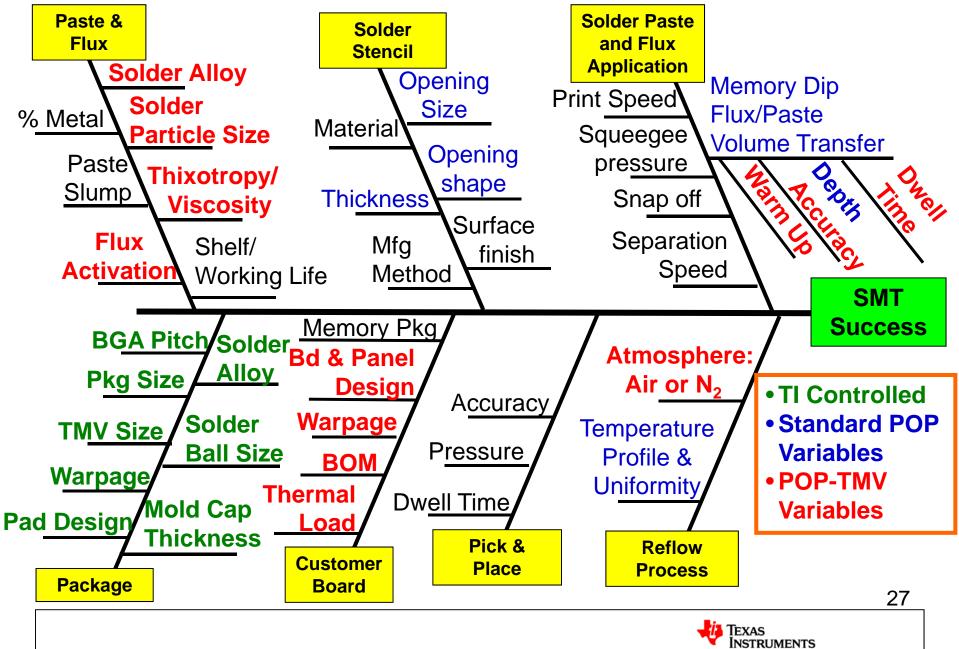
DOE1 Results

	Run 1	Run 2
	Flux Dipping	Paste Dipping
Memory Ball Height	190um	190um
Top BGA Flux or Paste	Senju Deltalux-901K3 (No-Clean dipping flux)	Senju M705-TVA03.9F (SAC305, No-Clean dipping paste)
Warm up time	> 8 hours	See below table
Memory Package Dipping Depth (um)	120 - 140um	See below table
Sample Size	540 ea	270ea
Yield		
Opens (DC net test)	0/540	See below table
Shorts (X-Ray)	0/540	See below table

Run	2-1	2-2	2-2 2-3 2-4					
Bottom BGA Paste		Sher	nmao PF-606-P (SA	C305)				
Warm up time	p time > 18 hours							
Top BGA Paste Senju M705-TVA03.9F (SAC305, No-Clean dipping paste)								
Warm up time	30 min > 18 hours							
Memory Package Dipping Depth (um)	140	125	124	122	122			
Yield								
Opens (DC net test)	0/54	0/54	0/54	0/54	0/54			
Shorts (X-Ray)	54/54	2/54	0/54	0/54	0/54			

TEXAS INSTRUMENTS

Top BGA Typical Solder Joint Defects


Defect: Random single or double non-wet solder joints **Root Causes**:

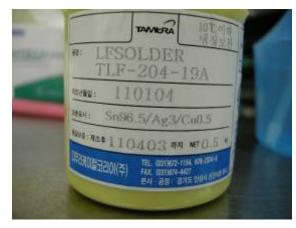
- Insufficient flux
- OMAP and/or Memory solder ball height and gap variation during the reflow process

Solution: Flux volume transfer control

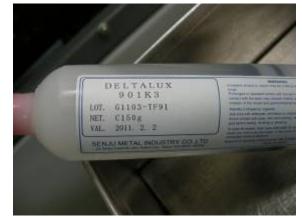
POP SMT Process Variables

OMAP4xxx DC (TMV) SMT Evaluation DOE2

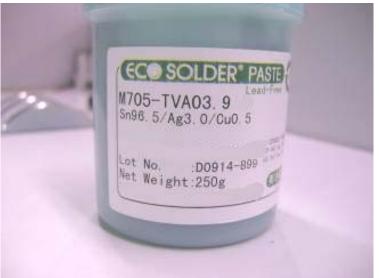
DOE2 Set up: Screen Print Stencil Design & Reflow Process


Stencil Designs	1	2	3	4	5	6	7	8
Shape	Round 80 Variable, Nano	Round 80 Variable	Round 80	Square 80 Uniform	Square 80 Variable	Square 80 variable Nano	Round 100 Uniform	Round 100 Uniform
Thickness (um)	80	80	80	80	80	80	100	100
Zone C	250	250	250	250	250	250	210	255
Zones A & B	200	200	250	250	200	200	210	255
Opening Ratio								
Zones C	0.78	0.78	0.78	0.78	0.78	0.78	0.53	0.64
Zone A & B	0.63	0.63	0.78	0.78	0.63	0.63	0.53	0.64

		Reflow Profiles						
→ (* 0,40)	Zone A: Center Array		Option 1	Option 2	Option 3			
AH AC 0000000000000000000000000000000000	Zone B: Middle Array	Preheat Zone						
AH 6000000000000000000000000000000000000	Zone D. Middle Andy	Temperature	R/T-120C	R/T-120C	R/T-120C			
AB AA 0000 00000000 00000000 0000000 000000	Zone C: Outer Array	Time	70	90	110			
		Soak Zone						
W L 00000 0000 0000 0000 0000 0000 0000]	Temperature	120-180c	120-180c	120-180c			
H G G000 0000000 00000000 0000000000000		Time	90	110	130			
		Reflow Zone						
1 3 5 7 9 11 13 15 17 19 21 23 25 27		Peak Temperature	235	240-245	245-250			
2 4 6 8 10 12 14 16 18 20 22 24 26 28		Time above Liquid	60	80	100			
Bottom View		Cooling Zone	3°/sec	3°/sec	3°/sec			

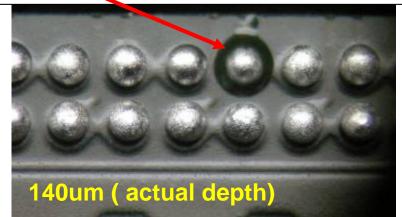


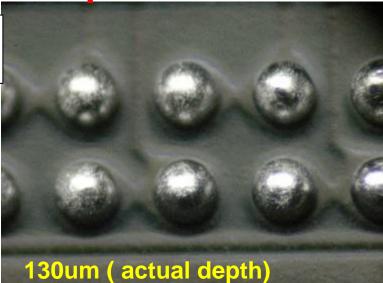
DOE2: Solder Paste and Flux

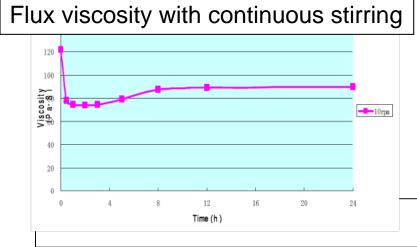

Solder paste for POP mount: Tamura TLF-204-19A

Flux for memory dipping: Senju DELTALUX 901K3

Solder paste for memory dipping: Senju M705-TVA03.9-F

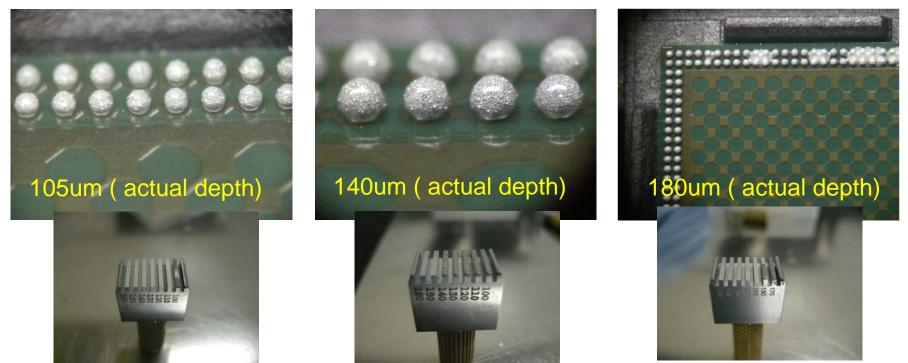

DOE2 Results


		Ste	en	cil	s	POP Memory	Process		eflc rofi			Reflow nosphere		Ор	ens	Shorts	Yie	ld
Legs	1	4	5	7	8	Dipping Material	Dipping Depth (um)	A	в	с	Air	№ 2 <700ppm O ₂	Qt'y	Bott om	Тор	Any	Bottom	Тор
1						Paste:	105						216	0	0	0	100%	100%
2						Senju M705-	140						216	0	0	0	100%	100%
3						TVA03.9F	180						54	0		54	100%	0%
4							140						216	0	76	0	100%	65%
5							130						216	0	0	0	100%	100%
6							130						216	1	1	0	99.5%	99.5%
7							130						216	0	1	0	100%	99.5%
8							130						216	0	0	0	100%	100%
9							130						216	0	216	0	100%	0%
10							130						108	0	108	0	100%	0%
11						Flux:	130						108	0	1	0	100%	99%
12						Senju 901K3	130						216	0	216	0	100%	0%
13							130						108	0	102	0	100%	6%
14							130						108	0	0	0	100%	100%
15 (15 air bake, 150oC, 8 hrs)							130						108	o	108	0	100%	0%
16 (15 air bake, 150oC, 8 hrs)							130						108	0	0	0	100%	100%
17-1			•	Pre ck)		Paste: Senju M705- TVA03.9F	140						108	N/A	N/A	N/A	N/A	N/A
17-2			A (I tac	Pre ck)	÷-	Flux: Senju 901K3	130						108	N/A	N/A	N/A	N/A	N/A
17-1a						17-1 pre-stack							108	0	0	0	100%	100%
17-2b						17-2 pre-s	stack						108	0	0	0	100%	100%
												Total	2862					31


Memory Dipping Defect Example

Black ring is flux wetting bottom of memory package: pulled flux off solder ball

Flux Legs	Flux Dipping Mat'l	Dipping Depth	Reflow Peak Temp (oC)	Reflow Atmosphere	Package Quantity	Yield
1	Senju Deltalux-901K3	140um	240-245	N ₂ (<700ppm O ₂)	216	65%
2	Senju Deltalux-901K3	130um	240-245	N ₂ (<700ppm O ₂)	216	100%



Flux transfer to memory package is critical:

- Type of flux
- Viscosity of flux
- Dipping depth
- Dwell time of package in flux tray

Paste Dipping Experiment Result

Paste Legs	Paste Dipping Mat'l	Dipping Depth (um)	Reflow Peak Temp (oC)	Reflow Atomosphere	Package Q'ty	Yield
1	Senju M705-TVA03.9F	105	240-245	N ₂ (<700ppm O ₂)	216	100%
2	Senju M705-TVA03.9F	140	240-245	N ₂ (<700ppm O ₂)	216	100%
3	Senju M705-TVA03.9F	180	240-245	N ₂ (<700ppm O ₂)	54	0%

DOE2 Result

Summary:

- Bottom BGA yield robust vs. stencil design
- Top BGA yield sensitive to flux dipping process
 - Depth
 - Viscosity
 - Dwell time
- Top BGA dipping in paste successful: verification required
- Nitrogen atmosphere (<700ppm O_2) required in this test
- Experiments will continue to define assembly capability in an Air reflow atmosphere

OMAP4xxx DC (TMV) SMT Evaluation DOE3

DOE3 Set up:

Reflow Profile		
Preheat Zone		
Temperature	R/T-120C	
Time	90	
Soak Zone		
Temperature	120-180c	
Time	110	
Reflow Zone		
Peak Temperature	240-245	
Time above Liquid	80	
Cooling Zone	3º/sec	

Stencil Design			
Shape	Round 80 Variable		
Surface Finish	Laser Job nano coating		
Thickness (um)	80		
Opening Diameter(um)			
Zone C	250		
Zones A & B	200		
100% Volume Transfer Rate			
Zones C (um ³)	3926991		
Zone A & B (um ³)	2513274		
Opening Ratio			
Zones C	0.78		
Zone A & B	0.63		

	Material in DOE3	Recommended reflow atmosphere	Notes
Paste	Senju M705-TVA03.9K	Air	[Halogen Free ROLO (<500ppm) per JSTD- 004A, No-Clean Dip Paste]
Paste	Senju TVA 107K	Air	[Halogenated ROL1 per JSTD004A, No-Clean Dip Paste]
Flux	Senju Deltalux 529D-1	Air	[Halogenated ROL1, No-Clean Dip Flux]
Flux	Senju Deltalux-GTN68-HF	Air	[Halogen Free ROLO (<500ppm) per J- STD004A/B, No-Clean Dip Flux]

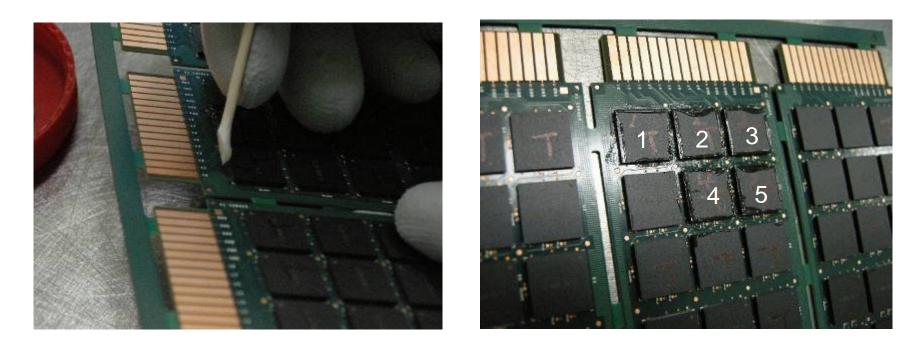
DOE3: Results

				Dipping	Dipping	With		Reflow	Q'	ty			
DOE Leg	Bottom BGA Printing Material	Memory	Dipping Mat'l	Depth (Actual depth)	Dwell Time (ms)	EMI Shield	Air	N2 (O ₂ <700 ppm)	Panels	PKGs	# Opens	# Shorts	Yield %
1	Tamura TLF-204-19A	Paste	Senju TVA 107K	130	600	No			4	216	1	0	99.5
2	Tamura TLF-204-19A	Paste	Senju TVA 107K	130	900	No			19	1000	0	0	100
3	Tamura TLF-204-19A	Paste	Senju M705- TVA03.9K	130	600	No			1	54	24	0	56
4	Tamura TLF-204-19A	Paste	Senju M705- TVA03.9K	130	900	No			1	54	19	0	65
5	Tamura TLF-204-19A	Paste	Senju M705- TVA03.9K	130	600	No			1	54	0	0	100
6	Tamura TLF-204-19A	Paste	Senju M705- TVA03.9K	130	900	No			1	54	0	0	100
7	Tamura TLF-204-19A	Flux	Senju Deltalux 529D-1	130	600	No			1	54	13	0	76
8	Tamura TLF-204-19A	Flux	Senju Deltalux 529D-1	130	900	No			1	54	22	0	59
9	Tamura TLF-204-19A	Flux	Senju Deltalux- GTN68HF	130	600	No			4	216	1	0	99.5
10	Tamura TLF-204-19A	Flux	Senju Deltalux- GTN68HF	130	900	No			19	1000	0	0	100
11	Tamura TLF-204-19A	Flux	Senju Deltalux- GTN68HF	130	900	Yes			3	18	0	0	100
12*	Tamura TLF-204-19A	Flux	Senju Deltalux- GTN68HF	130	900	No			2	108	108	0	0
13*	Tamura TLF-204-19A	Paste	Senju TVA 107K	130	900	No			2	108	108	0	0
*	Preconditioned: 150C for	r 1.5 hrs ir	Air, followed	with 8 hrs	at 85RH/8	85C		Totals	59	2990			37

DOE3 Result

Summary:

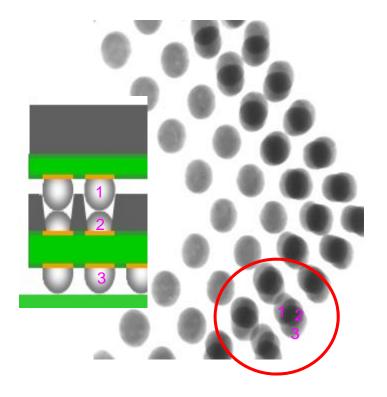
- Flux and Paste chemistry and rheology are critical factors for use in an air reflow atmosphere
- Time out of refrigeration and time worked in dipping tray affects coating uniformity
- Dipping time change from 600ms to 900ms improved yield
- A paste that did not work in air worked in nitrogen reflow atmosphere
- Bottom BGA process continues to be robust
- Pre-conditioned parts shifted and yielded zero bottom BGA connections: X-ray of top BGA looked normal but unable to test due to lack of connection through bottom BGA

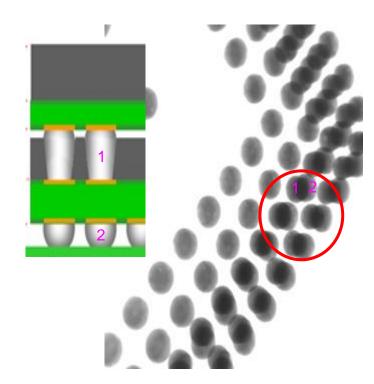


✓ A1: Through molded via solder rework methods

- Brush with flux repair method
- Manual rework method
- ✓A2: X-ray examples
- ✓A3: Screen print material and reflow equipment examples
- ✓ A4: Package warpage affect examples

Brush with flux for repair in TMV level (1)


-Use cotton swab to apply adequate flux at the side-walls of defective POP. -Reflow then Check in X-ray (see next slide) & O/S test.


	Evaluate sam	Test result (Xray, O/S)			
Size	Flux type	Repair level	OK	NG	
5	Senju 529D-1	TMV	5	0	

Brush with flux for repair in TMV level (2)

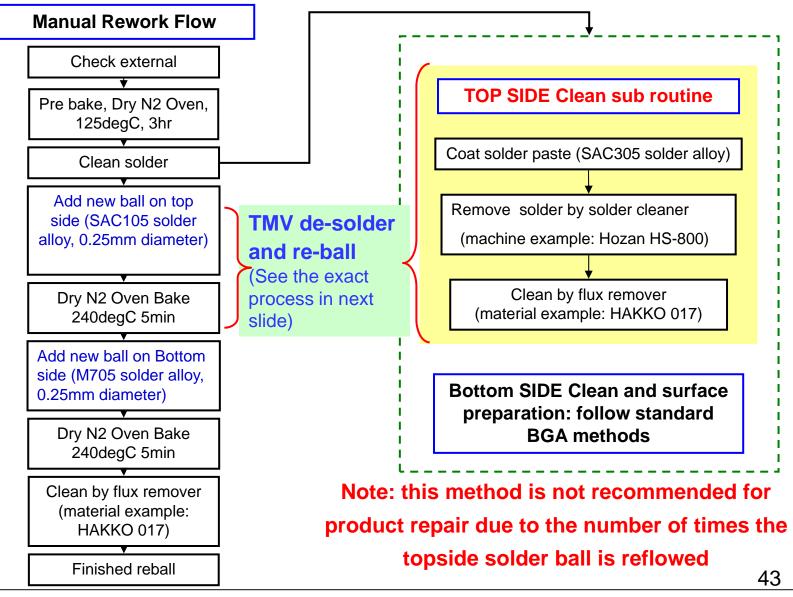
Non-wet Solder Joint

The non-wetting TMV joints show as 3 balls overlapped with bottom BGA ball in X-ray inspection.

Repaired Solder Joint

The defect TMV joints are re-healed & show as 2 balls overlapped with bottom BGA ball in X-ray inspection.

✓ A1: Through molded via solder rework methods


- Basic repair method
- Manual rework method

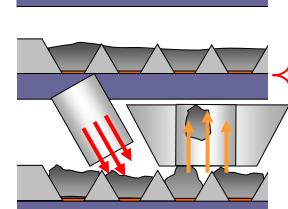
Note: this method is not recommended for product repair due to the number of times the topside solder ball is reflowed

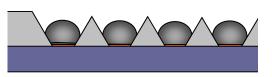
- ✓A2: X-ray examples
- ✓A3: Screen print material and reflow equipment examples
- ✓ A4: Package warpage affect examples

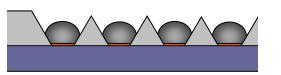
TMV Rework Option B Process Flow of Manual TMV Rework (1)

TMV Rework Option B

Manual TMV Removal and Re-ball (2)


Reball Approach


- Customer retur
- Solder up
- De-soldering


Re-balling


Bottom reball process

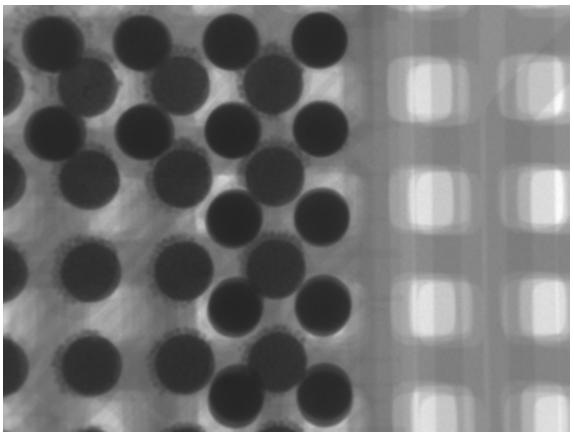
Bake

- Thicker solder contributes better thermal conduction
- More flux help the solder soften and extract out , vacuum pressure ~80kPa

- Paint with flux and place0.25mm solder ball and reflow
- measure coplanarity by an Equipment

» Appendix

✓ A1: Through molded via solder rework methods

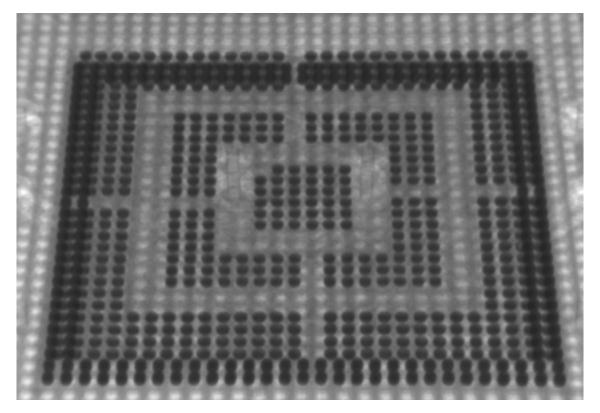

- Basic repair method
- Manual rework method
- ✓A2: X-ray examples

✓A3: Screen print material and reflow equipment examples A4:

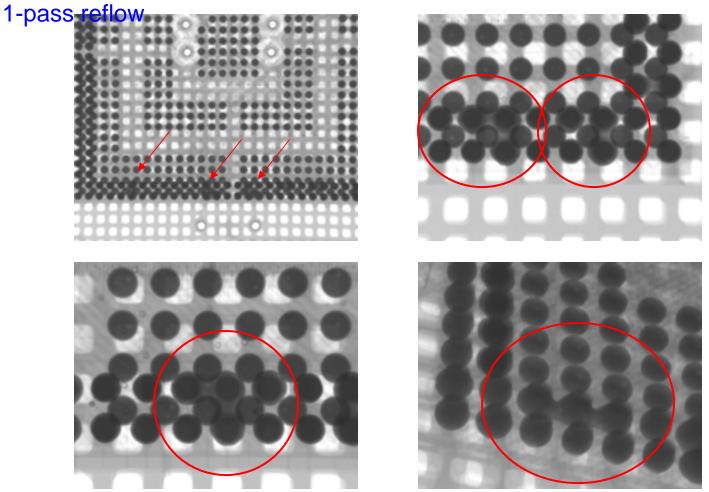
Package warpage affect examples

1-pass reflow

Picture: POP and Memory mount on PCB. Before reflow. Solder paste printing check was good. Memory is mount on POP by flux with good accuracy.

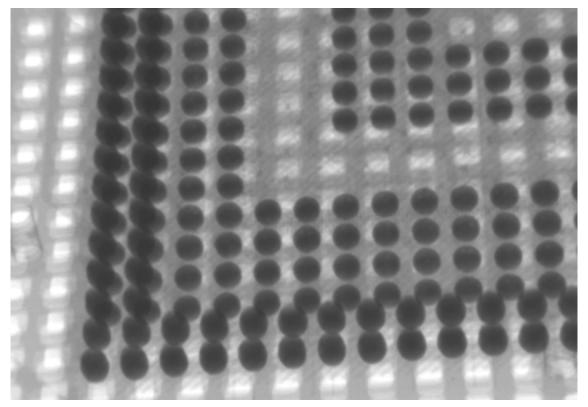

1-pass reflow

Picture: Memory mounted by flux, NSMD board, After reflow Memory solder ball was jointed with POP showing good barrel shape



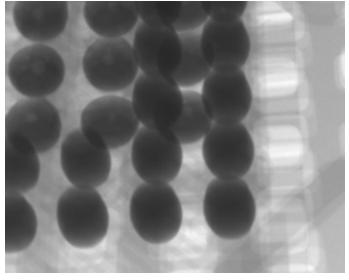
1-pass reflow

Picture: Memory mounted by flux, SMD board, After reflow Memory jointed with POP with good barrel shape. No anomaly is found for POP solder balls.



Picture: Memory mounted by solder paste, SMD board, After reflow Excess solder paste caused solder ball short

1-pass reflow



Picture: Memory mounted by solder paste, SMD board, After reflow. Reduced solder paste dipping depth then solder ball short did not happen

1-pass reflow

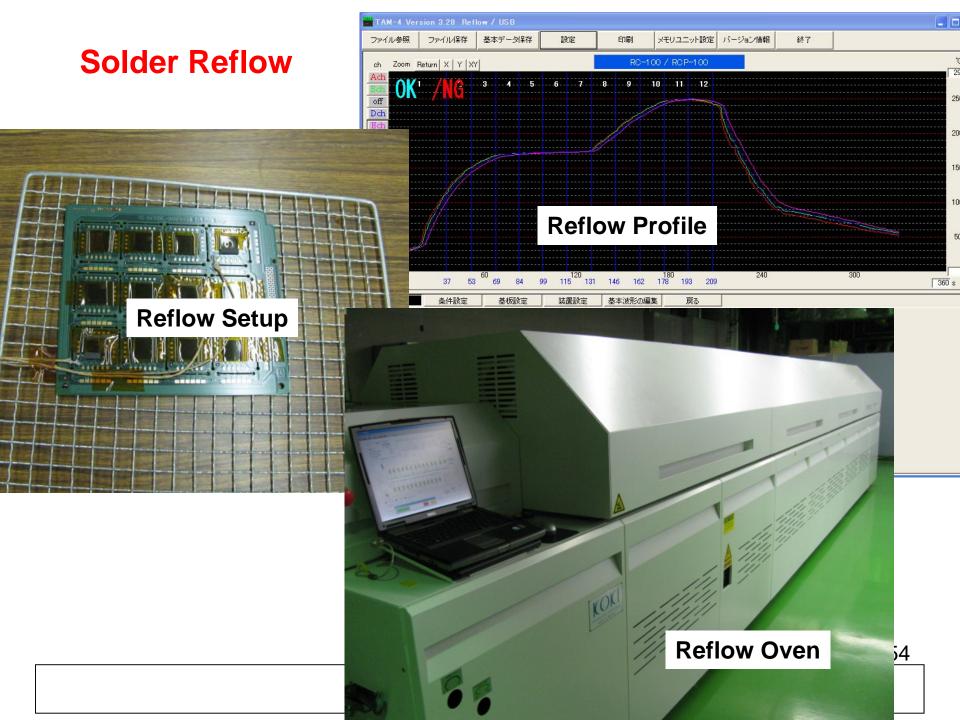
2nd reflow result. Run POP+Memory mount board reflow again

Paste dip, After reflow, SMD pad Package upward Paste dip, After reflow, SMD pad Package downward

Memory solder ball joint did not change by 2nd reflow

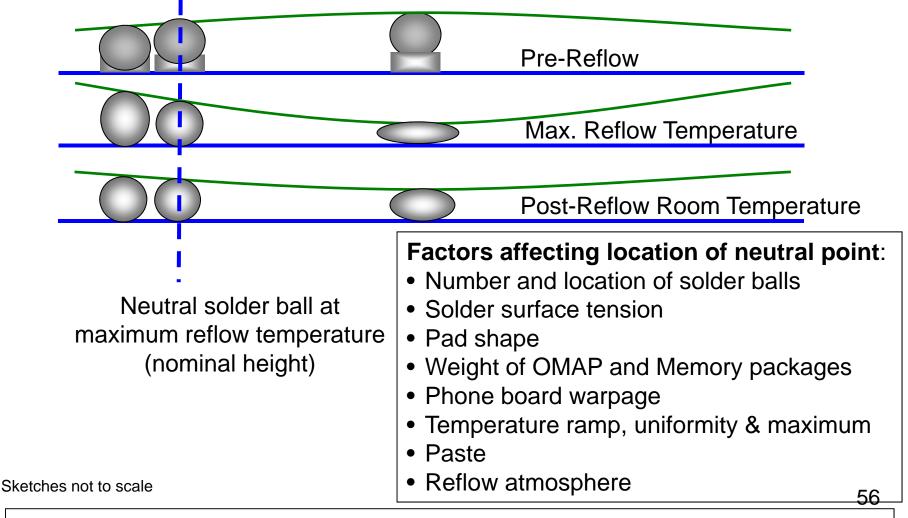
✓ A1: Through molded via solder rework methods

- Basic repair method
- Manual rework method
- ✓ A2: X-ray examples
- ► ✓ A3: Screen print material and reflow equipment examples
 - ✓ A4: Package warpage affect examples



Solder Paste

Screen Printing



✓ A1: Through molded via solder rework methods

- Basic repair method
- Manual rework method
- ✓A2: X-ray examples
- ✓A3: Screen print material and reflow equipment examples
- A4: Package warpage affect examples

Calculating Solder Paste Volume to Prevent Shorts in the Center Array

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

	Products		Applications	
	Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
	Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
	Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
	DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
	DSP	dsp.ti.com	Industrial	www.ti.com/industrial
	Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
	Interface	interface.ti.com	Security	www.ti.com/security
	Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
	Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
	Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
	RFID	www.ti-rfid.com		
	OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity		www.ti.com/wirelessconnectivity		
			a O a Al a a m	

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated