DLP3030-Q1 RGB LED Calibration for Automotive Display

User's Guide

Literature Number: DLPU066A MARCH 2018 – REVISED APRIL 2022

Table of Contents

1 Calibration Purpose	7
1.1 Calibration Purpose	
1.2 Goal of Calibration	
2 Calibration Software and Tools	
2.1 Calibration Software and Tools	
3 Calibration Setup	
3.1 Calibration Setup	
4 Calibration Overview and Theory	
4.1 Goal of Calibration	13
4.2 Calibration Background	
4.2.1 Calibration File Parameters	
4.2.2 Coarse Adjustment Parameter Combinations	
4.3 Calibration Process	
4.3.1 Calibration Pre-work: Coarse Combination Determination	15
4.3.2 Temperature Charaterization	
4.3.3 Production PGU Calibration	
5 Calibration Pre-work	17
5.1 Pre-work Overview	17
5.2 Coarse Combination Determination	17
5.3 Strategically Adjusting Coarse Combination Parameters	
5.3.1 LDC Index	
5.3.2 Optical Sensor Feedback Gain	20
5.3.3 Current Limit	20
5.4 Coarse Combination Strategies	
6 Calibration Procedure	
6.1 Calibration Procedure Overview	
6.2 Calibration Sweep Setup and Coarse Combinations	
6.3 Temperature Characterization	
6.4 Production PGU Calibration	
6.5 Generating a Calibration File	
7 Revision History	

List of Figures

Figure 1-1. Backlight Value vs PGU Brightness	7
Figure 1-2. CIE 1931 Color Space Chromaticity Diagram	
Figure 3-1. Calibration Setup	11
Figure 4-1. Logarithmic Brightness Ranges for Coarse Adjustment Parameter Combinations	
Figure 5-1. Populating coarse combination lists	
Figure 5-2. Closing brightness gaps between coarse combinations	18
Figure 5-3. Removing heavily overlapping coarse combinations to decrease calibration time	
Figure 5-4. Changing coarse combination parameters to change the maximum and minimum brightness ranges.	
Increase LDC Index, increase optical feeback gain, or decrease current limit to decrease the minimum brightness for	
a single coarse combination	19
Figure 6-1. Iterative Calibration Projects	23
Figure 6-2. Iterative Calibration: Loading Config and Cal Files	24
Figure 6-3. Iterative Calibration: Populating Course Combination List	<mark>24</mark>
Figure 6-4. Iterative Calibration: Adding ND Filters	25
Figure 6-5. Iterative Calibration: Temperature Compensation Sweeps	26
Figure 6-6. Iterative Calibration: Measurement Details	27

Table of Contents

Figure 6-7. Brightness Output vs LED PWM Value	
Figure 6-8. Brightness Output vs Temperature	
Figure 6-9. Brightness Output vs Coarse Combination	
Figure 6-10. Brightness Discontinuities	
Figure 6-11. Iterative Calibration: Individual PGU Sweeps	
Figure 6-12. Iterative Calibration: PGU Color Correction Factors	31
Figure 6-13. Iterative Calibration: PGU Brightness Sweeps	31
Figure 6-14. Cal File Brightness Margins.	32
Figure 6-15. Cal File Target Color Point	
Figure 6-16. Cal File Color Correction Factors	
Figure 6-17. Included Calibration Temperature Tables	
Figure 6-18. Example Calibration Table Output	

List of Tables

Table 2-1. Software and Tools	. 9
Table 4-1. Calibration Parameters	14
Table 4-2. Example Calibration Row	.14

Preface Introduction

Trademarks

Cheetah[™] is a trademark of Total Phase. Konica Minolta[®] is a registered trademark of Konica Minolta. Total Phase[®] is a registered trademark of Total Phase. All trademarks are the property of their respective owners.

Purpose

This document explains the purpose, theory, and procedure for calibrating a DLP3030-Q1 based head-up display PGU (picture generation unit).

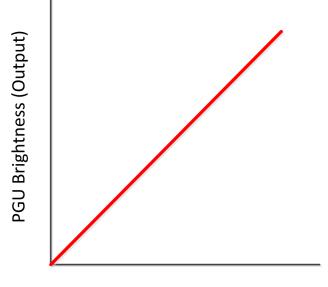
Terms and Abbreviations

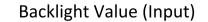
	Terms and Abbreviations
Abbreviations	Description
ACP	Automotive Control Program
СМ	Continuous Mode
DM	Discontinuous Mode
EVM	Evaluation Module
HUD	Head-Up Display
LUT	Look Up Table
PWM	Pulse Width Modulation used to generate analog target levels
PGU	Picture Generation Unit

References

		Reference Documents	
	Document Number	Document Name	
1.	DLPU059	DLPC120 Automotive Control Program User's Guide	
2.	DLPA084	LED Driver for DLP3030-Q1 Displays Application Note	
3.	DLPU061	Piccolo Software Programmer's Guide for the DLPC120 ASIC	
5.	DLPA094	Photodiode Selection and Placement Guide	

5




This page intentionally left blank.

1.1 Calibration Purpose

DLP3030-Q1 based PGUs must be calibrated in order to ensure that the color point of the HUD is maintained across its operating conditions, which include a 5000:1 dimming ratio and –40°C to 105°C operating temperature. Additionally, the HUD must be calibrated to achieve smooth dimming, meaning the output brightness of the system should change linearly with the input brightness as in Figure 1-1.

White point of a PGU determines the ratio of red, green, and blue for a desired output. The target white point is specified as an x,y coordinate pair in the CIE 1931 color space chromaticity diagram shown in Figure 1-2. The wavelength of light output from the LEDs changes as the junction temperature changes, so calibration is required to compensate for these shifts. Additionally, a tolerance is limit is provided on the x and y coordinates. The calibration procedure makes sure that the white point of the DLP HUD EVM stays within the tolerance as the input brightness level, referred to as backlight value, is adjusted.

7

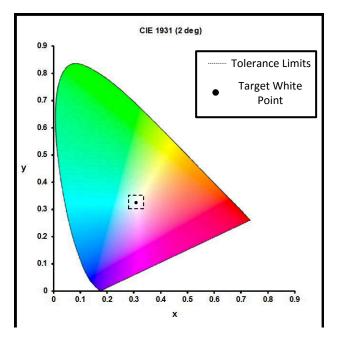


Figure 1-2. CIE 1931 Color Space Chromaticity Diagram

1.2 Goal of Calibration

The overall goal of the PGU calibration process is to generate a unique calibration file to be paired with each production PGU manufactured. This calibration file stores a series of look-up tables, each mapped to a different temperature, that are used by the Piccolo software to map input backlight values to system parameters. This calibration file will maintain an accurate color point for all brightness levels across temperature.

These calibration steps are completed using the following tools.

- Color Analyzer
- Neutral Density Filters
- Diffuser Screen
- USB to SPI Converter

The DLPC120 Automotive Control Program is configured to work with the Konica Minolta[®] CA-210, Total Phase[®] Cheetah[™] SPI Host Adapter, and a Windows PC. See Chapter 3 for more details.

Chapter 2 Calibration Software and Tools

2.1 Calibration Software and Tools

Table 2-1. Software and Tools

Software/Tool	Description	Reference Material/Lit Number
Embedded MCU Reference Design Software	 Maintains color point and smooth dimming using a calibration file that is stored on the C2000 Piccolo MCU Details about this file are provided in Chapter 3 Additional details about Piccolo Software and dimming can be found in the Piccolo Software Programmer's Guide for the DLPC120 ASIC Designed to work with a discrete LED driver solution circuit 	ACP Users Guide, Piccolo Reference Code, Piccolo Programmer's Guide, LED Driver App Note in Reference Documents
Automotive Control Program (ACP)	 Runs on a Windows PC, serves as the host controller for the Piccolo MCU Includes a calibration process that can be used to generate the calibration file Includes control functionality for testing and modifying system brightness and color point 	ACP User's Guide
Konica Minolta CA-210 or CA-310	 Color analyzer used to measure color point and brightness output Required for calibration 	ACP User's Guide

This page intentionally left blank.

3.1 Calibration Setup

Figure 3-1 below shows the recommended calibration setup. This setup uses the CA-210 color analyzer by Konica Minolta and the Cheetah SPI adapter by Total Phase. The key points to note are:

- The probe of the CA-210 should be pointed at the diffuser screen illuminated by the DLP3030-Q1 based PGU
- There is room for Neutral Density (ND) filters to be inserted in between the diffuser screen and the CA-210 probe
- The PC is connected to the DLP3030-Q1 based PGU using a Cheetah SPI adapter
- The PC is also connected to the CA-210

Note: ND filters are needed because the CA-210 likely cannot measure the entire brightness range of the PGU. ND filters are necessary when the DLP3030-Q1 PGU output is too bright.

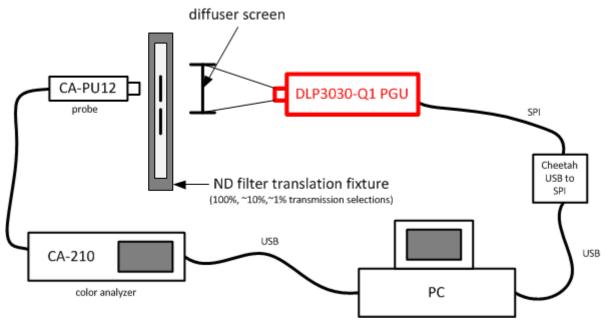


Figure 3-1. Calibration Setup

This page intentionally left blank.

Chapter 4 Calibration Overview and Theory

4.1 Goal of Calibration

The end goal of the PGU calibration process is to generate a unique calibration file to be paired with each production PGU manufactured. This calibration file stores a series of look-up tables, each mapped to a different temperature, that are used by the Piccolo software to map input backlight values to system parameters. This calibration file will maintain an accurate color point for all brightness levels across temperature.

The calibration process for a DLP3030-Q1 based PGU has 3 main steps that make up the process from prototype through production.

Pre-production steps:

- Calibration Pre-work: Coarse combination determination
- Temperature characterization

Production steps:

Production PGU calibration

See Section 4.3 for more information, but it is helpful to understand background information on calibration file parameters before looking at the calibration procedure in more detail.

4.2 Calibration Background

4.2.1 Calibration File Parameters

For each input backlight value, a series of system parameters are set by the Piccolo microcontroller. Table 4-1 lists all of the parameters defined in the calibration file. The parameters can be divided into two categories: coarse adjustment and fine adjustment parameters.

Coarse adjustment parameters change the brightness of the system significantly. Therefore, a combination of these parameters is assigned to a range of backlight values.

Fine adjustment parameters provide very fine control of the system's brightness and color point. Therefore, once a combination of *coarse adjustment parameters* is assigned to a backlight range, the *fine adjustment parameters* can be modified to achieve the desired color point and brightness. Each backlight value has a unique set of *fine adjustment parameters*, but not all of these are stored in the calibration file. Interpolation is used to reduce the number of values that need to be stored.

	Table 4-1. Calib	ration Parameters
Parameter Type	Parameter	Description
Coarse Adjustment	LDC Index	 Total time the LEDs are on, calculated according to the following variables: Continuous Mode: LED sequence multiplied by time attenuation percentage. Discontinuous Mode: LED duty cycle and the number of pulses in each bit of the sequence. For more explanation, see the LED Driver for DLP3030-Q1 Displays Application Note (DLPA084).
	LED Driver Current Limit PWM	The maximum current allowed through the LEDs or the shunt FET.
	Optical Feedback Amplifier Gain	Amount of gain applied to the response of the photodiode used to sense LED light. Higher gain results in lower brightness. With a higher gain, less LED light is required to achieve the target.
Fine Adjustment	R/G/B PWM	The target optical response requested from each LED.

The final calibration file is a series of look up tables. Each table is associated with a specific temperature. Within each table there are rows that map backlight values to the coarse and fine adjustment parameters described in Table 4-1. A few example calibration rows are shown in Table 4-2 below. During calibration pre-work, the coarse parameter columns (LDC, Gain, Current Limit) are inputs from the user while the fine adjustment parameters (R/G/B PWM columns) are generated by the calibration algorithm of the ACP.

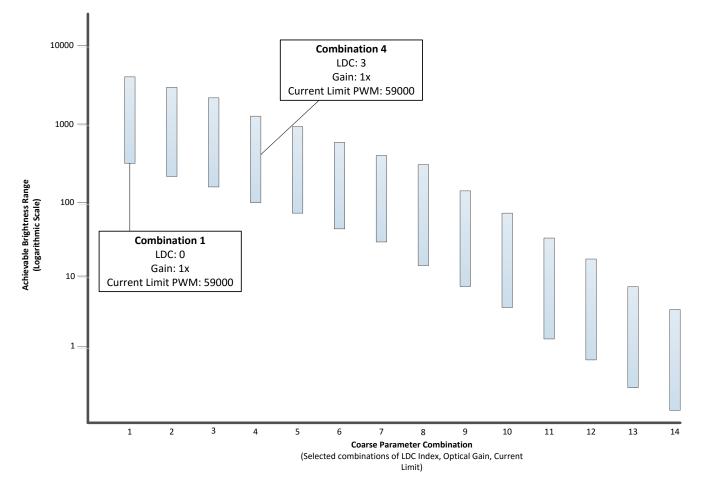

Calibration Row	Backlight Level	LDC	Gain	Current Limit	Red PWM	Green PWM	Blue PWM
1	65535	0	1x	59000	26872	56728	35698
2	35132	0	1x	59000	13475	23056	21443
3	35131	2	1x	59000	25436	54334	34756
4	22456	2	1x	59000	9004	13287	12449

Table 4-2. Example Calibration Row

4.2.2 Coarse Adjustment Parameter Combinations

Each coarse adjustment parameter combination, or coarse combination, consists of a unique combination of LDC Index, optical sensor amplifier gain, and current limit. Each coarse combination can achieve a certain range of brightness. A combination achieves its maximum brightness when all the fine adjustment parameters (LED PWMs) are set to their maximum values. Similarly, in order to achieve minimum brightness with this combination, the LED PWM levels should be set to their minimum values. By switching between several combinations of coarse adjustment parameters, the system is capable of achieving a very wide brightness range. Figure 4-1 below shows an example of the brightness range that is achievable using multiple coarse adjustment parameter combinations.

Figure 4-1. Logarithmic Brightness Ranges for Coarse Adjustment Parameter Combinations

Notice that the brightness ranges of many of the combinations overlap. This prevents gaps in the brightness range that can be covered. Additionally, it allows a brightness range to be achieved without approaching the minimum or maximum limit of a combination's range. This is beneficial because it may be difficult to achieve a desired color point using the minimum or maximum limit of a combination's brightness. For more information on picking the correct coarse combinations, see Section 5.2.

4.3 Calibration Process

The calibration process for a DLP PGU has 3 main steps that make up the process from prototype through production.

Pre-production steps:

- Calibration Pre-work: Coarse combination determination
- Temperature characterization

Production steps:

Production PGU calibration

4.3.1 Calibration Pre-work: Coarse Combination Determination

The Automotive Control Program includes a calibration algorithm that is used to automatically generate the PWM values associated with each data row in the calibration file. This calibration process requires user provided coarse combinations that must be gathered before starting the calibration sweeps.

The calibration pre-work consists of determining the coarse combinations that will allow brightness outputs across the entire input dimming range.

Once coarse combinations have been found that adequately cover the entire brightness range of the PGU, the calibration procedure will map the maximum and minimum outputs of these coarse combinations and RGB PWM values to system backlight values, ranging 0 to 65535. These parameter combinations become individual rows in the calibration look up tables, ensuring that for every input backlight value, the PGU will choose the appropriate coarse combination and RGB PWM values to output the desired brightness level. If gaps in brightness output do exist with the entered coarse combinations, adjust the combination parameters accordingly to close the gaps. See Section 5.2 for more information.

These combinations define a brightness LUT for the system at one temperature. Since LED output changes over temperature, the system needs to be characterized across the operating temperature range of the system.

4.3.2 Temperature Charaterization

Once coarse combinations have been found that cover the entire brightness range at nominal temperatures, the PGU must be characterized across all operating temperatures. The goal is to maintain constant performance at all temperatures.

The light output from an LED at a given PWM value will vary predictably with temperature, so the system output must be measured and characterized across many temperatures to ensure consistent white point and PGU brightness at all times. Because coarse combinations stay the same across all temperature sweeps, temperature characterization involves sweeping the LED PWMs for each combination to let the calibration algorithm determine the minimum and maximum PWM values to be stored in the calibration file for each combination and temperature.

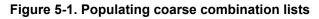
These temperature sweeps define the temperature shift characteristics of the LEDs used in the PGU. For the same LEDs, the temperature characteristics of one LED will very closely match those of a second LED. Whether each individual LED is brighter or dimmer at a given current level and temperature, light from all LEDs will change proportionally across all temperatures. This allows the temperature profile to be collected once on a single PGU and mathematically applied to all PGUs during production.

See Section 6.3 for more details on the temperature characterization procedure.

4.3.3 Production PGU Calibration

During production, each PGU needs to be calibrated to determine fine adjustment parameters to ensure smooth dimming and color point accuracy across all coarse combinations. This LED PWM sweep must be performed at one of the temperatures used in the temperature characterization portion (usually room temperature). Only one temperature calibration table needs to be measured, as the rest can be mathematically calculated from the pre-production calibration data. These calibration tables, calculated across the operating temperature range, are combined into the final calibration file and stored on each individual PGU, ensuring individual dimming and white point accuracy.

See Section 6.4 for more details on the production PGU calibration procedure.

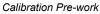


Had Commo Combio

5.1 Pre-work Overview

Calibration pre-work consists of determining the coarse combinations a system will use, and entering the combinations in the ACP calibration project, as in Figure 5-1. This serves as the outline for the automatically generated calibration file and is a starting point for the calibration procedure. Proper coarse combination determination will improve system calibration and ensure system performance.

DOL 1	mpute Measu	Current Limit		LDC Index Gain	Current Limit PWM	Measured
DC Index	Gain	PWM	Measured	0 lx	59000	2
				1 tx	59000	[]]
				2 1x	59000	[7]
				3 1x	59000	13
				4 1x	59000	101
				5 1x	59000	10
				6 1x	59000	
				14 1x	40000	(V)
				15 1x	40000	[7]
				14 4x	40000	121
				15 4x	40000	111
				16 4x	40000	13
				17 4x	40000	(1)
				17 8x	40000	171
				17 16x	40000	11
				18 Sx	40000	2
				18 16x	15000	(<u>7</u>]
				18 16x	8000	121



5.2 Coarse Combination Determination

The ultimate goal in determining proper coarse combinations is to allow the system to achieve a 5000:1 dimming ratio while maintaining a constant color point. Enough unique coarse combinations should be chosen so there are no brightness gaps in the system output, but should in practice be as few as possible to decrease calibration time. Three main problems arise when determining coarse combinations on a new DLP3030-Q1 based PGU.

- Gaps in output brightness
- Too much overlap between adjacent coarse combinations
- Achieving minimum brightness targets

These issues can be addressed by strategically adjusting the coarse combinations.

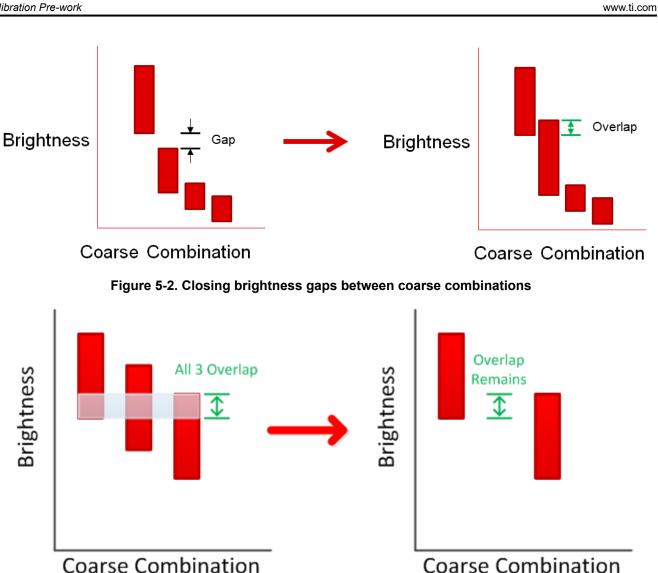


Figure 5-3. Removing heavily overlapping coarse combinations to decrease calibration time

EXAS

STRUMENTS

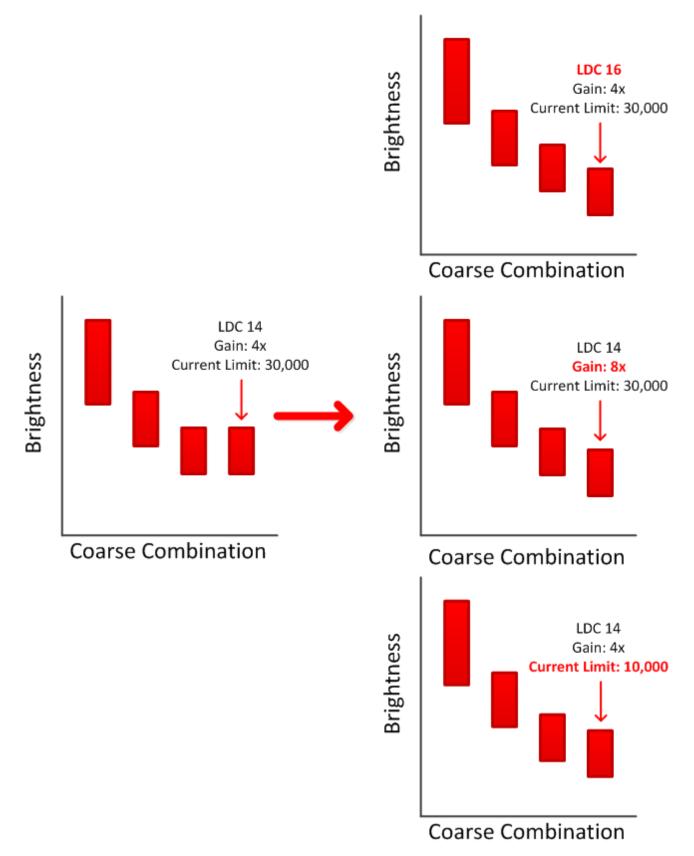


Figure 5-4. Changing coarse combination parameters to change the maximum and minimum brightness ranges. Increase LDC Index, increase optical feeback gain, or decrease current limit to decrease the minimum brightness for a single coarse combination.

5.3 Strategically Adjusting Coarse Combination Parameters

When brightness gaps occur in the PWM sweep output, coarse combination parameters must be strategically adjusted to close these brightness gaps and maintain smooth dimming. See Table 4-1 for a list and description of all the adjustment parameters.

See the LED Driver application note for more information on DLP3030-Q1 system electronics.

5.3.1 LDC Index

LDC Index is a measure of the time attenuation of LED pulses (in continuous mode) or the number of LED pulses (in discontinuous mode). The specific attenuation percentage and number of pulses can be viewed in the configuration file overview tab. See the ACP User Guide for more information.

Increasing the LDC index will decrease the amount of time the LEDs are on, decreasing brightness for that coarse combination. Decreasing the LDC index will increase the amount of time the LEDs are on, increasing brightness for that coarse combination. To close a brightness gap by changing LDC index, add or modify one coarse combination to use an intermediary LDC index and rerun the PWM sweep.

5.3.2 Optical Sensor Feedback Gain

Optical Sensor Feedback Gain controls the scale of the photocurrent response from the photodiode into the Piccolo MCU. Adjusting this parameter helps maintain high resolution of photocurrent response across all brightness levels.

At high brightness levels (continuous mode and some discontinuous mode LDC indexes), the sensor gain should be kept low to allow photodiode response to support high brightness outputs. At low brightness levels (dim discontinuous mode LDC indexes), sensor gain should be increased to increase resolution of the photocurrent response. This allows the Piccolo MCU to more accurately control lower brightness outputs from the LEDs. Increasing the optical sensor feedback gain of a desired coarse combination will decrease achievable minimum brightness outputs.

5.3.3 Current Limit

In continuous mode operation, current limit serves as a protection mechanism by setting the maximum current allowed through the LEDs. Since continuous mode is used for high brightness outputs, current limits should be set to the maximum value of 59,000 (corresponding to 6 A for the green and blue LEDs, 4.5 A for the red LED) for all continuous mode coarse combinations. Note: continuous and discontinuous modes are set by choosing LDC index. the configuration file overview has a list of which LDC indexes are continuous mode and which ones are discontinuous mode.

In discontinuous mode, current limit sets the current through the shunt FET, which is then used to create discontinuous mode pulses. Discontinuous mode current limit should be reduced to limit current overshoot through the LEDs. DM current limits should, at maximum, be set to 30,000.

Decreasing the current limit of a discontinuous mode coarse combination will decrease the minimum achievable brightness output. In some cases this may also increase the achievable brightness range of the coarse combination.

5.4 Coarse Combination Strategies

There are two general methods of determining the proper coarse combinations for a DLP PGU.

The first method of determining coarse combinations is to input many coarse combinations spanning all LDC indexes and perform a PWM sweep. This will likely give a nearly complete brightness range, but there may be some gaps in output brightness that aren't achievable, as well as heavily overlapping combinations that will ultimately be unnecessary. These can be fixed by going back to the coarse combination inputs and strategically adjusting the parameters, adding intermediate coarse combinations to close the gaps as in Figure 5-2, or removing coarse combinations that are not needed as in Figure 5-3. This gives a clear view of the achievable brightness range possible very quickly, and helps locate which areas need parameter adjustments. Because many coarse combinations are used, each successive sweep can take up to thirty minutes.

The second method of determining coarse combinations is to start at maximum brightness (LDC 0) and input only two or three coarse combinations (e.g. LDC 0 and LDC 1 with appropriate gain and current limit settings). This will not span the entire brightness output of the system, but each sweep will take a minimal amount of time. Once the two coarse combinations have been adjusted so they overlap slightly and give the largest brightness range for each combination, the combinations can be recorded and saved for entry later. Then, the next two coarse combinations (e.g. LDC 1 and LDC 2) can be entered and swept, again maintaining overlap and maximizing brightness range (Note: many LDC indexes will actually be omitted from the final coarse combination list). This can continue, two overlapping coarse combinations at a time, until the full brightness range has been achieved. Finally, one last sweep can be performed, with all recorded coarse combinations included, to show complete brightness range coverage while the coarse combination adjustment and determination is already solved.

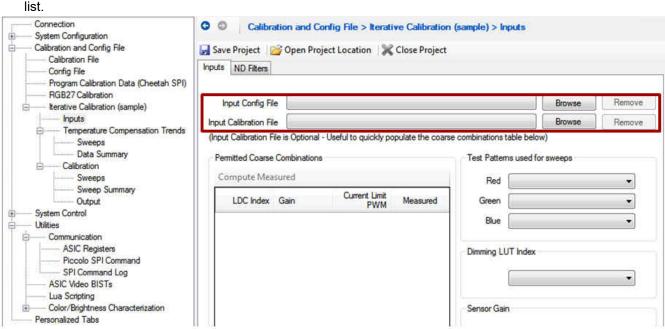
Ultimately, these coarse combinations will differ slightly for each design of a DLP3030-Q1 based PGU. There will be some amount of trial and error involved in determining the optimal coarse combinations. Use Section 5.3 as a reference for adjusting coarse combination parameters as needed. Once desired coarse combinations have been found, the pre-work is finished and the PGU is ready to be calibrated. Chapter 6 goes through the step-by-step process of using the ACP to perform temperature compensation sweeps and production calibration.

This page intentionally left blank.

6.1 Calibration Procedure Overview

The calibration process uses an automated calibration algorithm to determine the calibration tables stored on each PGU. Using several user inputs (coarse combinations, PWM range, DMD temperature, ND filters), the program sweeps through LED ranges for all desired course adjustment parameter combinations and temperatures, and outputs unique calibration files for each PGU, as well as visual representations of the brightness outputs of the PGU.

The following sections provide a step by step guide on how to perform a calibration sweep.


6.2 Calibration Sweep Setup and Coarse Combinations

- 1. Select "Calibration and Config File \rightarrow Iterative Calibration" from the menu on the left.
- 2. Select "Create new project." Follow the prompts to choose file name and save location.

Connection Configuration Colibration and Config File	Calibration and Config File > Iterative Calibration (Cirl + Alt + G)
Calibration File Config File Program Calibration Data (Cheetah SPI)	Project File Browse Save As Close Create New Project
GB27 Calibration Iterative Calibration Inputs Temperature Compensation Trends	Recent Project Files
Calibration Sweeps Sweep Summary	
Output System Control Utilities Communication	
ASIC Registers Piccolo SPI Command SPI Command Log	
ASIC Video BISTs Lus Scripting Color/Brightness Characterization Personalized Tabs	

Figure 6-1. Iterative Calibration Projects

- 3. Select "Inputs" from the menu on the left.
- 4. Choose your input config file and calibration file. This should be the same config file stored in ASIC Flash. If they are different, a warning will be displayed before starting a sweep. If the files are different, either use the config file loaded in ASIC flash or reprogram the ASIC flash with the current config file before starting. See the ACP User's Guide for more information.

Figure 6-2. Iterative Calibration: Loading Config and Cal Files

If no calibration file containing coarse adjustment parameters is used then add desired coarse combinations to "Permitted Coarse Combinations" list. This is the list of coarse combinations determined in Chapter 5.
 Note: Once a temperature sweep has been completed the coarse parameters list cannot be changed.



Figure 6-3. Iterative Calibration: Populating Course Combination List

7. Add the transmission percentage for the ND filters used to the "ND Filters" list. Make sure to have a range of ND filters suitable for your color analyzer and PGU design. **Note:** Once a temperature sweep has been completed the ND filter list cannot be changed.

STRUMENTS

TEXAS

<u>E</u> dit <u>V</u> iew <u>H</u> elp		
environmention	Calibration and Config File > Iterative Calibrat	tion (Multipulse Dithering Test) > Inputs
Calibration and Config File	🛃 Save Project 🛛 🚰 Open Project Location 🛛 💥 Close Project	ect
Config File (1 Errors) Program Calibration Data (Cheetah SPI) BGB27 Calibration	It is crucial that these inputs remain constant across all edits, these inputs are therefore set read only.	sweeps for a valid calibration result. To prevent accidental
Events	Please use the "Edit" button to enter the Edit Mode. Pl existing sweeps from the Project.	lease note that unlocking the Edit mode will delete all the
Temperature Compensation Trends Sweeps		Edit
Data Summary	Inputs ND Filters	
Calibration	Due to the capability of the measurement system used, Neutral De	
Calibration	Due to the capability of the measurement system used, Neutral De enter the Transmission Percentage of the available set of ND Filter	rs in this page.
Calibration Sweeps Sweep Summary	Due to the capability of the measurement system used, Neutral De	rs in this page.
Calibration Calibration Sweeps Output Output System Control Dimming Control	Due to the capability of the measurement system used, Neutral De enter the Transmission Percentage of the available set of ND Filter	rs in this page. Optical Density
Calibration Calibration Sweeps Output System Control Display Mode and Command Lists	Due to the capability of the measurement system used, Neutral De enter the Transmission Percentage of the available set of ND Filter Transmission Percentage	rs in this page. Optical Density
Calibration Sweeps Sweep Summary Output System Control Dimming Control Display Mode and Command Lists Temperature Compensation	Due to the capability of the measurement system used, Neutral De enter the Transmission Percentage of the available set of ND Filter Transmission Percentag	rs in this page. Performance Poptical Density Performance Poptical Density Performance Per
Calibration Sweeps Sweep Summary Output System Control Display Mode and Command Lists Temperature Compensation DMD and Heater Control	Due to the capability of the measurement system used, Neutral De enter the Transmission Percentage of the available set of ND Filter Transmission Percentag	rs in this page. Optical Density
Calibration Sweeps Sweep Summary Output System Control Dimming Control Display Mode and Command Lists Temperature Compensation	Due to the capability of the measurement system used, Neutral De enter the Transmission Percentage of the available set of ND Filter Transmission Percentag	rs in this page. Performance Poptical Density Performance Poptical Density Performance Per

Figure 6-4. Iterative Calibration: Adding ND Filters

6.3 Temperature Characterization

- 1. Setup the reference system in the temperature chamber. The reference system will be used to gather temperature trend information that can then be applied to all systems during the calibration process. Data will be gathered from the reference system at multiple temperatures.
- 2. Select "Iterative Calibration" >> "Temperature Compensation Trends" >> "Sweeps" from the menu on the left.
- 3. In the sweep settings menu select your light meter from drop down menu.
- 4. Enter calibration temperature as the current temperature of the chamber. This should eventually be done for a cold temperature (-40°C), room temperature (25°C) ,and the max system temperature (105°C). At a minimum, two temperature sweeps are required in order to generate a calibration file, but typically several temperatures are calibrated for.
- 5. At a minimum room temperature and one other temperature are required in order to generate a calibration file.
- 6. Adjust minimum and maximum PWM values, increment values, number of averaged measurements, and measurement delay. The default values for all of these parameters are typically acceptable. Measurement delay must be at least 50 ms.

TEXAS INSTRUMENTS

www.ti.com

System Configuration			Iterative Calibrati		e compensau
Programming - Piccolo Flash	🛃 Save Project 🛛 🕍 Open P	roject Location	n 🛛 🞇 Close Proje	ct	
Program Piccolo SW (JTAG, UniFlash)					
Programming - ASIC Flash	Calibration Temperature		C Use DMD	Temperature	
SPI Flash Program (Cheetah SPI)					
Calibration and Config File	Start Sweep S	top Sweep			
Calibration File					
Program Calibration Data (Cheetah SPI)	No Sweep Running				
RGB27 Calibration	I.				
- 🚽 Iterative Calibration					
	Courses Cattlenes 11	D + 1			
Inpu Config File (Ctrl + Alt + O)	Sweep Settings Measurement	Details			
E Temperature Compensation Trends	Inconstantia	Details			
Temperature Compensation Trends Sweeps	Sweep Settings Measurement	Details			
 Temperature Compensation Trends Sweeps Data Summary 	Sweep Settings	Details			
Temperature Compensation Trends Sweeps Data Summary Calibration	Inconstantia	Details	New Conne	ction	
 Temperature Compensation Trends Sweeps Data Summary 	- Sweep Settings			ction	
Temperature Compensation Trends Sweeps Data Summary Calibration Sweeps	Sweep Settings		New Conne ms	iction	
Temperature Compensation Trends Sweeps Calibration Sweeps Sweep Summary Output System Control	Sweep Settings			ction	
Temperature Compensation Trends Sweeps Data Summary Calibration Sweeps Sweep Summary Output System Control Utilities	Sweep Settings	100		ction	
Temperature Compensation Trends Sweeps Data Summary Calibration Sweeps Sweep Summary Output System Control	Sweep Settings	100			
Temperature Compensation Trends Sweeps Calibration Sweeps Sweep Summary Output System Control Utilities	Sweep Settings	100		Coarse	Fine
Temperature Compensation Trends Sweeps Calibration Sweeps Sweep Summary Output System Control Utilities	Sweep Settings	100 文	ms	Coarse	

Figure 6-5. Iterative Calibration: Temperature Compensation Sweeps

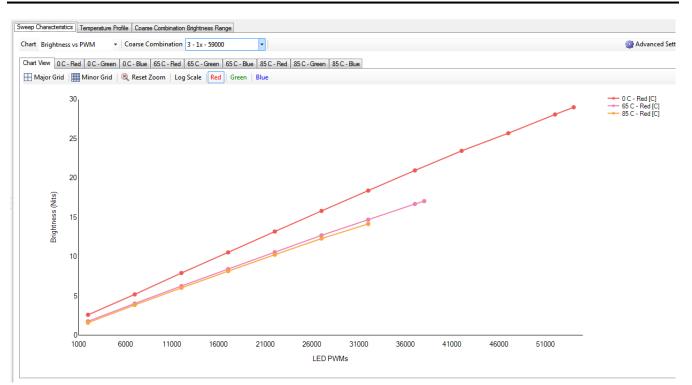
- 7. Press "Start Sweep."
- 8. The Automotive Control Program will step through each coarse combination, sweep through the LED PWM ranges, and determine the minimum and maximum brightness for each LED (RGB). The program will prompt the user when it is appropriate to switch between ND filters.
- 9. Individual measurement details will be recorded for debugging purposes. This can be viewed in the "Measurement Details" tab and in the 'Log' folder in the Calibration project directory.

TEXAS INSTRUMENTS

www.ti.com

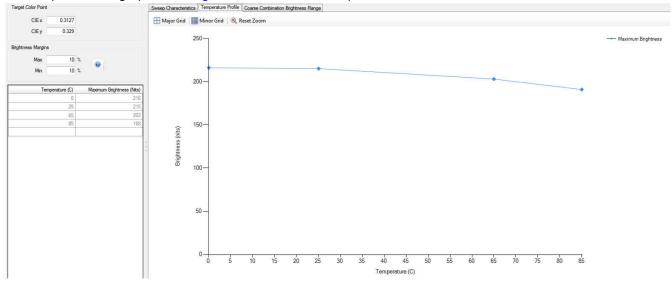
Sweep Setti	ings Meas	urement De	etails			
a d	<		🝷 🖄 Find J	Next + Review	v (Text) 👻	
Set Dimm	ning LUT	Group :	Table 0 Hig	h Depth		
Sweeping	10 - 1x	- 60000				
ND Filte	er Check					
Filter :	Transmi	ission 0	.10 % (OD 3.	00)		
Red	Green	Blue	Brightness	CIE x	CIE_Y	
49000	0		19.5712			Measured at 0 - 1x - 60000
0	49000				0.6514	Measured at 0 - 1x - 60000
0	0	49000	2.8418	0.1523	0.0281	Measured at 0 - 1x - 60000
Filter C	hanged t	co : Tra	nsmission 1.	00 % (OD 2.0	0)	
	-		Brightness			
49000	0		178.3405			Measured at 0 - 1x - 60000
0	49000		640.9581		0.6490	Measured at 0 - 1x - 60000
0			27.4366			Measured at 0 - 1x - 60000
Current	Filter I	Details:				
Filter :	Transmi	ission 1	.00 % (OD 2.	00)		
			Y Ratio			
Red	9.0	667	9.1124	9.8403		
Green	9.7	256	9.6675	10.1438		
Blue	10.0	232	9.6546	10.0205		
Color	LED PWM	1 В	rightness	CIEx	CIEy	
Red	49000			0.6591	0.3315	
Red	4000)	2.4821	0.6723	0.3272	
Red	9000)	4.3643	0.6718	0.3280	
Red	14000)	6.2783	0.6713	0.3275	
Red	19000)	8.2041	0.6708	0.3272	
Red	24000)	10.1544	0.6693	0.3275	
Red	29000)	12.1303	0.6677	0.3286	
Red	34000)	14.0358	0.6653	0.3295	
Red	39000			0.6643	0.3298	
Dod	44000	· · · · ·	17 7591	0 6691	0 2200	

Figure 6-6. Iterative Calibration: Measurement Details


10. Adjust the temperature of the system and repeat the temperature sweep procedure.

11. Data from the temperature sweeps can be viewed in the "Data Summary" menu on the left.

12. The "Sweep Characteristics" tab shows a visual representation of the recorded data. Brightness and color point information can be viewed for each LED at each temperature.



Calibration Procedure

Figure 6-7. Brightness Output vs LED PWM Value

13. The "Temperature Profile" tab displays the maximum brightness achievable at a given color point and temperature in graph form. Figure 6-8 shows an example.

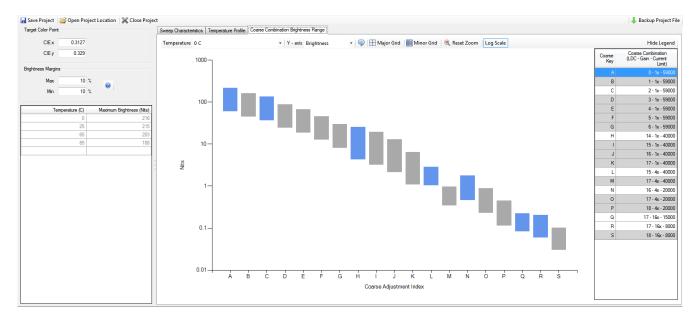
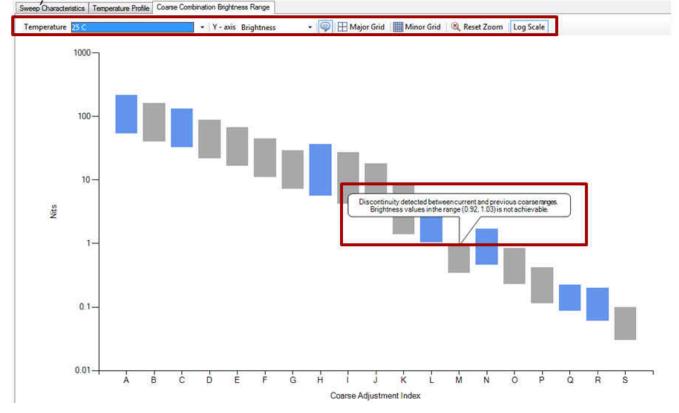


Figure 6-8. Brightness Output vs Temperature

14. The "Coarse Combination Brightness Range" tab displays the maximum brightness achievable for a given coarse combination. Data can be viewed per temperature or transition region.



Calibration Procedure

Figure 6-9. Brightness Output vs Coarse Combination

15. When reviewing the ranges there are options for adjusting the view including temperature, brightness or backlight, zooming into particular regions, adding notifications regarding discontinuities, and scale (log vs standard).

Figure 6-10. Brightness Discontinuities

16. If discontinuities do exist at any brightness ranges, return to Section 6.2 and adjust the coarse combinations as described in Chapter 5, then rerun the temperature sweeps.

6.4 Production PGU Calibration

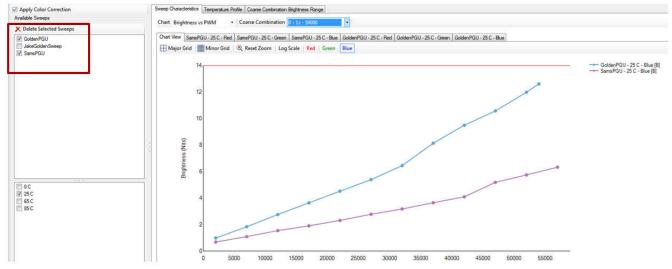
The process for the production PGU calibration sweep is the same as for the pre-production temperature calibration sweeps, but it only needs to be done at one temperature (typically room temperature) for each PGU being calibrated.

- 1. Select "Iterative Calibration" >> "Calibration" >> "Sweeps" from the menu on the left.
- 2. Set the PGU name.
- 3. Set the calibration temperature.
- 4. Select the connected light meter.

🛃 Save Project 🛛 📴 Open Project Location 🛛 💥 Close Project

PGU Name	PGU_Name					
Calibration Temperature		C Use DMD	Temperature			
Start Sweep	Stop Sweep			l.		
No Sweep Running						
eep Settings Light Meter [Measurement Delay	100	New Corine ms	ection		offset compute may be compu	rrection factors are used to d measurements. Factors ted once per setup.
	100 (*) 3	New Conne ms	ection		These color co offset compute may be compu You may choo desired (option	rrection factors are used to d measurements. Factors ted once per setup. se to update the factors if
Light Meter (Measurement Delay No of Measurements			Coarse	Fine	These color co offset compute may be compu You may choo desired (option X Y	rrection factors are used to d measurements. Factors ted once per setup. se to update the factors if al).
Light Meter (Measurement Delay No of Measurements	3	ms	Coarse		These color co offset compute may be compu You may choo desired (option	rrection factors are used to d measurements. Factors ted once per setup. se to update the factors if

Figure 6-11. Iterative Calibration: Individual PGU Sweeps


- 5. If using ND filters, the software can automatically correct for color offset introduced by the filter. Color correction data can be recorded during the first per PGU sweep and used in following sweeps.
- 6. Enter desired values for measurement delay, number of averaged measurements, min/max PWM values, and increment values. Default values are typically acceptable.
- 7. To start the sweep press the "Start Sweep" button.

PGU Name	PGU_Name							
Calibration Temperature	()	с 📃	Use DMD Temp	erature				
Start Sweep	Stop Sweep							
No Sweep Running								
p Settings Measuremen	t Dataile							
eep Settings	A LYOLONS					Color Con	rection Facto	rs
Light Meter	2	• N	lew Connection			offset	computed me	tion factors are used to easurements. Factors once per setup.
Light Meter	100		lew Connection			offset of may be You m	computed me e computed o ay choose to	easurements. Factors
	100 🔹 3		lew Connection			offset of may be You m	computed me e computed o ay choose to d (optional).	easurements. Factors once per setup.
Measurement Delay	Local Local		lew Connection			offset of may be You m	computed me e computed of ay choose to d (optional). X	easurements. Factors once per setup.
Measurement Delay	Local Local			Coarse	Fine	offset of may be You m	computed me e computed o ay choose to d (optional). X Y	easurements. Factors once per setup.
Measurement Delay	3	ms Max PW				offset of may be You m	computed me e computed of ay choose to d (optional). X	easurements. Factors once per setup.

Figure 6-12. Iterative Calibration: PGU Color Correction Factors

- 8. As in the temperature sweeps, data from the per PGU sweep can be viewed in the "Sweep Summary" section.
- 9. Different PGU sweeps can be compared against each other.

6.5 Generating a Calibration File

- 1. Once the temperature trend sweeps and per PGU sweep is complete and calibration file can be generated.
- The brightness margin can be used to remove a portion of the range of a coarse combination. This is done because it may be difficult to achieve the target color point at the minimum and maximum brightness of a combination

- 3. The tradeoff is that you can introduce discontinuities or reduce the maximum brightness achievable if the margins are set too aggressively.
- 4. Select the brightness margins you would like for each coarse combination.

perature Profi	le			Target Color Poir	nt	
Include in Output	Temperature (C)	Maximum Brightness (Nits)	Target Brightness (Nits)	CIEx	0.3127	
	0	185	193	CiLy	0.020	
V	25	226	236	Brightness Margi	ns 😡	_
1	65	137	142			i.
1	85	133	122	Max	10	74
				Min	10	%
				Y Z ℤ	0.9164094 0.8925597 Apply Color Con	rection

5. Select target color point.

clude in Dutput	Temperature (C)	Maximum Brightness	Target Brightness	CIEx	0.3127	
1	0	(Nits) 185	(Nits) 193	CIEy	0.329	
	.25	226	236	Distance Marrie	(23)	
	65	137	142	Brightness Margir	is 🥑	
	85	131	122	Max	10	%
-				Min	10	%
				Y Z IV A	0.9164094 0.8925597 pply Color Con	

Figure 6-15. Cal File Target Color Point

6. If color correction factors were recorded for your calibration procedure the can be applied by selecting the "Apply Color Correction" option.

Calibration Procedure

Include in Output Temperature (C) Maximum Brightness (Nits) Target Brightness (Nits) CIE x ✓ 0 185 193 ✓ 25 226 236 ✓ 65 137 142 ✓ 85 133 122 Max Max Max CIE x CIE x CIE x CIE x CIE x CIE x ✓ 25 226 236 ✓ 65 137 142 ✓ 85 133 122	0.3127
☑ 0 185 193 ☑ 25 226 236 ☑ 65 137 142 ☑ 85 133 122 Max Min	
✓ 25 226 236 Brightness Margins Ø ✓ 65 137 142 Max Max Min M	1. P
☑ 65 137 142 ☑ 85 133 122 Max	1. P
Image: Window State Max Max Image: Window State Min Min	10 1
	10 %
Color Correction Factors	10 %
Z 0.85	64094 25597 Nor Correction

Figure 6-16. Cal File Color Correction Factors

7. Select and input target brightness for each temperature range. Target brightness is dependent on color point, brightness margins and use of color correction factors. Target brightness should remain constant for each PGU calibrated.

Include in Output	Temperature (C)	Maximum Brightness (Nits)	Target Brightness (Nits)	CIEx	0.3127	
	0	185	193	CIEy	0.329	
	25	226	236	Brightness Margir	15 🕜	
V	65	137	142	bight less margin		
	85	133	122	Max	10	%
				Min	10	%
				Z V A	0.8925597 pply Color Con	

Figure 6-17. Included Calibration Temperature Tables

- 8. Once all options have been set, press "Generate Calibration File" and a cal file will be generated.
- 9. During the generation of the cal file, feedback will be provided to the user.
- 10. If there are errors or warnings during the generation of the cal, the errors should be reviewed and corrective action can be taken. In most cases the cal file will still be generated but may have some discontinuities in the dimming range.
- 11. In the case where a continuous dimming range cannot be achieved you may reduce the brightness margins. Often times a small discontinuity is imperceptible.

Blue PWM	Green PWM	Red PWM	Current Limit PWM	Gain	LDC Index	Backlight
36745	41887	38302	59000	1x	0	65535
21510	24817	22384	59000	1x	0	39726
6061	7427	6386	59000	1x	0	13916
14738	17227	15371	59000	1x	2	13915
10428	12365	10884	59000	1x	2	10388
6063	7447	6380	59000	1x	2	6860
14498	16959	15120	59000	1x	4	6859
10310	12229	10759	59000	1x	4	5145
6063	7447	6380	59000	1x	4	3430
16769	19504	17492	59000	1x	6	3429
15625	18222	16299	59000	1x	6	3222
14476	16934	15098	59000	1x	6	3014
27735	26190	35742	30000	1x	14	3013
22291	19199	30089	30000	1x	14	1852
11325	8150	16137	30000	1x	14	691
35770	23586	54809	30000	4x	14	690
22787	13052	37076	30000	4x	14	459
8845	3865	16186	30000	4x	14	228
22487	12837	36635	30000	4x	16	227

Figure 6-18. Example Calibration Table Output

Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

CI	hanges from Revision * (March 2018) to Revision A (April 2022)	Page
•	Updated the numbering format for tables, figures, and cross-references throughout the document	7
•	First public release	7

This page intentionally left blank.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated