
Application Report
SLAA187 - December 2003

1

TSC2301 WinCE Generic Drivers
Yannick Chammings—WinCE Consultant, ADESET Inc., France (ychammings@adeset.com)
Wendy X. Fang —Application Engineer, DAP Group, Texas Instruments, Dallas, TX, USA

ABSTRACT

This application report presents the basic concept and methodology to develop the TSC2301
touch screen, keypad, audio, and GPIO drivers on the Windows CE (WinCE) operating
system (OS). The drivers are not tied to any specific processor platform. They therefore can
be called generic and are reusable for any host processor or platform with minimal additional
coding.

Contents
1 Introduction 2 .
2 Principles 2 .
3 TSC2301 Registers 6 .
4 SPI Interface 6 .

4.1 Processor HW Requirement 6 .
4.2 Processor/TSC2301 HW Connection 7 .
4.3 SPI Driver 7 .

5 TSC2301 Touch Screen Driver 8 .
6 TSC2301 Keypad Driver 10 .
7 TSC2301 Audio Driver 11 .
8 Conclusion 12 .
9 References 13 .

List of Figures
1 WinCE Device Driver Model [3] 4 .
2 Monolithic and Layered TSC2301 Driver 5 .
3 TSC2301 Touch Screen Driver Initialization—InitSC2301Touch() 9 .
4 TSC2301 Keypad Driver Initialization—InitTSC2301Key() 10 .
5 Audio Driver Using MDD Library [3] 11 .
6 TSC2301 Audio Driver—InitTSC2301Audio() 12 .

List of Tables
1 TSC2301 Registers 6 .
2 Host Processor and TSC2301 SPI HW Interface 7 .
3 Fundamental Routines for SPI Driver 7 .
4 TSC2301 SPI Driver Layers 8 .
5 TSC2301 Touch Screen Driver DDSI Routine List 8 .
6 TSC2301 Keypad Driver Routine List 10 .
7 TSC2301 Audio Driver PDD Routine List 11 .
8 TSC2301 WinCE Drivers and Processor Requirements 12 .

SLAA187

2 TSC2301 WinCE Generic Drivers

1 Introduction

Texas Instruments (TI) produces a series of touch screen control devices that have been widely
used in the wireless and communications industry. The applications include, but are not limited
to, cellular phones, smart phones, MP3 players, internet appliances, and personal digital
assistants (PDA). On the product tree of the following WEB site, a broad range of touch screen
controllers can be found.

http://focus.ti.com/analog/docs/analogprodhome.tsp?templateId=4&familyId=82

The TSC2301 is one touch screen device from TI that integrates a touch screen controller, a
keypad controller, and a full-duplex stereo audio codec in a single chip. Additionally, six GPIO
pins on the silicon can be used as extra keypad inputs, power button, and/or other digital IO
functions.

To apply the TSC2301 device, it is essential to develop and write the software drivers to control
the touch screen, the keypad, the audio, and/or other functions. Driver development consumes
time and requires in-depth knowledge on the TSC2301 device. This application report provides
TSC2301 users with generic and reusable TSC2301 drivers, reducing software development
time.

Different operating systems (OS) and host processor/microprocessor platforms require different
drivers for the TSC2301. Hence, it is impractical to develop TSC2301 drivers that can be directly
ported and used by all OS and processors. This application report uses the WinCE OS platform
and generic TSC2301 drivers that are modified and restructured from the nongeneric drivers,
reference [2]. The processor-related/dependent code, and processor-related routines were
separated from the other parts of the drivers. The processor-dependent routines are called by
the TSC2301 driver routines. Therefore, changes to the main drivers are not needed when
changing from one host processor to another. As a result, only the code that is related to the
particular processor needs to be added, or modified when a particular processor is applied.
Please refer to separate application reports, references [4] and [5], for examples. For
consultation and service regarding integrating and interfacing this or other TI TSC drivers to
other processors, contact the following TI third-party contractor:

http://www.adeset.com

or search at

http://www.ti.com and click on the Analog and Mixed Signal link under the Products banner,
then click on the 3rd Party Developers Network link under the Support banner.

2 Principles

Since the TSC2301 implements three types of devices (touchscreen, keypad, and audio) a
driver is required for each feature.

In the Windows CE device drivers model, implement the drivers as follows:

• A touchscreen driver for the touchscreen feature

• A keyboard driver for the keypad feature

• An audio driver (WaveDev or WavClick) for the audio feature

SLAA187

3 TSC2301 WinCE Generic Drivers

The Windows CE device drivers model takes into consideration three types of drivers:

• Built−in drivers, also known as native device drivers. These drivers implement a custom
interface (known as the device driver interface, or DDI functions) specific to the feature it
implements. They are loaded by the graphical windowing events subsystem (GWES)
process, which is part of the Windows CE kernel. They are either dynamic library linked
(DLL) or libraries directly linked to the GWES. GWES manages all MMI subsystems
(graphical, user inputs, etc.). The typical built-in drivers are:

− Display driver

− Touchscreen driver

− Keyboard driver

− Mouse Driver

− LEDs drivers

• Installable drivers, also known as stream drivers. These drivers implement a standard IO
interface to be used for all types of IO devices. These drivers are mounted by device
manager either statically or dynamically. They are DLLs which must provide a ten-function
interface (Init, Deinit, Open, Close, Read, Write, Seek, IOControl, PowerUp, PowerDown)
and are configured in the registry. Consequently, a new stream driver can be easily added.
Examples of typical stream drivers are:

− Serial drivers

− Bus drivers

− Block drivers (for storage devices)

− Specific stream drivers

• The hybrid drivers are stream drivers that additionally implement a specific interface
dedicated to their feature. They are mounted by device manager stream drivers, but are
used by other processes through their specific interfaces. Some sample hybrid drivers are:

− Audio drivers

− PCMCIA controller drivers

− USB drivers

Beyond this classification, the Windows CE device driver model offers two types of architecture:

• Layered drivers (split into two layers):

− The model device driver (MDD) layer implements the functional treatment of the drivers
that are independent of the device that is managed by the driver. For standard drivers in
most cases, the MDD layer need not be modified when developing a driver for a new
device.

− The platform dependent device (PDD) layer implements treatments that are specific to
the device being managed. This layer is adapted when a driver is developed for a new
device.

For all standard drivers, the Windows CE device driver model defines the interface
between the MDD and the PDD layers, allowing development of the PDD layer without
any information on the behavior of the MDD. The PDD layer interface is standardized,
but specific for each type of driver. It is called the device driver service provider interface
(DDSI) function.

SLAA187

4 TSC2301 WinCE Generic Drivers

• Monolithic drivers: Monolithic drivers meld the MDD and PDD layers into one layer. The
functional and device-dependent codes are melded in the same module. These are mainly
used for the simple driver that requires no independent functional layer, or specific drivers for
which the reuse of an independent functional layer is not pertinent.

The functional diagram (Figure 1) summarizes Windows CE device drivers model:

MDD Layer

Device Driver

DDSI Function

PDD Layer

Monolithic
Device Driver

MDD Layer

Device Driver

DDSI Function

PDD Layer

DDI Function DDI Function
Stream Interface

Functions

GWES Device Manager

Hardware

Figure 1. WinCE Device Driver Model [3]

According to the model described above, developing Windows CE drivers for the TSC2301
implies:

• Development of a common library that implements all the SPI exchange with the TSC2301

• Development of the PDD layer of a touchscreen driver (native driver mounted by GWES)

• Development of the PDD layer of a keyboard driver (native driver mounted by GWES)

• Development of the PDD layer of an audio driver (hybrid driver mounted by device manager)

• Development of a monolithic stream driver for power button management (stream driver
mounted by device manager). This one is monolithic, since the functional treatments are
basic enough to allow the melding of MDD and PDD layer.

To develop the TSC2301 drivers, this application report describes an additional lower layer from
the device driver. This layer is called the processor-dependent layer (PDL). As the result, a
monolithic TSC2301 driver has the structure shown in Figure 2−a; and a layered one becomes
that shown in Figure 2−b.

SLAA187

5 TSC2301 WinCE Generic Drivers

to Processor to processor

to GWES or DEVICE to GWES or DEVICE

to Other HW (TSC2301) to Other HW (TSC2301)

MDD

PDD

Monolithic

Device Driver

DDI
Functions

DDI or Stream
Functions

PDL PDL

DDSI Functions

(a) Monolithic Driver (b) Layered Driver

Figure 2. Monolithic and Layered TSC2301 Driver

This additional layer extends the standard Windows CE device driver model to offer the more
generic and flexible drivers:

• The MDD layer implements the functional layer that is both device-independent (i.e.,
independent from the device managed—here the TSC2301) and platform-independent (i.e.,
independent from the hardware architecture in which the device is used, such as the
Lubbock platform (XScale based) and the NOAH platform (AT91RM9200 based)).

• The PDD layer implements device management. It is device-dependent (it implements the
TSC2301 specific code) but platform-independent (the code that implements how the driver
exchanges data with the processor is not at this layer).

• The PDL layer implements platform-specific code. It is platform-dependent as it implements
how the data are exchanged with the processor.

The purpose of the foregoing driver model is to ease the adaptation of the drivers to various platforms
that interface with the TSC2301. Adapting the drivers to a new platform requires only modifications
in the PDL layer, a sublayer of the PDD layer.

SLAA187

6 TSC2301 WinCE Generic Drivers

3 TSC2301 Registers

A series of registers inside the TSC2301 containing the device data, status, and all programmable
controls, variables and parameters, are accessible or controllable by the host processor by SPI
interface. Three pages of memory space hold the registers. Refer to Table 1 for a view of the registers
and to the TSC2301 data sheet [1] for the register definitions and memory map. The registers in page
#0 are data registers; those in page #1 are the touch screen and keypad control registers; and those
in page #2 are audio and GPIO control registers.

Table 1. TSC2301 Registers

Page #0: (Page Address = 0000b†)
DATA REGISTERS

Page #1: (Page Address = 0001b†)
CONTROL REGISTERS

Page #2: (Page Address = 0010b†)
AUDIO CONTROL REGISTERS

COMMAND
WORD‡

REGISTER
ADDRESS

REGISTER
NAME

COMMAND
WORD‡

REGISTER
ADDRESS

REGISTER
NAME

COMMAND
WORD‡

REGISTER
ADDRESS

REGISTER
NAME

0000h§ 00h X 0800h 00h ADC 1000h 00h AUDCTRL

0020h 01h Y 0820h 01h KEY 1020h 01h ADCVOL

0040h 02h Z1 0840h 02h DACCTL 1040h 02h DACVOL

0060h 03h Z2 0860h 03h REF 1060h 03h BPVOL

0080h 04h KPDATA 0880h 04h RESET 1080h 04h KEYCLICK

00A0h 05h BAT1 08A0h 05h CFG 10A0h 05h AUDPD

00C0h 06h BAT2 08C0h 06h CFG2 10C0h 06h GPIO

00E0h 07h AUX1 07~ 0Fh Reserved 10E0h ~ 1340h 07h ~ 1Ah
DAC Bass-
 Boost Filter

0100h 08h AUX2 0A00h 10h KPMASK

0120h 09h TEMP1

0140h 0Ah TEMP2

0160h 0Bh DACDATA

† The b here indicates a binary number
‡ The 16-bit words here are the command words when WRITE; and the command words when READ are the same except that the MSB bit

15 = 1b, that is: Command-Word | 8000h (bit−wise OR).
§ The h here indicates a hex number.

The TSC2301 registers are defined and coded in the header file TSC2301Regs.H.

4 SPI Interface

The processor controls and accesses the TSC2301 control registers described in the previous section
through a standard SPI interface. Therefore, the 4-wire synchronous serial or SPI bus is the most
important interface. The SPI driver is the core for the TSC2301 drivers of the touch screen, the
keypad, the audio function, and any other functions.

The SPI standard and protocol are beyond the scope of this application report and are not discussed
in detail; only the interface to TSC2301 is addressed here.

4.1 Processor HW Requirement

Use the built-in standard SPI port on the host processor, if one is available. Otherwise, with any four
GPIO pins on the processor and a little extra coding, an SPI bus and interface can be created.

SLAA187

7 TSC2301 WinCE Generic Drivers

4.2 Processor/TSC2301 HW Connection

A standard SPI bus consists of four pins/lines, normally named as: SCK (clock), SS (slave select),
MOSI (master-out slave-in data), and MISO (master-in slave-out data). Table 2 lists the SPI
connections between the processor and the TSC2301.

Table 2. Host Processor and TSC2301 SPI HW Interface

HOST PROCESSOR PIN NAME TSC2301 PIN NAME

SPI Clock SCK SCLK (VFBGA BALL B1 or TQFP Pin17)

SPI Slave Select SS SS (VFBGA BALL B2 or TQFP Pin16)

SPI MOSI Data MOSI MOSI (VFBGA BALL C2 or TQFP Pin18)

SPI MISO Data MISO MISO (VFBGA BALL C1 or TQFP Pin19)

In the SPI interface, the TSC2301 is always the slave device; the host processor is the master of the
interface.

4.3 SPI Driver

The TSC2301 SPI driver contains four files: TSC2301SPI.C, TSC2301SPI.H, XXXXXSPIComm.C,
and XXXXXSPIComm.H, where XXXXX stands for the name of the utilized processor. Therefore, the
two files are processor-dependent and in the PDL. For example, for an XScale processor, the two
processor-dependent files should be XScaleSPIComm.C and XScaleSPIComm.H; and for an
AT91RM processor, the two files could be AT91SPIComm.C and AT91SPIComm.H.

Among many of the routines in the above four files, the fundamental routines for the SPI driver are
summarized in Table 3. For the write and read operation timing to interface to TSC2301, refer to
Figure 50 in the TSC2301 data sheet [1]. The processor-related or PDL routines, listed in Table 3,
have HW as the first two letters of the name. Using different processors requires changing the routines
in the PDL layer.

Table 3. Fundamental Routines for SPI Driver

ROUTINE NAME INVOLVED
PROCESSOR-DEPENDENT

ROUTINES

FUNCTION

InitializeSPIDriver();
SetupSPIController()

HWInitializeSPIDriver();
HWSetupSPIController()

Sets up the host processor SPI port so as to be ready for interface

DeIntializeSPIDriver();
StopSPIController()

HWDeIntializeSPIDriver();
HWStopSPIController()

Stop the host processor SPI port and interface

SPITransaction() Write/read one or more TSC2301 registers

HWStartFrame() Actives SS (goes low)

HWStopFrame() De−actives SS (goes high)

HWSPIWriteWord() Writes a word to MOSI

HWSPIReadWord() Reads a word from MISO

HWSPITxBusy() Checks for SPI transmitting finished

HWSPIRxBusy() Checks for SPI receiving finished

HWSPIFIFONotEmpty() Ensures the SPI FIFO has been properly read so that the read data are the
latest

All other SPI interface routines are built from the above basic routines for write and read operations,
to/from TSC2301 registers. Table 4 describes the driver layers.

SLAA187

8 TSC2301 WinCE Generic Drivers

Table 4. TSC2301 SPI Driver Layers

Layer Routine Name

Top (1st) Layer: Routines used by other OS routines/drivers InitializeSPIDriver();
DeIntializeSPIDriver();
SetupSPIController();
StopSPIController();
And all theTSC2301-register write/read routines, TSC2301-driver
function initialization routines, such as:
TSC2301WriteADCReg(), …, …, or TSC2301ReadXY()

Middle (2nd) Layer: Routines called by routines in the top layer WordSPITransaction();

Bottom (3rd) Layer (PDL): Processor-dependent routines, called by
the top and 2nd layer routines

HWInitializeSPIDriver();
HWDeIntializeSPIDriver();
HWSetupSPIController(); HWStopSPIController();
HWStartFrame();HWStopFrame()
HWSPIWriteWord(); HWSPIReadWord()
HWSPITxBusy(); HWSPIRxBusy();
HWSPIFIFONotEmpty()

5 TSC2301 Touch Screen Driver
The TSC2301 touch screen driver is in the file TSC2301Touch.CPP, together with the PDL files
XXXXXTouch.CPP and XXXXXTouch.H, where XXXXX stands for the name of the utilized
processor.

The touch screen driver can be classified as built-in (vs. stream) and layered (vs. monolithic). The
TSC2301 driver was developed based on the generic touch panel structure given by WinCE OS. The
DDSI functions in Table 5 were developed for driving TSC2301 touch function.

Table 5. TSC2301 Touch Screen Driver DDSI Routine List

FUNCTION DESCRIPTION

DdsiTouchPanelAttach() Called when the MDD’s DLL entry point gets a DLL_PROCESS_ATTACH message.

DdsiTouchPanelDetach() Called when the MDD’s DLL entry point gets a DLL_PROCESS_DETACH message.

DdsiTouchPanelDisable() Disables the touch screen device.

DdsiTouchPanelEnable() Applies power to the touch screen device and initializes it for operation.

DdsiTouchPanelGetDeviceCaps() Queries for capabilities of the touch screen device.

DdsiTouchPanelGetPoint() Returns the most recently acquired point and its associated tip-state information.

DdsiTouchPanelPowerHandler() Indicates to the driver that the system is entering or leaving the suspend state.

DdsiTouchPanelSetMode() Sets information about the touch screen device.

The important functions that control the TSC2301 touch screen function are the two DDSI routines,
DdsiTouchPanelEnable() and DdsiTouchPanelGetPoint().

To setup the TSC2301 touch screen function, the subroutine InitTSC2301Touch() is called in the
touch DDSI routine DdsiTouchPanelEnable(). It is crucial to closely follow the initialization
sequence implemented in this stage. Figure 3 illustrates the TSC2301 touch function initialization,
where the corresponding TSC2301 control register is indicated in { }. For example: the ADC register
is shown as {ADC}.

SLAA187

9 TSC2301 WinCE Generic Drivers

Start Touch Init

Put TSC2301 Into:
� Touch Controlled Mode and
� Disable Touch Function

Program All Other Touch
Registers, {KEY},

{REF} and {CFG} On
Page 1, as Needed

Set TSC2301 Touch {ADC} as Slow as Possible

Set TSC2301 Touch {ADC} as Desired

Finished

Figure 3. TSC2301 Touch Screen Driver Initialization—InitTSC2301Touch()

Refer to the attached code for the example settings of the TSC2301 touch screen registers. After the
above initialization, the touch function is ready, and the touch data (for example, X and Y) are available
as soon as the screen/panel is touched (touch screen mode) or when required by the host processor
(host mode).

To read the touch screen data from the TSC2301 touch data registers, the routine
SampleTouchScreenTSC2301(*X, *Y) is called in the DDSI function DdsiTouchPanelGetPoint.
This application report uses the TSC2301 as its touch screen control (vs. host control) mode. Refer
to the initialization code attached. The DAV (not the PENIRQ) is utilized as the hardware interrupt for
the driver. The DAV interrupt occurs (going low) whenever the screen/panel has been touched, and
the touch data has been sampled, converted, and ready to be read.

At this point, the driver reads back all of the touch data so as to reset the DAV interrupt. Note that under
this mode, the only way to reset the DAV is to properly read all touch screen data. Due to a silicon
bug, all touch data, including the X, Y, Z1, and Z2, have to be read back no matter whether the data
is of interest/needed or not. For example, even if only X and Y were required to be read from the
TSC2301, the reading procedure in the touch driver must read back all of the X, Y, Z1, and Z2.
Otherwise, the DAV may not be able to return to a logic high. Such a touch screen reading routine,
named as TSC2301ReadXY (*X, *Y). can be found in the SPI driver routine, TSC2301SPI.C. Refer
to the previous section on SPI.

SLAA187

10 TSC2301 WinCE Generic Drivers

6 TSC2301 Keypad Driver
The TSC2301 keypad driver is in the file TSC2301Key.CPP, together with its header file
TSC2301Key.HPP, and the PDL files XXXXXKey.CPP and XXXXXKey.H.

The keypad driver can also be classified as built-in and layered, similar to the TSC2301 touch screen
driver, and was developed based on the common keyboard structure given by WinCE OS. Table 6
lists the related driver routines on the PDD layer.

Table 6. TSC2301 Keypad Driver Routine List

FUNCTION DESCRIPTION

KeybdPdd_InitializeDriverEx() Called by upper layer to initialize the keyboard hardware, including the processor and the TSC2301

KeybdPdd_GetEventEx() Called by upper layer to retrieve keyboard (keypad) events after the SYSINTR_KEYBD signal is sent.

KeybdPdd_PowerHandler() Called by the upper layer on system power state changes

The main functions for the TSC2301 keypad driver are in the two keyboard PDD routines, named
KeybdPdd_InitializeDriverEx() and KeybdPdd_GetEventEx(). The TSC2301 keypad control
registers were setup or initialized in the KeybdPdd_InitializeDriverEx(); the keypad data is read in
the routine KeybdPdd_GetEventEx().

The initialization of the TSC2301 keypad is implemented by calling the subroutine
InitTSC2301Key(), which is called at the PDD layer KeybdPdd_InitializeDriverEx(). The keypad
initialization involves only two SPI writings to TSC2301 registers Key and KeyMask, as shown in
Figure 4.

Start Keypad Init

Write The Setup Value {KEY}
(Page 1 / Address01h)

Write The Setup Value {KEYMASK}
(Page 1 / Address10h)

Finished

Figure 4. TSC2301 Keypad Driver Initialization—InitTSC2301Key()

Compared to the initialization the TSC2301 touch screen function, the TSC2301 Keypad initialization
is simple and straightforward.

After the initialization, the keypad function is ready for application. At this point, whenever one or more
keys in the keypad are pressed, the KEYIRQ interrupt is active after the keypad data has been
sampled and converted, and the data is ready to be read. After the keypad data is read from KPDATA
(in TSC2301 page#0, register # 04h), the KEYIRQ interrupt is reset or cleared (back to logic high) and
the TSC2301 keypad function is ready for the next cycle. Refer to the routine
KeybdPdd_GetEventEx() for the coding details.

In this application report, note that three among the six GPIO pins in the TSC2301 are used as three
extra keys of the 16-key keypad. To do so, the key F (last key on the 16-key pad) is programmed as
a function key. If the key F is pressed, GPIO1 to GPIO3 become the extended keys on the keypad.
Otherwise, they are normal GPIO pins.

SLAA187

11 TSC2301 WinCE Generic Drivers

7 TSC2301 Audio Driver
The TSC2301 audio driver is in the file TSC2301Audio.C, together with the header file
TSC2301Audio.H, and the PDL files XXXXXAudio.C and XXXXXAudio.H.

As stated previously, the audio driver is classified as the hybrid driver, with the same characteristics
as the stream driver, and the specific interface dedicated to the audio functions. Figure 5 shows the
interaction of the audio driver using the MDD library in WinCE OS.

Application

OS Kernel

Playing and Recording Functions

WAV_ICControl Calls

Wavedev.dll

WaveMDD.lib

WavePDD.lib

Audio Hardware

Figure 5. Audio Driver Using MDD Library [3]

The TSC2301 audio driver was developed within the PDD layer of the OS with no changes to the other
layers of the audio architecture shown in Figure 5. The audio driver DDSI routines are listed in Table 7.

Table 7. TSC2301 Audio Driver PDD Routine List

FUNCTION DESCRIPTION

PDD_AudioGetInterruptType() This function determines the cause of the audio interrupt and returns the current device status.

PDD_AudioInitialize() This function initializes the audio device for operation.

PDD_AudioDeinitialize () This function turns off and disconnects the audio device.

PDD_AudioPowerHandler() This function is responsible for managing the audio hardware during POWER_UP and
POWER_DOWN notifications.

PDD_AudioMessage() This function sends messages from user applications to the audio driver’s platform−dependent driver
(PDD) layer.

PDD_WaveProc() This function sends messages to the audio driver’s PDD layer.

The initialization of the TSC2301 audio function is performed through the InitTSC2301Audio()
subroutine, which is called at the audio DDSI routine PDD_AudioInitialize(). Figure 6 illustrates the
audio initialization flowchart. Note that it is recommended not to power up the audio by software until
all other audio control registers have been configured or initialized.

SLAA187

12 TSC2301 WinCE Generic Drivers

Start Audio Init

Write The Setup Value to Audio Registers
(Page 2: From Address00h to Address 04h)

Write The Setup Value to Power Control
Registers to Power up
(Page 2: Address 05h)

Finished

Figure 6. TSC2301 Audio Driver—InitTSC2301Audio()

The settings and mappings for the DMAC function are called in PDD_AudioInitialize() so as to
handle the audio wave stream data. See the DDSI routine for the details.

The majority of the application message handlings for the PDD is in the PDD_WaveProc() which
processes the WinCE OS standard audio driver’s WPDM_xxx messages from the MDD.

The custom audio messages, which can be specified to set or check the TSC2301 programmable
audio functions (the contents in TSC2301 control registers), are processed in the routine
PDD_AudioMessage().

8 Conclusion

Table 8 summarizes the TSC2301 drivers, and the hardware requirements for a processor to
implement the corresponding TSC2301 drivers and functions.

Table 8. TSC2301 WinCE Drivers and Processor Requirements

FUNCTION TOUCH SCREEN KEYPAD AUDIO

SW Driver Required •

•

Touch Driver
TSC2301Touch.CPP
SPI Driver
TSC2301SPI.C

•

•

Keypad Driver
TSC2301Key.CPP
SPI Driver
TSC2301SPI.C

•

•

Audio Driver
TSC2301Audio.C
SPI Driver
TSC2301SPI.C

Processor HW Required •
•

An external HW Interrupt for DAV
SPI Port

•
•

An external HW Interrupt for KEYIRQ
SPI Port

•
•
•

DMA
I2S Port
SPI Port

Generally, to use the TSC2301 drivers, simply copy the corresponding driver into the proper directory
on the applied processor’s WinCE development platform. For example, copy the
TSC2301Touch.CPP for the touch screen function (and the processor-dependent routines as well)
to the Touch driver directory. Also, update the source file and include the TSC2301Touch.CPP and
XXXXXTouch.CPP to its file list. Refer to references [4] and [5] for more details.

The TSC2301 generic driver code referenced in this application note is available for download. Visit
the TI website at www.ti.com and follow the links. The system has been tested using Intel’s PXA250
processor (Lubbock platform) and on the AT91RM9200 processor (NOAH platform).

SLAA187

13 TSC2301 WinCE Generic Drivers

9 References
1. TSC2301 data sheet – Programmable Touch Screen Controller with Stereo Audio CODEC.

(SLAS371)

2. Windows CE .Net Touch Screen, Keypad and Audio Device Driver for TSC2301 (SLAA169)

3. Related documentation for Windows CE from Microsoft or other sources

4. Installing TSC2301 WinCE Generic Drivers on an XScale Platform, SLAA188

5. Integrate TI Touch Screen Control Generic WinCE Drivers to AT91RM9200 Processors, (In
development)

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright 2003, Texas Instruments Incorporated

http://amplifier.ti.com
http://dataconverter.ti.com
http://dsp.ti.com
http://interface.ti.com
http://logic.ti.com
http://power.ti.com
http://microcontroller.ti.com
http://www.ti.com/audio
http://www.ti.com/automotive
http://www.ti.com/broadband
http://www.ti.com/digitalcontrol
http://www.ti.com/military
http://www.ti.com/opticalnetwork
http://www.ti.com/security
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

