
Application Report
SLAA193 – February 2004

1

Efficient Resampling Filters for the AIC111
Sunil Kamath, Bharath Siravara, Pedro Gelabert, Neeraj Magotra High Performance Analog Group

ABSTRACT

The AIC111 is an ultralow-power, fixed sample rate, sigma-delta codec with a sample rate of
40 kHz and a usable bandwidth of 10 kHz. Typically, most applications process data at
sample rates of 8 kHz, 16 kHz, and 20 kHz. This requires that the DSP or microprocessor
connected to the AIC111 decimate the incoming data from 40 kHz down to the required
sampling frequency, and interpolate the data back up to 40 kHz. This document outlines
several methods and examples of resampling incoming data from the AIC111 at 40 kHz to the
required processing sampling rate between 8 kHz and 20 kHz using decimation and
interpolation techniques on a digital signal processor (DSP) or a microprocessor. In many
situations, it may also be possible to exploit characteristics of supplementary signal
processing stages in the system to relax filter specifications or even remove certain
resampling stages for additional savings in computation. The document also provides some
suggestions on ways to exploit these characteristics. The document also addresses how to
use the H-bridge output on the AIC111 to drive speakers with varying impedance and
bandwidth. Example routines have been developed specifically for use with the AIC111 audio
codec and the Texas Instruments (TI) TMS320C54x™ (C54x™) DSP for speech/audio
applications.

Contents
1 Introduction...3
2 Decimation/Interpolation Filters ..4
3 Efficient Implementation of the Resampling Process ..8

3.1 Integrating the Decimation Filter Into Subsequent Algorithm Processing.................................9
3.2 Eliminating the Interpolation Filter ...9
3.3 Reducing the Number of DSP Interrupts by Using Direct Memory Access (DMA)10
3.4 Decimation by Dropping Samples ...11

4 Output Analog Filter ...12
5 References ..14
Appendix A. Low-Pass Filter Coefficients ..15

A.1 Resampled frequency = 8 kHz ..15
A.1.1 Number of taps = 11 ..15
A.1.2 Number of taps = 51 ..15

A.2 Resampled Frequency = 20 kHz ...16
A.2.1 Number of taps = 7 ..16
A.2.2 Number of taps = 23 ..16
A.2.3 Number of taps = 39 ..17

Appendix B. C54x DSP Implementation..19
B.1 Loopback Code ...19
B.2 DSPLib Code to Implement FIR and IIR Filters ...25

TMS320C54x DSP generation and Code Composer Studio are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.

SLAA193

2 Efficient Resampling Filters for the AIC111

Figures
Figure 1. AIC111 Input Channel Frequency Response With HPF Bypassed............................... 3
Figure 2. Block Diagram of the Resampling Process ... 4
Figure 3. 11-Tap FIR Filter With 4-kHz Passband.. 5
Figure 4. 51-Tap FIR Filter With 4-kHz Passband.. 5
Figure 5. 7-Tap FIR Filter With 10-kHz Passband.. 6
Figure 6. 23-Tap FIR Filter With 10-kHz Passband.. 6
Figure 7. 39-Tap FIR Filter With 10-kHz Passband.. 7
Figure 8. 51-Tap FIR Filter With 10-kHz Passband.. 7
Figure 9. 99-Tap FIR Filter With 10-kHz Passband.. 8
Figure 10. Block Diagram of an AIC111-Equipped Hearing Aid/Headset Device.......................... 9
Figure 11. 10-kHz Low-Pass Filter by Averaging 2 Samples.. 11
Figure 12. 4-kHz Low-Pass Filter by Averaging 5 Samples.. 12
Figure 13. PSD of DAC Output for a 1-kHz Sine Wave.. 13
Figure 14. Third-Order Output Filter With 4-kHz Passband.. 14

SLAA193

 Efficient Resampling Filters for the AIC111 3

1 Introduction
The TI AIC111 is a low power DSP compatible voice band codec specifically designed for devices
with stringent power consumption constraints such as hearing aids or headset applications. The
AIC111 has a fixed sampling rate of 40-kilo samples per second (ksps) with a distortion free
bandwidth of 10 kHz, as shown in Figure 1. The ADC on the AIC111 converts the incoming audio
signal into 16-bit digital data. The serial interface on the AIC111 outputs a 32-bit data word
consisting of the 16-bit audio data and a 16-bit control word at 40 ksps. Hence, it is necessary to
decimate the data down to a maximum of 20 kHz to get a flat input spectrum. Additionally, most
voice band applications work within the speech/audio bandwidth of 4 kHz to 10 kHz, and hence it is
necessary to support a variable sample rate between 8 kHz and 20 kHz.

Figure 1. AIC111 Input Channel Frequency Response With HPF Bypassed

Correspondingly, the data supplied to the DAC on the AIC111 is a 32-bit word consisting of 16 or 20
bits of audio data and 16/12 bits of control. The AIC111 expects a fixed output rate of 40 ksps.
Therefore, the data sent to the AIC111 needs to be packed with the audio and control bits and
upsampled to 40 ksps. This process of decimation and interpolation needs to be performed on the
DSP interfaced to the AIC111.

The complete resampling process involves decimating the data received from the codec to the
appropriate processing rate and interpolating the processed data to the fixed AIC111 rate before
outputting to the codec. Appendix C has a more detailed explanation on the theory behind the
resampling process. Figure 2 shows the block diagram of the various steps necessary to interface
the AIC111 with a device processing the data at lower sampling rates. This application note
assumes that the resampled frequency is an integer divisor of 40 kHz. Resampling to frequencies
that are not an integral ratio of 40 kHz is a nontrivial effort that requires a sample rate converter and
is beyond the scope of this document.

Section 2 summarizes several classical DSP techniques for designing decimation and interpolation
filters.

SLAA193

4 Efficient Resampling Filters for the AIC111

Section 3 describes AIC111-specific resampling subsystems for implementation on a DSP or a
microprocessor. This description shows the downsampling and upsampling for an AIC111 interfaced
to a TMS320C54x serial port. Appendix B shows the example C54x DSP. The development platform
is comprised of the AIC111 and the DSP-codec EVM interfaced to the TMS320C5416 (C5416) DSP
starter kit (DSK) along with Code Composer Studio™ (CCS).

Figure 2. Block Diagram of the Resampling Process

Furthermore, the AIC111 has an integrated headphone amplifier driven by an H-bridge speaker
driver. This H-bridge speaker driver introduces noise above the 10-kHz frequency, reference [10]. In
many cases, this high-frequency noise component is filtered out by the speaker/receiver itself.
However, if the bandwidth of the speaker is greater than 10 kHz, an external analog filter can be
used to filter out the high-frequency noise. Section 4 describes in detail the H-bridge output driver
and gives examples of external analog filters that can be used.

2 Decimation/Interpolation Filters
In a fixed-precision environment like the C54x DSP, the correct choice for the type and structure of
the decimation/interpolation filters is crucial. Choosing a filter implementation that is appropriate for
the targeted application helps ensure proper operation at minimum cost with respect to the
computation and memory storage required for the processing. Figure 3 through Figure 9 show FIR
filters with different orders and passband frequencies. Appendix A details the floating point and the
quantized filter coefficients for these filters. See references [4,5,6,7,8,9] for further information on
designing FIR, IIR, and halfband filters.

Interpolation

Data
@

40 ksps

Low-pass
anti-aliasing

filter
designed for

40 kHz

Algorithm
processing

@
40kHz/D

Output
data @
40 ksps

Drop D-1
data samples

Low-pass
anti-imaging

filter
running @

40 kHz

Add D-1
zeros after
every data

sample

Decimation

D = 40 kHz / required sampling frequency
(e.g., for 8-kHz sampling, D = 40/8 = 5)

SLAA193

 Efficient Resampling Filters for the AIC111 5

(a) Magnitude Response of FIR Filter

(b) Combined Magnitude Response of FIR Filter and ADC Channel

Figure 3. 11-Tap FIR Filter With 4-kHz Passband

(a) Magnitude Response of FIR Filter

(b) Combined Magnitude Response of FIR Filter and ADC Channel

Figure 4. 51-Tap FIR Filter With 4-kHz Passband

SLAA193

6 Efficient Resampling Filters for the AIC111

(a) Magnitude Response of FIR Filter

(b) Combined Magnitude Response of FIR Filter and ADC Channel

Figure 5. 7-Tap FIR Filter With 10-kHz Passband

(a) Magnitude Response of FIR Filter

(b) Combined Magnitude Response of FIR Filter and ADC Channel

Figure 6. 23-Tap FIR Filter With 10-kHz Passband

SLAA193

 Efficient Resampling Filters for the AIC111 7

(a) Magnitude Response of FIR Filter

(b) Combined Magnitude Response of FIR Filter and ADC Channel

Figure 7. 39-Tap FIR Filter With 10-kHz Passband

(a) Magnitude Response of FIR Filter

(b) Combined Magnitude Response of FIR Filter and ADC Channel

Figure 8. 51-Tap FIR Filter With 10-kHz Passband

SLAA193

8 Efficient Resampling Filters for the AIC111

(a) Magnitude Response of FIR filter

(b) Combined magnitude response of FIR filter and ADC channel

Figure 9. 99-Tap FIR Filter With 10-kHz Passband

3 Efficient Implementation of the Resampling Process
This section illustrates methods to efficiently implement the resampling subsystem by exploiting the
transfer function characteristics of other signal processing subcomponents.

After the decimation filter, D-1 samples are discarded. This downsampling process can be
incorporated into an FIR decimation filter by only computing every Dth output sample. This technique
saves computation required for filtering F*(D-1)/D samples every second for a saving of
approximately (D-1)/D % instead of running the filter at full rate. This is equivalent to having a
reduced data rate in the first place.

However, it is necessary that every input sample has to be stored in the filter feedforward delay
buffer. Failing to store these values is equivalent to dropping input samples before band-limiting the
data. This would result in taking frequency content above the Nyquist frequency and aliasing into
the baseband, and thus introducing noise into the system.

Unlike FIR filters, IIR filters have a feedback loop where previous outputs are convolved with the
feedback coefficients to compute later output samples. Because every output sample has to be
computed, the filter cannot be run at the reduced sampling rate.

Note that the interpolation filter is always run at the full sampling rate (40 kHz). For lower decimation
factors, e.g., 2 or 3, the sampling overhead of the interpolation filter can be reduced by using a
polyphase implementation, reference [7], or by using the method in Section 3.3.

Appendix B includes the C54x DSP code for the implementation of these filters.

SLAA193

 Efficient Resampling Filters for the AIC111 9

3.1 Integrating the Decimation Filter Into Subsequent Algorithm Processing

Under some conditions, it is possible to incorporate the decimation task into another filtering
operation and avoid this overhead. In this case, the subsequent filter coefficients are recalculated for
the original sampling frequency instead of the lower sampling frequency. However, this might require
a higher filter order, but the filter is run at the reduced sample rate. For example, the next few
paragraphs depict this technique in a hearing aid application.

In a hearing aid application, the main task of the algorithm shapes the speech spectrum to
compensate for the user’s hearing loss profile. The shaped spectrum is basically the inverse of the
hearing profile, reference [11]. This algorithm essentially implements a specially designed filter.
Normally, the filter is designed for a sampling frequency of 8 kHz or 20 kHz and corresponding
bandwith of 4 kHz or 10 kHz, respectively.

To incorporate the decimation filter into the spectral shaping filter, the spectral shaping filter is
designed for a sampling frequency of 40 kHz while maintaining the original (desired) cutoff. The
stopband now includes frequencies from the cutoff to 20 kHz. If the algorithm is run at the reduced
rate as described in Section 5.1, no additional processing is required for the decimation process.

3.2 Eliminating the Interpolation Filter

Figure 10 depicts the block diagram of a DSP-based hearing aid/headset device equipped with the
AIC111 codec. The figure also illustrates the signal condition (analog or digital), passband bandwidth
(fp) and sampling rate (F) at different points in the system.

Figure 10. Block Diagram of an AIC111-Equipped Hearing Aid/Headset Device

As mentioned in Section 1, the AIC111 outputs data samples at a rate of 40 ksps to the DSP with a
bandwidth of 100 Hz to 10 kHz. The signal to the AIC111 is assumed to be band-limited to fp kHz.
Downsampling data from the AIC111 by a factor of D to F/D ksps drastically reduces the
computational requirements of subsequent signal processing algorithms.

Signal
band-limited

to

fp kHz
(<10 kHz)

AIC111
ADC

F=40 ksps
100 Hz to

10 kHz

 fp kHz

Decimation
filter

running at
F/D ksps

Algorithm
running at
F/D ksps

Interpolation
filter

running at
F ksps

F=40 ksps
100 Hz to

10 kHz

 fp kHz

AIC111
DAC &

H-bridge
output

Analog
low-pass

filter with
cutoff at
fp kHz and
32-ΩΩΩΩ driver

100 Hz to
10 kHz

Noise > 10 kHz

fp kHz

Band-limited
analog signal

to receiver

fp kHz

Digital Signal Processing

SLAA193

10 Efficient Resampling Filters for the AIC111

The resampling subsystem normally includes an interpolation filter (shown as a shaded block) as the
anti-imaging filter, described in Section 4.2. The filter cutoff is around fp kHz. Even though the
speech bandwidth is limited to fp kHz, the H-bridge output contains noise above 10 kHz as
mentioned in Section 1. Low-pass filtering to extract the desired analog signal can be done in either
of the following ways,

1. The speaker/receiver with a suitable response could act as the low-pass filter with a cutoff at
10 kHz or lower as required. These types of speaker/receivers are typically found in hearing
aid devices and can be directly driven by the AIC111 output H-bridge.

2. Headset applications usually use 32-Ω or 16-Ω receivers/speakers that support bandwidth
around 16-kHz. Hence, these types of speakers do not normally filter the higher frequency
image components introduced by the resampling process, nor the DAC-induced high-
frequency noise. To remove the noise components, an analog filter (shown as shaded block)
is employed to low-pass filter the H-bridge output to cut off at the desired frequency. Section
4 describes the H-bridge output driver and the output analog filter along with example filters
that have 4 kHz and 10 kHz cutoffs.

Under these conditions, either the receiver or the external analog filter can also double as the anti-
imaging filter rendering the interpolation filter redundant. The remaining D-1 output samples can be
zero-filled or duplicated from the previous output value, even though this might result in image
components in the higher frequencies reproduced by the speaker. Therefore, the receiver or analog
filter must be designed appropriately to attenuate these high-frequency components.

The filter specification for the decimation filter can be relaxed depending on the frequency response
of the microphone or input data. For example, if the microphone input has a frequency range of only
4 kHz, the decimation filter can have a gradual rolloff starting at 4 kHz. Relaxing the filter
specification reduces the order of the filter and the number of computations required.

3.3 Reducing the Number of DSP Interrupts by Using Direct Memory Access (DMA)

The DSP is interfaced to the AIC111 via the multichannel-buffered serial port (McBSP). The McBSP
is usually configured to interrupt the DSP on every sample received from the AIC111. However, the
signal processing algorithms only process every Dth sample. Using the DMA reduces the number of
CPU interrupts.

The McBSP can be configured for the DMA to interrupt the DSP after acquiring D input samples from
the codec. This minimizes computations spent in context, saving and executing the interrupt service
routine (ISR) for every input sample.

SLAA193

 Efficient Resampling Filters for the AIC111 11

3.4 Decimation by Dropping Samples

In typical voice band applications, the microphone limits the bandwidth of the input signal to the
AIC111. For these band-limited inputs with oversampled data, the DSP can decimate the data by
discarding samples, or preferably by averaging the data samples. While this method results in some
degradation of the processed speech/audio signal, empirical data shows that the distortion is hardly
perceptible to the human ear for small decimation by factors (i.e., resampling to a sampling
frequency of 20 kHz or 13.33 kHz). Figure 11 illustrates the low-pass filtering effect of averaging 2
samples, and Figure 12 illustrates the effect of averaging 5 samples. As we can see from Figure 13,
averaging 2 samples results in a low-pass filter with a very gradual rolloff around 10 kHz. However,
averaging a large number of samples to decimate down to lower sampling frequencies such as 8
kHz results in significant aliasing which distorts the quality of the signal in the desired frequency
range. Therefore, using this technique to decimate by larger factors should be avoided.

(a) Magnitude Response of FIR Filter

(b) Combined Magnitude Response of FIR Filter and ADC Channel

Figure 11. 10-kHz Low-Pass Filter by Averaging 2 Samples

SLAA193

12 Efficient Resampling Filters for the AIC111

(a) Magnitude Response of FIR Filter

(b) Combined Magnitude Response of FIR Filter and ADC Channel

Figure 12. 4-kHz Low-Pass Filter by Averaging 5 Samples

4 Output Analog Filter
The AIC111 has a 32-times oversampled three-level (-1, 0, 1) delta-sigma DAC that drives an
H-bridge output driver. Typically, a two-level output is used since it is ideally linear. However, this
limits the performance of the delta-sigma modulator. To increase the inband performance, a three-
level output is used. This implies that the speakers need to be connected differentially across the
output of the H-bridge. Connecting the speakers single-endedly halves the amplitude of the signal
going into the speaker. Additionally, in the adaptive quantization mode, a pulse width modulation
scheme is used which yields a further 3 dB in SNR. The H-bridge output driver uses a clock that is 4
times the DAC clock. Hence, there are 4 clock pulses for every output bit. The adaptive quantization
mode takes advantage of this to vary the width of the output pulse between one and four clock
pulses depending on the amplitude of the signal. All of these factors ensure excellent inband
performance resulting in 90 dB of dynamic range with a THD of 0.05%. However, these factors also
result in significant out-of-band noise as illustrated by Figure 13.

SLAA193

 Efficient Resampling Filters for the AIC111 13

Figure 13. PSD of DAC Output for a 1-kHz Sine Wave.

The out-of-band noise above 10 kHz needs to be filtered out by either the speaker/receiver or by
using an output analog low-pass filter. Receivers used in hearing aids tend to have a high input
impedance in the order of 120 Ω, and also have a sharp rolloff around 10 kHz. Thus, the out-of-band
noise of the AIC111 has no influence on such a system. Commercially available speakers used in
headset applications have lower impedance on the order of 16–32 Ω and also tend to have a
bandwidth between 16–22 kHz. Using such a speaker directly with the H-bridge results in the load
across the H-bridge being much lower than expected, leading to suboptimal performance.
Additionally, some of the high-frequency noise generated by the H-bridge is now audible as it falls in
the upper regions of the bandwidth of the speaker. This scenario can be easily rectified by
connecting a passive RLC filter across the H-bridge output and connecting the speakers differentially
across the output of the filter. The inductor in the filter blocks the high-frequency noise, and the load
connected to the H-bridge is now the sum of the impedance of the filter and the speakers. This
higher impedance value is thus more optimal, being closely matched to the H-bridge output driver
impedance. Note that it is also feasible to connect an RC filter across the H-bridge. However, in such
a scenario, the RC filter does not block the high-frequency noise, but dissipates it across the
resistance and capacitance. This results in slightly higher power consumption. Figure 14 shows an
example analog filter with a passband centered around 4 kHz.

SLAA193

14 Efficient Resampling Filters for the AIC111

Figure 14. Third-Order Output Filter With 4-kHz Passband

5 References

1. TMS320C54x DSP CPU and Peripherals Reference Set Volume 1 (SPRU131)
2. AIC111 IC Design Specification, 1.3-V microPower DSP/µC Voice Band Audio Codec (SLAS382)
3. TMS320C54x, LC54x, VC54x Fixed-Point Digital Signal Processors (SPRS039)
4. D. F. Elliott, Handbook of Digital Signal Processing Engineering Applications, Academic Press,

1987.
5. D. J. DeFatta, et al., Digital Signal Processing: A Systems Design Approach, John Wiley & Sons,

1988.
6. A. V. Oppenheim, R. W. Schafer, Digital Signal Processing, Prentice Hall, 1975.
7. P. P. Vaidyanathan, Multirate Digital Filters, Filter Banks, Polyphase Networks, and Applications:

A Tutorial, Proceedings of the IEEE, vol.78, Iss.1, pp. 56-93, Jan 1990.
8. L. Gazsi, Explicit Formulas for Lattice Wave Digital Filters, IEEE Trans. Circuits & Systems, vol.

CAS-32, no. 1, Jan 1985.
9. A. Fettweis, et al., Wave Digital Lattice Filters, Int. J. Circuit Theory Appl., vol. 2, no. 2, pp. 203-

211, June 1974.
10. G. Gata, et al., A 1.1–V 270-µA Mixed-Signal Hearing Aid Chip, IEEE J. Solid-State Circuits, vol.

37, No.12, Dec 2002.
11. T. Stetzler, et al., Low Power Real-Time Programmable DSP Development Platform For Digital

Hearing Aids, ICASSP, Vol.4, pp.:2339-2342, Mar 1999.

SLAA193

 Efficient Resampling Filters for the AIC111 15

Appendix A. Low-Pass Filter Coefficients

A.1 Resampled frequency = 8 kHz

A.1.1 Number of taps = 11
Floating Point Quantized - S16Q15
0.00136649
0.02295194
0.06755080
0.12730742
0.18014170
0.20136331
0.18014170
0.12730742
0.06755080
0.02295194
0.00136649

45
752
2214
4172
5903
6598
5903
4172
2214
752
45

A.1.2 Number of taps = 51
Floating Point Quantized - S16Q15
 0.00608580
 0.00249113
 0.00341018
 0.00223568
 -0.00015719
 -0.00349888
 -0.00646796
 -0.00782592
 -0.00617263
 -0.00134929
 0.00565379
 0.01249695
 0.01636109
 0.01454560
 0.00605594
 -0.00776348
 -0.02298622
 -0.03399716
 -0.03465491
 -0.02057063
 0.00930934
 0.05186317
 0.10022042
 0.14480221
 0.17607795
 0.18767002
 0.17607795
 0.14480221
 0.10022042
 0.05186317
 0.00930934
 -0.02057063
 -0.03465491
 -0.03399716
 -0.02298622
 -0.00776348
 0.00605594
 0.01454560
 0.01636109
 0.01249695
 0.00565379
 -0.00134929
 -0.00617263
 -0.00782592
 -0.00646796
 -0.00349888
 -0.00015719
 0.00223568
 0.00341018
 0.00249113
 0.00608580

199
82
112
73
-5
-115
-212
-256
-202
-44
185
410
536
477
198
-254
-753
-1114
-1136
-674
305
1699
3284
4745
5770
6150
5770
4745
3284
1699
305
-674
-1136
-1114
-753
-254
198
477
536
410
185
-44
-202
-256
-212
-115
-5
73
112
82
199

SLAA193

16 Efficient Resampling Filters for the AIC111

A.2 Resampled Frequency = 20 kHz

A.2.1 Number of taps = 7
Floating Point Quantized - S16Q15
 -0.02816184
 0.02975524
 0.27588835
 0.44503650
 0.27588835
 0.02975524
 -0.02816184

-923
975
9040
14583
9040
975
-923

A.2.2 Number of taps = 23
Floating Point Quantized - S16Q15

-0.00534764
0.00630256
0.01017296
-0.01096614
-0.02191395
0.01596771
0.04419754
-0.02046218
-0.09293975
0.02365750
0.31151339
0.47193872
0.31151339
0.02365750
-0.09293975
-0.02046218
0.04419754
0.01596771
-0.02191395
-0.01096614
0.01017296

0.00630256
-0.00534764

-175
207
333
-359
-718
523
1448
-671
-3045
775
10208
15464
10208
775
-3045
-671
1448
523
-718
-359
333
207
-175

SLAA193

 Efficient Resampling Filters for the AIC111 17

A.2.3 Number of taps = 39
Floating Point Quantized - S16Q15
-0.00074808

 0.00396001
 0.00120830
 -0.00629853
 -0.00316842
 0.00902645
 0.00639472
 -0.01191950
 -0.01151998
 0.01508148
 0.01946143
 -0.01807934
 -0.03176816
 0.02077693
 0.05298754
 -0.02291997
 -0.09863958
 0.02425235
 0.31290754
 0.47043692
 0.31290754
 0.02425235
 -0.09863958
 -0.02291997
 0.05298754
 0.02077693
 -0.03176816
 -0.01807934
 0.01946143
 0.01508148
 -0.01151998
 -0.01191950
 0.00639472
 0.00902645
 -0.00316842
 -0.00629853
 0.00120830
 0.00396001
 -0.00074808

-25
130
40

-206
-104
296
210
-391
-377
494
638
-592
-1041
681

1736
-751
-3232
795

10253
15415
10253

795
-3232
-751
1736
681

-1041
-592
638
494
-377
-391
210
296
-104
-206
40
130
-25

SLAA193

18 Efficient Resampling Filters for the AIC111

SLAA193

 Efficient Resampling Filters for the AIC111 19

Appendix B. C54x DSP Implementation

This section contains the source code listing for AIC111 loopback on a C5416 DSK. To build and
execute the code, create a project and add all of the files listed below to the project. Also include the
Chip Support Library (CSL – csl5416.lib) and the run time support library (rts.lib). Sample routines to
implement an FIR and an IIR filter from TI’s DSPLIB are also provided. Please refer to the C54x
DSPLIB User’s Guide (SPRU518) for more information on these routines as well as other
implementations.

B.1 Loopback Code

///
//
// Loopback code to intitialize the AIC111 Codec
// Author: Bharath Siravara
// Date: 05/14/03
// Texas Instruments Inc.
// File Name: Loopback.c
// Carries out loopback. No external parameters.
//
///

#include "loopback.h"

MCBSP_Handle hMcbsp1;

Uint32 temp, data_out;
Uint16 data_in, control_set, control_word;

short fir_coefs[NUM_COEFS] = {-923, 975, 9040, 14583, 9040,975,-923,};

void main()
{
int i;
asm(" NOP"); //probe point for spectral shaping coefficients
asm(" NOP");
//
// Initialize the Chip Support Library (CSL)
// This is a onetime only initialization of the CSL
// that must be done before calling any CSL module API.
//
CSL_init();
//
// Disable all interrupts
//
IRQ_globalDisable();
///
// The C5416 DSK has a 16MHz crystal.
// Set up the PLL so as to set the CPU clock to 160MHz.
// Since the McBSP will be set up in slav mode, it will use
// the CPU clock to synchronize with the external FS(R/X) and
// CLK(R/X). Setting the CPU clock low can derail the synchronization
// Use the PLL module of the CSL to configure the PLL appropriately.
///
PLL_configArgs(PLL_MODE_MUL, 9, 100, 0);
//
// Set the base address of the interrupt vector table
// IRQ_setVecs() will left shift the value that is passed
// into the function by 7. This is a bug.
// As a temporary work around, 0x00FF is passed to the function
// which when left shifted by 7 becomes 0x7F80 which
// is the desired value.
//
i = IRQ_setVecs(0x00FF);
//
// Open and Configure the McBSP port
//
mcbsp_cfg();
IRQ_globalEnable();

SLAA193

20 Efficient Resampling Filters for the AIC111

init_aic111();
while (1)
{
i++;
}
} /* End of main*/

///
//
// Initialize McBSP1 of the C5416 DSP.
// Uses the TI Chip Support Library (CSL)
// Author: Bharath Siravara
// Date: 05/14/03
// Texas Instruments Inc.
// File Name: mcbsp_cfg.c
//
///
#include "loopback.h"
extern MCBSP_Handle hMcbsp1;
//
// Assign and Fill up the config structure to
// Configure the McBSP0 peripheral.
//
MCBSP_Config hMcbsp1_cfg = {
 0x0020,//SPCR1
 //0001000000100000b
 //0~~~~~~~~~~~~~~~ DLB 0 = IDigital LoopBack mode disabled
 //~00~~~~~~~~~~~~~ RJUST 00= right justify and zero fill MSBs in DRR[1,2]
 //~~~00~~~~~~~~~~~ CLKSTP 0x= Clock Stop mode disabled
 //~~~~~000~~~~~~~~ Reserved
 //~~~~~~~~0~~~~~~~ DXENA 0 = Transmit is Disabled
 //~~~~~~~~~0~~~~~~ ABIS 0 = A-bis mode is disabled
 //~~~~~~~~~~10~~~~ RINTM 10= RINT driven by Frame Sync
 //~~~~~~~~~~~~0~~~ RSYNCERR 0= No Synchronization error
 //~~~~~~~~~~~~~0~~ RFULL 0 = RBR is not in overrun condition
 //~~~~~~~~~~~~~~0~ RRDY 0 = Receiver is not ready
 //~~~~~~~~~~~~~~~0 RRST! 0 = Serial Port Receiver is disabled and in reset

 0x0020, //SPCR2
 //0000000000100000
 //000000~~~~~~~~~~ Reserved
 //~~~~~~0~~~~~~~~~ FREE 0 = Free Running Mode is disabled
 //~~~~~~~0~~~~~~~~ SOFT 0 = Soft Mode is disabled
 //~~~~~~~~0~~~~~~~ FRST! 0 = Frame Synchronization logic is reset
 //~~~~~~~~~0~~~~~~ GRST! 0 = Sample Rate Generator is reset
 //~~~~~~~~~~10~~~~ XINTM 10= XINT generated by Frame Sync.
 //~~~~~~~~~~~~0~~~ XSYNCERR 0= Transmit Synchronization error
 //~~~~~~~~~~~~~0~~ XEMPTY 0 = Transmit shift register XSR is empty
 //~~~~~~~~~~~~~~0~ XRDY 0 = Transmitter is not ready
 //~~~~~~~~~~~~~~~0 XRST! 0 = Serial port transmitter disabled and in reset state

 0x00A0, //RCR1
 //0000000010100000
 //0~~~~~~~~~~~~~~~ Reserved
 //~0000000~~~~~~~~ RFRLEN1 000 0000 = 1 word per frame
 //~~~~~~~~101~~~~~ RWDLEN1 101 = 32 bits
 //~~~~~~~~~~~00000 Reserved

 0x0000, //RCR2
 //0000000000000100
 //0~~~~~~~~~~~~~~~ RPHASE 0 = Single-phase frame
 //~0000000~~~~~~~~ RFRLEN2 000 0000 = 1 word per frame
 //~~~~~~~~000~~~~~ RWDLEN1 000 = 8 bits
 //~~~~~~~~~~~00~~~ RCOMPAND 00 = No Companding
 //~~~~~~~~~~~~~0~~ RFIG 0 = Receive Frame Sync after first resets transfer
 //~~~~~~~~~~~~~~00 RDATDLY 00 = 0-bit delay

 0x00A0, //XCR1
 //0000000010100000
 //0~~~~~~~~~~~~~~~ Reserved
 //~0000000~~~~~~~~ XFRLEN1 000 0000 = 1 word per frame
 //~~~~~~~~101~~~~~ XWDLEN1 101 = 32 bits
 //~~~~~~~~~~~00000 Reserved

 0x0000, //XCR2
 //0000000000000100
 //0~~~~~~~~~~~~~~~ XPHASE 0 = Single-phase frame
 //~0000000~~~~~~~~ XFRLEN2 000 0000 = 1 word per frame
 //~~~~~~~~000~~~~~ XWDLEN1 000 = 8 bits

SLAA193

 Efficient Resampling Filters for the AIC111 21

 //~~~~~~~~~~~00~~~ XCOMPAND 00 = No Companding
 //~~~~~~~~~~~~~0~~ XFIG 0 = Transmit frame sync after first resets transfer
 //~~~~~~~~~~~~~~00 XDATDLY 00 = 0-bit delay

 0x0000, //SRGR1
 0x0000, //SRGR2
 0x0000, //MCR1
 0x0000, //MCR2
 0x0002, //PCR
 //0000000000000010
 //00~~~~~~~~~~~~~~ Reserved
 //~~0~~~~~~~~~~~~~ XIOEN 0 = DX, FSX and CLKX are configured as serial port pins
 //~~~0~~~~~~~~~~~~ RIOEN 0 = DR, FSR and CLKR are configured as serial port pins
 //~~~~0~~~~~~~~~~~ FSXM 0 = Transmit Frame Synchronization signal from an external source
 //~~~~~0~~~~~~~~~~ FSRM 0 = Receive Frame Synchronization signal from an external source
 //~~~~~~0~~~~~~~~~ CLKXM 0 = Transmitter Clock driven from an external source
 //~~~~~~~0~~~~~~~~ CLKRM 0 = Receiver Clock driven from an external source
 //~~~~~~~~0~~~~~~~ Reserved
 //~~~~~~~~~0~~~~~~ CLKS_STAT 0 = CLKS pin status
 //~~~~~~~~~~0~~~~~ DX_STAT 0 = DX pin status
 //~~~~~~~~~~~0~~~~ DR_STAT 0 = DR pin status
 //~~~~~~~~~~~~0~~~ FSXP 0 = Frame Synchronization pulse FSX is active high
 //~~~~~~~~~~~~~0~~ FSRP 0 = Frame Synchronization pulse FSR is active high
 //~~~~~~~~~~~~~~1~ CLKXP 1 = Trasnmit data sampled on falling edge of CLKX
 //~~~~~~~~~~~~~~~0 CLKRP 0 = Receive data sampled on falling edge of CLKR
}; // End MCBSP_Config structure

void mcbsp_cfg()
{
 //
 // Open and reset the McBSP0 peripheral. This call will open the
 // port and assign the handle to hMcbsp1 defined previously
 //
 hMcbsp1 = MCBSP_open(MCBSP_PORT1, MCBSP_OPEN_RESET);
 MCBSP_reset(hMcbsp1);
 //
 // Setup the MCBSP using the configuration structure
 // prefiously defined
 //
 MCBSP_config(hMcbsp1, &hMcbsp1_cfg);
 MCBSP_start(hMcbsp1, MCBSP_XMIT_START | MCBSP_RCV_START , 0x200);
 MCBSP_start(hMcbsp1, MCBSP_SRGR_START | MCBSP_SRGR_FRAMESYNC , 0x200);
 IRQ_clear(IRQ_EVT_RINT1);
 IRQ_enable(IRQ_EVT_RINT1);
}

///
//
// Initialize AIC111 registers
// Author: Bharath Siravara
// Date: 05/14/03
// Texas Instruments Inc.
// File Name: init_aic111.c
//
///
#include "loopback.h"
extern Uint16 control_set, control_word;
void init_aic111()
{
 //
 // FORMAT0
 //
 control_word = 0x0846;
 //0000100001000110b;
 //0000~~~~~~~~~~~~ D3-D0 - These bits are set to appropriate values in the ISR
 //~~~~1~~~~~~~~~~~ R/W 1 = WRITE
 //~~~~~000~~~~~~~~ A2-A0 001 = FORMAT0 register address
 //~~~~~~~~0~~~~~~~ PGAC_READ_MODE 0 = Read Format0 register contents
 //~~~~~~~~~1000110 PGAC_GAIN 0x46 = 34dB (default)
 control_set = 1;
 while(control_set) { };
 //
 // FORMAT1
 //
 control_word = 0x0A01;
 D3-D0 - These bits are set to appropriate values in the ISR
 R/W 1 = WRITE
 A2-A0 002 = FORMAT1 register address

SLAA193

22 Efficient Resampling Filters for the AIC111

 DBUF_EN 0 = disable weak digital I/O buffer
 HPF_CTL - Control bits for highpass filter 00 = normal mode
 SHIFT - 000 = No Shift
 DAC_MODE - 16 bit input goes through shifter
 control_set = 1;
 while(control_set) { };
 //
 // FORMAT2
 //
 control_word = 0x0B40;
 D3-D0 - These bits are set to appropriate values in the ISR
 //~~~~1~~~~~~~~~~~ R/W 1 = WRITE
 //~~~~~011~~~~~~~~ A2-A0 003 = FORMAT2 register address
 //~~~~~~~~0~~~~~~~ DAC_ADAPTIVE_Q 0 = Fixed Quantization
 //~~~~~~~~~1~~~~~~ HB_OUT_EN 1 = H-Bridge output Enable
 //~~~~~~~~~~0~~~~~ HB_DRIVE 0 = 40ohm
 //~~~~~~~~~~~0~~~~ HIST_TIMEOUT_SEL 0 = 50ms PGAC Hysterisis Timeout
 //~~~~~~~~~~~~00~~ PGAC_GAIN_MODE 00 = Automatic, Dual Rate
 //~~~~~~~~~~~~~~0~ MIC_VSUP_PD 0 = Power Down MIC_VSUP
 //~~~~~~~~~~~~~~~0 FRONTEND_PD 0 = Power Down PGAC + ADC
 control_set = 1;
 while(control_set) { };
 //
 // FORMAT3
 //
 control_word = 0x0CF7;
 //0000110011110111b;
 //0000~~~~~~~~~~~~ D3-D0 - These bits are set to appropriate values in the ISR
 //~~~~1~~~~~~~~~~~ R/W 1 = WRITE
 //~~~~~100~~~~~~~~ A2-A0 004 = FORMAT3 register address
 //~~~~~~~~1111~~~~ ATTACK - 1111 = Attack Rate = 80000dB/s
 //~~~~~~~~~~~~0111 RELEASE - 0111 = ?
 control_set = 1;
 while(control_set) { };
 //
 // FORMAT4
 //
 control_word = 0x0D42;
 //0000110101000010b;
 //0000~~~~~~~~~~~~ D3-D0 - These bits are set to appropriate values in the ISR
 //~~~~1~~~~~~~~~~~ R/W 1 = WRITE
 //~~~~~101~~~~~~~~ A2-A0 005 = FORMAT4 register address
 //~~~~~~~~0100~~~~ ATTACK - 0100 = ?
 //~~~~~~~~~~~~0010 RELEASE - 0010 = ?
 control_set = 1;
 while(control_set) { };
}

///
//
// Interrupt handler for the McBSP Receive intterupt.
// Uses the TI Chip Support Library (CSL)
// Author: Bharath Siravara
// Date: 05/14/03
// Texas Instruments Inc.
// File Name: aic111_interrupt.c
//
///
#include "loopback.h"
extern MCBSP_Handle hMcbsp1;
extern Uint32 temp, data_out;
extern Uint16 data_in, control_set, control_word;
extern short fir_coefs[NUM_COEFS];
/********************
* Transmit Interrupt*
********************/
interrupt
void c_int22(void)
{

 short *dbuf[NUM_COEFS];
 short temp_out;
 temp = MCBSP_read32(hMcbsp1);
 temp = temp>>16;
 data_in = temp;
 //Add call to low pass filter here
 //Decimate data from 40kHz to required sampling frequency.
 data_out = (Uint32)temp_out<<16;

SLAA193

 Efficient Resampling Filters for the AIC111 23

 if (control_set) /* check to see if register r/w is pending */
 {
 data_out = data_out | (Uint32)control_word;
 control_set = 0;
 }
 MCBSP_write32(hMcbsp1, data_out);
}

**
** Interrupt Vector table
** File Name: C5416Vec.asm
**
** Include Statements
**
 .global _c_int00
 .global _c_int22
 .sect ".vectors"
**
** Unmaskable Interrupts
**
RESET: BD _c_int00 ; HW/SW RESET vector
 NOP
 NOP
NMI: RETE ; ~NMI, Non-Maskable interrupt
 NOP
 NOP
 NOP
**
** S/W Interrupts
**
SINT17: RETE
 NOP
 NOP
 NOP
SINT18: RETE
 NOP
 NOP
 NOP
SINT19: RETE
 NOP
 NOP
 NOP
SINT20: RETE
 NOP
 NOP
 NOP
SINT21: RETE
 NOP
 NOP
 NOP
SINT22: RETE
 NOP
 NOP
 NOP
SINT23: RETE
 NOP
 NOP
 NOP
SINT24: RETE
 NOP
 NOP
 NOP
SINT25: RETE
 NOP
 NOP
 NOP
SINT26: RETE
 NOP
 NOP
 NOP
SINT27: RETE
 NOP
 NOP
 NOP
SINT28: RETE
 NOP
 NOP
 NOP
SINT29: RETE

SLAA193

24 Efficient Resampling Filters for the AIC111

 NOP
 NOP
 NOP
SINT30: RETE
 NOP
 NOP
 NOP
**
** Rest of the Interrupts
**
INT0: RETE ; external user interrupt #0
 NOP
 NOP
 NOP
INT1: RETE ; external user interrupt #1
 NOP
 NOP
 NOP
INT2: RETE ; external user interrupt #2
 NOP
 NOP
 NOP
TINT0: RETE ; Timer0 interrupt
 NOP
 NOP
 NOP
BRINT0: RETE ; McBSP#0 receive interrupt
 NOP
 NOP
 NOP
BXINT0: RETE ; McBSP#0 transmit interrupt
 NOP
 NOP
 NOP
DMAC0: RETE ; DMA channel0 interrupt
 NOP
 NOP
 NOP
TINT1: RETE ; Timer1 interrupt
 NOP
 NOP
 NOP
INT3: RETE ; external user interrupt #3
 NOP
 NOP
 NOP
HPINT: RETE ; HPI interrupt
 NOP
 NOP
 NOP
BRINT1: BD _c_int22 ; McBSP#1 receive interrupt
 NOP
 NOP
BXINT1: RETE ; McBSP#1 transmit interrupt
 NOP
 NOP
DMAC4: RETE ; DMA channel4 interrupt
 NOP
 NOP
 NOP
DMAC5: RETE ; DMA channel5 interrupt
 NOP
 NOP
 NOP
 .end
**
** End of File -- C5402Vec.asm
**

///
//
// CMD file for Loopback project
// Author: Bharath Siravara
// Date: 05/14/03
// Texas Instruments Inc.
// File Name: C5416.cmd
//
///

SLAA193

 Efficient Resampling Filters for the AIC111 25

MEMORY
{
 PAGE 0: DARAM0: origin = 0x0080 length = 0x1f00
 PAGE 0: DARAM1: origin = 0x2000 length = 0x1f00
 PAGE 0: DARAM2: origin = 0x4000 length = 0x1000
 PAGE 0: DARAM3: origin = 0x6000 length = 0x1f00
 PAGE 0: MYVECT: origin = 0x7F80 length = 0x80
}
SECTIONS
{
 .vectors: > MYVECT PAGE 0
 .text: > DARAM0 PAGE 0
 .cinit: > DARAM0 PAGE 0
 .bss: > DARAM1 PAGE 0
 .stack: > DARAM1 PAGE 0
 .const: > DARAM1 PAGE 0
 .sine_table_1 > DARAM2 PAGE 0
 .csldata > DARAM1 PAGE 0
}

B.2 DSPLib Code to Implement FIR and IIR Filters
;***
; Version 2.20.01
;***
;**
; Function: fir
; Description: delayed buffer finite impulse response filter
;
; Copyright Texas instruments Inc, 1998
;--
; Revision History:
; 1.00, Karen Baldwin 8/31/98. Original Beta Release.
;**
 .mmregs
; Far-mode adjustment
; -------------------
 .if __far_mode
OFFSET .set 2
 .else
OFFSET .set 1
 .endif

FRAME_SZ .set 1
REG_SAVE_SZ .set 2
PARAM_OFFSET .set FRAME_SZ + REG_SAVE_SZ + OFFSET
; Register usage
; --------------
 .asg 0 + FRAME_SZ, SAVE_AR1
 .asg 0 + REG_SAVE_SZ + FRAME_SZ, RETURN_ADDR
 .asg 0 + PARAM_OFFSET, h
 .asg 1 + PARAM_OFFSET, r
 .asg 2 + PARAM_OFFSET, db
 .asg 3 + PARAM_OFFSET, nh
 .asg 4 + PARAM_OFFSET, nx
 .asg 0, nc
 .asg AR2, r_ptr
 .asg AR3, h_ptr
 .asg AR4, x_ptr
 .asg AR5, db_ptr
 .asg BRC, rptb_cnt
;**
 .global _fir
_fir
 PSHM ST0 ; 1 cycle
 PSHM ST1 ; 1 cycle
 RSBX OVA ; 1 cycle
 RSBX OVB ; 1 cycle
; Save contents of AR1
; And establish local frame
; Set sign extension mode
; Set FRCT bit:
;--
 FRAME #-(FRAME_SZ) ; 1 cycle
 SSBX SXM ; 1 cycle
 SSBX FRCT ; 1 cycle
; Copy arguments to their local locations as necessary
;--

SLAA193

26 Efficient Resampling Filters for the AIC111

 STLM A, x_ptr ; 1 cycle
 MVDK *sp(h), h_ptr ; 2 cycles
 MVDK *sp(r), r_ptr ; 2 cycles
 MVDK *sp(db), db_ptr ; 2 cycles
;
; Set outer loop count by subtracting 1 from nsamps and
; storing into block repeat count register
;--
 LD *sp(nx), A ; 1 cycle
 SUB #1, A ; 2 cycles
 STLM A, rptb_cnt ; 1 cycle
; Set pointer to delay buffer
;--
 LD *db_ptr, A ; 1 cycle
 STLM A, db_ptr ; 1 cycle
; Store length of coefficient vector/ delay buffer in BK
; register
;--
 LD *sp(nh), A ; 1 cycle
 STLM A, BK ; 1 cycle
 SUB #3, A ; 2 cycles
 STL A, *sp(nc) ; 1 cycle
; Begin outer loop on # samples
;--
_start:
 RPTBD END_LOOP - 1 ; 2 cycles
;
; Store 0 to AR0, to use as circular addressing offset
;--
 STM #1, AR0 ; delay slot; 2 cycles
;
; Zero the accumulator before calculating next sum.
; Move next input sample into delay buffer
;--
 MVDD *x_ptr+, *db_ptr ; 1 cycles
;
; Sum h * x for next y value
;--
 MPY *h_ptr+0%, *db_ptr+0%, A ; 1 cycle
 RPT *sp(nc) ; 2
cycle
 MAC *h_ptr+0% , *db_ptr+0%, A ; 1 cycle * ncoeffs-2
 MACR *h_ptr+0% , *db_ptr, A ; 1 cycle
;
; Store result
;--
 STH A, *r_ptr+ ; 1 cycle
END_LOOP:
_end:
;
; Reset FRCT bit to restore normal C operating environment
; Return overflow condition, OVA, in accumulator A
; Restore stack to previous value, FRAME, etc..
;--
RETURN:
 LDM db_ptr, B ; 1 cycle
 MVDK *sp(db), db_ptr ; 2 cycles
 LD #0, A ; 1 cycle
 XC 1, AOV ; 1 cycle
 LD #1, A ; 1 cycle
 FRAME #(FRAME_SZ) ; 1 cycle
 POPM ST1 ; 1 cycle
 POPM ST0 ; 1 cycle
 .if __far_mode
 FRETD ; 4 cycles
 .else
 RETD ; 3.0 cycles
 .endif
 NOP ; delay slot 1 cycle
 STL B, *db_ptr ; delay slot 1 cycle
;END
;end of file. please do not remove. it is left here to ensure that no lines of code are removed by any editor

;***
; Version 2.20.01
;***
;***

SLAA193

 Efficient Resampling Filters for the AIC111 27

; Function: iircas51
; Description: cascaded IIR direct form I using 5-coefs per biquad
;
; Copyright Texas instruments Inc, 1998
;---
; Revision History
; 1.00 R. Piedra, 8/31/98. Original version. Started from code by Jeff Hayes.
; 2.00 Li Yuan, 6/08/01. Fixed the problem of overflow.
; 3.00 Cesar Iovescu, 10/04/01. Use a1/2 insead of a1 to avoid overflow.
;***
 .mmregs
; Far-mode adjustment
 .if __far_mode
offset .set 1 ; far mode uses one extra location for ret
addr ll
 .else
offset .set 0
 .endif
 .asg (2), save_ar7 ; stack description
 .asg (3), save_ar6
 .asg (4), save_ar1
 .asg (5), ret_addr
 .asg (6 + offset), arg_h
 .asg (7 + offset), arg_y
 .asg (8 + offset), arg_d
 .asg (9 + offset), arg_nbiq
 .asg (10 + offset), arg_n
 ; register usage
 ; AR0: circ addr index
 .asg ar1, ar_x ;
 .asg ar2, ar_d ;
 .asg ar3, ar_h ;
 .asg ar4, ar_y ;
 .asg ar5, ar_count ;
 .asg ar6, ar_hsave ;
 .asg ar7, ar_dsave ;
;**
 .def _iircas51

_iircas51:

; Preserve registers
;-------------------

 pshm ar1 ; preserve registers
 (1)
 pshm ar6 ;
 (1)
 pshm ar7 ;
 (1)
 PSHM ST0 ; 1 cycle
 PSHM ST1 ; 1 cycle
 RSBX OVA ; 1 cycle
 RSBX OVB ; 1 cycle

 ssbx sxm ; sign extension on
 (1)
 ssbx frct ; fract on
 (1)

; Get arguments
;--------------
 ; get arguments
 stlm a, ar_x ; pointer to x
 (1)
 mvdk *sp(arg_h),*(ar_hsave) ; pointer to h
 (2)
 mvdk *sp(arg_y),*(ar_y) ; pointer to y
 (2)
 mvdk *sp(arg_d),*(ar_dsave) ; de-referencing (2)
 mvdk *ar_dsave,*(ar_dsave) ; pointer to d
 (2)

 ld *sp(arg_nbiq),a ; a = nbiq (2)
 sub #1,a,b ;
 (2)
 stl b, *sp(arg_nbiq) ; nbiq(stack) = nbiq-1 (1)

 mvdk *sp(arg_n),*(ar_count) ; sample counter (2)

SLAA193

28 Efficient Resampling Filters for the AIC111

 mar *ar_count- ; ar_count = nsamples-1 (1)
 stm #2,AR0 ; used for incrementing
ar_d (2)
; Loop through N samples
;-----------------------
_start:
next_sample
 ; Loop each sample through N biquads
 ;-----------------------------------
 mvdk *sp(arg_nbiq), BRC ; BRC <- (nbiq -1)
 (2)
 mvmm ar_hsave,ar_h ; reinitialize pointer to top (1)
 mvmm ar_dsave,ar_d ; reinitialize pointer to top (1)

 rptbd eloop-1 ;
 (2)
 ld *ar_x+, 16, a ; ah = x(n) = new sample (1)
 nop ;
 mpya *ar_h+ ; B = (a= x(n))* b0
 (1)
 ; T = b0
 mac *ar_d+,*ar_h+,b ; B += x(n-1)*b1 (1)
 ; T = x(n-1)
 mac *ar_d-,*ar_h+,b ; B += x(n-2)*b2 (1)
 ; T=x(n-2)

; B = x(n)*b0 + x(n-1)*b1 + x(n-2)*b2

 delay *ar_d ; x(n-2) = x(n-1)
 (1)
 sth a,*ar_d+0 ; x(n-1) = x(n) (1)
 mas *ar_d,*ar_h,b ; b -= a1/2*y(n-1) (1)
 mas *ar_d+,*ar_h+,b ; b -= a1/2*y(n-1) (1)
 mas *ar_d-,*ar_h+,b,a ; b -= a2*y(n-2) (1)
eloop

 delay *ar_d ; y(n-2) = y(n-1)
 (1)
 banzd next_sample, *ar_count- ; compute next example (2)
 sth a,*ar_d ; y(n-1) = y(n) (1)
 sth a,*ar_y+ ; store y(n)
 (1)

; Return
;-------
_end:
 mvmm ar_dsave,ar_d ; reinitialize pointer to top (1)
 ; to allow dual buffering
 ; OJO : NOT REALLY NEEDED
 .asg ar_h, ar_temp ; ar_h not used anymore
 mvdk *sp(arg_d),*(ar_temp) ;
 mvkd *(ar_d), *ar_temp ; update new ar_d (2)
 ld #0,a ;
 xc 1, AOV ; return overflow flag
 ld #1,a ; if either a or b overflow
 xc 1, BOV ;
 ld #1,a ;
 (1)
 POPM ST1 ; 1 cycle
 POPM ST0 ; 1 cycle
 popm ar7 ;
 popm ar6 ;
 popm ar1 ;
 .if __far_mode
 fretd ;
 .else
 retd ;
 .endif
 nop
 nop

;end of file. please do not remove. it is left here to ensure that no lines of code are removed by any editor

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright  2004, Texas Instruments Incorporated

http:\\amplifier.ti.com
http:\\dataconverter.ti.com
http:\\dsp.ti.com
http:\\interface.ti.com
http:\\logic.ti.com
http:\\power.ti.com
http:\\microcontroller.ti.com
http:\\www.ti.com\audio
http:\\www.ti.com\automotive
http:\\www.ti.com\broadband
http:\\www.ti.com\digitalcontrol
http:\\www.ti.com\military
http:\\www.ti.com\opticalnetwork
http:\\www.ti.com\security
http:\\www.ti.com\telephony
http:\\www.ti.com\video
http:\\www.ti.com\wireless

