

User's Guide SLEU068–December 2005

The DEM-DAI1807 is an evaluation board for the PCM1807, a 96-kHz, 24-bit PCM audio A/D converter, with digital audio transmitter, optical and coaxial interfaces, onboard multiple clock generator, –6-dB amplifier with LPF, switches and jumpers for mode and clock control, and a connector to interface with a PC for serial-mode control. On the evaluation board, the PCM1807 works in conjunction with a DIT4096 and a PLL1707.

The DIT4096 is a digital audio interface transmitter designed for use in both professional and consumer applications, and which converts the PCM audio interface signal to an S/PDIF signal and supports data rates up to 96 kHz. The PLL1707 is a phase-locked-loop multiclock generator which generates various audio system clock frequencies from a 27-MHz master clock. Detailed information on the devices is available from the following links:

PCM1807 Single-Ended, Analog-Input 24-Bit, 96-kHz Stereo A/D Converter data sheet, (SLES147)

DIT4096 96kHz Digital Audio Transmitter data sheet, (<u>SBOS225</u>) PLL1707. PLL1708 3.3-V Dual PLL Multiclock Generator data sheet, (<u>SLES065</u>)

The DEM-DAI1807 operates using 5-V and \pm 15-V analog power supplies with a 1-Vrms or 2-Vrms unbalanced analog signal input.

Contents

1	Description	3
2	Schematic and Printed-Circuit Board	10

List of Figures

1	DEM-DAI1807 Block Diagram	3
2	DAI Bridge Connection	8
3	FFT Spectrum for -0.5-dB, 1-kHz Signal	9
4	FFT Spectrum for –60-dB, 1-kHz Signal	9
5	DEM-DAI1807 Digital Section (Digital Audio Interface) Schematic Diagram	10
6	DEM-DAI1807 Regulator and Connector Schematic Diagram	11
7	DEM-DAI1807 A/D Converter Section Schematic Diagram	11
8	DEM-DAI1807 Analog Section Schematic Diagram	12
9	DEM-DAI1807 Silkscreen	16
10	DEM-DAI1807 — Top View	17
11	DEM-DAI1807 — Bottom View	18

List of Tables

1	System Clock Source Selection	4
2	Master/Slave Interface Mode Selection	4
3	Interface Format Selection	4
4	System Clock Rate Selection	5
5	Sampling Frequency and System Clock Frequency Selection	5
6	Analog Input Level/Path Selection	5
7	S/PDIF Transmitter Format (Channel Status) Settings for DIT4096	6
8	Mode and Function Controls for the PCM1807	7
9	Bill of Materials	13

1 Description

1.1 Block Diagram

Figure 1. DEM-DAI1807 Block Diagram

1.2 Basic Connection and Operation

1.2.1 Basic Connections and Configurations

- 1. Install the REGTEST software accompanying the EVM into an appropriate folder of the PC which is to be used to control this EVM.
- 2. Connect the 5-V and ±15-V power supplies to V_{CC}, ±AV_{CC}, and GND on CN051–CN055. The ±15-V power supplies are required only for 2-Vrms input.
- 3. Connect the S/PDIF output to CN003 (coaxial) or U001 (optical).
- Using JP001, select the system clock source from the 256/512 f_S or 384 f_S generated by the onboard clock generator (PLL1707), or from the external clock input connector (CN001), and ensure the presence of system clock on JP001.
- 5. Set the interface mode (master or slave) using the M/\overline{S} switch of SW002.
- 6. Set the interface (master or slave) through the serial-mode control to PCM1807 from the PC using the REGTEST software, if required.
- 7. Set the interface format (LJ-24 or I²S-24) using the FMT0 switch of SW002.
- 8. Set the interface format (LJ-24 or I²S-24) through the serial-mode control to PCM1807 from the PC using the REGTEST software, if required.
- 9. Select the combination of sampling frequency (16 kHz to 96 kHz) and system clock rate (256, 384, 512 f_s) using CLK1, CLK0, SR, FS2, and FS1 of SW002.
- 10. Set the channel status for DIT4096, if required. (It is not required for PCM1807 evaluation.)

1.2.2 Configuration Controls

1.2.2.1 System Clock Source Selection

The system clock (master clock) source for EVM including PCM1807, which is associated with sampling frequency, can be selected by the JP001 settings shown in Table 1.

JP001	Description
256	Internal, 256/512 times the sampling frequency
384	Internal, 384 times the sampling frequency
EXT	External, TTL interface level, up to 25 MHz

Table 1. System Clock Source Selection

1.2.2.2 Master/Slave Interface Mode Selection

The audio interface mode of PCM1807 on the EVM can be selected as shown in Table 2. In slave mode, the audio interface clock, BCK, and LRCK are generated in the DIT4096 and supplied to the PCM1807 through a buffer. In master mode, they are generated in the PCM1807 and supplied to the DIT4096.

Mode control of the PCM1807 must be performed in serial mode through the mode-control interface by running the REGTEST software on a PC attached to EVM.

For slave-mode operation just after power on, mode control of the PCM1807 is not required, because slave mode is the default mode of the PCM1807.

SW002, M/S ⁽¹⁾	PCM1807,	I/F Mode ⁽¹⁾	Description
	MDI	MDO	
OFF (High)	0	0	Slave mode (default)
ON (Low)	0	1	Master mode
	1	0	
	1	1	

Table 2. Master/Slave Interface Mode Selection

⁽¹⁾ Other inconsistent combinations between SW002 M/S selection and PCM1807 setting are reserved.

1.2.2.3 Interface Format Selection

The audio interface format of the PCM1807 on the EVM is selected as shown in Table 3.

SW002, FMT0 ⁽¹⁾	PCM1807, FMT (1)	Description
OFF (High)	0	I ² S 24-bit (default)
ON (Low)	1	Left-justified 24-bit

Table 3. Interface Format Selection

⁽¹⁾ Other inconsistent combinations between SW002 FMT0 selection and PCM1807 setting are reserved.

1.2.2.4 Sampling Frequency and System Clock Frequency Selection

The sampling frequency and the system clock frequency for the PCM1807 and EVM can be selected as shown in Table 4 and Table 5 by setting JP001, SW002, and PCM1807. Sampling frequencies of 16 kHz to 96 kHz and system clock frequencies of 256 f_S , 384 f_S , and 512 f_S are available for the EVM. The settings of JP001, CLK1, and CLK0 of SW002, and PCM1807 register bits MD1, MD0 as shown in Table 4 determine the system clock rate. The settings of SR, FS2, and FS1 of SW002 as shown in Table 5 determine the sampling clock and system clock frequencies. The possible combinations of sampling clock and system clock frequencies appear in the rightmost column of Table 5.

10001	SWO	02 <mark>(1)</mark>	PCM1807,	, I/F Mode ⁽²⁾	System Cleak Data
JPUUT	CLK1	CLK0	MD1	MD0	System Clock Rate
_	ON/Low	ON/Low	-	-	Reserved
256	ON/Low	OFF/High	1	1	256 f _S
384	OFF/High	ON/Low	1	0	384 f _S
256	OFF/High	OFF/High	0	1	512 f _S

Table 4. System Clock Rate Selection

⁽¹⁾ Select the DIT4096 master clock rate.

(2) Select the system clock rate if master-mode operation of the PCM1807 is required. If slave-mode operation of the PCM1807 is required, the combination of MD1 = 0 and MD0 = 0 is available for all three rates, 256 f_S, 384 f_S, and 512 f_S, and it does not require setting of the PCM1807 as it is a default state of PCM1807.

	Table 5. Sampling	Frequency	and System	Clock Frequency	Selection
--	-------------------	-----------	------------	------------------------	-----------

	SW002 ⁽¹⁾	FREQUENCIES	
SR	FS2	FS1	Sampling Clock (kHz)/System Clock (MHz)
256 f _S Operation			
OFF/Low	ON/High	OFF/Low	32/8.192
OFF/Low	OFF/Low	ON/High	44.1/11.2896
OFF/Low	OFF/Low	OFF/Low	48/12.288
ON/High	ON/High	OFF/Low	64/16.384
ON/High	OFF/Low	ON/High	88.2/22.5792
ON/High	OFF/Low	OFF/Low	96/24.576
384 f _S Operation			
OFF/Low	ON/High	OFF/Low	32/12.288
OFF/Low	OFF/Low	ON/High	44.1/16.9344
OFF/Low	OFF/Low	OFF/Low	48/18.432
ON/High	ON/High	OFF/Low	64/24.576
ON/High	OFF/Low	ON/High	88.2/33.8688 ⁽²⁾
ON/High	OFF/Low	OFF/Low	96/36.864 ⁽²⁾
512 f _S Operation			
OFF/Low	ON/High	OFF/Low	16/8.192 ⁽²⁾
OFF/Low	OFF/Low	ON/High	22.05/11.2896
OFF/Low	OFF/Low	OFF/Low	24/12.288
ON/High	ON/High	OFF/Low	32/16.384
ON/High	OFF/Low	ON/High	44.1/22.5792
ON/High	OFF/Low	OFF/Low	48/24.576

Select the clock output frequency of PLL1707 SCKOx; the combination of FS2 = ON/High and FS1 = ON/High is reserved.
Not applicable through the S/PDIF interface due to a limitation of the DIT4096. They are applicable for PCM direct interface between PCM1807 and externals.

1.2.2.5 Analog Input Level/Path Selection

The DEM-DAI1807 supports 1-V rms or 2-V rms as the full-scale analog input signal. The input range is selected by setting JP101 and JP102. For 2-V rms input selection, the input signal is applied through an onboard 100-kHz LPF and –6-dB attenuator. The default setting is 2-V rms input. The input level settings are listed in Table 6.

JP101, 102	Description
1Vrms	1-V rms full-scale, analog input is fed to ADC directly.
2Vrms	2-V rms full-scale, analog input is fed to ADC through 100-kHz LPF and –6-dB attenuator (default).

Table 6. An	alog Input	Level/Path	Selection
-------------	------------	------------	-----------

1.2.2.6 Reset Control

Pushbutton switch SW003 is the DEM-DAI1807 reset control for the DIT4096.

1.2.2.7 S/PDIF Transmitter Format (Channel Status) Setting for DIT4096

The extended configurations of the digital audio interface transmitter, DIT4096, and the channel status of S/PDIF can be set using the DIP switches, SW001. The individual switch settings and their functions are described in Table 7. For general evaluation or test of the functionality and performance of the PCM1807, changes from default settings of SW001 are not needed. This is provided for evaluation of DIT4096 function, mainly related with channel status information.

SW001	On/Off	Description
CSS	Off (High)	Channel status data bits are set in serial fashion at the COPY/C input with clock input at the SYNC input.
	On (Low)	COPY/C, L, AUDIO, and EMPH inputs are used to set associated channel status data bits.
	Off (High)	Copy and generation status information with L input for CSS = Low, channel status data bit = 1 for CSS = High
COPTIC	On (Low)	Copy and generation status information with L input for CSS = Low, channel status data bit = 0 for CSS = High
11	Off (High)	User data input = 1
0	On (Low)	User data input = 0
M	Off (High)	Validity data input = 1
v	On (Low)	Validity data input = 0
1 (1)	Off (High)	Copy and generation status with COPY/C for CSS = Low
	On (Low)	Copy and generation status with COPY/C for CSS = Low
	Off (High)	Audio data valid control input, nonlinear PCM
AUDIO	On (Low)	Audio data valid control input, linear PCM
	Off (High)	Pre-emphasis status input, pre-emphasis not applied
EMPH	On (Low)	Pre-emphasis status input, pre-emphasis applied
DI CM	Off (High)	BLS mode control input, BLS is an output
BLSIM	On (Low)	BLS mode control input, BLS is an input
DIC	Off (High)	Block start is input for BLSM = Low, output for BLSM = High
DLO	On (Low)	Not block start

Table 7. S/PDIF Transmitter Format (Channel Status) Settings for DIT4096

⁽¹⁾ Copy and generation status information for CSS = Low; details are described as follows.

COPY/C	L	Copy and Generation Status
On (Low)	On (Low)	Consumer mode, $PRO = 0$, $COPY = 0$, $L = 0$
On (Low)	Off (High)	Consumer mode, $PRO = 0$, $COPY = 0$, $L = 1$
Off (High)	On (Low)	Consumer mode, $PRO = 0$, $COPY = 1$, $L = 0$
Off (High)	Off (High)	Professional mode, PRO = 1, no copy protection

1.2.2.8 Mode and Function Control for PCM1807

The mode/function controls for the PCM1807 can be performed through the serial-mode control port which is written by the REGTEST control software on a PC. In REGTEST, the control word consists of a register address and the control data. The register address of the control register is 31h and the control data is shown in Table 8.

RegAdr	B7	B6	B5	B4	B3	B2	B1	B0		
31h	MRST	SRST	MD1	MD0	FMT	PDWN	PREV	MUTE		
The individ	dual setting	s and definition	ns are desc	ribed in the	following tal	oles.				
MRST		Description	Description							
0		Mode control register reset								
1		Normal operation	n (default)							
SRST		Description	Description							
0		System reset (clo	ock and timing	reset)						
1		Normal operation	n (default)							
MD1	MD0	Description								
0	0	Slave mode (defa	ault)							
0	1	Master mode, 51	2 f _S							
1	0	Master mode, 38	4 f _S							
1	1	Master mode, 25	6 f _S							
FMT		Description								
0		I ² S, 24-bit (defau	lt)							
1		Left-justified, 24-bit								
PDWN		Description								
0		Normal operation	n (default)							
1		Power-down mode								
PREV	PREV Description									
0 Normal operation (default)										
1		DOUT DATA polarity reverse								
MUTE		Description								
0		Normal operation	n (default)							
1		DOUT data mute	on							

Table 8. Mode and Function Controls for the PCM1807

1.2.2.9 DAI Bridge and Control Bridge Selection

The DEM-DAI1807 has a flexible PCM audio interface through the DAI bridge, so that the PCM1807 can interface with external devices or equipment instead of the internal buffer and DIT4096. Interfacing with externals can be done by changing the JP052 and JP053 connections for SCLK, BCK, LRCK, DATA, and GND as described in Figure 2.

The DEM-DAI1807 also supports flexible serial mode control of the PCM1807 by allowing connection with other control devices or equipment through settings of the control bridge, JP054. The default setting is for interface with the internal DIT4096 and mode control enabled.

M0046-01

Figure 2. DAI Bridge Connection

1.3 Typical Performance and Measurement Example

Typical performance of DEM-DAI1807 for default condition is as follows, and FFT results for full scale input and –60 dB input are shown in Figure 3 and Figure 4, respectively.

Figure 3. FFT Spectrum for –0.5-dB, 1-kHz Signal

Figure 4. FFT Spectrum for –60-dB, 1-kHz Signal

2 Schematic and Printed-Circuit Board

This section presents the DEM-DAI1807 schematics, BOM, and printed-circuit boards.

2.1 DEM-DAI1807 Schematic

Figure 5. DEM-DAI1807 Digital Section (Digital Audio Interface) Schematic Diagram

S0128-01

Figure 7. DEM-DAI1807 A/D Converter Section Schematic Diagram

Figure 8. DEM-DAI1807 Analog Section Schematic Diagram

2.2 DEM-DAI1807 Bill of Materials

Table 9 is the bill of materials.

Ref No.	Part Name	Spec-1	Spec-2	Part No.	Supplier	Remarks
Parts Lis	t 1/4 (Digital Section)				1	I
C001	Electrolytic capacitor	10 μF/16 V		R3A-16V100M	ELNA	
C002	Ceramic capacitor	0.1 μF/25 V		PRE132F104Z50	Murata	
C003	Electrolytic capacitor	10 μF/16 V		R3A-16V100M	ELNA	
C004	Ceramic capacitor	0.1 μF/25 V		PRE132F104Z50	Murata	
C005	Electrolytic capacitor	10 μF/16 V		R3A-16V100M	ELNA	
C006	Ceramic capacitor	0.1 μF/25 V		PRE132F104Z50	Murata	
C007	Ceramic capacitor	0.1 μF/25 V		PRE132F104Z50	Murata	
C008	Ceramic capacitor	0.1 μF/25 V		PRE132F104Z50	Murata	
C009	Electrolytic capacitor	10 μF/16 V		R3A-16V100M	ELNA	
C010	Ceramic capacitor	0.1 μF/25 V		PRE132F104Z50	Murata	
C011	Electrolytic capacitor	100 μF/16 V		ROA-16V101M	ELNA	Unmounted
C012	Ceramic capacitor	0.1 μF/25 V		PRE132F104Z50	Murata	Unmounted
C013	Ceramic capacitor	0.1 μF/25 V		PRE132F104Z50	Murata	
C014	Ceramic capacitor	15 pF/50 V		PRE131CH150J50	Murata	
C015	Ceramic capacitor	15 pF/50 V		PRE131CH150J50	Murata	
C016	Ceramic capacitor	0.1 μF/25 V		PRE132F104Z50	Murata	
C017	Ceramic capacitor	0.1 μF/25 V		PRE132F104Z50	Murata	
C018	Ceramic capacitor	0.1 μF/25 V		PRE132F104Z50	Murata	
CN001	BNC connector			BNC-LR-PC4		Right angle
CN002	48-pin connector			FFC-48BMEP1	Honda	Unmounted
CN003	RCA connector	Yellow		LPR6520-0804	SMK	
CN004	Connector			57LE-40360-7700	Daiichi-Denshi	Kogyou
CN005	Test terminal			LC-2-G	Mac8	GND
D001	Diode			1S133	ROHM	
D002	Diode			1S133	ROHM	
D003	Diode			1S133	ROHM	
FIL001	Filter					Unmounted
JP001	6-pin connector			FFC-6BMEP1	Honda	256/384/Ext
L001	Micro inductor	47 μΗ	J	EL0606SKI-470J	TDK	
R001	Metal film resistor	1/8 W, 47 kΩ	J			
R002	Metal film resistor	1/8 W, 470 Ω	J			
R003	Metal film resistor	1/8 W, 47 kΩ	J			
R004	Metal film resistor	1/8 W, 1 kΩ	J			
R005	Metal film resistor	1/8 W, 240 Ω	J			
R006	Metal film resistor	1/8 W, 110 Ω	J			
RA001	Resistor array	47 kΩ× 9	J			
RA002	Resistor array	47 kΩ× 4	J			
RA003	Resistor array	47 kΩ× 4	J			
SW001	DIP switch			DSS110	Fujisoku	DIT
SW002	DIP switch			DSS108	Fujisoku	DIT and PLL
SW003	Pushbutton switch			FP1F-2M	Fujisoku	Reset DIT
SW004	DIP switch			DSS104	Fujisoku	Unmounted
TR001	Pulse transformer			DA-02	JPC	

Table 9. Bill of Materials

Table 9. Bill of Materials	(continued)
----------------------------	-------------

Ref No.	Part Name	Spec-1	Spec-2	Part No.	Supplier	Remarks
U001	Optical transmitter			TOTX-179P	Toshiba	
U002	S/PDIF transmitter			DIT4096	ті	
U003	Buffer			SN74LVC244A	ті	
U004	Buffer			SN74LVC244A	ті	
U005	PLL clock generator			PLL1707DB	ТІ	
U006	One-gate inverter			SN74LVC1G04	ті	
X001	Crystal resonator	27 MHz	±50 ppm	HC-49/U-S, 27MHz	Kinseki	
	Shorting plug	x1		DIC-130	Honda	JP001
Parts Lis	t 2/4 (Power Section)					
C051	Ceramic capacitor	0.1 μF/25 V		PRE132F104Z50	Murata	
C052	Electrolytic capacitor	100 μF/16 V		ROA-16V101M	ELNA	
C053	Electrolytic capacitor	100 μF/16 V		ROA-16V101M	ELNA	
C054	Electrolytic capacitor	100 μF/16 V		ROA-16V101M	ELNA	
C055	Ceramic capacitor	0.1 μF/25 V		PRE132F104Z50	Murata	
C056	Electrolytic capacitor	10 μF/16 V		R3A-16V100M	ELNA	
CN051	Banana jack	Orange				
CN052	Banana jack	Gray				
CN053	Banana jack	Blue				
CN054	Banana jack	Red				
CN055	Banana jack	Black				
CN056	VH connector			B2P-VH	Nihon- Accyaku- Tanshi	
JP051	2-pin connector			FFC-2AMEP1	Honda	
U051	3.3-V regulator			REG1117-3.3	ТІ	
	Shorting plug	×1		DIC-130	Honda	JP051
Parts Lis	t 3/4 (DUT Section)					
C061	Ceramic capacitor	0.1 μF/25 V	1608 type	GRM39F104Z25PT	Murata	Chip type
C062	Electrolytic capacitor	10 μF/16 V		R3A-16V100M	ELNA	
C063	Ceramic capacitor	0.1 μF/25 V	1608 type	GRM39F104Z25PT	Murata	Chip type
C064	Electrolytic capacitor	10 μF/16 V		R3A-16V100M	ELNA	
C065	Ceramic capacitor	0.1 μF/25 V	1608 type	GRM39F104Z25PT	Murata	Chip type
C066	Electrolytic capacitor	10 μF/16 V		R3A-16V100M	ELNA	
CN057	Test terminal			LC-2-G	Mac8	GND
JP052	12 pin connector			FFC-12BMEP1	Honda	
JP053	12 pin connector			FFC-12BMEP1	Honda	
JP054	10 pin connector			FFC-10BMEP1	Honda	
R051	Metal film resistor	1/8W, 100 Ω	J			Chip type
R052	Metal film resistor	1/8W, 100 Ω	J			Chip type
R053	Metal film resistor	1/8W, 100 Ω	J			Chip type
R054	Metal film resistor	1/8W, 100 Ω	J			Chip type
R055	Metal film resistor	1/8W, 100 Ω	J			Chip type
R056	Metal film resistor	1/8W, 100 Ω	J			Chip type
R057	Metal film resistor	1/8W, 100 Ω	J			Chip type
U052	A/D converter (DUT)			PCM1807DB	ТІ	
	Shorting plug	×10		DIC-130	Honda	JP052, JP053, JP054

Table 9. Bill of Materials (Continued)								
Ref No.	Part Name	Spec-1	Spec-2	Part No.	Supplier	Remarks		
Parts Lis	Parts List 4/4 (Analog Section)							
C101	Electrolytic capacitor	10 μF/16 V		ROA-16V100M	ELNA			
C102	Electrolytic capacitor	10 μF/16 V		ROA-16V100M	ELNA			
C103	Film capacitor	1800 pF	J	APSF0100J182	Nissei			
C104	Film capacitor	1800 pF	J	APSF0100J182	Nissei			
C105	Film capacitor	330 pF	J	APSF0100J331	Nissei			
C106	Film capacitor	330 pF	J	APSF0100J331	Nissei			
C107	Film capacitor	100 pF	J	APSF0100J101	Nissei			
C108	Film capacitor	100 pF	J	APSF0100J101	Nissei			
C109	Electrolytic capacitor	10 μF/16 V		ROA-16V100M	ELNA			
C110	Electrolytic capacitor	10 μF/16 V		ROA-16V100M	ELNA			
C111	Electrolytic capacitor	10 μF/16 V		R3A-16V100M	ELNA			
C112	Electrolytic capacitor	10 μF/16 V		R3A-16V100M	ELNA			
C113	Electrolytic capacitor	10 μF/16 V		R3A-16V100M	ELNA			
C114	Electrolytic capacitor	10 μF/16 V		R3A-16V100M	ELNA			
CN101	RCA connector	White		LPR6520-0803	SMK			
CN102	RCA connector	Red		LPR6520-0802	SMK			
CN103	Test terminal			LC-2-G	Mac8	GND		
CN104	Test terminal			LC-2-G	Mac8	GND		
JP101	4-pin connector			FFC-4BMEP1	Honda			
JP102	4-pin connector			FFC-4BMEP1	Honda			
R101	Metal film resistor	1/8 W, 2.4 kΩ	F					
R102	Metal film resistor	1/8 W, 2.4 kΩ	F					
R103	Metal film resistor	1/8 W, 3.3 k Ω	F					
R104	Metal film resistor	1/8 W, 3.3 k Ω	F					
R105	Metal film resistor	1/8 W, 1.2 k Ω	F					
R106	Metal film resistor	1/8 W, 1.2 k Ω	F					
R107	Metal film resistor	1/8 W, 4.7 k Ω	F					
R108	Metal film resistor	1/8 W, 4.7 k Ω	F					
R109	Metal film resistor	1/8 W, 4.7 kΩ	F					
R110	Metal film resistor	1/8 W, 4.7 k Ω	F					
R111	Metal film resistor	1/8 W, 4.7 k Ω	F					
R112	Metal film resistor	1/8 W, 4.7 kΩ	F					
U101	Dual operational amplifier	DIP		OPA2134PA	TI			
U102	Dual operational amplifier	DIP		OPA2134PA	TI			
	IC socket	DIP 8-pin				U101		
	IC socket	DIP 8-pin				U102		
	Shorting plug	×2		DIC-130	Honda	JP101, JP102		

Table 9. Bill of Materials (continued)

Schematic and Printed-Circuit Board

2.3 DEM-DAI1807 Printed-Circuit Board

Figure 9. DEM-DAI1807 Silkscreen

Figure 10. DEM-DAI1807 — Top View

K003

Figure 11. DEM-DAI1807 — Bottom View

EVM TERMS AND CONDITIONS

Texas Instruments (TI) provides the enclosed Evaluation Module and related material (EVM) to you, the user, (you or user) **SUBJECT TO** the terms and conditions set forth below. By accepting and using the EVM, you are indicating that you have read, understand and agree to be bound by these terms and conditions. IF YOU DO NOT AGREE TO BE BOUND BY THESE TERMS AND CONDITIONS, YOU MUST RETURN THE EVM AND NOT USE IT.

This EVM is provided to you by TI and is intended for your **INTERNAL ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY**. It is provided "AS IS" and "WITH ALL FAULTS." It is not considered by TI to be fit for commercial use. As such, the EVM may be incomplete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including product safety measures typically found in the end product. As a prototype, the EVM does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may not meet the technical requirements of the directive.

Should this EVM not meet the specifications indicated in the EVM User's Guide, it may be returned within 30 days from the date of delivery for a full refund of any amount paid by user for the EVM, which user agrees shall be user's sole and exclusive remedy. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY TI TO USER, AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE OR NON-INFRINGEMENT.

TI shall have no obligation to defend any claim arising from the EVM, including but not limited to claims that the EVM infringes third party intellectual property. Further, TI shall have no liability to user for any costs, losses or damages resulting from any such claims. User shall indemnify and hold TI harmless against any damages, liabilities or costs resulting from any claim, suit or proceeding arising from user's handling or use of the EVM, including but not limited to, (I) claims that the EVM infringes a third party's intellectual property, and (ii) claims arising from the user's use or handling of the EVM. TI shall have no responsibility to defend any such claim, suit or proceeding.

User assumes all responsibility and liability for proper and safe handling and use of the EVM and the evaluation of the EVM. TI shall have no liability for any costs, losses or damages resulting from the use or handling of the EVM. User acknowledges that the EVM may not be regulatory compliant or agency certified (FCC, UL, CE, etc.). Due to the open construction of the EVM it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge.

EXCEPT TO THE EXTENT OF THE USER'S INDEMNITY OBLIGATIONS SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHETHER TI IS NOTIFIED OF THE POSSIBILITY OR NOT.

TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

User agrees to read the EVM User's Guide and, specifically, the EVM warnings and Restrictions notice in the EVM User's Guide prior to handling the EVM and the product. This notice contains important safety information about temperatures and voltages.

It is user's responsibility to ensure that persons handling the EVM and the product have electronics training and observe good laboratory practice standards.

By providing user with this EVM, product and services, TI is NOT granting user any license in any patent or other intellectual property right.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2005, Texas Instruments Incorporated

EVM WARNINGS AND RESTRICTIONS

It is important to operate this EVM within the input voltage range and the output voltage range that is less than 120% of the corresponding nominal voltage ranges described in the EVM user's guide.

Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM. If there are questions concerning the input range, please contact a TI field representative prior to connecting the input power.

Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the EVM. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative.

During normal operation, some circuit components may have case temperatures greater than 50°C. The EVM is designed to operate properly with certain components above 50°C as long as the input and output ranges are maintained. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors. These types of devices can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during operation, please be aware that these devices may be very warm to the touch.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2005, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated