

TAS5518C Errata

1 DRC Control Timing

1.1 Problem Description

Write operations to the DRC2 control register (0x97) can be missed if the values of the DRC1 control register (0x96) and DRC2 control register (0x97) are updated in successive I²C operations. The issue is that a DRC2 control register update can be missed if it occurs immediately following a DRC1 control register update.

1.2 System Impact

The DRC2 control register configuration is changed, but due to an internal timing error in the DRC2 control register, the requested change is not recognized.

1.3 Workaround

Provide a 10-ms delay between I²C writes to the DRC1 control register (0x96) and DRC2 control register (0x97).

2 PSVC Control When Using Subwoofer as Lineout

2.1 Problem Description

The problem occurs when the subwoofer is configured as lineout while PSVC is enabled.

One of the PSVC modes is called *subwoofer not part of PSVC calculation*. Normally, this mode is used when the subwoofer is configured as lineout. However, an audible problem occurs during volume changes. In this case, the subwoofer is always used for PSVC calculation even though it is configued not to do so (e.g., as lineout). So, during the volume ramp, the transient values are not correct, thereby creating audible artifacts.

2.2 System Impact

When the subwoofer is configured as lineout with PSVC enabled, audible artifacts can occur during volume changes.

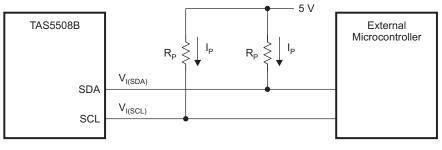
2.3 Workaround

The subwoofer cannot be used as lineout if PSVC is enabled.

3 Use of 5-V CMOS I²C Drivers

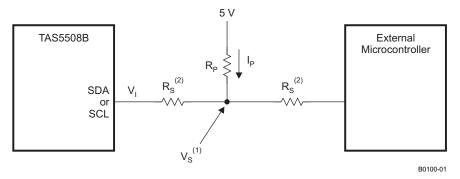
3.1 Problem Description

In systems using 5-V CMOS buffers for the I²C interface, special pullup resistors are required.


The I²C specification requires that V_{IH} is $0.7 \times V_{DD} = 3.5$ V when V_{DD} is 5 V. In some 5-V CMOS systems, the normal value for the I²C pullup resistor is 4.7 k Ω . This could cause the voltage not to rise above 3.47 V, which violates the specification. The root cause has been identified as a TAS5518C 5-V tolerant buffer issue.

3.2 System Impact

- 1. No impact for 3.3-V operation
- 2. No impact for TTL operation
- 3. Impact only for 5-V CMOS operation where V_{IH} could be lower than the specification of 3.5 V.


3.3 Workaround

It is recommended that the I²C pullup resistors, R_P, be 3.3 k Ω (see Figure 1). If a series resistor is in the circuit (see Figure 2), then the series resistors, R_S, should be less than or equal to 300 Ω .

B0099-01

Figure 1. I²C Pullup Circuit (With No Series Resistor)

- (1) $V_S = 5 \times R_S/(R_S + R_P)$. When driven low, $V_S \ll V_{IL}$ requirements.
- (2) $R_S \le 300 \Omega$

Figure 2. I²C Pullup Circuit (With Series Resistor)

2

4 One-Sample Delay in Channels 3, 4, 7, and 8

4.1 Problem Description

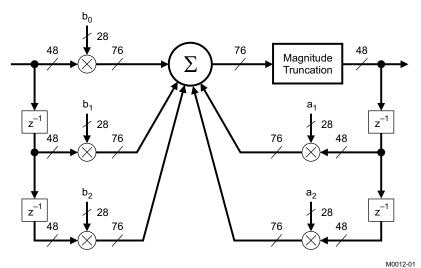
The TAS5518C exhibits a one-sample delay on channels 3, 4, 7, and 8 for sample rates of 32, 44.1, and 48 kHz. The delay occurs in the PWM section.

4.2 System Impact

This time misalignment can impact applications where the TAS5518C is used to provide crossover filtering and bi-amplification, as in powered loudspeakers. The problem that occurs in these cases is that a one-sample time delay in either the high-pass or low-pass path causes an error in the overall crossover frequency response.

The one-sample delay is not anticipated to cause any impact in other applications, because this corresponds to relatively small position change, 7,19 mm or 0.28 in. for a 48-kHz sample rate.

4.3 Workaround


The time misalignment can be corrected by using a biquad to provide a one-sample delay for each of the nondelayed PWM channels for the 48-, 44.1-, and 32-kHz sample rates.

An example of this solution is the following:

When the 8×2 crossbar mixer provides a 1:1 input-to-output connection, an eight-channel loudspeaker configuration uses one of the seven biquads in channels 1, 2, 5, and 6 to provide a one-sample delay.

To produce a one-sample delay with one of the TAS5518C biguads:

- 1. Set the b1 biquad coefficients to a gain of 1.
- 2. Set all of the other biquad coefficients (b0, b2, a1, and a2) to a gain of 0, as shown in the following diagram and table.

The one-sample delay setting is programmed using the following I²C register settings.

I ² C SUBADDRESS	COEFFICIENT	HEX VALUE
Biquad I ² C register Subaddress N	b ₀ —u(31:28), b0(27:24), b0(23:16), b0(15:8), b0(7:0)	0x00, 0x00, 0x00, 0x00
	b ₁ —u(31:28), b1(27:24), b1(23:16), b1(15:8), b1(7:0)	0x00, 0x80, 0x00, 0x00
	b ₂ —u(31:28), b2(27:24), b2(23:16), b2(15:8), b2(7:0)	0x00, 0x00, 0x00, 0x00
	a ₁ —u(31:28), a1(27:24), a1(23:16), a1(15:8), a1(7:0)	0x00, 0x00, 0x00, 0x00
	a ₂ —u(31:28), a2(27:24), a2(23:16), a2(15:8), a2(7:0)	0x00, 0x00, 0x00, 0x00

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Amplifiers amplifier.ti.com Data Converters dataconverter.ti.com DSP dsp.ti.com Clocks and Timers www.ti.com/clocks Interface interface.ti.com Logic logic.ti.com Power Mgmt power.ti.com Microcontrollers microcontroller.ti.com www.ti-rfid.com RF/IF and ZigBee® Solutions www.ti.com/lprf

Applications		
Audio	www.ti.com/audio	
Automotive	www.ti.com/automotive	
Broadband	www.ti.com/broadband	
Digital Control	www.ti.com/digitalcontrol	
Medical	www.ti.com/medical	
Military	www.ti.com/military	
Optical Networking	www.ti.com/opticalnetwork	
Security	www.ti.com/security	
Telephony	www.ti.com/telephony	
Video & Imaging	www.ti.com/video	
Wireless	www.ti.com/wireless	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated