
Application Note
Lockup Avoidance for UCD3138 Devices

Xuemei Lu

ABSTRACT

Lockup occurs when a device can no longer be reprogrammed. Lockup can be caused by either an incorrect
download process or firmware with bugs. This application note describes the possible reasons that can cause
lockup in UCD3138 devices and ways to avoid lockup.

Table of Contents
1 Why Lockup Can Occur... 2
2 Reasons for Lockup... 4

2.1 Wrong Code in the load.asm..4
2.2 Misoperation with TI GUI..4
2.3 zero_out_integrity_word Function Fails... 5
2.4 PMBus Communication Fails... 6
2.5 Unexpected Occurrences...7

3 How to Avoid a Lockup.. 7
4 Unlock with JTAG... 8

4.1 Enable JTAG Functionality...8
4.2 New Target Configuration in CCS.. 8
4.3 Clear the Flash...12

5 Summary... 13
6 References.. 13

List of Figures
Figure 1-1. Checksum Verification Flow Chart in UCD3138(A) ROM..2
Figure 1-2. Checksum Verification Flow Chart in UCD3138064(A) ROM..3
Figure 1-3. Checksum Verification Flow Chart in UCD3138128(A) ROM..4
Figure 2-1. Boot Support Selection..5
Figure 2-2. Designating Code State.. 6
Figure 3-1. Programming Without Checksum..7
Figure 3-2. Jumping to ROM Mode... 7
Figure 3-3. Verification on Checksum Value..8
Figure 4-1. New Target Configuration..9
Figure 4-2. Emulator Type and UCD Variant Selection..10
Figure 4-3. TCLK Frequency Configuration... 11
Figure 4-4. Success on JTAG Connection...12
Figure 4-5. Debug Mode..13

Trademarks
All trademarks are the property of their respective owners.

www.ti.com Table of Contents

SLUAAP5 – JULY 2023
Submit Document Feedback

Lockup Avoidance for UCD3138 Devices 1

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLUAAP5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLUAAP5&partnum=UCD3138,

1 Why Lockup Can Occur
A lockup can occur when there is a valid checksum that cannot be cleared. Different UCD3138 devices have
different numbers of checksum.

A UCD3138(A) device has one single block. There are two locations for checksum and each checksum is 4
bytes.

• 0x7fc – boot checksum, sum of the pflash bytes from address 0 to 0x7fB
• 0x7ffc – overall checksum for pflash, sum of the pflash bytes from address 0 to 0x7ffB

Figure 1-1 is a flowchart showing how UCD3138(A) ROM handles the checksum verification. Regardless of
which two checksums is valid, a jump occurs to address 0 to execute code in pflash.

Power On / Reset

Stay in ROM Mode
Move Program Flash to Address 0

Execute Code in Program Flash

YES

YES

NO

NO

Valid branch instruction at the beginning of program flash?

Valid checksum on first 2kb of program flash?

Valid checksum on all 32kb of program flash?

NO

YES

Figure 1-1. Checksum Verification Flow Chart in UCD3138(A) ROM

A UCD3138064(A) device has block 1 and block 2. There are four locations for checksum and each checksum is
4 bytes.

• 0x7fc – boot checksum for block 1, sum of the pflash bytes from address 0 to 0x7fB
• 0x7ffc – overall checksum for block 1, sum of the pflash bytes from address 0 to 0x7ffB
• 0x87fc – boot checksum for block 2, sum of the pflash bytes from address 0x8000 to 0x87fB
• 0xfffc – overall checksum for the 64K program combining block 1 and 2, or for block 2 alone

Figure 1-2 is a flowchart showing how UCD3138064(A) ROM handles the checksum verification.

Why Lockup Can Occur www.ti.com

2 Lockup Avoidance for UCD3138 Devices SLUAAP5 – JULY 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLUAAP5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLUAAP5&partnum=UCD3138,

YES NO

Device Reset

Does Program Flash 1 have a

BRANCH instruction at the

beginning?

NONO YESYES

BRANCH to

Program Flash 2

Stay in ROM
BRANCH to

Program Flash 1

YES NO

NOYES

Is there a valid checksum on the

first 2kB of Program Flash 1 or all

32kB of Program Flash 1?
Does Program Flash 2 have a

BRANCH instruction at the

beginning?

Is there a valid checksum on the

first 2kB of Program Flash 2 or all

32kB of Program Flash 2?

Is there a valid checksum

on all 64kB?

Figure 1-2. Checksum Verification Flow Chart in UCD3138064(A) ROM

A UCD3138128(A) has block0, block1, block2, and block3. There are four locations for checksum and each
checksum is 8 bytes.

• 0x7f8 – boot checksum for block 0, sum of the pflash words from address 0 to 0x7f7
• 0x7ff8 – overall checksum for block 0, sum of the pflash words from address 0 to 0x7ff7
• 0xfff8 – overall checksum for the 64K program combining block 0 and 1, sum of the pflash words from

address 0 to 0xfff7
• 0x1fff8 – overall checksum for the 128K program, or the 64K program combining block 2 and 3

Figure 1-3 is a flowchart showing how UCD3138128(A) ROM handles the checksum verification.

www.ti.com Why Lockup Can Occur

SLUAAP5 – JULY 2023
Submit Document Feedback

Lockup Avoidance for UCD3138 Devices 3

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLUAAP5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLUAAP5&partnum=UCD3138,

YES NO

Device Reset

Does PFLASH 0 have a

BRANCH instruction at the

beginning?

NOYES

BRANCH to

Program Flash 2

Stay in ROM

BRANCH to

Program Flash 0

NOYES

Does PFLASH 2 have a

BRANCH instruction at the

beginning?

Is there a valid checksum on

all 64kB of PFLASH 2 and 3?

YES

Is there a valid checksum on

the first 2kB of PFLASH 0

all 32kB of PFLASH 0

all 64kB of PFLASH 0 and 1

all 128kB of FLASH 0, 1, 2, and 3?

NO

Figure 1-3. Checksum Verification Flow Chart in UCD3138128(A) ROM

2 Reasons for Lockup
2.1 Wrong Code in the load.asm
In load.asm, if the following red lines are removed, but the two blue lines remain, this can cause the device to
reset continuously since r4 does not have a valid value. If this is the case, the device locks permanently and
these 5 lines are removed entirely or remain.

B_fast_interrupt
 .align 4
 .sect ".text"
 .state32
c_int00
; B c_int00
 LDR r13, c_sup_stack_top ; initialize supervisor stack pointer
; LDR r4,c_mfbalr1_half0 ;point r4 at program flash base address register
; MOV r0,#0x62 ;make block size 32K, address 0, read only
; STRH r0,[r4]; store it there
 LDR r0,c_mfbalr2_half0_load ;set up data flash for write only
 STRH r0,[r4,#8] ;put it into mfbalr2

2.2 Misoperation with TI GUI
If there is no bootloader in the application, but the Boot support is selected, a valid checksum at address 0x7f4
(or 0x7f8) can exist for the boot. Since there is no bootloader used, the checksum at 0x7f4 (or 0x7f8) cannot be
cleared and can cause a lockup.

Reasons for Lockup www.ti.com

4 Lockup Avoidance for UCD3138 Devices SLUAAP5 – JULY 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLUAAP5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLUAAP5&partnum=UCD3138,

Figure 2-1. Boot Support Selection

2.3 zero_out_integrity_word Function Fails
zero_out_integrity_word function is used to clear the specified location of checksum. A lockup can occur
when the zero_out_integrity_word function does not compile in 32-bit mode. This function is normally in an
independent file named zero_out_integrity_word.c. The function name or file name can be slightly different from
project to project, but generally looks like the following.

#define program_flash_integrity_word (*((volatile unsigned long *) 0x7ffc))
//last word in flash, when executing from Flash. used to store integrity code

void zero_out_integrity_word(void)
{
 DecRegs.FLASHILOCK.all = 0x42DC157E;// Write key to Program Flash Interlock Register
 DecRegs.MFBALR1.all = MFBALRX_BYTE0_BLOCK_SIZE_32K; //enable program flash write
program_flash_integrity_word = 0;
 DecRegs.MFBALR1.all = MFBALRX_BYTE0_BLOCK_SIZE_32K + MFBALRX_BYTE0_RONLY;

 while(DecRegs.PFLASHCTRL.bit.BUSY != 0)
 {
 ; //do nothing while it programs
}

 return;
}

To check whether this function/file is compiled in 32-bit mode:

• Right click on zero_out_integrity_word.c > Properties > CCS Build > ARM Compiler > Processor Option >
Designate code state.

• If currently 16, change to 32 (as shown in Figure 2-2.)
• Rebuild the project.

Note that this option is done with the configuration in CCS, so the zero_out_integrity_word function can possibly
fail when the CCS version or compiler version is changed.

www.ti.com Reasons for Lockup

SLUAAP5 – JULY 2023
Submit Document Feedback

Lockup Avoidance for UCD3138 Devices 5

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLUAAP5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLUAAP5&partnum=UCD3138,

Figure 2-2. Designating Code State

Another option is to use a preprocessor directive #pragma telling the compiler to compile the specified function in
32-bit mode. The following is an example.

#define program_flash_integrity_word (*((volatile unsigned long *) 0x7ffc))
//last word in flash, when executing from Flash. used to store integrity code

#pragma CODE_STATE(zero_out_integrity_word, 32) // 16 = thumb mode, 32 = ARM mode
void zero_out_integrity_word(void)
{
 DecRegs.FLASHILOCK.all = 0x42DC157E;// Write key to Program Flash Interlock Register
 DecRegs.MFBALR1.all = MFBALRX_BYTE0_BLOCK_SIZE_32K; //enable program flash write
 program_flash_integrity_word = 0;
 DecRegs.MFBALR1.all = MFBALRX_BYTE0_BLOCK_SIZE_32K + MFBALRX_BYTE0_RONLY;
 while(DecRegs.PFLASHCTRL.bit.BUSY != 0)
 {
 ; //do nothing while it programs
}

 return;
}

2.4 PMBus Communication Fails
A lockup can occur when the zero_out_integrity_word function works, but PMBus communication fails because
the zero_out_integrity_word normally gets triggered by a PMBus command.

To debug, place a back-door at the beginning of the application code as shown in the following. This is to make
sure the device is able to recover when the back-door condition is met.

void main()
{
 volatile unsigned int dummy;
 if(GioRegs.FAULTIN.bit.FLT3_IN == 0)// Re-Check pin assignment
 {
 clear_integrity_word();
}
}

Reasons for Lockup www.ti.com

6 Lockup Avoidance for UCD3138 Devices SLUAAP5 – JULY 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLUAAP5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLUAAP5&partnum=UCD3138,

2.5 Unexpected Occurrences
A lockup can occur if an unexpected occurrence happens during programming with old GUI (for example, the
power shuts off or loose wires). This is especially true in the case that boot checksum is used. This is because
old GUI programs go from low address to high address sequentially. If this occurs, use the latest GUI tool Fusion
Digital Power Studio. This tool programs the checksums in the end, allowing the device the chance to recover on
reset.

3 How to Avoid a Lockup
To avoid a lockup, follow the three steps:

Step 1: DO NOT write checksum when programming a UCD device if there is a possibility the firmware is not
working. While checksum can still jump to pflash for execution after programming, a UCD device can always get
back to ROM on reset. Follow the configurations in Figure 3-1.

Figure 3-1. Programming Without Checksum

Step 2: Confirm the expected location of checksum is cleared correctly. Click on the command Command
Program to jump to ROM (Send Byte 0xD9 to address xx) to send UCD back to ROM mode.

Figure 3-2. Jumping to ROM Mode

Step 3: Go to the Checksums tag. Select the Dump button to read each of the checksums by configuring the
Block configuration. Check whether the expected location of checksum is cleared. If cleared correctly, the field
shows all zeros.

www.ti.com Reasons for Lockup

SLUAAP5 – JULY 2023
Submit Document Feedback

Lockup Avoidance for UCD3138 Devices 7

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com/tool/FUSION-DIGITAL-POWER-STUDIO?keyMatch=FUSION%20DIGITAL%20POWER%20STUDIO
https://www.ti.com/tool/FUSION-DIGITAL-POWER-STUDIO?keyMatch=FUSION%20DIGITAL%20POWER%20STUDIO
https://www.ti.com
https://www.ti.com/lit/pdf/SLUAAP5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLUAAP5&partnum=UCD3138,

Figure 3-3. Verification on Checksum Value

Check code to confirm the correct checksum is cleared. Once cleared as expected, program UCD device with
checksum.

4 Unlock with JTAG
If the device cannot be reprogrammed, but the firmware is executing normally and the memory debugger read or
write functionality works, there is a way to unlock with JTAG.

4.1 Enable JTAG Functionality
JTAG port mainly includes 4 pins TCK/TDI/TDO/TMS. Those 4 pins can work in GPIO mode if the JTAG function
is disabled, which is the normal case in application. To enable JTAG functionality, check the configuration of
registers in the following, and reconfigure them if necessary. Set the IOMUX register to be 0 to enable JTAG,
and make sure none of TCK/TDI/TDO/TMS pins works in GPIO mode. This can be done via the memory
debugger in UCD3xxx Device GUI.

 MiscAnalogRegs.IOMUX.all = 0; //enable JTAG

 MiscAnalogRegs.GLBIOEN.bit.TCK_IO_EN = 0;
 MiscAnalogRegs.GLBIOEN.bit.TDI_IO_EN = 0;
 MiscAnalogRegs.GLBIOEN.bit.TDO_IO_EN = 0;
 MiscAnalogRegs.GLBIOEN.bit.TMS_IO_EN = 0;

4.2 New Target Configuration in CCS
On the menu on the top of CCS, click View > Target Configurations. In the target configurations pane, right
click on User Defined, select New target configuration. Give the configuration a meaningful name, (for example,
emulator type) and the UCD variant in the name, as shown in Figure 4-1. Click Finish.

Unlock with JTAG www.ti.com

8 Lockup Avoidance for UCD3138 Devices SLUAAP5 – JULY 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLUAAP5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLUAAP5&partnum=UCD3138,

Figure 4-1. New Target Configuration

In the Connection and Board or Device item, select the proper emulator type and UCD variant respectively. Take
the JTAG XDS110 and UCD3138064A as an example.

www.ti.com Unlock with JTAG

SLUAAP5 – JULY 2023
Submit Document Feedback

Lockup Avoidance for UCD3138 Devices 9

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLUAAP5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLUAAP5&partnum=UCD3138,

Figure 4-2. Emulator Type and UCD Variant Selection

From the Advanced tab, change the TCLK frequency from 5.5 MHz to 1.0 MHz. Experiment with values larger
than 1 MHz, but less than 5.5 MHz. Click Save.

Unlock with JTAG www.ti.com

10 Lockup Avoidance for UCD3138 Devices SLUAAP5 – JULY 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLUAAP5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLUAAP5&partnum=UCD3138,

Figure 4-3. TCLK Frequency Configuration

Click Test Connection. When the test is complete, scroll down to the bottom of the pop-up window and observe
the message as shown in Figure 4-4. If the message does not appear, there is an issue with either the physical
connection or the setup.

www.ti.com Unlock with JTAG

SLUAAP5 – JULY 2023
Submit Document Feedback

Lockup Avoidance for UCD3138 Devices 11

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLUAAP5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLUAAP5&partnum=UCD3138,

Figure 4-4. Success on JTAG Connection

4.3 Clear the Flash
Right click on the ucd3138064a-xds110.ccxml, select Launch Selected Configuration. The debug window
appears as in Figure 4-5. On the top menu, click Run > Connect Target.

Use the following steps:

• Go to the Registers tab, clear the RONLY bit in MFBALR1 register.
• Set the value of the FLASHILOCK register as 0x42DC157E.
• Set the MASS_ERASE bit in PFLASHCTRL1. This erases the block 1 in UCD3138064A.
• Exit from debug mode and reset the device. The device is now in ROM mode.

Unlock with JTAG www.ti.com

12 Lockup Avoidance for UCD3138 Devices SLUAAP5 – JULY 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLUAAP5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLUAAP5&partnum=UCD3138,

Figure 4-5. Debug Mode

5 Summary
A lockup can occur when there is a valid checksum that cannot be cleared, which can be caused by either an
incorrect download process or firmware with bugs. To avoid a lockup, check the possible reasons listed and
follow the instructions before programming with checksum. If the device is locked, but the firmware is executing
normally and PMBus works, the device is able to recover with JTAG. Otherwise, there is no way to save.

6 References
• Texas Instruments, Fusion Digital Power Studio.
• Texas Instruments, UCD3138064 Programmer’s Manual.
• Texas Instruments, UCD3138A64/UCD3138128 Programmer’s Manual.

www.ti.com Summary

SLUAAP5 – JULY 2023
Submit Document Feedback

Lockup Avoidance for UCD3138 Devices 13

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com/tool/FUSION-DIGITAL-POWER-STUDIO?keyMatch=FUSION%20DIGITAL%20POWER%20STUDIO
https://www.ti.com/lit/pdf/sluuad8
https://www.ti.com/lit/pdf/sluub54
https://www.ti.com
https://www.ti.com/lit/pdf/SLUAAP5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLUAAP5&partnum=UCD3138,

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	Table of Contents
	Trademarks
	1 Why Lockup Can Occur
	2 Reasons for Lockup
	2.1 Wrong Code in the load.asm
	2.2 Misoperation with TI GUI
	2.3 zero_out_integrity_word Function Fails
	2.4 PMBus Communication Fails
	2.5 Unexpected Occurrences

	3 How to Avoid a Lockup
	4 Unlock with JTAG
	4.1 Enable JTAG Functionality
	4.2 New Target Configuration in CCS
	4.3 Clear the Flash

	5 Summary
	6 References

