

AN-1450 LM3743 Evaluation Board

1 Introduction

The LM3743 is a voltage mode PWM buck controller that implements synchronous rectification. It provides a low cost, fault tolerant, and efficient point of load solution. To reduce component count several parameters are fixed, such as switching frequency and the short circuit protection level. In steady state operation the LM3743 is always synchronous, even at no load, thus simplifying the compensation design. The LM3743 ensures a smooth and controlled start-up when the output is pre-biased. Two levels of current limit protection enhance the robustness of the power supply and requires no current sense resistor in the power path. The primary level of protection is the low side current limit and is achieved by sensing the voltage V_{DS} across the low side MOSFET. The second level of protection is the high side current limit, which protects power components from extremely high currents caused by switch node short-circuit to ground.

2 Specifics Of The Board

The input voltage to the power components (V_{IN}) and the input voltage on the control section (V_{CC}) must be in the range of 3.0V to 5.5V. The 300 kHz demo board design regulates to an output voltage of 1.2V and up to 13A. The 1 MHz demo board design regulates to an output voltage of 1.5V and up to 9A. For additional design modifications, see the *Design Consideration* section of the *LM3743 High-Performance Synchronous Buck Controller with Comprehensive Fault Protection Features Data Sheet* (SNVS427). The PCB is designed on four layers, the top and bottom layers are 2oz. copper and the two inner layers are 1oz. copper. The board measures 2.4 in. x 1.36 in. (6.1 cm x 3.44 cm) and is 62mil (.062") thick on a FR4 laminate.

3 Additional Footprints

When the tracking feature of the LM3743 is used, remove the soft-start capacitor C4 and use a resistor divider on designators R7 and C4. The ground and track post have been provided for your connecting convenience.

4 MOSFET Footprints

The LM3743 demo board accommodates footprints for single N-MOSFETs with standard SOIC-8 packages and with exposed drain pads. The MOSFET footprint has the pinout as shown in Figure 1. Some examples of MOSFET packages with exposed drain pads are also illustrated.

All trademarks are the property of their respective owners.

Figure 1. SOIC-8 Footprint

5 Performance Characteristics Efficiency

Figure 4. $V_{IN} = 5V$, $V_{OUT} = 1.5V$, $I_{LOAD} = 0A$, $f_{SW} = 1MHz$ 20 MHz Bandwidth Limit

Figure 6. $V_{IN} = 5V$, $V_{OUT} = 1.2V$, $I_{LOAD} = 0A$, $f_{SW} = 300 kHz$ 20 MHz Bandwidth Limit

Figure 5. V_{IN} = 5V, V_{OUT} = 1.5V, I_{LOAD} = 9A, f_{SW} = 1MHz 20 MHz Bandwidth Limit

Figure 7. $V_{IN} = 5V$, $V_{OUT} = 1.2V$, $I_{LOAD} = 13A$, $f_{SW} = 300$ kHz 20 MHz Bandwidth Limit

Table 1. 300 kHz Bill of Materials (BOM)						
Designator	Function	Description	Part Number	Vendor		
U1	Controller	Buck Controller	LM3743	Texas Instruments		
C1	Input Filter	22 µF,10 V, X7R, 1812	GRM43ER71A226KE01B	Murata		
C2	Input Filter	Al-elec, 10 V, 470 µF	10ME470WX	Sanyo		
C3	Decoupling	1 µF, 10 V, X7R, 0805	0805ZC105KAT	AVX		
C4	Soft Start Cap	180 nF, 25 V, X7R	VJ0805Y184KXXA	Vishay		
C5	Output Filter	470 μF, 4 V, 15mΩ	4TPE470MFL	Sanyo		
C6	Output Filter	10 µF, 6.3 V, 0805	0805D106MAT	AVX		
C7	Comp Cap	56 pF, 25 V, 0805	VJ0805A560KXAA	Vishay		
C8	Comp Cap	2.2 nF, 25 V, 0805	VJ0805A222KXAA	Vishay		
C9	Comp Cap	1.5 nF, 25 V, 0805	VJ0805Y152KXXA	Vishay		
C10	Bootstrap Cap	.47 µF, 25 V, 0805	VJ0805Y474KXXA	Vishay		
R1	Current Limit Res	1.78 kΩ, 0805	CRCW08051781F	Vishay		
R2	Top FB Resistor	10 kΩ, 0805	CRCW08051002F	Vishay		
R3	Bottom FB Resistor	20 kΩ, 0805	CRCW08052002F	Vishay		
R4	Comp Resistor	22.6 kΩ, 0805	CRCW08052262F	Vishay		
R5	Comp Resistor	3.57 kΩ, 0805	CRCW08053571F	Vishay		
R6	V _{cc} Filter Resistor	2 Ω, 0805	CRCW08052R00F	Vishay		
L1	Output Filter	1.5 μH, 13.8A, 2.9 mΩ	DR125-1R5	Cooper		
D1	Bootstrap Diode	500 mA, 20 V, V _F =.3 V	MBR0520LT1	Onsemi		
Q1	Top FET	4.5 mΩ @V _{GS} = 4.5 V, 21 nC	Si7882DP	Vishay		
Q2	Bottom FET	4.5 mΩ @V _{GS} = 4.5 V, 21 nC	Si7882DP	Vishay		

$V_{IN} = 3 \text{ to } 5.5 \text{V}$ D1 R6 ٤ BOOT -0 C10 ⊥ ₽ C2 C1 HGATE Q1 V_{CC} Ī C3 SW ÷ L1 Vo = 1.2V, 13A R1 LM3743 ILIM ₩ .mm 0 R7 SS/TRACK LGATE ۱E TRACK O o o Q_2 C5 🛱 C6 C4 GND 0 GND COMP/EN Ş R2 FB ÷ R5 C8 Ŵ ┨┠ C7 41-C9 R4 41 \sim ₹ ₽ ₽

Designator	Function	Description	Part Number	Vendor
U1	Controller	Buck Controller	LM3743	Texas Instruments
C1	Input Filter	22 μF, 10 V, X7R, 1812	GRM43ER71A226KE01B	Murata
C2	Input Filter	Al-elec, 10 V, 470 μF	10ME470WX	Sanyo
C3	Decoupling	1 µF, 10 V, X7R, 0805	0805ZC105KAT	AVX
C4	Soft Start Cap	180 nF, 25 V, X7R	VJ0805Y184KXXA	Vishay
C5	Output Filter	470 μF, 4 V, 15mΩ	4TPE470MFL	Sanyo
C6	Output Filter	10 µF, 6.3 V, 0805	0805D106MAT	AVX
C7	Comp Cap	8.2 pF, 25 V, 0805	VJ0805A8R2KXAA	Vishay
C8	Comp Cap	820 pF, 25 V, 0805	VJ0805A821KXAA	Vishay
C9	Comp Cap	470 pF, 25 V, 0805	VJ0805Y471KXXA	Vishay
C10	Bootstrap Cap	.1 µF, 25 V, 0805	VJ0805Y104KXXA	Vishay
R1	Current Limit Res	1.1 kΩ, 0805	CRCW08051101F	Vishay
R2	Top FB Resistor	10 kΩ, 0805	CRCW08051002F	Vishay
R3	Bottom FB Resistor	11.3 kΩ, 0805	CRCW08057871F	Vishay
R4	Comp Resistor	35.7 kΩ, 0805	CRCW08053572F	Vishay
R5	Comp Resistor	8.87 kΩ, 0805	CRCW08058871F	Vishay
R6	V _{cc} Filter Resistor	2 Ω, 0805	CRCW08052R00F	Vishay
L1	Output Filter	.47 μH, 11.6A, 3.6 mΩ	FP3-R47	Cooper
D1	Bootstrap Diode	500 mA, 20 V, V _F =.3 V	MBR0520LT1	Onsemi
Q1	Top FET	4.5 mΩ @ V_{GS} = 4.5 V, 21 nC	Si7882DP	Vishay
Q2	Bottom FET	4.5 mΩ @ V _{GS} = 4.5 V, 21 nC	Si7882DP	Vishay

Table 2. 1 MHz Bill of Materials

Figure 9. 1 MHz Demo Board Schematic

PCB Layout Diagram(s)

www.ti.com

6 PCB Layout Diagram(s)

Figure 10. Top Layer

Figure 11. Internal Layer I (Ground)

Figure 12. Internal Layer II (V $_{\mbox{\tiny IN}}$ and V $_{\mbox{\tiny OUT}}$) Heat Sinking Layer

Figure 13. Bottom Layer Heat Sinking Layer and Signal Traces

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications		
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive	
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications	
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers	
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps	
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy	
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial	
Interface	interface.ti.com	Medical	www.ti.com/medical	
Logic	logic.ti.com	Security	www.ti.com/security	
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense	
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video	
RFID	www.ti-rfid.com			
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com	
Wireless Connectivity	www.ti.com/wirelessconnectivity			

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated