
Copyright © 2007-2013
Texas Instruments Incorporated

SW-BOOTLDR-UG-10636

USER’S GUIDE

Stellaris® Boot Loader

Copyright
Copyright © 2007-2013 Texas Instruments Incorporated. All rights reserved. Stellaris and StellarisWare are registered trademarks of Texas Instruments.
ARM and Thumb are registered trademarks and Cortex is a trademark of ARM Limited. Other names and brands may be claimed as the property of
others.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semicon-
ductor products and disclaimers thereto appears at the end of this document.

Texas Instruments
108 Wild Basin, Suite 350
Austin, TX 78746
Main: +1-512-279-8800
Fax: +1-512-279-8879
http://www.ti.com/stellaris

Revision Information
This is version 10636 of this document, last updated on March 28, 2013.

2 March 28, 2013

Table of Contents

Table of Contents
Copyright . 2

Revision Information . 2

1 Introduction . 5

2 Startup Code . 9

3 Serial Update . 11
3.1 Packet Handling . 11
3.2 Transport Layer . 12
3.3 Serial Commands . 13

4 Ethernet Update . 17

5 CAN Update . 19
5.1 CAN Bus Clocking . 19
5.2 CAN Commands . 19

6 USB Device (DFU) Update . 23
6.1 USB Device Firmware Upgrade Overview . 23
6.2 Stellaris-Specific USB Download Commands . 28

7 Customization . 35

8 Configuration . 37

9 Source Details . 49
9.1 Autobaud Functions . 49
9.2 CAN Functions . 50
9.3 Decryption Functions . 51
9.4 Ethernet Functions . 52
9.5 File System Functions . 54
9.6 I2C Functions . 54
9.7 Main Functions . 55
9.8 Packet Handling Functions . 56
9.9 SSI Functions . 59
9.10 UART Functions . 60
9.11 Update Check Functions . 61
9.12 USB Device Functions . 62

IMPORTANT NOTICE . 70

March 28, 2013 3

Table of Contents

4 March 28, 2013

Introduction

1 Introduction
The Texas Instruments® Stellaris® boot loader is a small piece of code that can be programmed
at the beginning of flash to act as an application loader as well as an update mechanism for appli-
cations running on a Stellaris ARM® Cortex™-M3-based microcontroller. The boot loader can be
built to use either the UART0, SSI0, I2C0, CAN, Ethernet, or USB ports to update the code on the
microcontroller. The boot loader is customizable via source code modifications, or simply deciding
at compile time which routines to include. Since full source code is provided, the boot loader can
be completely customized.

Three update protocols are utilized. On UART0, SSI0, I2C0, and CAN, a custom protocol is used
to communicate with the download utility to transfer the firmware image and program it into flash.
When using Ethernet or USB DFU, however, different protocols are employed. On Ethernet the
standard bootstrap protocol (BOOTP) is used and for USB DFU, updates are performed via the
standard Device Firmware Upgrade (DFU) class.

When configured to use UART0, Ethernet, or USB, the LM Flash Programmer GUI can be used
to download an application via the boot loader. The LM Flash Programmer utility is available for
download from www.ti.com/stellaris.

Source Code Overview

The following is an overview of the organization of the source code provided with the boot loader.

bl_autobaud.c The code for performing the auto-baud operation on the
UART port. This is separate from the remainder of the UART
code so that the linker can remove it when it is not used.

bl_can.c The functions for performing a firmware update via the CAN
port.

bl_can.h Definitions used by the CAN update routine.

bl_check.c The code to check if a firmware update is required, or if a
firmware update is being requested by the user.

bl_check.h Prototypes for the update check code.

bl_commands.h The list of commands and return messages supported by
the boot loader.

bl_config.c A dummy source file used to translate the bl_config.h C
header file into a header file that can be included in assem-
bly code. This is needed for the Keil tool chain since it is not
able to pass assembly source code through the C prepro-
cessor.

bl_config.h.tmpl A template for the boot loader configuration file. This con-
tains all of the possible configuration values.

March 28, 2013 5

http://www.ti.com/stellaris

Introduction

bl_decrypt.c The code to perform an in-place decryption of the down-
loaded firmware image. No decryption is actually performed
in this file; this is simply a stub that can be expanded to per-
form the require decryption.

bl_decrypt.h Prototypes for the in-place decryption routines.

bl_enet.c The functions for performing a firmware update via the Eth-
ernet port.

bl_fs.c The functions to provide simple FAT file system support.

bl_fs.h Prototypes for the file system functions.

bl_i2c.c The functions for transferring data via the I2C0 port.

bl_i2c.h Prototypes for the I2C0 transfer functions.

bl_link.ld The linker script used when the codered, gcc, or
sourcerygxx compiler is being used to build the boot
loader.

bl_link.sct The linker script used when the rvmdk compiler is being
used to build the boot loader.

bl_link.xcl The linker script used when the ewarm compiler is being
used to build the boot loader.

bl_link_ccs.cmd The linker script used when the ccs compiler is being used
to build the boot loader.

bl_main.c The main control loop of the boot loader.

bl_packet.c The functions for handling the packet processing of com-
mands and responses.

bl_packet.h Prototypes for the packet handling functions.

bl_ssi.c The functions for transferring data via the SSI0 port.

bl_ssi.h Prototypes for the SSI0 transfer functions.

bl_startup_ccs.s The start-up code used when the ccs compiler is being used
to build the boot loader.

bl_startup_codered.S The start-up code used when the codered compiler is being
used to build the boot loader.

bl_startup_ewarm.S The start-up code used when the ewarm compiler is being
used to build the boot loader.

6 March 28, 2013

Introduction

bl_startup_gcc.S The start-up code used when the gcc compiler is being used
to build the boot loader.

bl_startup_rvmdk.S The start-up code used when the rvmdk compiler is being
used to build the boot loader.

bl_startup_sourcerygxx.S The start-up code used when the sourcerygxx compiler is
being used to build the boot loader.

bl_uart.c The functions for transferring data via the UART0 port.

bl_uart.h Prototypes for the UART0 transfer functions.

bl_usb.c Main functions implementing the USB DFU protocol boot
loader.

bl_usbfuncs.c A cut-down version of the USB library containing support
for enumeration and the endpoint 0 transactions required to
implement the USB DFU device.

bl_usbfuncs.h Prototypes for the functions provided in bl_usbfuncs.c.

usbdfu.h Type definitions, labels related to the USB Device Firmware
Upgrade class boot loader.

March 28, 2013 7

Introduction

8 March 28, 2013

Startup Code

2 Startup Code
The start-up code contains the minimal set of code required to configure a vector table, initialize
memory, copy the boot loader from flash to SRAM, and execute from SRAM. Because some tool
chain-specific constructs are used to indicate where the code, data, and bss segments reside in
memory, each supported tool chain has its own separate file that implements the start-up code.
The start-up code is contained in the following files:

bl_startup_codered.S (Code Red Technologies tools)

bl_startup_ewarm.S (IAR Embedded Workbench)

bl_startup_gcc.S (GNU GCC)

bl_startup_rvmdk.S (Keil RV-MDK)

bl_startup_sourcerygxx.S (CodeSourcery Sourcery G++)

bl_startup_ccs.s (Texas Instruments Code Composer Studio)

Accompanying the start-up code for each tool chain are linker scripts that are used to place the vec-
tor table, code segment, data segment initializers, and data segments in the appropriate locations
in memory. The scripts are located in the following files:

bl_link.ld (Code Red Technologies tools, GNU GCC, and CodeSourcery Sourcery G++)

bl_link.sct (Keil RV-MDK)

bl_link.xcl (IAR Embedded Workbench)

bl_link_ccs.cmd (TI Code Composer Studio)

The boot loader’s code and its corresponding linker script use a memory layout that exists entirely
in SRAM. This means that the load address of the code and read-only data are not the same as
the execution address. This memory map allows the boot loader to update itself since it is actually
running from SRAM only. The first part of SRAM is used as the copy space for the boot loader while
the rest is reserved for stack and read/write data for the boot loader. Once the boot loader calls the
application, all SRAM becomes usable by the application.

The vector table of the Cortex-M3 microprocessor contains four required entries: the initial stack
pointer, the reset handler address, the NMI handler address, and the hard fault handler address.
Upon reset, the processor loads the initial stack pointer and then starts executing the reset handler.
The initial stack pointer is required since an NMI or hard fault can occur at any time; the stack
is required to take those interrupts since the processor automatically pushes eight items onto the
stack.

The Vectors array contains the boot loader’s vector table which varies in size based on the ad-
dition of the auto-baud feature or USB DFU support. These options requires additional interrupt
handlers expand the vector table to populate the relevant entries. Since the boot loader executes
from SRAM and not from flash, tool chain-specific constructs are used to provide a hint to the linker
that this array is located at 0x2000.0000.

The IntDefaultHandler function contains the default fault handler. This is a simple infinite loop,
effectively halting the application if any unexpected fault occurs. The application state is, therefore,
preserved for examination by a debugger. If desired, a customized boot loader can provide its own
handlers by adding the appropriate handlers to the Vectors array.

After a reset, the start-up code copies the boot loader from flash to SRAM, branches to the copy of
the boot loader in SRAM, and checks to see if an application update should be performed by calling

March 28, 2013 9

Startup Code

CheckForceUpdate(). If an update is not required, the application is called. Otherwise the
functions that are called are based on the mode of operation for the boot loader. For UART0, SSI0,
and I2C0, the microcontroller is initialized by calling ConfigureDevice() and then the boot load
calls the serial control loop Updater() . For Ethernet, the microcontroller is initialized by calling
ConfigureEnet() and then the boot loader calls the Ethernet control loop UpdateBOOTP().
For CAN, the microcontroller is initialized by calling ConfigureCAN() and then the boot loader
calls the CAN control loop UpdaterCAN(). For USB, the microcontroller is initialized by calling
ConfigureUSB() after which the function UpdaterUSB() configures the USB interface for device
mode.

The check for an application update (in CheckForceUpdate()) consists of checking the beginning
of the application area and optionally checking the state of a GPIO pin. The application is assumed
to be valid if the first location is a valid stack pointer (that is, it resides in SRAM, and has a value of
0x2xxx.xxxx), and the second location is a valid reset handler address (that is, it resides in flash,
and has a value of 0x000x.xxxx, where the value is odd). If either of these tests fail, then the
application is assumed to be invalid and an update is forced. The GPIO pin check can be enabled
with ENABLE_UPDATE_CHECK in the bl_config.h header file, in which case an update can be
forced by changing the state of a GPIO pin (for example, with a push button). If the application is
valid and the GPIO pin is not requesting an update, the application is called. Otherwise, an update
is started by entering the main loop of the boot loader.

Additionally, the application can call the boot loader in order to perform an application-directed
update. In this case, the boot loader assumes that the application has already configured the
peripheral that it will use for the update. This allows the boot loader to use the peripheral as
is to perform the update. The boot loader also assumes that the interrupt to the core has been
left enabled as well, which means that that application should not call IntMasterDisable() before
calling the boot loader. Once the application calls the boot loader, the boot loader copies itself to
SRAM, branches to the SRAM copy of the boot loader, and starts the update by calling Updater()
(for UART0, SSI0, and I2C0), UpdateBOOTP() (for Ethernet), AppUpdaterCAN() (for CAN) or
AppUpdaterUSB() (for USB). The SVCall entry of the vector table contains the location of the
application-directed update entry point.

10 March 28, 2013

Serial Update

3 Serial Update
When performing an update via a serial port (UART0, SSI0, or I2C0), ConfigureDevice() is
used to configure the selected serial port, making it ready to be used to update the firmware.
Then, Updater() sits in an endless loop accepting commands and updating the firmware
when requested. All transmissions from this main routine use the packet handler functions
(SendPacket(), ReceivePacket(), AckPacket(), and NakPacket()). Once the update is
complete, the boot loader can be reset by issuing a reset command to the boot loader.

When a request to update the application comes through and FLASH_CODE_PROTECTION is de-
fined, the boot loader first erases the entire application area before accepting the binary for the new
application. This prevents a partial erase of flash from exposing any of the code before the new bi-
nary is downloaded to the microcontroller. The boot loader itself is left in place so that it will not boot
a partially erased program. Once all of the application flash area has been successfully erased, the
boot loader proceeds with the download of the new binary. When FLASH_CODE_PROTECTION
is not defined, the boot loader only erases enough space to fit the new application that is being
downloaded.

In the event that the boot loader itself needs to be updated, the boot loader must replace it-
self in flash. An update of the boot loader is recognized by performing a download to ad-
dress 0x0000.0000. Once again the boot loader operates differently based on the setting of
FLASH_CODE_PROTECTION. When FLASH_CODE_PROTECTION is defined and the down-
load address indicates an boot loader update, the boot loader protects any application code already
on the microcontroller by erasing the entire application area before erasing and replacing itself. If
the process is interrupted at any point, either the old boot loader remains present in the flash and
does not boot the partial application or the application code will have already been erased. When
FLASH_CODE_PROTECTION is not defined, the boot loader only erases enough space to fit its
own code and leaves the application intact.

3.1 Packet Handling

The boot loader uses well-defined packets to ensure reliable communications with the update pro-
gram. The packets are always acknowledged or not acknowledged by the communicating devices.
The packets use the same format for receiving and sending packets. This includes the method
used to acknowledge successful or unsuccessful reception of a packet. While the actual signaling
on the serial ports is different, the packet format remains independent of the method of transporting
the data.

The boot loader uses the SendPacket() function in order to send a packet of data to another
device. This function encapsulates all of the steps necessary to send a valid packet to another de-
vice including waiting for the acknowledge or not-acknowledge from the other device. The following
steps must be performed to successfully send a packet:

1. Send out the size of the packet that will be sent to the device. The size is always the size of
the data + 2.

2. Send out the checksum of the data buffer to help ensure proper transmission of the command.
The checksum algorithm is implemented in the CheckSum() function provided and is simply
a sum of the data bytes.

3. Send out the actual data bytes.

March 28, 2013 11

Serial Update

4. Wait for a single byte acknowledgment from the device that it either properly received the data
or that it detected an error in the transmission.

Received packets use the same format as sent packets. The boot loader uses the
ReceivePacket() function in order to receive or wait for a packet from another device. This
function does not take care of acknowledging or not-acknowledging the packet to the other device.
This allows the contents of the packet to be checked before sending back a response. The following
steps must be performed to successfully receive a packet:

1. Wait for non-zero data to be returned from the device. This is important as the device may
send zero bytes between a sent and received data packet. The first non-zero byte received
will be the size of the packet that is being received.

2. Read the next byte which will be the checksum for the packet.

3. Read the data bytes from the device. There will be packet size - 2 bytes of data sent during
the data phase. For example, if the packet size was 3, then there is only 1 byte of data to be
received.

4. Calculate the checksum of the data bytes and ensure if it matches the checksum received in
the packet.

5. Send an acknowledge or not-acknowledge to the device to indicate the successful or unsuc-
cessful reception of the packet.

The steps necessary to acknowledge reception of a packet are implemented in the AckPacket()
function. Acknowledge bytes are sent out whenever a packet is successfully received and verified
by the boot loader.

A not-acknowledge byte is sent out whenever a sent packet is detected to have an error, usually
as a result of a checksum error or just malformed data in the packet. This allows the sender to
re-transmit the previous packet.

3.2 Transport Layer

The boot loader supports updating via the I2C0, SSI0, and UART0 ports which are available on
Stellaris microcontrollers. The SSI port has the advantage of supporting higher and more flexible
data rates but it also requires more connections to the microcontroller. The UART has the disad-
vantage of having slightly lower and possibly less flexible rates. However, the UART requires fewer
pins and can be easily implemented with any standard UART connection. The I2C interface also
provides a standard interface, only uses two wires, and can operate at comparable speeds to the
UART and SSI interfaces.

3.2.1 I2C Transport

The I2C handling functions are I2CSend(), I2CReceive(), and I2CFlush() functions. The
connections required to use the I2C port are the following pins: I2CSCL and I2CSDA. The device
communicating with the boot loader must operate as the I2C master and provide the I2CSCL signal.
The I2CSDA pin is open drain and can be driven by either the master or the slave I2C device.

12 March 28, 2013

Serial Update

3.2.2 SSI Transport

The SSI handling functions are SSISend(), SSIReceive(), and SSIFlush(). The connec-
tions required to use the SSI port are the following four pins: SSITx, SSIRx, SSIClk, and SSIFss.
The device communicating with the boot loader is responsible for driving the SSIRx, SSIClk, and
SSIFss pins, while the Stellaris microcontroller drives the SSITx pin. The format used for SSI com-
munications is the Motorola format with SPH set to 1 and SPO set to 1 (see Stellaris Family data
sheet for more information on this format). The SSI interface has a hardware requirement that limits
the maximum rate of the SSI clock to be at most 1/12 the frequency of the microcontroller running
the boot loader.

3.2.3 UART Transport

The UART handling functions are UARTSend(), UARTReceive(), and UARTFlush(). The con-
nections required to use the UART port are the following two pins: U0Tx and U0Rx. The device
communicating with the boot loader is responsible for driving the U0Rx pin on the Stellaris micro-
controller, while the Stellaris microcontroller drives the U0Tx pin.

While the baud rate is flexible, the UART serial format is fixed at 8 data bits, no parity, and one stop
bit. The baud rate used for communication can either be auto-detected by the boot loader, if the
auto-baud feature is enabled, or it can be fixed at a baud rate supported by the device communicat-
ing with the boot loader. The only requirement on baud rate is that the baud rate should be no more
than 1/32 the frequency of the microcontroller that is running the boot loader. This is the hardware
requirement for the maximum baud rate for a UART on any Stellaris microcontroller.

When using a fixed baud rate, the frequency of the crystal connected to the microcontroller must
be specified. Otherwise, the boot loader will not be able to configure the UART to operate at the
requested baud rate.

The boot loader provides a method to automatically detect the baud rate being used to communi-
cate with it. This automatic baud rate detection is implemented in the UARTAutoBaud() function.
The auto-baud function attempts to synchronize with the updater application and indicates if it is
successful in detecting the baud rate or if it failed to properly detect the baud rate. The boot loader
can make multiple calls to UARTAutoBaud() to attempt to retry the synchronization if the first call
fails. In the example boot loader provided, when the auto-baud feature is enabled, the boot loader
will wait forever for a valid synchronization pattern from the host.

3.3 Serial Commands

The following commands are used by the custom protocol on the UART0, SSI0, and I2C0 ports:

COMMAND_PING This command is used to receive an acknowledge from the boot
loader indicating that communication has been established. This
command is a single byte.

The format of the command is as follows:

unsigned char ucCommand[1];

ucCommand[0] = COMMAND_PING;

March 28, 2013 13

Serial Update

COMMAND_DOWNLOAD This command is sent to the boot loader to indicate where
to store data and how many bytes will be sent by the
COMMAND_SEND_DATA commands that follow. The command
consists of two 32-bit values that are both transferred MSB first.
The first 32-bit value is the address to start programming data
into, while the second is the 32-bit size of the data that will be
sent. This command also triggers an erasure of the full applica-
tion area in the flash or possibly the entire flash depending on
the address used. This causes the command to take longer to
send the ACK/NAK in response to the command. This command
should be followed by a COMMAND_GET_STATUS to ensure that
the program address and program size were valid for the micro-
controller running the boot loader.

The format of the command is as follows:

unsigned char ucCommand[9];

ucCommand[0] = COMMAND_DOWNLOAD;
ucCommand[1] = Program Address [31:24];
ucCommand[2] = Program Address [23:16];
ucCommand[3] = Program Address [15:8];
ucCommand[4] = Program Address [7:0];
ucCommand[5] = Program Size [31:24];
ucCommand[6] = Program Size [23:16];
ucCommand[7] = Program Size [15:8];
ucCommand[8] = Program Size [7:0];

COMMAND_RUN This command is sent to the boot loader to transfer execution
control to the specified address. The command is followed by a
32-bit value, transferred MSB first, that is the address to which
execution control is transferred.

The format of the command is as follows:

unsigned char ucCommand[5];

ucCommand[0] = COMMAND_RUN;
ucCommand[1] = Run Address [31:24];
ucCommand[2] = Run Address [23:16];
ucCommand[3] = Run Address [15:8];
ucCommand[4] = Run Address [7:0];

14 March 28, 2013

Serial Update

COMMAND_GET_STATUS This command returns the status of the last command that was
issued. Typically, this command should be received after every
command is sent to ensure that the previous command was suc-
cessful or, if unsuccessful, to properly respond to a failure. The
command requires one byte in the data of the packet and the
boot loader should respond by sending a packet with one byte of
data that contains the current status code.

The format of the command is as follows:

unsigned char ucCommand[1];

ucCommand[0] = COMMAND_GET_STATUS;

The following are the definitions for the possible status
values that can be returned from the boot loader when
COMMAND_GET_STATUS is sent to the the microcontroller.

COMMAND_RET_SUCCESS
COMMAND_RET_UNKNOWN_CMD
COMMAND_RET_INVALID_CMD
COMMAND_RET_INVALID_ADD
COMMAND_RET_FLASH_FAIL

COMMAND_SEND_DATA This command should only follow a COMMAND_DOWNLOAD com-
mand or another COMMAND_SEND_DATA command, if more data
is needed. Consecutive send data commands automatically in-
crement the address and continue programming from the previ-
ous location. The transfer size is limited by the size of the receive
buffer in the boot loader (as configured by the BUFFER_SIZE pa-
rameter). The command terminates programming once the num-
ber of bytes indicated by the COMMAND_DOWNLOAD command
has been received. Each time this function is called, it should
be followed by a COMMAND_GET_STATUS command to ensure
that the data was successfully programmed into the flash. If the
boot loader sends a NAK to this command, the boot loader will
not increment the current address which allows for retransmis-
sion of the previous data.

The format of the command is as follows:

unsigned char ucCommand[9];

ucCommand[0] = COMMAND_SEND_DATA
ucCommand[1] = Data[0];
ucCommand[2] = Data[1];
ucCommand[3] = Data[2];
ucCommand[4] = Data[3];
ucCommand[5] = Data[4];
ucCommand[6] = Data[5];
ucCommand[7] = Data[6];
ucCommand[8] = Data[7];

March 28, 2013 15

Serial Update

COMMAND_RESET This command is used to tell the boot loader to reset. This is
used after downloading a new image to the microcontroller to
cause the new application or the new boot loader to start from
a reset. The normal boot sequence occurs and the image runs
as if from a hardware reset. It can also be used to reset the
boot loader if a critical error occurs and the host device wants to
restart communication with the boot loader.

The boot loader responds with an ACK signal to the host device
before actually executing the software reset on the microcon-
troller running the boot loader. This informs the updater appli-
cation that the command was received successfully and the part
will be reset.

The format of the command is as follows:

unsigned char ucCommand[1];

ucCommand[0] = COMMAND_RESET;

16 March 28, 2013

Ethernet Update

4 Ethernet Update
When performing an Ethernet update, ConfigureEnet() is used to configure the Ethernet con-
troller, making it ready to be used to update the firmware. Then, UpdateBOOTP() begins the
process of the firmware update.

The bootstrap protocol (BOOTP) is a predecessor to the DHCP protocol and is used to discover the
IP address of the client, the IP address of the server, and the name of the firmware image to use.
BOOTP uses UDP/IP packets to communicate between the client and the server; the boot loader
acts as the client. First, it will send a BOOTP request using a broadcast message. When the server
receives the request, it will reply, thereby informing the client of its IP address, the IP address of the
server, and the name of the firmware image. Once this reply is received, the BOOTP protocol has
completed.

Then, the trivial file transfer protocol (TFTP) is used to transfer the firmware image from the server
to the client. TFTP also uses UDP/IP packets to communicate between the client and the server,
and the boot loader also acts as the client in this protocol. As each data block is received, it is
programmed into flash. Once all data blocks are received and programmed, the device is reset,
causing it to start running the new firmware image.

The uIP stack (http://www.sics.se/∼adam/uip) is used to implement the UDP/IP connec-
tions. The TCP support is not needed and is therefore disabled, greatly reducing the size of the
stack.

The Ethernet controller will be configured to use the MAC address stored in the USER0/UART1 data
registers or the MAC address that is provided in the boot loader configuration file (bl_config.h).
When using the MAC address from USER0/USER1, it will be interpreted as a MAC address of
U0B0:U0B1:U0B2:U1B0:U1B1:U1B2 (where U0B0 is USER0 bits 7-0, or byte 0, U0B1 is USER0
bits 15-8, or byte 1, and so on).

Note:
When using the Ethernet update, the boot loader can not update itself since there is no mech-
anism in BOOTP to distinguish between a firmware image and a boot loader image. Therefore,
the boot loader does not know if a given image is a new boot loader or a new firmware image.
It assumes that all images provided are firmware images.

The following IETF specifications define the protocols used by the Ethernet update mechanism:

RFC951 (http://tools.ietf.org/html/rfc951.html) defines the bootstrap protocol.

RFC1350 (http://tools.ietf.org/html/rfc1350.html) defines the trivial file trans-
fer protocol.

March 28, 2013 17

http://www.sics.se/~adam/uip
http://tools.ietf.org/html/rfc951.html
http://tools.ietf.org/html/rfc1350.html

Ethernet Update

18 March 28, 2013

CAN Update

5 CAN Update
When performing a CAN update the boot loader calls ConfigureCAN() to configure the CAN
controller and prepare the boot loader to update the firmware. The CAN update mechanism allows
the boot loader to be entered from a functioning CAN application as well from startup when no
application has been downloaded to the microcontroller. The boot loader provides the main routine
for performing the CAN update in the UpdaterCAN() function which is used in both cases.

When the device enters the boot loader from a running CAN network, the boot loader will not re-
configure the CAN clocks or bit timing and will assume that they have been configured as expected
by the firmware update device. The boot loader assumes that the application has taken the device
off of the CAN network by putting it in "Init mode" but left the CAN bit timings untouched. When the
boot loader is run without an application, it is necessary to configure the CAN bit rate using the de-
fault CAN clocking which uses the #define values CAN_BIT_RATE and CRYSTAL_FREQ. These
settings must be identical to the CAN bit rate settings used by the application. When the last data
is received, the CAN update application must issue an explicit LM_API_UPD_RESET command to
restart the device.

5.1 CAN Bus Clocking

There are two global definitions that are required to configure the CAN boot loader to meet the
application’s timing requirements. They are both used to determine how the CAN bit rate is con-
figured based on the clock provided to the CAN controller as well as the desired bit rate. The
CAN_BIT_RATE value sets the transfer rate for data on the CAN bus in bits per second. The other
value, CRYSTAL_FREQ, is used to set the input frequency to the CAN controller.

5.2 CAN Commands

The CAN firmware update provides a short list of commands that are used during the firmware
update operation. The definitions for these commands are provided in the file bl_can.h. The
description of each of these commands is covered in the rest of this section.

LM_API_UPD_PING This command is used to receive an acknowledge command
from the boot loader indicating that communication has been es-
tablished. This command has no data. If the device is present it
will respond with a LM_API_UPD_PING back to the CAN update
application.

March 28, 2013 19

CAN Update

LM_API_UPD_DOWNLOAD This command sets the base address for the download as well
as the size of the data to write to the device. This command
should be followed by a series of LM_API_UPD_SEND_DATA that
send the actual image to be programmed to the device. The
command consists of two 32-bit values that are transferred LSB
first. The first 32-bit value is the address to start programming
data into, while the second is the 32-bit size of the data that
will be sent. This command also triggers an erasure of the full
application area in the flash. This flash erase operation causes
the command to take longer to send the LM_API_UPD_ACK in
response to the command which should be taken into account
by the CAN update application.

The format of the command is as follows:

unsigned char ucData[8];

ucData[0] = Download Address [7:0];
ucData[1] = Download Address [15:8];
ucData[2] = Download Address [23:16];
ucData[3] = Download Address [31:24];
ucData[4] = Download Size [7:0];
ucData[5] = Download Size [15:8];
ucData[6] = Download Size [23:16];
ucData[7] = Download Size [31:24];

LM_API_UPD_SEND_DATA This command should only follow a LM_API_UPD_DOWNLOAD
command or another LM_API_UPD_SEND_DATA command
when more data is needed. Consecutive send data commands
automatically increment the address and continue programming
from the previous location. The transfer size is limited to 8 bytes
at a time based on the maximum size of an individual CAN
transmission. The command terminates programming once the
number of bytes indicated by the LM_API_UPD_DOWNLOAD com-
mand have been received. The CAN boot loader will send a
LM_API_UPD_ACK in response to each send data command to
allow the CAN update application to throttle the data going to the
device and not overrun the boot loader with data.

The format of the command is as follows:

unsigned char ucData[8];

ucData[0] = Data[0];
ucData[1] = Data[1];
ucData[2] = Data[2];
ucData[3] = Data[3];
ucData[4] = Data[4];
ucData[5] = Data[5];
ucData[6] = Data[6];
ucData[8] = Data[7];

20 March 28, 2013

CAN Update

LM_API_UPD_RESET This command is used to tell the CAN boot loader to reset the
microcontroller. This is used after downloading a new image to
the microcontroller to cause the new application or the new boot
loader to start from a reset. The normal boot sequence occurs
and the image runs as if from a hardware reset. It can also
be used to reset the boot loader if a critical error occurs and the
CAN update application needs to restart communication with the
boot loader.

March 28, 2013 21

CAN Update

22 March 28, 2013

USB Device (DFU) Update

6 USB Device (DFU) Update
When performing a USB update, the boot loader calls ConfigureUSB() to configure the USB
controller and prepare the boot loader to update the firmware. The USB update mechanism allows
the boot loader to be entered from a functioning application as well as from startup when no appli-
cation has been downloaded to the microcontroller. The boot loader provides the main routine for
performing the USB update in the UpdaterUSB() function which is used in both cases.

When the USB boot loader is invoked from a running application, the boot loader will reconfigure the
USB controller to publish the required descriptor set for a Device Firmware Upgrade (DFU) class
device. If the main application had previously been offering any USB device class, it must remove
the device from the bus by calling USBDevDisconnect() prior to entering the boot loader.

The USB boot loader also assumes that the main application is using the PLL as the source of the
system clock.

The USB boot loader allows a USB host to upgrade the firmware on a USB device. To make use
of it, therefore, the board running the boot loader must be capable of acting as a USB device.
Firmware upgrade of boards which operate solely as USB hosts is not supported by the USB DFU
class or the USB boot loader.

6.1 USB Device Firmware Upgrade Overview

The USB boot loader enumerates as a Device Firmware Upgrade (DFU) class device.
This standard device class specifies a set of class-specific requests and a state ma-
chine that can be used to download and flash firmware images to a device and, op-
tionally, upload the existing firmware image to the USB host. The full specification for
the device class can be downloaded from the USB Implementer’s Forum web site at
http://www.usb.org/developers/devclass_docs#approved.

All communication with the DFU device takes place using the USB control endpoint, endpoint 0.
The device publishes a standard device descriptor with vendor, product and device revisions as
specified in the bl_config.h header file used to build the boot loader binary. It also publishes a
single configuration descriptor and a single interface descriptor where the interface class of 0xFE
indicates an application-specific class and the subclass of 0x01 indicates "Device Firmware Up-
grade". Attached to the interface descriptor is a DFU Functional Descriptor which provides informa-
tion to the host on DFU-specific device capabilities such as whether the device can perform upload
operations and what the maximum transfer size for upload and download operations is.

DFU functions are initiated by means of a set of class-specific requests. Each request, which follows
the standard USB request format, performs some operation and moves the DFU device between
a series of well-defined states. Additional requests allow the host to query the current state of the
device to determine whether, for example, it is ready to receive the next block of download data.

A DFU device may operation in one of two modes - “Run Time” mode or “DFU” mode. In “Run
Time” mode, the device publishes the DFU interface and functional descriptors alongside any other
descriptors that the device requires for normal operation. It does not, however, need to respond to
any DFU class-specific requests other than DFU_DETACH which indicates that it should switch to
“DFU” mode.

In “DFU” mode, the device supports all DFU functionality and can perform upload and download
operations as specified in its DFU functional descriptor.

March 28, 2013 23

http://www.usb.org/developers/devclass_docs#approved.

USB Device (DFU) Update

The USB boot loader supports only “DFU” mode operation. If an main application wishes to publish
DFU descriptors and respond to the DFU_DETACH request, it can cause a switch to “DFU” mode
on receiving a DFU_DETACH request by removing itself from the USB bus using a call to USBDe-
vDisconnect() before transferring control to the USB boot loader by making a call through the SVC
vector in the usual manner.

6.1.1 DFU Requests

Requests supported by the USB boot loader are as follow:

DFU_DNLOAD This OUT request is used to send a block of binary data to the
device. The DFU class specification does not define the con-
tent and format of the binary data but typically this will be either
binary data to be written to some position in the device’s flash
memory or a device-specific command. The request payload
size is constrained by the maximum packet size specified in the
DFU functional descriptor. In this implementation, that maximum
is set to 1024 bytes.
After sending a DFU_DNLOAD request, the host must poll the
device status and wait until the state reverts to DNLOAD_IDLE
before sending another request. If the host wishes to indi-
cate that it has finished sending download data, it sends a
DFU_DNLOAD request with a payload length of 0.

DFU_UPLOAD This IN request is used to request a block of binary data from
the device. The data returned is device-specific but will typi-
cally be the contents of a region of the device’s flash memory or
a device-specific response to a command previously sent via a
DFU_DNLOAD request. As with DFU_DNLOAD, the maximum
amount of data that can be requested is governed by the maxi-
mum packet size specified in the DFU functional descriptor, here
1024 bytes.

DFU_GETSTATUS This IN request allows the host to query the current status of the
DFU device. It is typically used during download operations to
determine when it is safe to send the next block of data. De-
pending upon the state of the DFU device, this request may
also trigger a state change. During download, for example, the
device enters DNLOAD_SYNC state after receiving a block of
data and remains there until the data has been processed and
a DFU_GETSTATUS request is received at which point the state
changes to DNLOAD_IDLE.

DFU_CLRSTATUS This request is used to reset any error condition reported by
the DFU device. If an error is reported via the response to a
DFU_GETSTATUS request, that error condition is cleared when
this request is received and the device returns to IDLE state.

DFU_GETSTATE This IN request is used to query the current state of the device
without triggering any state change. The single byte of data re-
turned indicates the current state of the DFU device.

24 March 28, 2013

USB Device (DFU) Update

DFU_ABORT This request is used cancel any partially complete upload or
download operation and return the device to IDLE state in prepa-
ration for some other request.

6.1.2 DFU States

During operation, the DFU device transitions between a set of class-defined states. The host must
query the current state to determine when a new operation can be performed or to determine the
cause of any errors reported. These states are:

IDLE The IDLE state indicates to the host that the DFU device is ready
to start an upload or download operation.

DNLOAD_SYNC After each DFU_DNLOAD request is received, DNLOAD_SYNC
state is entered. This state remains in effect until the host issues
a DFU_GETSTATUS request at which point the state will change
to DNLOAD_IDLE if the last download operation has completed
or DNBUSY otherwise.

DNLOAD_IDLE This state indicates that a download operation is in progress and
that the device is ready to receive another DFU_DNLOAD re-
quest with the next block of data.

DNBUSY This state is reported if a DFU_GETSTATUS request is re-
ceived while a block of downloaded data is still being processed.
The host must refrain from issuing another DFU_GETSTATUS
request for a time specified in the structure returned follow-
ing the request. After this time, the device state reverts to
DNLOAD_SYNC.
To reduce the USB boot loader image size, this state is not
supported. Instead of reporting DNBUSY, the USB boot loader
remains in state DNLOAD_SYNC until the previous data has
been processed then transitions to DNLOAD_IDLE on receipt of
the first DFU_GETSTATUS request following completion of block
programming.

March 28, 2013 25

USB Device (DFU) Update

MANIFEST_SYNC The end of a download operation is signaled by the host send-
ing a DFU_DNLOAD request with a 0 length payload. When
this request is received, the DFU device transitions from state
DNLOAD_IDLE to MANIFEST_SYNC. This state indicates that
the complete firmware image has been received and the device
is waiting for a DFU_GETSTATUS request before finalizing pro-
gramming of the image.
The USB boot loader programs downloaded blocks as they are
received so does not need to perform any additional processing
after all blocks have been received. It also reports that it is “man-
ifest tolerant”, indicating to the host that it will still respond to re-
quests after a download has completed. As a result, the device
will transition from this state to IDLE once the DFU_GETSTATUS
request is received.

MANIFEST This state indicates to the host that the device is programming a
previously- received firmware image and is entered on receipt of
a DFU_GETSTATUS request while a device that is not manifest
tolerant is in MANIFEST_SYNC state.
This state is not used by the USB boot loader since it is manifest
tolerant and reverts to IDLE state after completion of a download.

MANIFEST_WAIT_RESET This state indicates that a device which is not manifest tolerant
has finished writing a downloaded image and is waiting for a
USB reset to signal it to boot the new firmware.
This state is not used by the USB boot loader since it is manifest
tolerant and reverts to IDLE state after completion of a download.

UPLOAD_IDLE Following receipt of a DFU_UPLOAD request, the device re-
mains in this state until it receives another DFU_UPLOAD re-
quest asking for less than the maximum transfer size of data.
This indicates that the upload is complete and the device will
transition back to IDLE state.

ERROR The ERROR state is entered when some error occurs.
The device remains in this state until the host sends a
DFU_CLRSTATUS request at which point the state reverts to
IDLE and that error code, which is reported in the data returned
in response to DFU_GETSTATUS, is cleared.

6.1.3 Typical Firmware Download Sequence

The following flow chart illustrates a typical firmware image download sequence from the perspec-
tive of the host application.

26 March 28, 2013

USB Device (DFU) Update

DFU Device Enumerated

Exit

Send DFU_GETSTATUS

No

Send DFU_DNLOAD with
a block of firmware

image data.

State is
ERROR?

Yes

State is
DNLOAD_SYNC

or DNBUSY?
State is

DNLOAD_IDLE?

More data
to send?

No

No

YesYes

Send DFU_DNLOAD with
a zero-length payload.

Report the error condition

Send DFU_GETSTATUS

Yes

No

State is
ERROR?

Yes

No

March 28, 2013 27

USB Device (DFU) Update

6.2 Stellaris-Specific USB Download Commands

The DFU class specification provides the framework necessary to download and upload firmware
files to the USB device but does not specify the actual format of the binary data that is transferred.
As a result, different device implementations have used different methods to perform operations
which are not defined in the standard such as:

Setting the address that a downloaded binary should be flashed to.
Setting the address and size of the area of flash whose contents are to be uploaded.
Erasing sections of the flash.
Querying the size of flash and writeable area addresses.

The USB boot loader implementation employs a small set of commands which can be sent to the
DFU device via a DFU_DNLOAD request when the device is in IDLE state. Each command takes
the form of an 8 byte structure which defines the operation to carry out and provides any required
additional parameters.

To ensure that a host application which does not have explicit support for Stellaris-specific com-
mands can still be used to download binary firmware images to the device, the protocol is defined
such that only a single 8 byte header structure need be placed at the start of the binary image
being downloaded. This header and the DFU-defined suffix structure can both be added using the
supplied “dfuwrap” command-line application, hence providing a single binary that can be sent to
a device running the Stellaris USB boot loader using a standard sequence of DFU_DNLOAD re-
quests with no other embedded commands or device-specific operations required. An application
which does understand the Stellaris-specific commands may make use of them to offer additional
functionality that would not otherwise be available.

6.2.1 Querying Command Support

Since the device-specific commands defined here are sent to the DFU device in DFU_DNLOAD
requests, the possibility exists that sending them to a device which does not understand the protocol
could result in corruption of that device’s firmware. To guard against this possibility, the Stellaris
USB boot loader supports an additional USB request which is used to query the device capabilities
and allow a host to determine whether or not the device supports the Stellaris commands. A device
which does not support the commands will either stall the request or return unexpected data.

To determine whether a target DFU device supports the Stellaris-specific DFU commands, send
the following IN request to the DFU interface:

bmRequest-
Type

bRequest wValue wIndex wLength Data

10100001b 0x42 0x23 Interface 4 Protocol Info

where the protocol information returned is a 4 byte structure, the first two bytes of which are 0x4D,
0x4C and where the second group of two bytes indicates the protocol version supported, currently
0x01 and 0x00 respectively.

6.2.2 Download Command Definitions

The following commands may be sent to the USB boot loader as the first 8 bytes of the payload to
a DFU_DNLOAD request. The boot loader will expect any DFU_DNLOAD request received while

28 March 28, 2013

USB Device (DFU) Update

in IDLE state to contain a command header but will not look for command unless the state is IDLE.
This allows an application which is unaware of the command header to download a DFU-wrapped
binary image using a standard sequence of multiple DFU_DNLOAD and DFU_GETSTATUS re-
quests without the need to insert additional command headers during the download.

The commands defined here and their parameter block structures can be found in header file
usbdfu.h. In all cases where multi-byte numbers are specified, the numbers are stored in little-
endian format with the least significant byte in the lowest addressed location. The following defini-
tions specify the command byte ordering unambiguously but care must be taken to ensure correct
byte swapping if using the command structure types defined in usbdfu.h on big-endian systems.

DFU_CMD_PROG This command is used to provide the USB boot loader with the address at
which the next download should be written and the total length of the firmware
image which is to follow. This structure forms the header that is written to the
DFU-wrapped file generated by the dfuwrap tool.
The start address is provided in terms of 1024 byte flash blocks. To convert a
byte address to a block address, merely divide by 1024. The start address must
always be on a 1024 byte boundary.
This command may be followed by up to 1016 bytes of firmware image data,
this number being the maximum transfer size minus the 8 bytes of the command
structure.

The format of the command is as follows:

unsigned char ucData[8];

ucData[0] = DFU_CMD_PROG (0x01)
ucData[1] = Reserved - set to 0x00
ucData[2] = Start Block Number [7:0];
ucData[3] = Start Block Number [15:8];
ucData[4] = Image Size [7:0];
ucData[5] = Image Size [15:8];
ucData[6] = Image Size [23:16];
ucData[7] = Image Size [31:24];

March 28, 2013 29

USB Device (DFU) Update

DFU_CMD_READ This command is used to set the address range whose content will be returned
on subsequent DFU_UPLOAD requests from the host.
The start address is provided in terms of 1024 byte flash blocks. To convert a
byte address to a block address, merely divide by 1024. The start address must
always be on a 1024 byte boundary.
To read back a the contents of a region of flash, the host should send a
DFU_DNLOAD request with command DFU_CMD_READ, start address set to
the 1KB block start address and length set to the number of bytes to read. The
host should then send one or more DFU_UPLOAD requests to receive the cur-
rent flash contents from the configured addresses. Data returned will include an
8 byte DFU_CMD_PROG prefix structure unless the prefix has been disabled
by sending a DFU_CMD_BIN command with the bBinary parameter set to 1.
The host should, therefore, be prepared to read 8 bytes more than the length
specified in the READ command if the prefix is enabled.
By default, the 8 byte prefix is enabled for all upload operations. This is required
by the DFU class specification which states that uploaded images must be for-
matted to allow them to be directly downloaded back to the device at a later
time.

The format of the command is as follows:

unsigned char ucData[8];

ucData[0] = DFU_CMD_READ (0x02)
ucData[1] = Reserved - set to 0x00
ucData[2] = Start Block Number [7:0];
ucData[3] = Start Block Number [15:8];
ucData[4] = Image Size [7:0];
ucData[5] = Image Size [15:8];
ucData[6] = Image Size [23:16];
ucData[7] = Image Size [31:24];

DFU_CMD_CHECK This command is used to check a region of flash to ensure that it is completely
erased.
The start address is provided in terms of 1024 byte flash blocks. To convert a
byte address to a block address, merely divide by 1024. The start address must
always be on a 1024 byte boundary. The length must also be a multiple of 4.
To check that a region of flash is erased, the DFU_CMD_CHECK command
should be sent with the required start address and region length set then the
host should issue a DFU_GETSTATUS request. If the erase check was suc-
cessful, the returned bStatus value will be OK (0x00), otherwise it will be er-
rCheckErased (0x05).

The format of the command is as follows:

unsigned char ucData[8];

ucData[0] = DFU_CMD_CHECK (0x03)
ucData[1] = Reserved - set to 0x00
ucData[2] = Start Block Number [7:0];
ucData[3] = Start Block Number [15:8];
ucData[4] = Region Size [7:0];
ucData[5] = Region Size [15:8];
ucData[6] = Region Size [23:16];
ucData[7] = Region Size [31:24];

30 March 28, 2013

USB Device (DFU) Update

DFU_CMD_ERASE This command is used to erase a region of flash.
The start address is provided in terms of 1024 byte flash blocks. To convert a
byte address to a block address, merely divide by 1024. The start address must
always be on a 1024 byte boundary. The length must also be a multiple of 4.
The size of the region to erase is expressed in terms of flash blocks. The block
size can be determined using the DFU_CMD_INFO command.

The format of the command is as follows:

unsigned char ucData[8];

ucData[0] = DFU_CMD_ERASE (0x04)
ucData[1] = Reserved - set to 0x00
ucData[2] = Start Block Number [7:0];
ucData[3] = Start Block Number [15:8];
ucData[4] = Number of Blocks [7:0];
ucData[5] = Number of Blocks [15:8];
ucData[6] = Reserved - set to 0x00
ucData[7] = Reserved - set to 0x00

March 28, 2013 31

USB Device (DFU) Update

DFU_CMD_INFO This command is used to query information relating to the target device and
programmable region of flash. The device information structure, tDFUDevice-
Info, is returned on the next DFU_UPLOAD request following this command.

The format of the command is as follows:

unsigned char ucData[8];

ucData[0] = DFU_CMD_INFO (0x05)
ucData[1] = Reserved - set to 0x00
ucData[2] = Reserved - set to 0x00
ucData[3] = Reserved - set to 0x00
ucData[4] = Reserved - set to 0x00
ucData[5] = Reserved - set to 0x00
ucData[6] = Reserved - set to 0x00
ucData[7] = Reserved - set to 0x00

//***
//
// Payload returned in response to the DFU_CMD_INFO command.
//
// This is structure is returned in response to the first DFU_UPLOAD
// request following a DFU_CMD_INFO command. Note that byte ordering
// of multi-byte fields is little-endian.
//
//***
typedef struct
{

//
// The size of a flash block in bytes.
//
unsigned short usFlashBlockSize;

//
// The number of blocks of flash in the device. Total
// flash size is usNumFlashBlocks * usFlashBlockSize.
//
unsigned short usNumFlashBlocks;

//
// Information on the part number, family, version and
// package as read from SYSCTL register DID1.
//
unsigned long ulPartInfo;

//
// Information on the part class and revision as read
// from SYSCTL DID0.
//
unsigned long ulClassInfo;

//
// Address 1 byte above the highest location the boot
// loader can access.
//
unsigned long ulFlashTop;

//
// Lowest address the boot loader can write or erase.
//
unsigned long ulAppStartAddr;

}
PACKED tDFUDeviceInfo;

32 March 28, 2013

USB Device (DFU) Update

DFU_CMD_BIN By default, data returned in response to a DFU_UPLOAD request includes
an 8 byte DFU_CMD_PROG prefix structure. This ensures that an uploaded
image can be directly downloaded again without the need to further wrap
it but, in cases where pure binary data is required, can be awkward. The
DFU_CMD_BIN command allows the upload prefix to be disabled or enabled
under host control.

The format of the command is as follows:

unsigned char ucData[8];

ucData[0] = DFU_CMD_BIN (0x06)
ucData[1] = 0x01 to disable upload prefix, 0x00 to enable
ucData[2] = Reserved - set to 0x00
ucData[3] = Reserved - set to 0x00
ucData[4] = Reserved - set to 0x00
ucData[5] = Reserved - set to 0x00
ucData[6] = Reserved - set to 0x00
ucData[7] = Reserved - set to 0x00

DFU_CMD_RESET This command may be sent to the USB boot loader to cause it to perform a
soft reset of the board. This will reboot the system and, assuming that the main
application image is present, run the main application. Note that a reboot will
also take place if a firmware download operation completes and the host issues
a USB reset to the DFU device.

The format of the command is as follows:

unsigned char ucData[8];

ucData[0] = DFU_CMD_RESET (0x07)
ucData[1] = Reserved - set to 0x00
ucData[2] = Reserved - set to 0x00
ucData[3] = Reserved - set to 0x00
ucData[4] = Reserved - set to 0x00
ucData[5] = Reserved - set to 0x00
ucData[6] = Reserved - set to 0x00
ucData[7] = Reserved - set to 0x00

March 28, 2013 33

USB Device (DFU) Update

34 March 28, 2013

Customization

7 Customization
The boot loader allows for customization of its features as well as the interfaces used to update
the microcontroller. This allows the boot loader to include only the features that are needed by the
application. There are two types of features that can be customized. The first type are the features
that are conditionally included or excluded at compile time. The second type of customizations are
more involved and include customizing the actual code that is used by the boot loader.

The boot loader can be modified to have any functionality. As an example, the main loop can
be completely replaced to use a different set of commands and still use the packet and transport
functions from the boot loader. The method of detecting a forced update can be modified to suit
the needs of the application when toggling a GPIO to detect an update request may not be the
best solution. If the boot loader’s packet format does not meet the needs of the application, it can
be completely replaced by replacing ReceivePacket(), SendPacket(), AckPacket(), and
NakPacket().

The boot loader also provides a method to add a new serial transmission interface beyond the
UART, SSI, and I2C that are provided by the boot loader. In order for the packet functions to use
the new transport functions, the SendData(), ReceiveData(), and FlushData() defines need
to be modified to use the new functions. For example:

#ifdef FOO_ENABLE_UPDATE
#define SendData FooSend
#define FlushData FooFlush
#define ReceiveData FooReceive
#endif

would use the functions for the hypothetical Foo peripheral.

The combination of these customizable features provides a framework that allows the boot loader
to define whatever protocol it needs, or use any port that it needs to perform updates of the micro-
controller.

March 28, 2013 35

Customization

36 March 28, 2013

Configuration

8 Configuration
There are a number of defines that are used to configure the operation of the boot loader.
These defines are located in the bl_config.h header file, for which there is a template
(bl_config.h.tmpl) provided with the boot loader.

The configuration options are:

CRYSTAL_FREQ This defines the crystal frequency used by the microcon-
troller running the boot loader. If this is unknown at the
time of production, then use the UART_AUTOBAUD feature
to properly configure the UART.

This value must be defined if using the UART for the
update and not using the auto-baud feature, and when
using CAN, USB, or Ethernet for the update.

If using CAN, only a 1 MHz, 2 MHz, 4 MHz, 5 MHz, 6
MHz, 8 MHz, 10 MHz, 12 MHz, or 16 MHz crystal can
be used.

BOOST_LDO_VOLTAGE This enables the boosting of the LDO voltage to 2.75V.
For boot loader configurations that enable the PLL (in other
words, using the Ethernet port) on a part that has the PLL
errata, this should be enabled. This applies to revision A2 of
Fury-class devices.

APP_START_ADDRESS The starting address of the application. This must be a mul-
tiple of 1024 bytes (making it aligned to a page boundary).
A vector table is expected at this location, and the perceived
validity of the vector table (stack located in SRAM, reset vec-
tor located in flash) is used as an indication of the validity of
the application image.

This value must be defined.

The flash image of the boot loader must not be larger
than this value.

VTABLE_START_ADDRESS The address at which the application locates its exception
vector table. This must be a multiple of 1024 bytes (mak-
ing it aligned to a page boundary). Typically, an application
will start with its vector table and this value should be set to
APP_START_ADDRESS. This option is provided to cater for
applications which run from external memory which may not
be accessible by the NVIC (the vector table offset register is
only 30 bits long).

This value must be defined.

March 28, 2013 37

Configuration

FLASH_PAGE_SIZE The size of a single, erasable page in the flash. This must be
a power of 2. The default value of 1024 bytes represents the
page size for the internal flash on all Stellaris MCUs and this
value should only be overridden if configuring a boot loader
to access external flash devices with a page size different
from this.

This value must be defined.

FLASH_RSVD_SPACE The amount of space at the end of flash to reserve. This
must be a multiple of 1024 bytes (making it aligned to a page
boundary). This reserved space is not erased when the ap-
plication is updated, providing non-volatile storage that can
be used for parameters.

STACK_SIZE The number of words of stack space to reserve for the boot
loader.

This value must be defined.

BUFFER_SIZE The number of words in the data buffer used for receiving
packets. This value must be at least 3. If using auto-baud
on the UART, this must be at least 20. The maximum usable
value is 65 (larger values will result in unused space in the
buffer).

This value must be defined if updating via UART, SSI,
or I2C .

ENABLE_BL_UPDATE Enables updates to the boot loader. Updating the boot
loader is an unsafe operation since it is not fully fault tolerant
(losing power to the device partway through could result in
the boot loader no longer being present in flash). The boot
loader can not be updated via the Ethernet port.

FLASH_CODE_PROTECTION This definition will cause the the boot loader to erase the
entire flash on updates to the boot loader or to erase the
entire application area when the application is updated. This
erases any unused sections in the flash before the firmware
is updated.

ENABLE_DECRYPTION Enables the call to decrypt the downloaded data before
writing it into flash. The decryption routine is empty in
the reference boot loader source, which simply provides
a placeholder for adding an actual decryption algorithm.
Although this option is retained for backwards compat-
ibility, it is recommended that a decryption function be
specified using the newer hook function mechanism and
BL_DECRYPT_FN_HOOK instead.

38 March 28, 2013

Configuration

ENABLE_MOSCFAIL_HANDLER Enables support for the MOSCFAIL handler in the NMI inter-
rupt.

Sandstorm or Fury devices do not provide the MOSC-
FAIL reset, so this feature should not be enabled for
these devices.

FLASH_PATCH_COMPATIBLE Enables support for the code to cooperate with the flash
patch that is preloaded into the flash of certain Stellaris de-
vices. This support should only be enabled for devices that
require it.

Enabling this feature will cause the boot loader to ex-
pect to be loaded at 0x1000, despite the fact that de-
buggers will still think that it should be loaded at 0x0.
Therefore, LM Flash Programmer must be used to pro-
gram the boot loader into flash when using this feature.

ENABLE_UPDATE_CHECK Enables the pin-based forced update check. When en-
abled, the boot loader will go into update mode instead of
calling the application if a pin is read at a particular po-
larity, forcing an update operation. In either case, the ap-
plication is still able to return control to the boot loader
in order to start an update. For applications which need
to perform more complex checking than is possible us-
ing a single GPIO, a hook function may be provided using
BL_CHECK_UPDATE_FN_HOOK instead.

FORCED_UPDATE_PERIPH The GPIO module to enable in order to check for a forced
update. This will be one of the SYSCTL_RCGC2_GPIOx
values, where “x” is replaced with the port name (such
as B). The value of “x” should match the value of “x” for
FORCED_UPDATE_PORT.

This value must be defined if ENABLE_UPDATE_CHECK
is defined.

FORCED_UPDATE_PORT The GPIO port to check for a forced update. This will be one
of the GPIO_PORTx_BASE values, where “x” is replaced with
the port name (such as B). The value of “x” should match the
value of “x” for FORCED_UPDATE_PERIPH.

This value must be defined if ENABLE_UPDATE_CHECK
is defined.

FORCED_UPDATE_PIN The pin to check for a forced update. This is a value between
0 and 7.

This value must be defined if ENABLE_UPDATE_CHECK
is defined.

March 28, 2013 39

Configuration

FORCED_UPDATE_POLARITY The polarity of the GPIO pin that results in a forced update.
This value should be 0 if the pin should be low and 1 if the
pin should be high.

This value must be defined if ENABLE_UPDATE_CHECK
is defined.

FORCED_UPDATE_WPU
FORCED_UPDATE_WPD

This enables a weak pull-up or pull-down for the GPIO pin
used in a forced update. Only one of FORCED_UPDATE_WPU
or FORCED_UPDATE_WPD should be defined, or neither if a
weak pull-up or pull-down is not required.

FORCED_UPDATE_KEY This enables the use of the GPIO_LOCK mechanism for
configuration of protected GPIO pins (for example JTAG
pins). If this value is not defined, the locking mech-
anism will not be used. The only legal values for
this feature are GPIO_LOCK_KEY for Fury devices and
GPIO_LOCK_KEY_DD for all other devices except Sand-
storm devices, which do not support this feature.

UART_ENABLE_UPDATE Selects the UART as the port for communicating with the
boot loader.

UART_AUTOBAUD Enables automatic baud rate detection. This can be used if
the crystal frequency is unknown, or if operation at different
baud rates is desired.

This value or UART_FIXED_BAUDRATE must be de-
fined if UART_ENABLE_UPDATE is defined.

UART_FIXED_BAUDRATE Selects the baud rate to be used for the UART.

This value or UART_AUTOBAUD must be defined if
UART_ENABLE_UPDATE is defined.

SSI_ENABLE_UPDATE Selects the SSI port as the port for communicating with the
boot loader.

I2C_ENABLE_UPDATE Selects the I2C port as the port for communicating with the
boot loader.

I2C_SLAVE_ADDR Specifies the I2C address of the boot loader.

This value must be defined if I2C_ENABLE_UPDATE is
defined.

ENET_ENABLE_UPDATE Selects Ethernet update via the BOOTP/TFTP protocol.

ENET_ENABLE_LEDS Enables the use of the Ethernet status LED outputs to indi-
cate traffic and connection status.

40 March 28, 2013

Configuration

ENET_MAC_ADDR? Specifies the hard coded MAC address for the Ethernet in-
terface. There are six individual values (ENET_MAC_ADDR0
through ENET_MAC_ADDR5) that provide the six
bytes of the MAC address, where ENET_MAC_ADDR0
though ENET_MAC_ADDR2 provide the organizationally
unique identifier (OUI) and ENET_MAC_ADDR3 through
ENET_MAC_ADDR5 provide the extension identifier. If these
values are not provided, the MAC address will be extracted
from the user registers.

ENET_BOOTP_SERVER Specifies the name of the BOOTP server from which to re-
quest information. The use of this specifier allows a board-
specific BOOTP server to co-exist on a network with the
DHCP server that may be part of the network infrastructure.
The BOOTP server provided by Texas Instruments requires
that this be set to “stellaris”.

USB_ENABLE_UPDATE Selects USB update via Device Firmware Update class.

USB_VENDOR_ID The USB vendor ID published by the DFU device. This value
is the TI Stellaris vendor ID. Change this to the vendor ID you
have been assigned by the USB-IF.

This value must be defined if USB_ENABLE_UPDATE is
defined.

USB_PRODUCT_ID The USB device ID published by the DFU device. If you are
using your own vendor ID, chose a device ID that is different
from the ID you use in non-update operation. If you have
sublicensed TI’s vendor ID, you must use an assigned prod-
uct ID here.

This value must be defined if USB_ENABLE_UPDATE is
defined.

USB_DEVICE_ID Selects the BCD USB device release number published in
the device descriptor.

This value must be defined if USB_ENABLE_UPDATE is
defined.

USB_MAX_POWER Sets the maximum power consumption that the DFU device
will report to the USB host in the configuration descriptor.
Units are milliamps.

This value must be defined if USB_ENABLE_UPDATE is
defined.

USB_BUS_POWERED Specifies whether the DFU device reports to the host that it
is self-powered (defined as 0) or bus-powered (defined as
1).

March 28, 2013 41

Configuration

USB_HAS_MUX Specifies whether the target board uses a multiplexer to se-
lect between USB host and device modes.

USB_MUX_PERIPH Specifies the GPIO peripheral containing the pin which is
used to select between USB host and device modes. The
value is of the form SYSCTL_RCGC2_GPIOx, where GPIOx
represents the required GPIO port.

This value must be defined if USB_HAS_MUX is defined.

USB_MUX_PORT Specifies the GPIO port containing the pin which is used to
select between USB host and device modes. The value is of
the form GPIO_PORTx_BASE, where PORTx represents the
required GPIO port.

This value must be defined if USB_HAS_MUX is defined.

USB_MUX_PIN Specifies the GPIO pin number used to select between USB
host and device modes. Valid values are 0 through 7.

This value must be defined if USB_HAS_MUX is defined.

USB_MUX_DEVICE Specifies the state of the GPIO pin required to select USB
device-mode operation. Valid values are 0 (low) or 1 (high).

This value must be defined if USB_HAS_MUX is defined.

USB_VBUS_CONFIG Specifies whether the target board requires configuration of
the pin used for VBUS. This applies to Blizzard class and
later devices.

USB_VBUS_PERIPH Specifies the GPIO peripheral containing the pin
which is used for VBUS. The value is of the form
SYSCTL_RCGCGPIO_Rx, where the Rx represends
the required GPIO port. This applies to Blizzard class and
later devices.

This value must be defined if USB_VBUS_CONFIG is de-
fined.

USB_VBUS_PORT Specifies the GPIO port containing the pin which is used for
VBUS. The value is of the form GPIO_PORTx_BASE, where
PORTx represents the required GPIO port.

This value must be defined if USB_VBUS_CONFIG is de-
fined.

42 March 28, 2013

Configuration

USB_VBUS_PIN Specifies the GPIO pin number used for VBUS. Valid values
are 0 through 7.

This value must be defined if USB_VBUS_CONFIG is de-
fined.

USB_ID_CONFIG Specifies whether the target board requires configuration of
the pin used for ID. This applies to Blizzard class and later
devices.

USB_ID_PERIPH Specifies the GPIO peripheral containing the pin
which is used for ID. The value is of the form
SYSCTL_RCGCGPIO_Rx, where the Rx represends
the required GPIO port. This applies to Blizzard class and
later devices.

This value must be defined if USB_ID_CONFIG is de-
fined.

USB_ID_PORT Specifies the GPIO port containing the pin which is used
for ID. The value is of the form GPIO_PORTx_BASE, where
PORTx represents the required GPIO port.

This value must be defined if USB_ID_CONFIG is de-
fined.

USB_ID_PIN Specifies the GPIO pin number used for ID. Valid values are
0 through 7.

This value must be defined if USB_ID_CONFIG is de-
fined.

USB_DP_CONFIG Specifies whether the target board requires configuration of
the pin used for DP. This applies to Blizzard class and later
devices.

USB_DP_PERIPH Specifies the GPIO peripheral containing the pin
which is used for DP. The value is of the form
SYSCTL_RCGCGPIO_Rx, where the Rx represends
the required GPIO port. This applies to Blizzard class and
later devices.

This value must be defined if USB_DP_CONFIG is de-
fined.

March 28, 2013 43

Configuration

USB_DP_PORT Specifies the GPIO port containing the pin which is used for
DP. The value is of the form GPIO_PORTx_BASE, where
PORTx represents the required GPIO port.

This value must be defined if USB_DP_CONFIG is de-
fined.

USB_DP_PIN Specifies the GPIO pin number used for DP. Valid values are
0 through 7.

This value must be defined if USB_DP_CONFIG is de-
fined.

USB_DM_CONFIG Specifies whether the target board requires configuration of
the pin used for DM. This applies to Blizzard class and later
devices.

USB_DM_PERIPH Specifies the GPIO peripheral containing the pin
which is used for DM. The value is of the form
SYSCTL_RCGCGPIO_Rx, where the Rx represends
the required GPIO port. This applies to Blizzard class and
later devices.

This value must be defined if USB_DM_CONFIG is de-
fined.

USB_DM_PORT Specifies the GPIO port containing the pin which is used for
DM. The value is of the form GPIO_PORTx_BASE, where
PORTx represents the required GPIO port.

This value must be defined if USB_DM_CONFIG is de-
fined.

USB_DM_PIN Specifies the GPIO pin number used for DM. Valid values
are 0 through 7.

This value must be defined if USB_DM_CONFIG is de-
fined.

CAN_ENABLE_UPDATE Selects an update via the CAN port.

CAN_REQUIRES_PLL Indicates that the CAN peripheral operates from a fixed di-
vide of the PLL output, meaning that the PLL must be en-
abled. This is required by some older Stellaris devices, but
must not be used on newer Stellaris devices. Consult the de-
vice data sheet to determine if the CAN peripheral operates
from a fixed 8 MHz clock derived from the PLL (meaning this
option must be used) or if it operates from the system clock
(meaning this option must not be used).

44 March 28, 2013

Configuration

CAN_UART_BRIDGE Enables the UART to CAN bridging for use when the CAN
port is selected for communicating with the boot loader.

CAN_RX_PERIPH The GPIO module to enable in order to configure the CAN0
Rx pin. This will be one of the SYSCTL_RCGC2_GPIOx
values, where “x” is replaced with the port name (such
as B). The value of “x” should match the value of “x” for
CAN_RX_PORT.

This value must be defined if CAN_ENABLE_UPDATE is
defined.

CAN_RX_PORT The GPIO port used to configure the CAN0 Rx pin. This
will be one of the GPIO_PORTx_BASE values, where “x” is
replaced with the port name (such as B). The value of “x”
should match the value of “x” for CAN_RX_PERIPH.

This value must be defined if CAN_ENABLE_UPDATE is
defined.

CAN_RX_PIN The GPIO pin that is shared with the CAN0 Rx pin. This is a
value between 0 and 7.

This value must be defined if CAN_ENABLE_UPDATE is
defined.

CAN_TX_PERIPH The GPIO module to enable in order to configure the CAN0
Tx pin. This will be one of the SYSCTL_RCGC2_GPIOx
values, where “x” is replaced with the port name (such
as B). The value of “x” should match the value of “x” for
CAN_TX_PORT.

This value must be defined if CAN_ENABLE_UPDATE is
defined.

CAN_TX_PORT The GPIO port used to configure the CAN0 Tx pin. This
will be one of the GPIO_PORTx_BASE values, where “x” is
replaced with the port name (such as B). The value of “x”
should match the value of “x” for CAN_TX_PERIPH.

This value must be defined if CAN_ENABLE_UPDATE is
defined.

CAN_TX_PIN The GPIO pin that is shared with the CAN0 Tx pin. This is a
value between 0 and 7.

This value must be defined if CAN_ENABLE_UPDATE is
defined.

March 28, 2013 45

Configuration

CAN_BIT_RATE The bit rate used on the CAN bus. This must be one of
20000, 50000, 125000, 250000, 500000, or 1000000. The
CAN bit rate must be less than or equal to the crystal fre-
quency divided by 8 (CRYSTAL_FREQ / 8).

This value must be defined if CAN_ENABLE_UPDATE is
defined.

BL_HW_INIT_FN_HOOK Performs application-specific low level hardware initialization
on system reset. If hooked, this function will be called imme-
diately after the boot loader code relocation completes. An
application may perform any required low-level hardware ini-
tialization during this function. Note that the system clock
has not been set when this function is called. Initialization
that assumes the system clock is set may be performed in
the BL_INIT_FN_HOOK function instead.

BL_INIT_FN_HOOK Performs application-specific initialization on system reset.
If hooked, this function will be called during boot loader ini-
tialization to perform any board- or application-specific ini-
tialization which is required. The function is called following
a reset immediately after the selected boot loader peripheral
has been configured and the system clock has been set.

BL_REINIT_FN_HOOK Performs application-specific reinitialization on boot loader
entry via SVC. If hooked, this function will be called dur-
ing boot loader reinitialization to perform any board- or
application-specific initialization which is required. The func-
tion is called following boot loader entry from an application,
after any system clock rate adjustments have been made.

BL_START_FN_HOOK Informs an application that a download is starting. If hooked,
this function will be called when a firmware download is
about to begin. The function is called after the first data
packet of the download is received but before it has been
written to flash.

BL_PROGRESS_FN_HOOK Informs an application of download progress. If hooked, this
function will be called periodically during a firmware down-
load to provide progress information. The function is called
after each data packet is received from the host. Parameters
provide the number of bytes of data received and, in cases
other than Ethernet update, the expected total number of
bytes in the download (the TFTP protocol used by the Eth-
ernet boot loader does not send the final image size before
the download starts so in this case the ulTotal parameter is
set to 0 to indicate that the size is unknown).

BL_END_FN_HOOK Informs an application that a download has completed. If
hooked, this function will be called when a firmware down-
load has just completed. The function is called after the final
data packet of the download has been written to flash.

46 March 28, 2013

Configuration

BL_DECRYPT_FN_HOOK Allows an application to perform in-place data decryption
during download. If hooked, this function will be called to
perform in-place decryption of each data packet received
during a firmware download.

This value takes precedence over
ENABLE_DECRYPTION. If both are defined, the
hook function defined using BL_DECRYPT_FN_HOOK
is called rather than the previously-defined
DecryptData() stub function.

BL_CHECK_UPDATE_FN_HOOK Allows an application to force a new firmware download. If
hooked, this function will be called during boot loader initial-
ization to determine whether a firmware update should be
performed regardless of whether a valid main code image is
already present. If the function returns 0, the existing main
code image is booted (if present), otherwise the boot loader
will wait for a new firmware image to be downloaded.

This value takes precedence over
ENABLE_UPDATE_CHECK if both are defined. If
you wish to perform a GPIO check in addition to any
other update check processing required, the GPIO
code must be included within the hook function itself.

BL_FLASH_ERASE_FN_HOOK Allows an application to replace the flash block erase
function. If hooked, this function will be called when-
ever a block of flash is to be erased. The function must
erase the block and wait until the operation has completed.
The size of the block which will be erased is defined by
FLASH_BLOCK_SIZE.

BL_FLASH_PROGRAM_FN_HOOK Allows an application to replace the flash programming func-
tion. If hooked, this function will be called to program the
flash with firmware image data received during download
operations. The function must program the supplied data
and wait until the operation has completed.

BL_FLASH_CL_ERR_FN_HOOK Allows an application to replace the flash error clear function.
If hooked, this function must clear any flash error indicators
and prepare to detect access violations that may occur in a
future erase or program operations.

BL_FLASH_ERROR_FN_HOOK Reports whether or not a flash access violation error has oc-
curred. If hooked, this function will be called after flash erase
or program operations. The return code indicates whether or
not an access violation error occurred since the last call to
the function defined by BL_FLASH_CL_ERR_FN_HOOK, with
0 indicating no errors and non-zero indicating an error.

March 28, 2013 47

Configuration

BL_FLASH_SIZE_FN_HOOK Reports the total size of the device flash. If hooked, this
function will be called to determine the size of the supported
flash device. The return code is the number of bytes of flash
in the device. Note that this does not take into account any
reserved space defined via the FLASH_RSVD_SPACE value.

BL_FLASH_END_FN_HOOK Reports the address of the first byte after the end of the de-
vice flash. If hooked, this function will be called to determine
the address of the end of valid flash. Note that this does
not take into account any reserved space defined via the
FLASH_RSVD_SPACE value.

BL_FLASH_AD_CHECK_FN_HOOK Checks whether the start address and size of an image are
valid. If hooked, this function will be called when a new
firmware download is about to start. Parameters provided
are the requested start address for the new download and,
when using protocols which transmit the image length in ad-
vance, the size of the image that is to be downloaded. The
return code will be non-zero to indicate that the start address
is valid and the image will fit in the available space, or 0 if ei-
ther the address is invalid or the image is too large for the
device.

48 March 28, 2013

Source Details

9 Source Details
Autobaud Functions .49
CAN Functions .50
Decryption Functions . 51
Ethernet Functions . 52
File System Functions . 54
I2C Functions . 54
Main Functions . 55
Packet Handling Functions . 56
SSI Functions .59
UART Functions . 60
Update Check Functions . 61
USB Device Functions . 62

9.1 Autobaud Functions

Functions
void GPIOIntHandler (void)
int UARTAutoBaud (unsigned long ∗pulRatio)

9.1.1 Detailed Description

The following functions are provided in bl_autobaud.c and are used to perform autobauding on
the UART interface.

9.1.2 Function Documentation

9.1.2.1 GPIOIntHandler

Handles the UART Rx GPIO interrupt.

Prototype:
void
GPIOIntHandler(void)

Description:
When an edge is detected on the UART Rx pin, this function is called to save the time of the
edge. These times are later used to determine the ratio of the UART baud rate to the processor
clock rate.

Returns:
None.

March 28, 2013 49

Source Details

9.1.2.2 UARTAutoBaud

Performs auto-baud on the UART port.

Prototype:
int
UARTAutoBaud(unsigned long *pulRatio)

Parameters:
pulRatio is the ratio of the processor’s crystal frequency to the baud rate being used by the

UART port for communications.

Description:
This function attempts to synchronize to the updater program that is trying to communicate with
the boot loader. The UART port is monitored for edges using interrupts. Once enough edges
are detected, the boot loader determines the ratio of baud rate and crystal frequency needed
to program the UART.

Returns:
Returns a value of 0 to indicate that this call successfully synchronized with the other device
communicating over the UART, and a negative value to indicate that this function did not suc-
cessfully synchronize with the other UART device.

9.2 CAN Functions

Functions
void AppUpdaterCAN (void)
void ConfigureCAN (void)
void UpdaterCAN (void)

9.2.1 Detailed Description

The following functions are provided in bl_can.c and are used to perform an update over the CAN
interface.

9.2.2 Function Documentation

9.2.2.1 AppUpdaterCAN

This is the application entry point to the CAN updater.

Prototype:
void
AppUpdaterCAN(void)

50 March 28, 2013

Source Details

Description:
This function should only be entered from a running application and not when running the boot
loader with no application present.

Returns:
None.

9.2.2.2 ConfigureCAN

Generic configuration is handled in this function.

Prototype:
void
ConfigureCAN(void)

Description:
This function is called by the start up code to perform any configuration necessary before
calling the update routine.

Returns:
None.

9.2.2.3 UpdaterCAN

This is the main routine for handling updating over CAN.

Prototype:
void
UpdaterCAN(void)

Description:
This function accepts boot loader commands over CAN to perform a firmware update over the
CAN bus. This function assumes that the CAN bus timing and message objects have been
configured elsewhere.

Returns:
None.

9.3 Decryption Functions

Functions
void DecryptData (unsigned char ∗pucBuffer, unsigned long ulSize)

9.3.1 Detailed Description

The following functions are provided in bl_decrypt.c and are used to optionally decrypt the
firmware data as it is received.

March 28, 2013 51

Source Details

9.3.2 Function Documentation

9.3.2.1 DecryptData

Performs an in-place decryption of downloaded data.

Prototype:
void
DecryptData(unsigned char *pucBuffer,

unsigned long ulSize)

Parameters:
pucBuffer is the buffer that holds the data to decrypt.
ulSize is the size, in bytes, of the buffer that was passed in via the pucBuffer parameter.

Description:
This function is a stub that could provide in-place decryption of the data that is being down-
loaded to the device.

Returns:
None.

9.4 Ethernet Functions

Functions
char BOOTPThread (void)
void ConfigureEnet (void)
void SysTickIntHandler (void)
void UpdateBOOTP (void)

9.4.1 Detailed Description

The following functions are provided in bl_enet.c and are used to perform an update over the
Ethernet interface.

9.4.2 Function Documentation

9.4.2.1 BOOTPThread

Handles the BOOTP process.

Prototype:
char
BOOTPThread(void)

52 March 28, 2013

Source Details

Description:
This function contains the proto-thread for handling the BOOTP process. It first communicates
with the BOOTP server to get its boot parameters (IP address, server address, and file name),
then it communicates with the TFTP server on the specified server to read the firmware image
file.

Returns:
None.

9.4.2.2 ConfigureEnet

Configures the Ethernet controller.

Prototype:
void
ConfigureEnet(void)

Description:
This function configures the Ethernet controller, preparing it for use by the boot loader.

Returns:
None.

9.4.2.3 SysTickIntHandler

Handles the SysTick interrupt.

Prototype:
void
SysTickIntHandler(void)

Description:
This function is called when the SysTick interrupt occurs. It simply keeps a running count of
interrupts, used as a time basis for the BOOTP and TFTP protocols.

Returns:
None.

9.4.2.4 UpdateBOOTP

Starts the update process via BOOTP.

Prototype:
void
UpdateBOOTP(void)

Description:
This function starts the Ethernet firmware update process. The BOOTP (as defined by
RFC951 at http://tools.ietf.org/html/rfc951) and TFTP (as defined by RFC1350
at http://tools.ietf.org/html/rfc1350) protocols are used to transfer the firmware
image over Ethernet.

March 28, 2013 53

http://tools.ietf.org/html/rfc951
http://tools.ietf.org/html/rfc1350

Source Details

Returns:
Never returns.

9.5 File System Functions

The following functions are provided in bl_fs.c and are used to provide very basic support for
reading from a FAT file system.

9.6 I2C Functions

Functions
void I2CFlush (void)
void I2CReceive (unsigned char ∗pucData, unsigned long ulSize)
void I2CSend (const unsigned char ∗pucData, unsigned long ulSize)

9.6.1 Detailed Description

The following functions are provided in bl_i2c.c and are used to communicate over the I2C
interface.

9.6.2 Function Documentation

9.6.2.1 I2CFlush

Waits until all data has been transmitted by the I2C port.

Prototype:
void
I2CFlush(void)

Description:
This function waits until all data written to the I2C port has been read by the master.

Returns:
None.

9.6.2.2 I2CReceive

Receives data over the I2C port.

54 March 28, 2013

Source Details

Prototype:
void
I2CReceive(unsigned char *pucData,

unsigned long ulSize)

Parameters:
pucData is the buffer to read data into from the I2C port.
ulSize is the number of bytes provided in the pucData buffer that should be written with data

from the I2C port.

Description:
This function reads back ulSize bytes of data from the I2C port, into the buffer that is pointed to
by pucData. This function will not return until ulSize number of bytes have been received. This
function will wait till the I2C Slave port has been properly addressed by the I2C Master before
reading the first byte of data from the I2C port.

Returns:
None.

9.6.2.3 I2CSend

Sends data over the I2C port.

Prototype:
void
I2CSend(const unsigned char *pucData,

unsigned long ulSize)

Parameters:
pucData is the buffer containing the data to write out to the I2C port.
ulSize is the number of bytes provided in pucData buffer that will be written out to the I2C port.

Description:
This function sends ulSize bytes of data from the buffer pointed to by pucData via the I2C port.
The function will wait till the I2C Slave port has been properly addressed by the I2C Master
device before sending the first byte.

Returns:
None.

9.7 Main Functions

Functions
void ConfigureDevice (void)
void Updater (void)

March 28, 2013 55

Source Details

9.7.1 Detailed Description

The following functions are provided in bl_main.c and comprise the main boot loader application.

9.7.2 Function Documentation

9.7.2.1 ConfigureDevice

Configures the microcontroller.

Prototype:
void
ConfigureDevice(void)

Description:
This function configures the peripherals and GPIOs of the microcontroller, preparing it for use
by the boot loader. The interface that has been selected as the update port will be configured,
and auto-baud will be performed if required.

Returns:
None.

9.7.2.2 Updater

This function performs the update on the selected port.

Prototype:
void
Updater(void)

Description:
This function is called directly by the boot loader or it is called as a result of an update request
from the application.

Returns:
Never returns.

9.8 Packet Handling Functions

Functions
void AckPacket (void)
unsigned long CheckSum (const unsigned char ∗pucData, unsigned long ulSize)
void NakPacket (void)
int ReceivePacket (unsigned char ∗pucData, unsigned long ∗pulSize)
int SendPacket (unsigned char ∗pucData, unsigned long ulSize)

56 March 28, 2013

Source Details

9.8.1 Detailed Description

The following functions are provided in bl_packet.c and are used to process the data packets in
the custom serial protocol.

9.8.2 Function Documentation

9.8.2.1 AckPacket

Sends an Acknowledge packet.

Prototype:
void
AckPacket(void)

Description:
This function is called to acknowledge that a packet has been received by the microcontroller.

Returns:
None.

9.8.2.2 CheckSum

Calculates an 8-bit checksum

Prototype:
unsigned long
CheckSum(const unsigned char *pucData,

unsigned long ulSize)

Parameters:
pucData is a pointer to an array of 8-bit data of size ulSize.
ulSize is the size of the array that will run through the checksum algorithm.

Description:
This function simply calculates an 8-bit checksum on the data passed in.

Returns:
Returns the calculated checksum.

9.8.2.3 NakPacket

Sends a no-acknowledge packet.

Prototype:
void
NakPacket(void)

March 28, 2013 57

Source Details

Description:
This function is called when an invalid packet has been received by the microcontroller, indi-
cating that it should be retransmitted.

Returns:
None.

9.8.2.4 ReceivePacket

Receives a data packet.

Prototype:
int
ReceivePacket(unsigned char *pucData,

unsigned long *pulSize)

Parameters:
pucData is the location to store the data that is sent to the boot loader.
pulSize is the number of bytes returned in the pucData buffer that was provided.

Description:
This function receives a packet of data from specified transfer function.

Returns:
Returns zero to indicate success while any non-zero value indicates a failure.

9.8.2.5 SendPacket

Sends a data packet.

Prototype:
int
SendPacket(unsigned char *pucData,

unsigned long ulSize)

Parameters:
pucData is the location of the data to be sent.
ulSize is the number of bytes to send.

Description:
This function sends the data provided in the pucData parameter in the packet format used by
the boot loader. The caller only needs to specify the buffer with the data that needs to be
transferred. This function addresses all other packet formatting issues.

Returns:
Returns zero to indicate success while any non-zero value indicates a failure.

58 March 28, 2013

Source Details

9.9 SSI Functions

Functions
void SSIFlush (void)
void SSIReceive (unsigned char ∗pucData, unsigned long ulSize)
void SSISend (const unsigned char ∗pucData, unsigned long ulSize)

9.9.1 Detailed Description

The following functions are provided in bl_ssi.c and are used to communicate over the SSI
interface.

9.9.2 Function Documentation

9.9.2.1 SSIFlush

Waits until all data has been transmitted by the SSI port.

Prototype:
void
SSIFlush(void)

Description:
This function waits until all data written to the SSI port has been read by the master.

Returns:
None.

9.9.2.2 SSIReceive

Receives data from the SSI port in slave mode.

Prototype:
void
SSIReceive(unsigned char *pucData,

unsigned long ulSize)

Parameters:
pucData is the location to store the data received from the SSI port.
ulSize is the number of bytes of data to receive.

Description:
This function receives data from the SSI port in slave mode. The function will not return until
ulSize number of bytes have been received.

Returns:
None.

March 28, 2013 59

Source Details

9.9.2.3 SSISend

Sends data via the SSI port in slave mode.

Prototype:
void
SSISend(const unsigned char *pucData,

unsigned long ulSize)

Parameters:
pucData is the location of the data to send through the SSI port.
ulSize is the number of bytes of data to send.

Description:
This function sends data through the SSI port in slave mode. This function will not return until
all bytes are sent.

Returns:
None.

9.10 UART Functions

Functions
void UARTFlush (void)
void UARTReceive (unsigned char ∗pucData, unsigned long ulSize)
void UARTSend (const unsigned char ∗pucData, unsigned long ulSize)

9.10.1 Detailed Description

The following functions are provided in bl_uart.c and are used to communicate over the UART
interface.

9.10.2 Function Documentation

9.10.2.1 UARTFlush

Waits until all data has been transmitted by the UART port.

Prototype:
void
UARTFlush(void)

Description:
This function waits until all data written to the UART port has been transmitted.

Returns:
None.

60 March 28, 2013

Source Details

9.10.2.2 UARTReceive

Receives data over the UART port.

Prototype:
void
UARTReceive(unsigned char *pucData,

unsigned long ulSize)

Parameters:
pucData is the buffer to read data into from the UART port.
ulSize is the number of bytes provided in the pucData buffer that should be written with data

from the UART port.

Description:
This function reads back ulSize bytes of data from the UART port, into the buffer that is pointed
to by pucData. This function will not return until ulSize number of bytes have been received.

Returns:
None.

9.10.2.3 UARTSend

Sends data over the UART port.

Prototype:
void
UARTSend(const unsigned char *pucData,

unsigned long ulSize)

Parameters:
pucData is the buffer containing the data to write out to the UART port.
ulSize is the number of bytes provided in pucData buffer that will be written out to the UART

port.

Description:
This function sends ulSize bytes of data from the buffer pointed to by pucData via the UART
port.

Returns:
None.

9.11 Update Check Functions

Functions
unsigned long CheckForceUpdate (void)

March 28, 2013 61

Source Details

9.11.1 Detailed Description

The following functions are provided in bl_check.c and are used to check if a firmware update is
required.

9.11.2 Function Documentation

9.11.2.1 CheckForceUpdate

Checks if an update is needed or is being requested.

Prototype:
unsigned long
CheckForceUpdate(void)

Description:
This function detects if an update is being requested or if there is no valid code presently
located on the microcontroller. This is used to tell whether or not to enter update mode.

Returns:
Returns a non-zero value if an update is needed or is being requested and zero otherwise.

9.12 USB Device Functions

Data Structures
tConfigDescriptor
tString0Descriptor
tStringDescriptor
tUSBRequest

Functions
void AppUpdaterUSB (void)
void ConfigureUSB (void)
void ConfigureUSBInterface (void)
void HandleRequests (tUSBRequest ∗pUSBRequest)
tBoolean ProcessDFUDnloadCommand (tDFUDownloadHeader ∗pcCmd, unsigned long ul-
Size)
void UpdaterUSB (void)
void USBBLInit (void)
void USBBLSendDataEP0 (unsigned char ∗pucData, unsigned long ulSize)
void USBBLStallEP0 (void)
void USBConfigurePins (void)

62 March 28, 2013

Source Details

9.12.1 Detailed Description

The following functions are provided in bl_usb.c and bl_usbfuncs.c and are used to commu-
nicate over the USB interface.

9.12.2 Data Structure Documentation

9.12.2.1 tConfigDescriptor

Definition:
typedef struct
{

unsigned char bLength;
unsigned char bDescriptorType;
unsigned short wTotalLength;
unsigned char bNumInterfaces;
unsigned char bConfigurationValue;
unsigned char iConfiguration;
unsigned char bmAttributes;
unsigned char bMaxPower;

}
tConfigDescriptor

Members:
bLength The length of this descriptor in bytes. All configuration descriptors are 9 bytes long.
bDescriptorType The type of the descriptor. For a configuration descriptor, this will be

USB_DTYPE_CONFIGURATION (2).
wTotalLength The total length of data returned for this configuration. This includes the com-

bined length of all descriptors (configuration, interface, endpoint and class- or vendor-
specific) returned for this configuration.

bNumInterfaces The number of interface supported by this configuration.
bConfigurationValue The value used as an argument to the SetConfiguration standard re-

quest to select this configuration.
iConfiguration The index of a string descriptor describing this configuration.
bmAttributes Attributes of this configuration.
bMaxPower The maximum power consumption of the USB device from the bus in this con-

figuration when the device is fully operational. This is expressed in units of 2mA so, for
example, 100 represents 200mA.

Description:
This structure describes the USB configuration descriptor as defined in USB 2.0 specification
section 9.6.3. This structure also applies to the USB other speed configuration descriptor
defined in section 9.6.4.

9.12.2.2 tString0Descriptor

Definition:
typedef struct
{

March 28, 2013 63

Source Details

unsigned char bLength;
unsigned char bDescriptorType;
unsigned short wLANGID[1];

}
tString0Descriptor

Members:
bLength The length of this descriptor in bytes. This value will vary depending upon the number

of language codes provided in the descriptor.
bDescriptorType The type of the descriptor. For a string descriptor, this will be

USB_DTYPE_STRING (3).
wLANGID The language code (LANGID) for the first supported language. Note that this de-

scriptor may support multiple languages, in which case, the number of elements in the
wLANGID array will increase and bLength will be updated accordingly.

Description:
This structure describes the USB string descriptor for index 0 as defined in USB 2.0 specifi-
cation section 9.6.7. Note that the number of language IDs is variable and can be determined
by examining bLength. The number of language IDs present in the descriptor is given by
((bLength - 2) / 2).

9.12.2.3 tStringDescriptor

Definition:
typedef struct
{

unsigned char bLength;
unsigned char bDescriptorType;
unsigned char bString;

}
tStringDescriptor

Members:
bLength The length of this descriptor in bytes. This value will be 2 greater than the number of

bytes comprising the UNICODE string that the descriptor contains.
bDescriptorType The type of the descriptor. For a string descriptor, this will be

USB_DTYPE_STRING (3).
bString The first byte of the UNICODE string. This string is not NULL terminated. Its length

(in bytes) can be computed by subtracting 2 from the value in the bLength field.

Description:
This structure describes the USB string descriptor for all string indexes other than 0 as defined
in USB 2.0 specification section 9.6.7.

9.12.2.4 tUSBRequest

Definition:
typedef struct
{

unsigned char bmRequestType;

64 March 28, 2013

Source Details

unsigned char bRequest;
unsigned short wValue;
unsigned short wIndex;
unsigned short wLength;

}
tUSBRequest

Members:
bmRequestType Determines the type and direction of the request.
bRequest Identifies the specific request being made.
wValue Word-sized field that varies according to the request.
wIndex Word-sized field that varies according to the request; typically used to pass an index

or offset.
wLength The number of bytes to transfer if there is a data stage to the request.

Description:
The standard USB request header as defined in section 9.3 of the USB 2.0 specification.

9.12.3 Function Documentation

9.12.3.1 AppUpdaterUSB

This is the application entry point to the USB updater.

Prototype:
void
AppUpdaterUSB(void)

Description:
This function should only be entered from a running application and not when running the boot
loader with no application present. If the calling application supports any USB device function,
it must remove itself from the USB bus prior to calling this function. This function assumes that
the calling application has already configured the system clock to run from the PLL.

Returns:
None.

9.12.3.2 ConfigureUSB

Generic configuration is handled in this function.

Prototype:
void
ConfigureUSB(void)

Description:
This function is called by the start up code to perform any configuration necessary before
calling the update routine. It is responsible for setting the system clock to the expected rate
and setting flash programming parameters prior to calling ConfigureUSBInterface() to set up
the USB hardware and place the DFU device on the bus.

March 28, 2013 65

Source Details

Returns:
None.

9.12.3.3 ConfigureUSBInterface

Configure the USB controller and place the DFU device on the bus.

Prototype:
void
ConfigureUSBInterface(void)

Description:
This function configures the USB controller for DFU device operation, initializes the state ma-
chines required to control the firmware update and places the device on the bus in preparation
for requests from the host. It is assumed that the main system clock has been configured at
this point.

Returns:
None.

9.12.3.4 HandleRequests

Handle USB requests sent to the DFU device.

Prototype:
void
HandleRequests(tUSBRequest *pUSBRequest)

Parameters:
pUSBRequest is a pointer to the USB request that the device has been sent.

Description:
This function is called to handle all non-standard requests received by the device. This will
include all the DFU endpoint 0 commands along with the Stellaris-specific request we use to
query whether the device supports our flavor of the DFU binary format. Incoming DFU requests
are processed by request handlers specific to the particular state of the DFU connection. This
state machine implementation is chosen to keep the software as close as possible to the USB
DFU class documentation.

Returns:
None.

9.12.3.5 ProcessDFUDnloadCommand

Process Stellaris-specific commands passed via DFU download requests.

Prototype:
tBoolean
ProcessDFUDnloadCommand(tDFUDownloadHeader *pcCmd,

unsigned long ulSize)

66 March 28, 2013

Source Details

Parameters:
pcCmd is a pointer to the first byte of the DFU_DNLOAD payload that is expected to hold a

command.
ulSize is the number of bytes of data pointed to by pcCmd . This function is called when a

DFU download command is received while in STATE_IDLE. New downloads are assumed
to contain a prefix structure containing one of several Stellaris-specific commands and this
function is responsible for parsing the download data and processing whichever command
is contained within it.

Returns:
Returns true on success or false on failure.

9.12.3.6 void UpdaterUSB (void)

This is the main routine for handling updating over USB.

This function forms the main loop of the USB DFU updater. It polls for commands sent from the
USB request handlers and is responsible for erasing flash blocks, programming data into erased
blocks and resetting the device.

Returns:
None.

9.12.3.7 void USBBLInit (void)

Initialize the boot loader USB functions.

This function initializes the boot loader USB functions and places the DFU device onto the USB
bus.

Returns:
None.

9.12.3.8 void USBBLSendDataEP0 (unsigned char ∗ pucData, unsigned long ulSize)

This function requests transfer of data to the host on endpoint zero.

Parameters:
pucData is a pointer to the buffer to send via endpoint zero.
ulSize is the amount of data to send in bytes.

Description:
This function handles sending data to the host when a custom command is issued or non-
standard descriptor has been requested on endpoint zero.

Returns:
None.

March 28, 2013 67

Source Details

9.12.3.9 USBBLStallEP0

This function generates a stall condition on endpoint zero.

Prototype:
void
USBBLStallEP0(void)

Description:
This function is typically called to signal an error condition to the host when an unsupported
request is received by the device. It should be called from within the callback itself (in interrupt
context) and not deferred until later since it affects the operation of the endpoint zero state
machine.

Returns:
None.

9.12.3.10 USBConfigurePins

Initialize the pins used by USB functions.

Prototype:
void
USBConfigurePins(void)

Description:
This function configures the pins for USB functions depending on defines from the bl_config.h
file.

Returns:
None.

68 March 28, 2013

March 28, 2013 69

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications
using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design
and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work
right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used.
Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services
or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids
all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifi-
cally designated by TI as military-grade or “enhanced plastic.” Only products designated by TI as military-grade meet military specifications.
Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer’s risk,
and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Mobile Processors www.ti.com/omap
Wireless Connectivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007-2013, Texas Instruments Incorporated

70 March 28, 2013

www.ti.com/audio
www.ti.com/automotive
amplifier.ti.com
www.ti.com/communications
dataconverter.ti.com
www.ti.com/computers
www.dlp.com
www.ti.com/consumer-apps
dsp.ti.com
www.ti.com/energy
www.ti.com/clocks
www.ti.com/industrial
interface.ti.com
www.ti.com/medical
logic.ti.com
www.ti.com/security
power.ti.com
www.ti.com/space-avionics-defense
microcontroller.ti.com
www.ti.com/video
www.ti-rfid.com
www.ti.com/omap
www.ti.com/wirelessconnectivity
e2e.ti.com

	Copyright
	Revision Information
	1 Introduction
	2 Startup Code
	3 Serial Update
	3.1 Packet Handling
	3.2 Transport Layer
	3.3 Serial Commands

	4 Ethernet Update
	5 CAN Update
	5.1 CAN Bus Clocking
	5.2 CAN Commands

	6 USB Device (DFU) Update
	6.1 USB Device Firmware Upgrade Overview
	6.2 Stellaris-Specific USB Download Commands

	7 Customization
	8 Configuration
	9 Source Details
	9.1 Autobaud Functions
	9.2 CAN Functions
	9.3 Decryption Functions
	9.4 Ethernet Functions
	9.5 File System Functions
	9.6 I2C Functions
	9.7 Main Functions
	9.8 Packet Handling Functions
	9.9 SSI Functions
	9.10 UART Functions
	9.11 Update Check Functions
	9.12 USB Device Functions

	IMPORTANT NOTICE

