
TMS470R1x Controller Area Network
(CAN) Reference Guide

Literature Number: SPNU197E
July 2005

ii

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products and services at
any time and to discontinue any product or service without notice. Customers should obtain the
latest relevant information before placing orders and should verify that such information is current
and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the
time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of
sale in accordance with TI’s standard warranty. Testing and other quality control techniques are
used to the extent TI deems necessary to support this warranty. Except where mandated by
government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are
responsible for their products and applications using TI components. To minimize the risks asso-
ciated with customer products and applications, customers should provide adequate design and
operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any
TI patent right, copyright, mask work right, or other TI intellectual property right relating to any
combination, machine, or process in which TI products or services are used. Information published
by TI regarding third-party products or services does not constitute a license from TI to use such
products or services or a warranty or endorsement thereof. Use of such information may require
a license from a third party under the patents or other intellectual property of the third party, or a
license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is
without alteration and is accompanied by all associated warranties, conditions, limitations, and
notices. Reproduction of this information with alteration is an unfair and deceptive business prac-
tice. TI is not responsible or liable for such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated
by TI for that product or service voids all express and any implied warranties for the associated TI
product or service and is an unfair and deceptive business practice. TI is not responsible or liable
for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and
application solutions:

Copyright  2005, Texas Instruments Incorporated

Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

REVISION HISTORY

REVISION DATE NOTES

E 7/05

Page 43, note on wakeup delay from STANDBY due to bus-off condition added.
Page 68, SRES bit reset value corrected.
Page 70, ABO bit description updated.
Page 78, BO bit description updated.
Page 95, note on clearing the CCR bit after bus-off condition added

Contents

1 CAN Overview. 2
1.1 CAN Protocol Processor Features . 3
1.2 SCC Features. 4
1.3 HECC Features . 4

2 Overview of the CAN Network and Module . 6
2.1 CAN Protocol Overview . 6
2.2 CAN Controller Overview . 7

3 Standard CAN Controller (SCC) Overview. 9
3.1 SCC Memory Map . 10
3.2 SCC Registers . 12

4 High-End CAN Controller (HECC) Overview . 13
4.1 SCC-Compatible Mode. 14
4.2 HECC Memory Map . 15
4.3 HECC Registers . 17

5 Message Objects . 18
5.1 SCC Message Objects . 18
5.2 HECC Message Objects. 19
5.3 CAN Message Mailbox . 20

5.3.1 Transmit Mailbox . 21
5.3.2 Receive Mailbox . 22
5.3.3 Handling of Remote Frames. 22
5.3.4 CPU Message Mailbox Access . 24
5.3.5 Message Identifier Register (MID) . 25
5.3.6 Message Control Field Register (MCF) . 27
5.3.7 Message Data Registers (MDL, MDH) . 29

5.4 CAN Acceptance Filter . 30
5.4.1 SCC Acceptance Filtering . 30
5.4.2 HECC Acceptance Filtering . 31
5.4.3 Local Acceptance Mask Register (LAM) . 31

6 CAN Module Initialization . 33
6.1 CAN Bit-Timing Configuration . 34
6.2 CAN Bit Rate Calculation . 35

7 CAN Interrupts . 37
7.1 Interrupts Scheme . 40
7.2 Message Object Interrupt . 40
v

Contents
8 CAN Power-Down Mode . 42
8.1 Local Power Down . 42
8.2 Global Power Down . 43

9 Timer Management Unit . 44
9.1 Time Stamp Functions . 44
9.2 Local Network Time Register (LNT) . 45
9.3 Message Object Time Stamp Registers (MOTS) . 46

10 Time-Out Functions . 47
10.1 Message Object Time-Out Registers (MOTO) . 48
10.2 Time Out Control-Register (TOC) . 49
10.3 Time Out Status Register (TOS) . 50

11 CAN SCC/HECC Control Registers . 50
11.1 Mailbox Enable Register (CANME). 56
11.2 Mailbox Direction Register (CANMD) . 57
11.3 Transmission Request Set Register (CANTRS) . 58
11.4 Transmission Request Reset Register (CANTRR) . 60
11.5 Transmission Acknowledge Register (CANTA) . 62
11.6 Abort Acknowledge Register (CANAA) . 63
11.7 Receive Message Pending Register (CANRMP) . 64
11.8 Receive Message Lost Register (CANRML). 65
11.9 Remote Frame Pending Register (CANRFP) . 66
11.10 Global Acceptance Mask Register (CANGAM). 67
11.11 Master Control Register (CANMC) . 68
11.12 Bit-Timing Configuration Register (CANBTC) . 72
11.13 Error and Status Register (CANES) . 77
11.14 CAN Error Counter Registers (CANTEC/CANREC) . 81
11.15 Global Interrupt Flag Registers (CANGIF0/CANGIF1) . 82
11.16 Global Interrupt Mask Register (CANGIM) . 85
11.17 Mailbox Interrupt Mask Register (CANMIM) . 88
11.18 Mailbox Interrupt Level Register (CANMIL) . 89
11.19 Overwrite Protection Control Register (CANOPC) . 90
11.20 CAN I/O Control Registers (CANTIOC, CANRIOC) . 91

12 CAN Operation Examples. 94
12.1 Configuration of SCC or HECC. 94
12.2 Transmit Mailbox. 95

12.2.1 Configuring a Mailbox for Transmit . 95
12.2.2 Transmitting a Message . 96

12.3 Receive Mailbox . 97
12.3.1 Configuring Mailboxes for Receive . 97
12.3.2 Receiving a Message . 98
12.3.3 Handling of Overload Situations . 98

12.4 Handling of Remote Frame Mailboxes . 98
12.4.1 Requesting Data From Another Node. 99
12.4.2 Answering a Remote Request . 99
12.4.3 Updating the Data Field . 100
vi

Contents
12.5 Interrupt Handling . 100
12.5.1 Configuring for Interrupt Handling . 100
12.5.2 Handling Mailbox Interrupts . 101
Contents vii

Figures

1 CAN Data Frame . 7
2 Architecture of the SCC and HECC CAN Controllers . 8
3 SCC Functional Block Diagram . 9
4 HECC Functional Block Diagram . 13
5 HECC Memory Map . 16
6 Message Identifier Register (MID) Fields . 25
7 Message Control Field Register (MCF) . 27
8 Message Data Low Register with DBO = 0 (MDL) . 29
9 Message Data High Register with DBO = 0 (MDH) . 29
10 Message Data Low Register with DBO = 1 (MDL) . 29
11 Message Data High Register with DBO = 1 (MDH) . 30
12 Local Acceptance Mask Register (LAM) . 31
13 Configuration Sequence . 33
14 Partition of the Bit Time . 34
15 SCC Interrupts Scheme . 38
16 HECC Interrupts Scheme. 39
17 Local Network Time Register (LNT) . 45
18 Message Object Time Stamp Registers (MOTS) . 46
19 Message Object Time-Out Registers (MOTO) . 48
20 Time-Out Control Register (TOC) . 49
21 Time-Out Status Register (TOS) . 50
22 Mailbox Enable Register (CANME) . 56
23 Mailbox Direction Register (CANMD) . 57
24 Transmission Request Set Register (CANTRS) . 58
25 Transmission Request Reset Register (CANTRR) Field Descriptions 60
26 Transmission Acknowledge Register (CANTA) Field Descriptions . 62
27 Abort Acknowledge Register (CANAA) Field Descriptions. 63
28 Receive Message Pending Register (CANRMP) Field Descriptions . 64
29 Receive Message Lost Register (CANRML) Field Descriptions . 65
30 Remote Frame Pending Register (CANRFP) Field Descriptions . 66
viii

31 Global Acceptance Mask Register (CANGAM) Field Descriptions . 67
32 Master Control Register (CANMC) Field Descriptions . 68
33 Bit-Timing Configuration Register (CANBTC) . 72
34 Error and Status Register (CANES) . 77
35 Transmit Error Counter Register (CANTEC) . 81
36 Receive Error Counter Register (CANREC). 81
37 Global Interrupt Flag 0 Register (CANGIF0) . 82
38 Global Interrupt Flag 1 Register (CANGIF1) . 82
39 Global Interrupt Mask Register (CANGIM). 85
40 Mailbox Interrupt Mask Register (CANMIM). 88
41 Mailbox Interrupt Level Register (CANMIL) . 89
42 Overwrite Protection Control Register (CANOPC) . 90
43 CAN I/O Control Register (CANTIOC) . 91
44 RX I/O Control Register (CANRIOC) . 92
Contents ix

Tables

1 SCC and HECC Features Overview . 2
2 Combined SCC/HECC Registers Map . 12
3 Combined SCC/HECC Registers Map . 17
4 SCC Message Object Description . 18
5 HECC Message Object Description . 20
6 Message Object Behavior Configuration . 21
7 Message Identifier Register (MID) Field Descriptions . 25
8 Message Control Field Register (MCF) Field Descriptions . 28
9 Local Acceptance Mask Register (LAM) Field Descriptions . 32
10 Local Network Time Register (LNT) Field Descriptions . 45
11 Message Object Time Stamp Registers (MOTS) Field Descriptions . 46
12 Message Object Time-Out Registers (MOTO) Field Descriptions . 48
13 Time-Out Control Register (TOC) Field Descriptions . 49
14 Time-Out Status Register (TOS) Field Descriptions . 50
15 Combined SCC/HECC Registers . 51
16 Mailbox Enable Register (CANME) Field Descriptions . 56
17 Mailbox Direction Register (CANMD) Field Descriptions . 57
18 Transmission Request Set Register (CANTRS) Field Descriptions . 59
19 Transmission Request Reset Register (CANTRR) Field Descriptions 61
20 Transmission Acknowledge Register (CANTA) Field Descriptions . 62
21 Abort Acknowledge Register (CANAA) Field Descriptions . 63
22 Receive Message Pending Register (CANRMP) Field Descriptions . 64
23 Receive Message Lost Register (CANRML) Field Descriptions . 65
24 Remote Frame Pending Register (CANRFP) Field Descriptions . 66
25 Global Acceptance Mask Register (CANGAM) Field Descriptions . 67
26 Master Control Register (CANMC) Field Descriptions . 68
27 Bit-Timing Configuration Register (CANBTC) Field Descriptions . 73
28 Error and Status Register (CANES) Field Descriptions . 77
29 Global Interrupt Flag Registers (CANGIF0/CANGIF1) Field Descriptions. 82
30 Global Interrupt Mask Register (CANGIM) Field Descriptions. 85
x

31 Mailbox Interrupt Mask Register (CANMIM) Field Descriptions . 88
32 Mailbox Interrupt Level Register (CANMIL) Field Descriptions . 89
33 Overwrite Protection Control Register (CANOPC) Field Descriptions 90
34 CAN I/O Control Register (CANTIOC) Field Descriptions . 91
35 RX I/O Control Register (CANRIOC) Field Descriptions . 92
Contents xi

xii

Controller Area Network (CAN)

This reference guide describes the Controller Area Network (CAN). The CAN
uses established protocol to communicate serially with other controllers in
harsh environments. This chapter describes the TMS470 CAN controllers,
the Standard CAN Controller (SCC) and the High-End CAN Controller
(HECC). Unless otherwise stated in the text, all information is related to both
the SCC and HECC.

1 CAN Overview. 2

2 Overview of the CAN Network and Module . 6

3 Standard CAN Controller (SCC) Overview. 9

4 High-End CAN Controller (HECC) Overview . 13

5 Message Objects . 18

6 CAN Module Initialization . 33

7 CAN Interrupts . 37

8 CAN Power-Down Mode . 42

9 Timer Management Unit. 44

10 Time-Out Functions . 47

11 CAN SCC/HECC Control Registers. 50

12 CAN Operation Examples . 94

Topic Page
Controller Area Network (CAN) (SPNU197E) 1

 CAN Overview
1 CAN Overview

The TMS470 CAN controller is available in two different implementations that
are both fully compliant with the CAN protocol, version 2.0B. The two different
CAN controller versions use the same CAN protocol kernel module to
perform the basic CAN protocol tasks. Only the message controller differs
between the two CAN controller versions. See Table 1.

Key features of the CAN module include:

❏ Common CAN protocol kernel (CPK) to perform protocol tasks

❏ Standard CAN controller (SCC) for standard CAN applications
■ Sixteen message objects
■ Three receive identifier masks

❏ High-end CAN controller (HECC) for complex applications
■ Thirty-two message objects
■ Thirty-two receive identifier masks

Table 1. SCC and HECC Features Overview

Feature SCC HECC

Number of message objects 16 Rx/Tx 32 Rx/Tx

Number of receive identifier masks 3 32

CAN, version 2.0B compliant X X

Low-power mode X X

Programmable wake-up on bus activity X X

Programmable interrupt scheme X X

Automatic reply to a remote request X X

Automatic retransmission in case of error X X

Protect against reception of new message X X

32-bit time stamp X

Local network time counter X

Programmable priority register for each message X

Programmable transmission and reception time-out X
2

CAN Overview
1.1 CAN Protocol Processor Features

The CAN protocol kernel (CPK) performs the basic CAN protocol tasks
according to CAN protocol specification 2.0B. The CPK is the basic module
of all CAN controller implementations.

The CPK provides the following features:

❏ Full implementation of CAN protocol, version 2.0B

■ Standard and extended identifiers

■ Data and remote frames

❏ Bus speed of up to 1 Mbps with an 8-MHz system clock

❏ Programmable prescaler from 1 to 256

❏ Programmable bit time according to the CAN specification

❏ Programmable sampling mode

■ One or three samples used to determine the received bit value

❏ Selectable edge of receive bit flow for synchronization

■ Both edges or falling edge only

❏ Automatic retransmission of a frame in case of loss of arbitration

❏ Low-power mode

❏ Bus failure diagnostic

■ Bus on/off

■ Error passive/active

■ Bus error warning

■ Bus stuck dominant

■ Frame error report: cyclic redundancy check (CRC), stuff, form, bit, and
acknowledgment errors

■ Readable error counters

❏ Self-test mode

■ Operate in a loop-back mode (receiving its own message)

■ Dummy acknowledge
Controller Area Network (CAN) (SPNU197E) 3

 CAN Overview
1.2 SCC Features

The TMS470 device family has the following SCC features:

❏ All the CPK features

■ Full implementation of CAN protocol, version 2.0B

❏ Sixteen message objects, each with the following properties:

■ Configurable as receive or transmit

■ Configurable with standard or extended identifier

■ Protects against reception of new message

■ Supports data and remote frame

■ Composed of 0 to 8 bytes of data

■ Employs a programmable interrupt scheme with two interrupt levels

■ Has a message priority based on object number

❏ Two programmable local identifier masks for objects 0–2 and 3–5

■ Configurable as standard or extended message identifier

■ Has an acceptance mask register for identifier extension bit

❏ One global programmable identifier mask for objects 6–15

■ Configurable as standard or extended message identifier

■ Has an acceptance mask register for identifier extension bit

❏ Low-power mode

❏ Programmable wake-up on bus activity

❏ Automatic reply to a remote request message

❏ Automatic retransmission of a frame in case of loss of arbitration or error

1.3 HECC Features

The TMS470 device family has the following HECC features:

❏ All the CPK features

■ Full implementation of CAN protocol, version 2.0B

❏ Thirty-two message objects, each with the following properties:

■ Configurable as receive or transmit
4

CAN Overview
■ Configurable with standard or extended identifier

■ Has a programmable receive mask

■ Supports data and remote frame

■ Composed of 0 to 8 bytes of data

■ Uses a 32-bit time stamp on receive and transmit message

■ Protects against reception of new message

■ Holds the dynamically programmable priority of transmit message

■ Employs a programmable interrupt scheme with two interrupt levels

■ Employs a programmable alarm on transmission or reception time-out

❏ Low-power mode

❏ Programmable wake-up on bus activity

❏ Automatic reply to a remote request message

❏ Automatic retransmission of a frame in case of loss of arbitration or error

❏ 32-bit local network time counter synchronized by a specific message
(communication in conjunction with mailbox 16)

❏ SCC-compatible mode

■ Upwardly compatible software

■ Software written for the SCC can run without any changes on the HECC

■ SCC-compatible mode is automatically activated after RESET

Controller Area Network (CAN) (SPNU197E) 5

 Overview of the CAN Network and Module
2 Overview of the CAN Network and Module

The controller area network (CAN) uses a serial multimaster communication
protocol that efficiently supports distributed real-time control, with a very high
level of security, and a communication rate of up to 1 Mbps. The CAN bus is
ideal for applications operating in noisy and harsh environments, such as in
the automotive and other industrial fields that require reliable communication
or multiplexed wiring.

Prioritized messages of up to 8 bytes in data length can be sent on a
multimaster serial bus using an arbitration protocol and an error-detection
mechanism for a high level of data integrity.

2.1 CAN Protocol Overview

The CAN protocol supports four different frame types for communication:

❏ Data frames that carry data from a transmitter node to the receiver nodes

❏ Remote frames that are transmitted by a node to request the transmission
of a data frame with the same identifier

❏ Error frames that are transmitted by any node on a bus-error detection

❏ Overload frames that provide an extra delay between the preceding and
the succeeding data frames or remote frames.

In addition, CAN specification version 2.0B defines two different formats that
differ in the length of the identifier field: standard frames with an 11-bit
identifier and extended frames with 29-bit identifier.

CAN standard data frames contain from 44 to 108 bits and CAN extended
data frames contain 64 to 128 bits. Furthermore, up to 23 stuff bits can be
inserted in a standard data frame, and up to 28 stuff bits in an extended data
frame, depending on the data-stream coding. The overall maximum data
frame length is then 131 bits for a standard frame and 156 bits for an
extended frame.
6

Overview of the CAN Network and Module
Bit fields within the data frame, shown in Figure 1, identify:

■ Start of the frame

■ Arbitration field containing the identifier and the type of message being
sent

■ Control field containing the number of data

■ Up to 8 bytes of data

■ Cyclic redundancy check (CRC)

■ Acknowledgment

■ End-of-frame bits

Figure 1. CAN Data Frame

2.2 CAN Controller Overview

The TMS470 CAN controllers provide the CPU with full functionality of the
CAN protocol, version 2.0B. The CAN controller minimizes the CPU’s load in
communication overhead and enhances the CAN standard by providing
additional features.

The architecture of both the SCC and the HECC controllers, shown in Figure
2, is composed of a CAN protocol kernel (CPK) and a message controller.

Bit length 1 12 or 32

Start bit

Arbitration field that contains:

6 0-8 bytes

Data field

Control bits

16

CRC bits

7

End

2

Acknowledge
– 11-bit identifier + RTR bit for standard frame format
– 29-bit identifier + SRR bit + IDE bit + RTR bit for extended frame format
Where: RTR = Remote Transmission Request
 SRR = Substitute Remote Request
 IDE = Identifier Extension

Note: Unless otherwise noted, numbers are amount of bits in field.
Controller Area Network (CAN) (SPNU197E) 7

 Overview of the CAN Network and Module
Figure 2. Architecture of the SCC and HECC CAN Controllers

Two functions of the CPK are to decode all messages received on the CAN
bus according to the CAN protocol and to transfer these messages into a
receive buffer. Another CPK function is to transmit messages on the CAN bus
according to the CAN protocol.

The message controller of a CAN controller is responsible for determining if
any message received by the CPK must be preserved for the CPU use or be
discarded. At the initialization phase, the CPU specifies to the message
controller all message identifiers used by the application. The message
controller is also responsible for sending the next message to transmit to the
CPK according to the message’s priority.

The SCC and the HECC differ only by their message controller - the CPK
always offers the same services. The message management of the message
controller is not part of the CAN protocol specification.

CAN Bus

TMS470

CAN controller

Message Controller

CAN Protocol Kernel (CPK)

Receive Buffer Transmit Buffer

CAN Transceiver

RX TX

CPU
8

Standard CAN Controller (SCC) Overview
3 Standard CAN Controller (SCC) Overview

The SCC is a standard CAN controller with an internal 32-bit architecture,
upwardly compatible with HECC.

The SCC, shown in Figure 3, consists of the following:

❏ The CAN protocol kernel (CPK)

❏ The message controller comprising the following:

■ The memory management unit (MMU), including the CPU interface and
the receive control unit (acceptance filtering)

■ 256 bytes of mailbox RAM enabling the storage of 16 messages

■ 256 bytes of space register containing the global and the local identifier
masks.

Figure 3. SCC Functional Block Diagram

Message controller

SCC0INT

Memory management unit

CPU I/F,
 Receive control unit32 32

SCC memory
256 bytes

Registers and
message objects

control

SCC1INT

Standard CAN controller

Controls Address Data

32

CAN protocol kernel

Receive buffer

Transmit buffer

Control buffer

Status buffer

32

CANTX CANRX

Mailbox RAM
256 bytes

16 message mailbox
of 4 x 32-bit words
Controller Area Network (CAN) (SPNU197E) 9

 Standard CAN Controller (SCC) Overview
After the reception of a valid message by the CPK, the receive control unit of
the message controller determines if the message must be stored into one of
the 16 message objects of the mailbox RAM. The receive control unit checks
the state, the identifier, and the mask of all message objects to determine the
appropriate mailbox location. The received message is stored into the first
mailbox passing the acceptance filtering. If the receive control unit could not
find any mailbox to store the received message, the message is discarded.

A message comprises an identifier of 11 or 29 bits (contained in the arbitration
field), a control field, and up to 8 bytes of data.

When a message must be transmitted, the message controller transfers the
message into the transmit buffer of the CPK to start the message
transmission at the next bus-idle state. When more than one message must
be transmitted, the message with the highest priority is transferred into the
CPK by the message controller.

The memory registers contain the global identifier mask and the two
dedicated identifier masks for the message objects 0–2 and 3–5. After the
reception of a valid identifier, the receive control unit checks the state and the
identifier of all objects to determine if the received message must be stored
into one of the message object’s buffers.

To initiate a data transfer, the transmission-request bit has to be set in the
corresponding control register. The entire transmission procedure and
possible error handling is then done without any CPU involvement. If a
mailbox has been configured to receive messages, the CPU easily reads its
data registers using CPU read instructions. The mailbox may be configured
to interrupt the CPU after every successful message transmission or
reception.

3.1 SCC Memory Map

The SCC module has two different offset addresses mapped in the TMS470
memory. The first offset address, SCC_Offset, is used to access the control
and status registers, and the acceptance masks of the message objects. This
memory range can only be accessed 32-bit wide. The second offset address,
Mailbox_RAM_Offset, is used to access the message mailboxes. This
memory range can be accessed 8-bit, 16-bit and 32-bit wide. Each of these
two memory blocks uses 256 bytes of address space.

The message storage is implemented by a RAM that can be addressed by
the CAN controller or the CPU. The CPU controls the CAN controller by
modifying the various mailboxes in the RAM or the additional registers. The
contents of the various storage elements are used to perform acceptance
filtering, message transmission, and interrupt handling.
10

Standard CAN Controller (SCC) Overview
The mailbox module in the SCC provides sixteen message mailboxes of 8-
byte data length, a 29-bit identifier, and several control bits. Each mailbox can
be configured to either transmit or receive data.

Note: Unused Message Mailboxes

All RAM areas are byte-writable and may be used as normal memory. In
this case, it must be ensured that no CAN function uses the RAM area. This
assurance is reached by disabling the corresponding mailbox or by
disabling the corresponding functions.
Controller Area Network (CAN) (SPNU197E) 11

 Standard CAN Controller (SCC) Overview
3.2 SCC Registers

The SCC and HECC registers, listed in Table 2, are used by the CPU to
configure and control the CAN controller and the message objects.

Table 2. Combined SCC/HECC Registers Map

† The actual addresses of the registers are device-specific. See the specific device data sheet to verify the module register
addresses. The offset address of the device must be added to the actual register addresses.

Offset
Address† Mnemonic SCC Name HECC Name Page

0x00 CANME Mailbox enable Mailbox enable 3-53
0x04 CANMD Mailbox direction Mailbox direction 3-54
0x08 CANTRS Transmission request set Transmission request set 3-55
0x0C CANTRR Transmission request reset Transmission request reset 3-56
0x10 CANTA Transmission acknowledge Transmission acknowledge 3-57
0x14 CANAA Abort acknowledge Abort acknowledge 3-58
0x18 CANRMP Receive message pending Receive message pending 3-59
0x1C CANRML Receive message lost Receive message lost 3-60
0x20 CANRFP Remote frame pending Remote frame pending 3-61
0x24 CANGAM Global acceptance mask Reserved 3-62
0x28 CANMC Master control Master control 3-63
0x2C CANBTC Bit-timing configuration Bit-timing configuration 3-67
0x30 CANES Error and status Error and status 3-71
0x34 CANTEC Transmit error counter Transmit error counter 3-74
0x38 CANREC Receive error counter Receive error counter 3-74
0x3C CANGIF0 Global interrupt flag 0 Global interrupt flag 0 3-76
0x40 CANGIM Global interrupt mask Global interrupt mask 3-79
0x44 CANGIF1 Global interrupt flag 1 Global interrupt flag 1 3-76
0x48 CANMIM Mailbox interrupt mask Mailbox interrupt mask 3-81
0x4C CANMIL Mailbox interrupt level Mailbox interrupt level 3-82
0x50 CANOPC Overwrite protection control Overwrite protection control 3-83
0x54 CANTIOC TX I/O control TX I/O control 3-84
0x58 CANRIOC RX I/O control RX I/O control 3-85
0x5C CANLNT Reserved Local network time 3-44
0x60 CANTOC Reserved Time-out control 3-46
0x64 CANTOS Reserved Time-out status 3-46
12

High-End CAN Controller (HECC) Overview
4 High-End CAN Controller (HECC) Overview

The HECC is a new-generation, Texas Instruments, advanced CAN controller
with an internal 32-bit architecture.

The HECC, shown in Figure 4, consists of the following:

❏ The CAN protocol kernel (CPK)

❏ The message controller comprising the following:

■ The memory management unit (MMU), including the CPU interface and
the receive control unit (acceptance filtering), and the timer
management unit

■ 512 bytes of mailbox RAM enabling the storage of 32 messages

■ 512 bytes of memory comprising the registers and the message objects
control

Figure 4. HECC Functional Block Diagram

Message controller

HECC0INT

Mailbox RAM
(512 bytes)

32-message mailbox
of 4 × 32-bit words 32 32

HECC memory
 (512 bytes)
registers and

 message objects
control

HECC1INT

High-end CAN controller

Controls Address Data

32

CAN protocol kernel

Receive buffer

Transmit buffer

Control buffer

Status buffer

32

CANTX CANRX

Memory management unit

CPU I/F,
Receive control unit,

Timer management unit
Controller Area Network (CAN) (SPNU197E) 13

 High-End CAN Controller (HECC) Overview
After the CPK receives a valid message, the receive control unit of the
message controller determines if the received message must be stored into
one of the 32 message objects of the mailbox RAM. The receive control unit
checks the state, the identifier, and the mask of all message objects to
determine the appropriate mailbox location. The received message is stored
into the first mailbox passing the acceptance filtering. If the receive control
unit cannot find any mailbox to store the received message, the message is
discarded.

A message comprises an 11- or 29-bit identifier, a control field, and up to 8
bytes of data.

When a message must be transmitted, the message controller transfers the
message into the transmit buffer of the CPK to start the message
transmission at the next bus-idle state. When more than one message must
be transmitted, the message with the highest priority (defined by the
message-object-priority register) that is ready to be transmitted is transferred
into the CPK by the message controller.

The timer management unit comprises a local network time counter and
apposes a time stamp to all messages received or transmitted. The timer
management unit controls all message reception and transmission, and
generates an alarm when a message has not been received or transmitted
during an allowed period of time (time-out).

To initiate a data transfer, the transmission request bit has to be set in the
corresponding control register. The entire transmission procedure and
possible error handling are then performed without any CPU involvement. If
a mailbox has been configured to receive messages, the CPU easily reads
its data registers using CPU read instructions. The mailbox may be
configured to interrupt the CPU after every successful message transmission
or reception.

4.1 SCC-Compatible Mode

The HECC can be used in SCC mode. In this mode, all functions specific to
the HECC are not available and the HECC behaves exactly as the SCC. This
mode is selected by default to allow any application software written for the
SCC to run on the HECC without any modification. When using the HECC in
SCC-compatible mode, the user must refer to the SCC specification only.

The SCC-compatible mode is selected with bit SCM (MC.13).
14

High-End CAN Controller (HECC) Overview
Note: HECC Used in SCC Mode

When the HECC is configured in SCC mode, the HECC behaves exactly as
the SCC and you should refer to the SCC specification only.

4.2 HECC Memory Map

The HECC module has two different offset addresses mapped in the TMS470
memory. The first offset address, HECC_Offset, is used to access the control
register, the status register, the acceptance mask, the time stamp, and the
time-out of the message objects. The access to the control and status
registers (memory range: HECC_Offset ... HECC_Offset + 0x07C) is limited
to 32-bit wide accesses. The local acceptance masks, the time stamp
registers, and the time-out registers can be accessed 8-bit, 16-bit and 32-bit
wide. The second offset address, Mailbox_RAM_Offset, is used to access the
mailboxes. This memory range can be accessed 8-bit, 16-bit and 32-bit wide.
Each of these two memory blocks, shown in Figure 5, uses 512 bytes of
address space.

The message storage is implemented by a RAM that can be addressed by
the CAN controller or the CPU. The CPU controls the CAN controller by
modifying the various mailboxes in the RAM or the additional registers. The
contents of the various storage elements are used to perform the functions of
the acceptance filtering, message transmission, and interrupt handling.

The mailbox module in the HECC provides 32 message mailboxes of 8-byte
data length, a 29-bit identifier, and several control bits. Each mailbox can be
configured as either transmit or receive. In the HECC, each mailbox has its
individual acceptance mask.

Note: Unused Message Mailboxes

All RAM areas are byte-writable and can be used as normal memory. In this
case, you must ensure that no CAN function uses the RAM area. This
assurance is reached by disabling the corresponding mailbox or by
disabling the corresponding functions.

Note: HECC Used in SCC Mode

When the HECC is used in SCC mode, you should refer to the SCC
memory map.
Controller Area Network (CAN) (SPNU197E) 15

 High-End CAN Controller (HECC) Overview
Figure 5. HECC Memory Map

Control and status
registers

HECC memory
(512 bytes)

HECC_offset + 000h

+ 07Ch

Local acceptance
masks
- LAM -

(32 × 32-bit RAM)

+ 080h

+ 0FCh

Mailbox enable - CANMEHECC_Offset + 00h

HECC control and status registers
(128 bytes)

Mailbox direction - CANMD+ 04h
Transmission request Set - CANTRS+ 08h

Transmission request reset - CANTRR+ 0Ch
Transmission acknowledge - CANTA+ 10h

Abort acknowledge - CANAA+ 14h
Receive message pending - CANRMP+ 18h

Receive ,message lost - CANRML+ 1Ch
Remote frame pending - CANRFP+ 20h

Reserved+ 24h
Master control - CANMC+ 28h

Bit-timing configuration - CANBTC+ 2Ch
Error and status - CANES+ 30h

Transmit error counter - CANTEC+ 34h
Receive error counter - CANREC+ 38h
Global interrupt flag 0 - CANGIF0+ 3Ch
Global interrupt mask - CANGIM+ 40h
Global interrupt flag 1 - CANGIF1+ 44h
Mailbox interrupt mask - CANMIM+ 48h
Mailbox interrupt level - CANMIL+ 4Ch

Overwrite protection control - CANOPC+ 50h
TX I/O control - CANTIOC+ 54h
RX I/O control - CANRIOC+ 58h

Reserved

+ 68h

+ 7Ch

Message object
time stamps

- MOTS -
(32 × 32-bit RAM)

+ 100h

+ 17Ch

 Message object
timeout

- MOTO -
(32 × 32-bit RAM)

+ 180h

+ 1FCh

Local network time - CANLNT+ 5Ch
Time-out control - CANTOC+ 60h
Time-out status - CANTOS+ 64hMailbox_offset + 000h

HECC memory RAM
(512 bytes)

+ 010h
+ 020h
+ 030h
+ 040h

+ 1C0h
+ 1D0h
+ 1E0h
+ 1F0h Message identifier - MID†Mailbox_offset + 00h

Message mailbox
(16 bytes)

Message control - MCF+ 04h
Message data low - MDL + 08h
Message data high - MDH+ 0Ch

†Mailbox_offset = Mailbox_RAM_offset
+ (Mailbox# × 0x10)

Mailbox 0
Mailbox 1
Mailbox 2
Mailbox 3
Mailbox 4

Mailbox 28
Mailbox 29
Mailbox 30
Mailbox 31
16

High-End CAN Controller (HECC) Overview
4.3 HECC Registers

The SCC and HECC registers listed in Table 3 are used by the CPU to
configure and control the CAN controller and the message objects.

Table 3. Combined SCC/HECC Registers Map

† The actual addresses of the registers are device-specific. See the specific device data sheet to verify the module register
addresses. The offset address of the device must be added to the actual register addresses.

Offset
Address† Mnemonic SCC Name HECC Name Page

0x00 CANME Mailbox enable Mailbox enable 3-53
0x04 CANMD Mailbox direction Mailbox direction 3-54
0x08 CANTRS Transmit request set Transmit request set 3-55
0x0C CANTRR Transmit request reset Transmit request reset 3-56
0x10 CANTA Transmission acknowledge Transmission acknowledge 3-57
0x14 CANAA Abort acknowledge Abort acknowledge 3-58
0x18 CANRMP Receive message pending Receive message pending 3-59
0x1C CANRML Receive message lost Receive message lost 3-60
0x20 CANRFP Remote frame pending Remote frame pending 3-61
0x24 CANGAM Global acceptance map Reserved 3-62
0x28 CANMC Master control Master control 3-63
0x2C CANBTC Bit-Timing configuration Bit-timing configuration 3-67
0x30 CANES Error and status Error and status 3-71
0x34 CANTEC Transmit error counter Transmit error counter 3-74
0x38 CANREC Receive error counter Receive error counter 3-74
0x3C CANGIF0 Global interrupt flag 0 Global interrupt flag 0 3-76
0x40 CANGIM Global interrupt mask Global interrupt mask 3-79
0x44 CANGIF1 Global interrupt flag 1 Global interrupt flag 1 3-76
0x48 CANMIM Mailbox interrupt mask Mailbox interrupt mask 3-81
0x4C CANMIL Mailbox interrupt level Mailbox interrupt level 3-82
0x50 CANOPC Overwrite protection control Overwrite protection control 3-83
0x54 CANTIOC TX I/O control TX I/O control 3-84
0x58 CANRIOC RX I/O control RX I/O control 3-84
0x5C CANLNT Reserved Local network time 3-44
0x60 CANTOC Reserved Time-out control 3-46
0x64 CANTOS Reserved Time-out status 3-46
Controller Area Network (CAN) (SPNU197E) 17

 Message Objects
5 Message Objects

5.1 SCC Message Objects

The message controller of the SCC can handle 16 different message objects.

Each message object can be configured to either transmit or receive. In the
SCC, message objects 0–2, 3 to 5, and 6–15 share the same acceptance
masks.

A SCC message object consists of 20 bytes of RAM distributed, as shown in
Table 4, as:

❏ A message mailbox comprising the following:

■ The 29-bit message identifier

■ The message control register

■ 8 bytes of message data

❏ A 29-bit acceptance mask

Furthermore, corresponding control and status bits located in the SCC
registers allow control of the message objects.

† The actual addresses of the message objects are device-specific. See the specific device data sheet to verify the SCC
module memory offset and RAM offset. Object# specifies the number of the message object.

Table 4. SCC Message Object Description

Offset / Address† Mnemonic Name Page

Mailbox_RAM_Offset + (Object# × 0x10) + 0x00 MID Message identifier 3-27

Mailbox_RAM_Offset + (Object# × 0x10) + 0x04 MCF Message control field 3-28

Mailbox_RAM_Offset + (Object# × 0x10) + 0x08 MDL Message data low word 3-29

Mailbox_RAM_Offset + (Object# × 0x10) + 0x0C MDH Message data high word 3-29

SCC_Offset + 0x80 → for objects 0 to 2 or LAM(0) Local acceptance mask 3-31

SCC_Offset + 0x8C → for objects 3 to 5 or LAM(3) Local acceptance mask 3-31‘

SCC_Offset + 0x24 → for objects 6 to 15 GAM Global acceptance mask 3-62
18

Message Objects
Note: Unused Message Mailboxes

Message mailboxes not used by the application for CAN message
(disabled in the CANME register) may be used as general memory by the
CPU.

5.2 HECC Message Objects

The message controller of the HECC can handle 32 different message
objects.

Each message object can be configured to either transmit or receive. In the
HECC, each message object has its individual acceptance mask.

A HECC message object consists of 28 bytes of RAM distributed, as shown
in Table 5, as:

❏ A message mailbox comprising the following:

■ The 29-bit message identifier

■ The message control register

■ 8 bytes of message data

❏ A 29-bit acceptance mask

■ A 32-bit time stamp

■ A 32-bit time-out

Furthermore, corresponding control and status bits located in the HECC
registers allow control of the message objects.
Controller Area Network (CAN) (SPNU197E) 19

 Message Objects
† The actual addresses of the message objects are device-specific. See the specific device data sheet to verify the HECC
module memory offset and RAM offset.

Note: HECC Used in SCC Mode

When the HECC is used in SCC mode, you must refer to the SCC message
objects description (see Table 4).

Note: Unused Message Mailboxes

Message mailboxes not used by the application for CAN message
(disabled in the CANME register) may be used as general memory by the
CPU.

5.3 CAN Message Mailbox

The message mailboxes are the RAM area where the CAN messages are
actually stored after they were received or before they are transmitted.

The CPU may use the RAM area of the message mailboxes that are not used
for storing messages as normal memory. This RAM area, unlike the register
area, can be accessed by byte.

Table 5. HECC Message Object Description

Offset / Address† Mnemonic Name Page

Mailbox_RAM_Offset + (Object# × 0x10) + 0x00 MID Message identifier 3-27

Mailbox_RAM_Offset + (Object# × 0x10) + 0x04 MCF Message control field 3-28

Mailbox_RAM_Offset + (Object# × 0x10) + 0x08 MDL Message data low word 3-29

Mailbox_RAM_Offset + (Object# × 0x10) + 0x0C MDH Message data high
word 3-29

HECC_Offset + (Object# × 4) + 0x80 LAM Local acceptance mask 3-31

HECC_Offset + (Object# × 4) + 0x100 MOTS Message object time
stamp 3-44

HECC_Offset + (Object# × 4) + 0x180 MOTO Message object time-
out 3-45
20

Message Objects
Each mailbox contains:

❏ The message identifier

■ 29 bits for extended identifier

■ 11 bits for standard identifier

❏ The identifier extension bit, IDE (MID.31)

❏ The acceptance mask enable bit, AME (MID.30)

❏ The auto answer mode bit, AAM (MID.29)

❏ The remote transmission request bit, RTR (MCF.4)

❏ The data length code, DLC (MCF.3-0)

❏ Up to eight bytes for the data field

❏ A transmit priority level, TPL, register on the HECC (MCF.13:8)

Each of the mailboxes can be configured as one of four message object types
(see Table 6). Transmit and receive message objects are used for data
exchange between one sender and multiple receivers (1 to n communication
link), whereas request and reply message objects are used to set up a one-
to-one communication link.

Table 6. Message Object Behavior Configuration

5.3.1 Transmit Mailbox

The CPU stores the data to be transmitted in a mailbox configured as transmit
mailbox. After writing the data and the identifier into the RAM, the message
is sent if the corresponding TRS[n] bit has been set.

Message Object Behavior
Mailbox Direction
Register (CANMD)

Auto-Answer
Mode Bit (AAM)

Remote
Transmission

Request Bit (RTR)

Transmit message object 0 0 0

Receive message object 1 0 0

Request message object 1 0 1

Reply message object 0 1 0
Controller Area Network (CAN) (SPNU197E) 21

 Message Objects
If more than one mailbox is configured as transmit mailbox and more than one
corresponding TRS[n] is set, the messages are sent one after another in
falling order beginning with the mailbox with the highest priority.

In the SCC, the priority of the mailbox transmission depends on the mailbox
number. The highest mailbox number (=15) comprises the highest transmit
priority.

In the HECC, the priority of the mailbox transmission depends on the setting
of the TPL field in the message control field (CANMCF) register. The mailbox
with the highest value in the TPL is transmitted first. Only when two mailboxes
have the same value in the TPL register is the higher numbered mailbox
transmitted first. See Section 3.5.3.6 on page 3-28 for more information about
the CANMCF.

If a transmission fails due to a loss of arbitration or an error, the message
transmission will be reattempted. Before reattempting the transmission, the
CAN module checks if other transmissions are requested and then transmits
the mailbox with the highest priority.

5.3.2 Receive Mailbox

The identifier of each incoming message is compared to the identifiers held
in the receive mailboxes using the appropriate mask. When equality is
detected, the received identifier, the control bits, and the data bytes are
written into the matching RAM location. At the same time, the corresponding
receive-message-pending bit, RMP[n] (RMP.31-0), is set and a receive
interrupt is generated if enabled. If no match is detected, the message is not
stored.

When a message is received, the message controller starts looking for a
matching mailbox at the mailbox with the highest mailbox number. Mailbox 15
of the SCC and of the HECC in SCC compatible mode has the highest
receive priority; mailbox 31 has the highest receive priority of the HECC in
HECC mode.

RMP[n] (RMP.31-0) has to be reset by the CPU after reading the data. If a
second message has been received for this mailbox and the receive-
message-pending bit is already set, the corresponding message-lost bit
(RML[n] (RML.31-0)) is set. In this case, the stored message is overwritten
with the new data if the overwrite-protection bit OPC[n] (OPC.31-0) is
cleared; otherwise, the next mailboxes are checked.

5.3.3 Handling of Remote Frames

If a remote frame is received (the incoming message has RTR (MCF.4) = 1),
the CAN module compares the identifier to all identifiers of the mailboxes
22

Message Objects
using the appropriate masks starting at the highest mailbox number in
descending order.

In the case of a matching identifier (with the message object configured as
send mailbox and AAM (MID.29) in this message object set) this message
object is marked as to be sent (TRS[n] is set).

In the case of a matching identifier (with the message object configured as
send mailbox and bit AAM in this message object is not set) this message is
not received.

After finding a matching identifier in a send mailbox, no further compare is
done.

In the case of a matching identifier and the message object configured as
receive mailbox, this message is handled like a data frame and the
corresponding bit in the receive message pending (CANRMP) register is set.
The CPU then has to decide how to handle this situation. See Section 3.11.7
on page 3-59 for information about the CANRMP register.

If the CPU wants to change the data in a message object that is configured
as remote frame mailbox (AAM (MID.29) = 1), it has to set the mailbox
number MBNR (MC.4-0) and the change data request bit CDR (MC.8) first.
The CPU may then perform the access and clear CDR to tell the CAN module
that the access is finished. Until CDR is cleared, the transmission of this
mailbox is not performed by the CAN module. Since TRS (TRS.31-0) is not
affected by CDR, a pending transmission is started after CDR is cleared.
Thus, the newest data will be sent.

To change the identifier in that mailbox, the message object first must be
disabled (ME[n] = 0).

If the CPU wants to request data from another node, it may configure the
message object as receive mailbox and set TRS. In this case, the module
sends a remote frame request and receives the data frame in the same
mailbox that sent the request. Therefore, only one mailbox is necessary to do
a remote request. Note that the CPU must set RTR (MCF.4) to enable a
remote frame transmission.

The behavior of the message object n is configured with MD[n] (MD.31-0), the
AAM (MID.29), and RTR (MCF.4). It shows how to configure a message
object according to the desired behavior.

To summarize, a message object can be configured with four different
behaviors:

 1) A transmit message object is only able to transmit messages.

 2) A receive message object is only able to receive messages.
Controller Area Network (CAN) (SPNU197E) 23

 Message Objects
 3) A request message object is able to transmit a remote request frame and
to wait for the corresponding data frame.

 4) A reply message object is able to transmit a data frame whenever a
remote request frame is received for the corresponding identifier.

Note: Remote Transmission Request Bit

When a remote transmission request is successfully transmitted with a
message object configured in request mode, the CANTA register is not set
and no interrupt is generated. When the remote reply message is received,
the behavior of the message object is the same as a message object
configured in receive mode.

5.3.4 CPU Message Mailbox Access

Write accesses to the identifier can only be accomplished when the mailbox
is disabled (ME[n] (ME.31-0) = 0). During access to the data field, it is critical
that the data does not change while the CAN module is reading it. Hence, a
write access to the data field is disabled for a receive mailbox.

For send mailboxes, an access is usually denied if the TRS (TRS.31-0) or the
TRR (TRR.31-0) flag is set. In these cases, an interrupt may be asserted. A
way to access those mailboxes is to set CDR (MC.8) before accessing the
mailbox data.

After the CPU access is finished, the CPU must clear the CDR flag by writing
a 0 to it. The CAN module checks for that flag before and after reading the
mailbox. If the CDR flag is set during those checks, the CAN module does not
transmit the message but continues to look for other transmit requests. The
setting of the CDR flag also stops the write-denied interrupt (WDI) from being
asserted.
24

Message Objects
5.3.5 Message Identifier Register (MID)

This register can only be written if mailbox n is disabled
(ME[n] (ME.31-0) = 0). Figure 6 and Table 7 describe this register.

Figure 6. Message Identifier Register (MID) Fields

† Relative address = Mailbox_RAM_Offset + (Object# × 0x10)

Table 7. Message Identifier Register (MID) Field Descriptions

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x00† IDE AME AAM ID.28:18 ID.17:16

RW-x RW-x RW-x RW-x RW-x

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID.15:0

RW-x

RW = Read any time, write when mailbox is disabled, -n = Value after reset, x = indeterminate

Bit Name Value Description

31 IDE Identifier Extension Bit.

0 Standard identifier (11 bits). The received message or the mes-
sage to be sent has a standard identifier.

1 Extended identifier (29 bits). The received message or the mes-
sage to be sent has an extended identifier.

30 AME Acceptance Mask Enable Bit.
AME is only used for receiver mailboxes. It must not be set for
automatic reply (AAM[n]=1, MD[n]=0) mailboxes, otherwise the
mailbox behavior is undefined. This bit is not modified by a mes-
sage reception.

0 No acceptance mask will be used, all identifier bits must match to
receive the message.

1 The corresponding acceptance mask is used.
Controller Area Network (CAN) (SPNU197E) 25

 Message Objects
29 AAM Auto Answer Mode Bit.
This bit is only valid for message mailboxes configured as trans-
mit. For receive mailboxes, this bit has no effect: the mailbox is
always configured for normal receive operation. This bit is not
modified by a message reception.

0 Normal Transmit Mode.
The mailbox does not reply to remote requests. The reception of a
remote request frame has no effect on the message mailbox.

1 Auto answer mode. If a matching remote request is received, the
CAN module answers to the remote request by sending the con-
tents of the mailbox.

28–0 ID 28:0 Message Identifier.
In standard identifier mode, if the IDE bit (MID.31 = 0), the mes-
sage identifier is stored in bits ID.28:18. In this case, bits ID.17:0
have no meaning.

In extended identifier mode, if the IDE bit (MID.31 = 1), the mes-
sage identifier is stored in bits ID.28:0.
26

Message Objects
5.3.6 Message Control Field Register (MCF)

The register MCF(n) can only be written if mailbox n is configured for
transmission (MD[n] (MD.31-0)=0) or if the mailbox is disabled (ME[n]
(ME.31-0) =0). Figure 7 and Table 8 describe this register.

Figure 7. Message Control Field Register (MCF)

† Relative address = Mailbox_RAM_Offset + (Object# × 0x10)
‡ HECC only, reserved in the SCC

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x04† Reserved

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved TPL Reserved RTR DLC

RW-x‡ RW-x RW-x

RW = Read any time, write when mailbox is disabled or configured for transmission. -n = Value after reset, x = indeterminate
Controller Area Network (CAN) (SPNU197E) 27

 Message Objects
Table 8. Message Control Field Register (MCF) Field Descriptions

Bit Name Value Description

31–13 Reserved

13–8 TPL.5:0 Transmit Priority Level.
This 6-bit field in the HECC (reserved in the SCC) defines the pri-
ority of this mailbox as compared to the other 31 mailboxes. The
highest number has the highest priority. In the case that two mail-
boxes have the same priority, the one with the higher mailbox
number is transmitted. TPL applies only for transmit mailboxes.
TPL is not used when in SCC-compatibility mode.

7–5 Reserved

4 RTR Remote Transmission Request Bit.

0 No remote frame is requested.

1 For receive mailbox: If the TRS flag is set, a remote frame is trans-
mitted and the corresponding data frame will be received in the
same mailbox.
For transmit mailbox: If the TRS flag is set, a remote frame is
transmitted, but the corresponding data frame has to be received
in another mailbox.

3–0 DLC 3:0 Data Length Code.
The number in these bits determines how many data bytes are
sent or received. Valid value range is from 0 to 8. Values from 9 to
15 are not allowed.
28

Message Objects
5.3.7 Message Data Registers (MDL, MDH)

Eight bytes of the mailbox are used to store the data field of a CAN message.
The setting of DBO (MC.10) determines the ordering of stored data.

The data is transmitted or received from the CAN bus, starting with byte 0.

❏ When DBO (MC.10) = 1, the data is stored or read starting with the least
significant byte of the CANMDL register and ending with the most
significant byte of the CANMDH register.

❏ When DBO (MC.10) = 0, the data is stored or read starting with the most
significant byte of the CANMDL register and ending with the least
significant byte of the CANMDH register.

The registers MDL(n) and MDH(n) can only be written if mailbox n is
configured for transmission (MD[n] (MD.31-0)=0) or the mailbox is disabled
(ME[n] (ME.31-0)=0). If TRS[n] (TRS.31-0)=1, the registers MDL(n) and
MDH(n) cannot be written, unless CDR (MC.8)=1, with MBNR (MC.4-0) set
to n. These settings also apply for a message object configured in reply mode
(AAM (MID.29)=1). Figure 8 through Figure 11 illustrate these registers.

Figure 8. Message Data Low Register with DBO = 0 (MDL)

Figure 9. Message Data High Register with DBO = 0 (MDH)

† Relative address = Mailbox_RAM_Offset + (Object# × 0x10)

Figure 10. Message Data Low Register with DBO = 1 (MDL)

Bits 31 24 23 16 15 8 7 0

0x08† Byte 0 Byte 1 Byte 2 Byte 3

RW-x RW-x

Bits 31 24 23 16 15 8 7 0

0x0C† Byte 4 Byte 5 Byte 6 Byte 7

RW-x RW-x

RW = Read at any time, write when the mailbox is disabled or configured in transmission, -n = Value after reset, x = indeterminate

Bits 31 24 23 16 15 8 7 0

0x08† Byte 3 Byte 2 Byte 1 Byte 0

RW-x RW-x
Controller Area Network (CAN) (SPNU197E) 29

 Message Objects
Figure 11. Message Data High Register with DBO = 1 (MDH)

† Relative address = Mailbox_RAM_Offset + (Object# × 0x10)

Note: Data Field

The data field beyond the valid received data is modified by any message
reception and is indeterminate.

5.4 CAN Acceptance Filter

In the SCC and in the HECC are two different implementations of the handling
of the masks for the mailboxes. If the SCC compatibility bit in the CANMC
register is set, the HECC behaves like the SCC.

The identifier of the incoming message is first compared to the message
identifier of the mailbox (which is stored in the mailbox). Then, the appropriate
acceptance mask is used to mask out the bits of the identifier that should not
be compared.

5.4.1 SCC Acceptance Filtering

In the SCC (or in the HECC in SCC-compatible mode), the global acceptance
mask (GAM) is used for the mailboxes 6 to 15. An incoming message is
stored in the highest numbered mailbox with a matching identifier. If there is
no matching identifier in message objects 15 to 6, the incoming message is
compared to the identifier stored in message objects 5 to 3 and then 2 to 0.

The message objects 5 to 3 use the local acceptance mask LAM(3) of the
SCC registers. The message objects 2 to 0 use the local acceptance mask
LAM(0) of the SCC registers. See Section 3.5.4.3, "Local Acceptance Mask
Register (LAM)" , on page 3-31 for specifics uses.

To modify the global acceptance mask register (CANGAM) and the two local-
acceptance-mask registers of the SCC, the CAN module must be set in the
initialization mode. See Section 3.6, "CAN Module Initialization", on page 3-
33.

Bits 31 24 23 16 15 8 7 0

0x0C† Byte 7 Byte 6 Byte 5 Byte 4

RW-x RW-x

RW = Read at any time, write when the mailbox is disabled or configured in transmission, -n = Value after reset, x = indeterminate
30

Message Objects
5.4.2 HECC Acceptance Filtering

Each of the 32 mailboxes of the HECC has its own local acceptance mask
LAM(0) to LAM(31). There is no global acceptance mask in the HECC.

5.4.3 Local Acceptance Mask Register (LAM)

The local acceptance filtering allows the user to locally mask (don’t care) any
identifier bits of the incoming message.

In the SCC, the local-acceptance-mask register LAM(0) is used for mailboxes
2 to 0. The local-acceptance-mask register LAM(3) is used for mailboxes 5 to
3. For the mailboxes 6 to 15, the global-acceptance-mask (CANGAM)
register is used. The LAM(0) register is located at address 0x80 of the SCC
register memory. The LAM(3) register is located at address 0x8C of SCC
register memory.

After a hardware or a software reset of the SCC module, the LAM(0) and the
LAM(3) registers are reset to zero. After a reset of the HECC, the LAM
registers are not modified.

In the HECC, each mailbox (0 to 31) has its own mask register, LAM(0) to
LAM(31). An incoming message is stored in the highest numbered mailbox
with a matching identifier. Figure 12 and Table 9 describe this register.

Figure 12. Local Acceptance Mask Register (LAM)

† Relative address = + SCC/HECC_Offset + (Object# × 4)

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x80† LAMI Reserved LAM.28:18 LAM.17:16

RW-x RW-x RW-x

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LAM.15:0

RW-x

RW = Read/Write, -n = Value after reset, x = indeterminate for HECC, x = 0 for SCC
Controller Area Network (CAN) (SPNU197E) 31

 Message Objects
Table 9. Local Acceptance Mask Register (LAM) Field Descriptions

Bit Name Value Description

31 LAMI Local Acceptance Mask Identifier Extension Bit.

0 The identifier extension bit stored in the mailbox determines which
messages shall be received.

1 Standard and extended frames can be received. In case of an
extended frame, all 29 bits of the identifier are stored in the mail-
box and all 29 bits of the local acceptance mask register are used
for the filter. In case of a standard frame, only the first eleven bits
(bits 28 to 18) of the identifier and the local acceptance mask are
used.

30–29 Reserved Reads are undefined and writes have no effect.

28–0 LAM.28:0 Local Acceptance Mask.
These bits enable the masking of any identifier bit of an incoming
message.

0 Received identifier bit value must match the corresponding identi-
fier bit of the MID register.

1 Accept a 0 or a 1 (don’t care) for the corresponding bit of the
received identifier.
32

CAN Module Initialization
6 CAN Module Initialization

The CAN module must be initialized before the utilization. Initialization is only
possible if the module is in initialization mode. See Figure 13.

Programming CCR (MC.12) = 1 sets the initialization mode. The initialization
can be performed only when CCE (ES.4) = 1. Afterwards, the configuration
registers may be written.

To modify the global acceptance mask register (CANGAM) and the two local
acceptance mask registers [LAM(0) and LAM(3)] of the SCC, the CAN
module also must be set in the initialization mode.

The module is activated again by programming CCR(MC.12) = 0.

After hardware reset, the initialization mode is active.

Note: Bit-Timing Configuration (CANBTC) Register With Zero Value

If the CANBTC register is programmed with a zero value, or left with the
initial value, the CAN module will never leave the initialization mode, i.e.
CCE (ES.4) bit will remain at 1 when clearing the CCR bit.

Figure 13. Configuration Sequence

Set CCR = 1

CCR = 0 and CCE = 0

Wait for CCE = 1

Write into BTC register

Set CCR = 0

Wait for CCE = 0

Initialization mode

CCR = 0 and CCE = 0Normal mode

Normal mode
Controller Area Network (CAN) (SPNU197E) 33

 CAN Module Initialization
Note: Enter / Exit Initialization Mode

The transition between initialization mode and normal mode and vice-versa
is performed in synchronization with the CAN network. That is, the CAN
controller waits until it detects a bus idle sequence (= 11 recessive bits)
before it changes the mode. In the event of a stuck-to-dominant bus error,
the CAN controller can’t detect a bus-idle condition and therefore is unable
to perform a mode transition.

6.1 CAN Bit-Timing Configuration

As shown in Figure 14, the CAN protocol specification partitions the nominal
bit time into four different time segments:

SYNC_SEG: this part of bit time is used to synchronize the various nodes on
the bus. An edge is expected to lie within this segment. This segment is
always 1 TIME QUANTUM (TQ).

PROP_SEG: this part of the bit time is used to compensate for the physical
delay times within the network. It is twice the sum of the signal’s propagation
time on the bus line, the input comparator delay, and the output driver delay.
This segment is programmable from 1 to 8 TIME QUANTA (TQ).

PHASE_SEG1: this phase is used to compensate for positive edge phase
error. This segment is programmable from 1 to 8 TIME QUANTA (TQ) and
can be lengthened by resynchronization.

PHASE_SEG2: this phase is used to compensate for negative edge phase
error. This segment is programmable from 2 to 8 TIME QUANTA (TQ) and
can be shortened by resynchronization.

Figure 14. Partition of the Bit Time

All controllers on a CAN bus must have the same bit rate and bit length. At
different clock frequencies of the individual controllers, the bit rate has to be
adjusted by the time segments.

SYNC_SEG PROP_SEG PHASE_SEG1 PHASE_SEG2

Transmit point

TSEG 1
TSEG 2

Nominal bit time

Sample point
34

CAN Module Initialization
In the SCC/HECC modules, the length of a bit on the CAN bus is determined
by the parameters TSEG1 (BTC.6-3), TSEG2 (BTC.2-0), and BRP
(BTC.23.16). (BRP is the binary value of BRP.[7:0] + 1.)

TSEG1 combines the two time segments PROP_SEG and PHASE_SEG1 as
defined by the CAN protocol. TSEG2 defines the length of the time segment
PHASE_SEG2.

The following bit timing rules have to be fulfilled when determining the bit
segment values:

❏ TSEG1CALC(min) ≥ TSEG2CALC

❏ Information processing time (IPT) ≤ TSEG1CALC ≤ 16 TQ

❏ IPT ≤ TSEG2CALC ≤ 8 TQ

❏ IPT = 3 / BRPCALC (the resulting IPT has to be rounded up to the next
integer value)

Note: For the special case of baud rate prescaler value BRPCALC = 1, the
IPT is equal to 3 time quanta. This parameter is not compliant to the ISO
11898 standard, where the IPT is defined to be less than or equal to 2 time
quanta.

Thus, using this mode (BRPCALC = 1) is not allowed.

❏ 1 TQ ≤ SJWCALC ≤ min[4 TQ, TSEG2CALC] (SJW = Synchronization Jump
Width)

❏ To utilize three-time sampling mode BRPCALC ≥ 5 has to be selected

6.2 CAN Bit Rate Calculation

Bit rate is calculated as follows (in bits per second):

Where BitTime is the number of time quanta (TQ) per bit. ICLK is the CAN
module system clock frequency. BRP is the binary value of BRP[7:0] + 1
(BTC.23-16).
BitTime is defined as follows:

BitTime = TSEG1 + TSEG2 + 1

Bitrate = ICLK
BRP × BitTime
Controller Area Network (CAN) (SPNU197E) 35

 CAN Module Initialization
Example:
With ICLK = 8 MHz, if a bit rate of 1 Mbits/s is required, the bit-timing
parameters should be programmed as follows:

TSEG1 (BTC.6-3) = 4 TQ, TSEG2 (BTC.2-0) = 3 TQ → BitTime = 8 TQ,
Bitrate = 1 Mbps
With this setting, a threefold sampling of the bus is not possible; thus SAM
(BTC.7) must be set to 0. Since SJW (BTC.9-8) is not allowed to be greater
than TSEG2, it is set to 3 TQ (SJW = 3). (See Section 11.12 on page 72 for
more information about the CANBTC register.)

BTC = 0x0000021A

BRP = 1 → TQ =
1

8 MHz
= 1/8 µs
36

CAN Interrupts
7 CAN Interrupts

There are two different types of interrupts. One type of interrupt is a message-
object related interrupt, for example, the receive-message-pending interrupt
or the abort-acknowledge interrupt. The other type of interrupt is a system
interrupt that handles errors or system-related interrupt sources, for example,
the error-passive interrupt or the wake-up interrupt. See Figure 15, on page
38 and Figure 16, on page 39.

The following events may initiate one of the two interrupts:

❏ Message object interrupts

■ Message reception interrupt: a message was received

■ Message transmission interrupt: a message was transmitted
successfully

■ Abort-acknowledge interrupt: a sent transmission was aborted

■ Receive-message-lost interrupt: an old message was overwritten by a
new one

■ Message alarm interrupt (HECC only): one of the messages was not
transmitted or received within a predefined time frame

❏ System interrupts

■ Write-denied interrupt: the CPU tried to write to a mailbox but was not
allowed to

■ Wake-up interrupt: this interrupt is generated after a wake up

■ Bus-off interrupt: the CAN module enters the bus-off state

■ Error-passive interrupt: the CAN module enters the error-passive mode

■ Warning level interrupt: one or both error counters are greater than or
equal to 96

■ Time counter overflow interrupt (HECC only): the local network time
stamp counter had an overflow
Controller Area Network (CAN) (SPNU197E) 37

 CAN Interrupts
Figure 15. SCC Interrupts Scheme

Message
objects

GMIF0

System

16 transmit
or receive
message
objects

TA [0]
RMP[0]

MIM[0] MIL[0]

0

1

MIM MIL

TA [n]
RMP[n]

MIM[n] MIL[n]

0

1

TA [15]
RMP[15]

MIM[15] MIL[15]

0

1

SCC0INT

SCC1INT

GIF0

GMIF1

GIF1

MIV0[3:0]

MIV1[3:0]

AAIF0
AAIF

AAIM MIL[n]

0

1 AAIF1

RMLIF0

RMLIF1
RMLIF

RMLIM
0

1

Abort
acknowledge

Receive
message lost

WDIF0

WDIF1
WDIF

WDIM
0

1

Write
denied

WUIF0

WUIF1
WUIF

WUIM
0

1

Wake-up

BOIF0

BOIF1
BOIF

BOIM
0

1

Bus off

EPIF0

EPIF1
EPIF

EPIM
0

1

Error
passive

WLIF0

WLIF1
WLIF

WLIM
0

1

Warning
level

SIL

GIM

Interrupt
masks

Interrupt
level 0 flags

Interrupt
 level 1 flags

Interrupt
sources

Interrupt level
select

GIM

I0EN

I1EN
38

CAN Interrupts
Figure 16. HECC Interrupts Scheme

Message
objects

GMIF0

System

32 transmit
or receive
message
objects

TA [0]
RMP[0]

MIM[0] MIL[0]

0

1

MIM MIL

TA [n]
RMP[n]

MIM[n] MIL[n]

0

1

TA [31]
RMP[31]

MIM[31] MIL[31]

0

1

HECC0INT

HECC1INT

GIF0

GMIF1

GIF1

MIV0[4:0]

MIV1[4:0]

AAIF0
AAIF

AAIM MIL[n]

0

1 AAIF1

RMLIF0

RMLIF1
RMLIF

RMLIM
0

1

Abort
acknowledge

Receive
message lost

WDIF0

WDIF1
WDIF

WDIM
0

1

Write
denied

WUIF0

WUIF1
WUIF

WUIM
0

1

Wake-up

BOIF0

BOIF1
BOIF

BOIM
0

1

Bus off

EPIF0

EPIF1
EPIF

EPIM
0

1

Error
passive

WLIF0

WLIF1
WLIF

WLIM
0

1

Warning
level

SIL

GIM

Interrupt level
select

Interrupt
masks

Interrupt
sources

Interrupt
level 0 flags

Interrupt
 level 1 flags

TCOIF0

TCOIF1
TCOIF

TCOIM
0

1

Timer
overflow

MAIF0

MAIF1
MAIF

MAIM
0

1

Message
alarm

GIM

I0EN

I1EN
Controller Area Network (CAN) (SPNU197E) 39

 CAN Interrupts
7.1 Interrupts Scheme

The interrupt flags are set if the corresponding interrupt condition occurred.
The system interrupt flags are set depending on the setting of SIL (GIM.2). If
set, the global interrupts will set the bits in the CANGIF1 register, otherwise
they will set in the CANGIF0 register. This does not apply to the interrupt flags
AAIF (GIF.14) and RMLIF (GIF.11). These bits are set according to the state
of the appropriate MIL[n] bit (MIL.31-0).

The GMIF0/GMIF1(GIF0.15/GIF1.15) bit is set depending on the setting of
the MIL[n] bit that corresponds to the message object originating that
interrupt. If the MIL[n] bit is set, the corresponding message object interrupt
flag MIF[n] will set the GMIF1 flag in the CANGIF1 register, otherwise, it will
set the GMIF0 flag.

If all interrupt flags are cleared and a new interrupt flag is set, the CAN
module interrupt output line (SCC0INT/HECC0INT or SCC1INT/HECC1INT)
is activated if the corresponding interrupt mask bit is set. The interrupt line
stays active until the interrupt flag is cleared by the CPU by writing a 1 to the
appropriate bit.

The GMIF0 (GIF0.15) or GMIF1 (GIF0.15) bit must be cleared by writing a 1
to the appropriate bit in the CANTA register or the CANRMP register
(depending on mailbox configuration) and cannot be cleared in the CANGIF0/
CANGIF1 register.

After clearing one or more interrupt flags, and one or more interrupt flags are
still pending, a new interrupt is generated. The interrupt flags are cleared by
writing a 1 to the corresponding bit location. If the GMIF0 or GMIF1 bit is set,
the mailbox interrupt vector MIV0 (GIF0.4-0) or MIV1 (GIF1.4-0) indicates the
mailbox number of the mailbox that caused the setting of the GMIF0/1. It will
always display the highest mailbox interrupt vector assigned to that interrupt
line.

7.2 Message Object Interrupt

Each of the 32 message objects in the HECC or the 16 message objects in
the SCC may initiate an interrupt on one of the two interrupt output lines 1 or
0. These interrupts can be receive or transmit interrupts depending on the
mailbox configuration.
40

CAN Interrupts
There is one interrupt mask bit (MIM[n]) and one interrupt level bit (MIL[n])
dedicated to each mailbox. To generate a mailbox interrupt upon a receive/
transmit event, the MIM bit has to be set. If a CAN message is received
(RMP[n]=1) in a receive mailbox or transmitted (TA[n]=1) from a transmit
mailbox, an interrupt is asserted. If a mailbox is configured as remote request
mailbox (MD[n]=1, MCF.RTR=1), an interrupt occurs upon reception of the
reply frame. A remote reply mailbox generates an interrupt upon successful
transmission of the reply frame (MD[n]=0, MID.AAM=1).

The setting of the RMP[n] bit or the TA[n] bit also sets the GMIF0/GMIF1
(GIF0.15/GIF1.15) flag in the GIF0/GIF1 register if the corresponding
interrupt mask bit is set. The GMIF0/GMIF1 flag then generates an interrupt
and the corresponding mailbox vector (= mailbox number) can be read from
the bit field MIV0/MIV1 in the GIF0/GIF1 register. If more than one mailbox
interrupts are pending, the actual value of MIV0/MIV1 reflects the highest
priority interrupt vector. The interrupt generated depends on the setting in the
mailbox interrupt level (MIL) register.

The abort acknowledge flag (AA[n]) and the abort acknowledge interrupt flag
(AAIF) in the GIF0/GIF1 register are set when a transmit message is aborted
by setting the TRR[n] bit. An interrupt is asserted upon transmission abortion
if the mask bit AAIM in the GIM register is set. Clearing the AA[n] flag(s) does
not reset the AAIF0/AAIF1 flag. The interrupt flag has to be cleared
separately. The interrupt line for the abort acknowledge interrupt is selected
in accordance with the MIL[n] bit of the concerned mailbox.

A lost receive message is notified by setting the receive message lost flag
RML[n] and the receive message lost interrupt flag RMLIF0/RMLIF1in the
GIF0/GIF1 register. If an interrupt shall be generated upon the lost receive
message event, the receive message lost interrupt mask bit (RMLIM) in the
GIM register has to be set. Clearing the RML[n] flag does not reset the
RMLIF0/RMLIF1 flag. The interrupt flag has to be cleared separately. The
interrupt line for the receive message lost interrupt is selected in accordance
with the mailbox interrupt level (MIL[n]) of the concerned mailbox.

Each mailbox of the HECC (in HECC mode only) is linked to a message-
object, time-out register (MOTO). If a time-out event occurs (TOS[n]=1), a
message alarm interrupt is asserted to one of the two interrupt lines if the
message alarm interrupt mask bit (MAIM) in the GIM register is set. The
interrupt line for message alarm interrupt is selected in accordance with the
mailbox interrupt level (MIL[n]) of the concerned mailbox. Clearing the TOS[n]
flag does not reset the MAIF0/MAIF1 flag.
Controller Area Network (CAN) (SPNU197E) 41

 CAN Power-Down Mode
8 CAN Power-Down Mode

There are two different power down modes: the global power-down mode,
when all clocks are stopped by the CPU, and the local power-down mode,
when only the CAN module internal clock is deactivated by the CAN module
itself. Therefore, it is possible to have a local power down, where only the
clock of the CAN module logic is disabled, or a global power-down mode
when the clock for the complete chip is disabled.

8.1 Local Power Down

The local power-down mode is requested by writing a 1 to the PDR (MC.11)
bit. When the module enters the local power-down mode, the status bit PDA
(ES.3) is set.

During local power-down mode, the clock of the CAN base module is turned
off. Only the wake-up logic is still active. The value read on the CANES
register is 0x08 (PDA bit is set). All other register read accesses will deliver
the value 0x00.

The module leaves the local power-down mode when the PDR bit is cleared
or if any bus activity is detected on the CAN bus line (if the wake-up-on bus
activity is enabled).

The automatic wake-up-on bus activity can be enabled or disabled with the
configuration bit WUBA of MC register. If there is any activity on the CAN bus
line, the module begins its power-up sequence. The module waits until it
detects 11 consecutive recessive bits on the CANRX pin and then it goes bus-
active.

Note: First Message Received During Power-Down Mode
The first CAN message, which initiates the bus activity, cannot be received.
This means that the first message received in power-down and automatic
wake-up mode, is lost.

After leaving the sleep mode, the PDR and PDA bits are cleared. The CAN
error counters remain unchanged.

If the module is transmitting a message when the PDR bit is set, the
transmission is continued until a successful transmission, a lost arbitration, or
an error condition on the CAN bus line occurs. Then, the PDA bit is activated.
Thus, the module causes no error condition on the CAN bus line.
42

CAN Power-Down Mode
Note: Wakeup Delay From Standby Mode Due to Bus-Off Condition

If CAN goes into Standby mode when the Bus-Off condition has occurred,
the CCR bit is set automatically upon wake-up. Then, in order for normal
operation to resume, the device must wait for 128x11 recessive bits to occur
and for the CCE bit to be set before the CPU can clear the CCR bit and wait
for the CCE to go to zero.

To implement the local power-down mode, two separate clocks are used
within the CAN module. One clock stays active all the time to ensure power-
down operation (i.e., the wake-up logic and the write and read access to the
PDA (ES.3) bit). The other clock is enabled depending on the setting of the
PDA bit.

8.2 Global Power Down

Global power-down mode is requested by the system module (SYS LPM).
When the module is able to enter the global power-down mode, all clocks to
the CAN module are disabled.

If the module is transmitting a message when SYS LPM is asserted, the
wake-up interrupt flag (WUIF0/1 (GIF0.12/ GIF1.12)) is asserted if enabled.
The transmission is continued until a successful transmission, a lost
arbitration, or an error condition on the CAN bus line occurs. Then, low-power
mode is entered. Thus, the module causes no error condition on the CAN bus
line.

During global power-down mode, a dominant signal on the CAN bus may
generate a wake-up interrupt, thus enabling the CPU to exit global power-
down mode. There is no internal filtering for the CAN bus line. The WUIF flag
is set asynchronously to enable the assertion of an interrupt without any
running clocks.
Controller Area Network (CAN) (SPNU197E) 43

 Timer Management Unit
9 Timer Management Unit

Several functions are implemented in the HECC to control the time when
messages are transmitted or should be transmitted. A separate state
machine is included in the HECC to handle the time-control functions. This
state machine has lower priority when accessing the registers than the CAN
state machine has. Therefore, the time-control functions may be delayed by
other ongoing actions.

9.1 Time Stamp Functions

To get an indication of the time of reception or transmission of a message, a
free-running 32-bit timer (LNT) is implemented in the module. Its content is
written into the time stamp register of the corresponding mailbox (MOTS)
when a received message is stored or a message has been transmitted. (See
Section 3.9.3 on pages 3-44.)

The counter is driven from the bit clock of the CAN bus line. The timer is
stopped during the initialization mode or if the module is in sleep or suspend
mode. After power-up reset, the free-running counter is cleared.

The most significant bit of the LNT register is cleared by writing a 1 to LNTM
(MC.14). The LNT register may also be cleared when mailbox 16 transmitted
or received (depending on the setting of MD.16 bit) a message successfully.
This is enabled by setting the LNTC bit (MC.15). Therefore, it is possible to
use mailbox 16 for global time synchronization of the network. The CPU can
read and write the counter.

Overflow of the counter can be detected by the LNT-counter-overflow-
interrupt flag (GIF.16). An overflow occurs when the highest bit of the LNT
counter changes to 1. Thus, the CPU has enough time to handle this
situation.

Note: Time Stamp Registers

The time stamp registers are available on the HECC only.
44

Timer Management Unit
9.2 Local Network Time Register (LNT)

Figure 17 and Table 10 illustrate this register.

Figure 17. Local Network Time Register (LNT)

† Relative address = (+) HECC_Offset
‡ HECC only, reserved in SCC

Table 10. Local Network Time Register (LNT) Field Descriptions

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x5C† LNT.31:16

RWP-0‡

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LNT.15:0

RWP-0‡

RWP = Read in all modes, write in privilege mode only, -n = Value after reset, x = indeterminate

Bit Name Value Description

31–0 LNT 31:0 Local Network Time Register.
Value of the local network time counter used for the time-stamp
and the time-out functions.
Controller Area Network (CAN) (SPNU197E) 45

 Timer Management Unit
9.3 Message Object Time Stamp Registers (MOTS)

Figure 18 and Table 11 illustrate this register.

Figure 18. Message Object Time Stamp Registers (MOTS)
.

† Relative address = + HECC_Offset + (Object# x 4)
‡ HECC only, reserved in the SCC

Table 11. Message Object Time Stamp Registers (MOTS) Field Descriptions

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x100† MOTS.31:16

RW-x‡

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MOTS.15:0

RW-x‡

RW = Read/Write, -n = Value after reset, x = indeterminate

Bit Name Value Description

31–0 MOTS 31:0 Message Object Time Stamp Register.
HECC only, reserved in the SCC.
Value of the LNT when the message has been actually received or
transmitted.
46

Time-Out Functions
10 Time-Out Functions

To ensure that all messages are sent or received within a predefined period,
each mailbox has its own time-out register. If a message has not been sent
or received by the time indicated in the time-out register and the
corresponding bit TOC[n] is set in the TOC register, a flag is set in the time-
out status register (TOS).

For transmit mailboxes the TOS[n] flag is cleared when the TOC[n] bit is
cleared or when the corresponding TRS[n] bit is cleared, no matter whether
due to successful transmission or abortion of the transmit request. For
receive mailboxes, the TOS[n] flag is cleared when the corresponding TOC[n]
bit is cleared.

The CPU may also clear the time-out status register flags by writing a 1 into
the time-out status register.

The message object time-out registers (MOTO) are implemented as a RAM.
The state machine scans all the MOTO registers and compares them to the
LNT counter value. If the value in the LNT register is equal to or greater than
the value in the time-out register, and the corresponding TRS bit (applies to
transmit mailboxes only) is set, and the TOC[n] bit is set, the appropriate bit
TOS[n] is set. Since all the time-out registers are scanned sequentially, there
may be a delay before the TOS[n] bit is set.

Note: Time-Out Registers

These registers are available on the HECC only. The offset addresses are
reserved in the SCC.
Controller Area Network (CAN) (SPNU197E) 47

 Time-Out Functions
10.1 Message Object Time-Out Registers (MOTO)

Figure 19 and Table 12 illustrate this register.

Figure 19. Message Object Time-Out Registers (MOTO)

† Relative address = + HECC_Offset + (Object # x 4)

Table 12. Message Object Time-Out Registers (MOTO) Field Descriptions

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x180† MOTO.31:16

RW-x

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MOTO.15:0

RW-x

RW = Read/Write, -n = Value after reset, x = indeterminate

Bit Name Value Description

31–0 MOTO 31:0 Message Object Time-Out Register.
Limit value of the local network time counter (LNT) to actually
transmit or receive the message.
48

Time-Out Functions
10.2 Time Out Control-Register (TOC)

Figure 20 and Table 13 illustrate this register.

Figure 20. Time-Out Control Register (TOC)

† Relative address = + HECC_Offset

Table 13. Time-Out Control Register (TOC) Field Descriptions

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

 0x60† TOC.31:16

RW-0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TOC.15:0

RW-0

RW = Read/Write, -n = Value after reset, x = indeterminate

Bit Name Value Description

31–0 TOC 31:0 Time-Out Control Register.

0 The time-out function is disabled. The TOS[n] flag is never set.

1 The TOC[n] bit has to be set by the CPU to enable the time-out
function for mailbox n. Before setting the TOC[n] bit the corre-
sponding MOTO register should be loaded with the time-out value
relative to LNT.
Controller Area Network (CAN) (SPNU197E) 49

 CAN SCC/HECC Control Registers
10.3 Time Out Status Register (TOS)

Figure 21 and Table 14 illustrate this register.

Figure 21. Time-Out Status Register (TOS)

† Relative address = + HECC_Offset

Table 14. Time-Out Status Register (TOS) Field Descriptions

11 CAN SCC/HECC Control Registers

The 470 SCC and HECC registers listed in Table 15 on page 48 are used by
the CPU to configure and control the CAN controller and the message
objects. All CAN registers support 8-, 16-, and 32-bit accesses.

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

 0x64† TOS.31:16

RC-0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TOS.15:0

RC-0

RC = Read/Clear, -n = Value after reset, x = indeterminate

Bit Name Value Description

31–0 TOS 31:0 Time-Out Status Register.

0 No time-out occurred or it is disabled for that mailbox.

1 The value in the LNT register is larger or equal to the value in the
time-out register that corresponds to mailbox n and the TOC[n] bit
is set.
50

C
ontroller A

rea N
etw

ork (C
A

N
) (S

P
N

U
197D

)
51

C
A

N
 S

C
C

/H
E

C
C

 C
ontrol R

egisters
Table 15. Combined SCC/HECC Registers

4
19
 3

18
 2

17
 1

16
 0
Offset
Address † Register

31
 15

30
 14

29
 13

28
 12

27
 11

26
 10

25
 9

24
 8

23
 7

22
 6

21
 5

20

+ 00h† CANME ME.31:16

ME.15:0

04h CANMD MD.31:16

MD.15:0

08h CANTRS TRS.31:16

TRS.15:0

0Ch CANTRR TRR.31:16

TRR.15:0

10h CANTA TA.31:16

TA.15:0

14h CANAA AA.31:16

AA.15:0

52 C
A

N
 S

C
C

/H
E

C
C

 C
ontrol R

egisters
Offset
Address † Register

31
 15

30
 14

29
 13

28
 12

27
 11

26
 10

25
 9

24
 8

23
 7

22
 6

21
 5

20
 4

19
 3

18
 2

17
 1

16
 0

GAM.17:16

MBNR

BRP

EG1 TSEG2

Table 15. Combined SCC/HECC Registers (Continued)
18h CANRMP RMP.31:16

RMP.15:0

1Ch CANRML RML.31:16

RML.15:0

20h CANRFP RFP.31:16

RFP.15:0

24h CANGAM‡ AMI Reserved GAM.28:18

GAM.15:0

28h CANMC Reserved

LNTC LNTM SCM CCR PDR DBO WUBA CDR ABO STM SRES

2Ch CANBTC Reserved

Reserved ERM SJW SAM TS

C
ontroller A

rea N
etw

ork (C
A

N
) (S

P
N

U
197D

)
53

C
A

N
 S

C
C

/H
E

C
C

 C
ontrol R

egisters

4
19
 3

18
 2

17
 1

16
 0

ACKE BO EP EW

PDA Res’rvd RM TM

TEC

EC

MAIF0 TCOF0

MIV0

MAIM TCOIM

SIL I1EN I0EN

MAIF1 TCOF1

MIV1

Table 15. Combined SCC/HECC Registers (Continued)

Offset
Address † Register

31
 15

30
 14

29
 13

28
 12

27
 11

26
 10

25
 9

24
 8

23
 7

22
 6

21
 5

20

30h CANES

Reserved

FE BE SA1 CRCE SE

Reserved SMA CCE

34h CANTEC Reserved

Reserved

38h CANREC Reserved

Reserved R

3Ch CANGIF0 Reserved

GMIF0 AAIF0 WDIF0 WUIF0 RMLIF0 BOIF0 EPIF0 WLIF0 Reserved

40h CANGIM Reserved

Reserv
ed AAIM WDIM WUIM RMLIM BOIM EPIM WLIM Reserved

44h CANGIF1 Reserved

GMIF1 AAIF1 WDIF1 WUIF1 RMLIF1 BOIF1 EPIF1 WLIF1 Reserved

54 C
A

N
 S

C
C

/H
E

C
C

 C
ontrol R

egisters
Offset
Address † Register

31
 15

30
 14

29
 13

28
 12

27
 11

26
 10

25
 9

24
 8

23
 7

22
 6

21
 5

20
 4

19
 3

18
 2

17
 1

16
 0

TX
FUNC TXDIR TXOUT TXIN

RX
FUNC RXDIR RX

OUT RXIN

Table 15. Combined SCC/HECC Registers (Continued)
48h CANMIM MIM.31:16

MIM.15:0

4Ch CANMIL MIL.31:16

MIL.15:0

50h CANOPC OPC.31:16

OPC.15:0

54h CANTIOC Reserved

Reserved

58h CANRIOC Reserved

Reserved

5Ch LNT § LNT.31:16

LNT.15:0

C
ontroller A

rea N
etw

ork (C
A

N
) (S

P
N

U
197D

)
55

C
A

N
 S

C
C

/H
E

C
C

 C
ontrol R

egisters

e SCC module memory offset and

4
19
 3

18
 2

17
 1

16
 0

Table 15. Combined SCC/HECC Registers (Continued)
† The actual addresses of the message objects are device-specific. See the specific device data sheet to verify th
RAM offset. Object# specifies the number of the message object.

‡ CANGAM register available in SCC module only. Reserved in HECC.
§ LNT, TOC, TOS registers available in HECC module only. Reserved in SCC

Offset
Address † Register

31
 15

30
 14

29
 13

28
 12

27
 11

26
 10

25
 9

24
 8

23
 7

22
 6

21
 5

20

60h TOC § TOC.31:16

TOC.15:0

64h TOS § TOS.31:16

TOS.15:0

68h
To

7Ch
Reserved

 CAN SCC/HECC Control Registers
11.1 Mailbox Enable Register (CANME)

Each mailbox can be enabled or disabled. Figure 22 and Table 16 illustrate
this register.

Figure 22. Mailbox Enable Register (CANME)

† Relative address = + SCC/HECC_Offset
‡ HECC only, reserved in the SCC

Table 16. Mailbox Enable Register (CANME) Field Descriptions

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x00† ME.31:16

RW-0 ‡

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ME.15:0

RW-0

RW = Read/Write, -n = Value after reset

Bit Name Value Description

31–0 ME.31:0 Mailbox Enable Register.
After power-up, all bits in CANME are cleared. Disabled mailboxes
may be used as additional memory for the CPU.

0 The corresponding mailbox is disabled.

1 The corresponding mailbox is enabled for the CAN module. The
mailbox must be disabled before writing to the contents of any
identifier field. If the corresponding bit in CANME is set, the write
access to the identifier of a message object is discarded.
56

CAN SCC/HECC Control Registers
11.2 Mailbox Direction Register (CANMD)

Each mailbox can be configured as a transmit or a receive mailbox. Figure 23
and Table 17 illustrate this register.

Figure 23. Mailbox Direction Register (CANMD)

† Relative address = + SCC/HECC_Offset
‡ HECC only, reserved in the SCC

Table 17. Mailbox Direction Register (CANMD) Field Descriptions

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x04† MD.31:16

RW-0 ‡

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MD.15:0

RW-0

RW = Read/Write, -n = Value after reset

Bit Name Value Description

31–0 MD.31:0 Mailbox Direction Register.
After power-up, all bits in CANME are cleared.

0 The corresponding mailbox is defined as a transmit mailbox.

1 The corresponding mailbox is defined as a receive mailbox.
Controller Area Network (CAN) (SPNU197E) 57

 CAN SCC/HECC Control Registers
11.3 Transmission Request Set Register (CANTRS)

When mailbox n is ready to be transmitted, the CPU sets the TRS[n] bit to 1
to start the transmission.

These bits can be set by the CPU and reset by the CAN module logic. It is
also set by the CAN module in case of a remote frame request. These bits
are reset in case of a successful transmission or an aborted transmission (if
requested). If a mailbox is configured as a receive mailbox, the corresponding
bit in CANTRS is ignored. If the TRS[n] bit of a remote request mailbox is set,
a remote frame is transmitted. If the CPU tries to set a bit while the CAN
module tries to clear it, the bit is set.

Setting CANTRS[n] causes the particular message n to be transmitted.
Several bits can be set simultaneously. Therefore, all messages with the TRS
bit set are transmitted in turn, starting with the mailbox having the highest
mailbox number (= highest priority).

The bits in CANTRS are set by writing a 1 from the CPU. Writing a 0 has no
effect. After power-up, all bits are cleared. Figure 24 and Table 18 illustrate
this register.

Figure 24. Transmission Request Set Register (CANTRS)

† Relative address = + SCC/HECC_Offset
‡ HECC only, reserved in the SCC

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x08† TRS.31:16

RS-0 ‡

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TRS.15:0

RS-0

RS = Read/Set, -n = Value after reset
58

CAN SCC/HECC Control Registers
Table 18. Transmission Request Set Register (CANTRS) Field Descriptions

Bit Name Value Description

31–0 TRS.31:0 Transmit Request Set Register.
A successful transmission initiates a GMIF0/GMIF1 (GIF0.15/
GIF1.15) interrupt if enabled.

0 No operation

1 If the corresponding message object is configured as a transmit
mailbox or remote request mailbox, the data or remote message
of this mailbox will be transmitted.
Controller Area Network (CAN) (SPNU197E) 59

 CAN SCC/HECC Control Registers
11.4 Transmission Request Reset Register (CANTRR)

Setting the TRR[n] bit of the message object n causes a transmission request
to be cancelled if it was initiated by the corresponding bit (TRS[n]) and is not
currently being processed. If the corresponding message is currently being
processed, the bit is reset in case of a successful transmission (normal
operation) or in case of an aborted transmission due to a lost arbitration or an
error condition detected on the CAN bus line. In case of an aborted
transmission, the corresponding status bit (AA.31-0) is set and in case of a
successful transmission, the status bit (TA.31-0) is set. The status of the
transmission request reset can be read from the TRS.31-0 bit.

These bits can only be set by the CPU and reset by the internal logic. These
bits are reset in case of a successful transmission or an aborted transmission.
If the CPU tries to set a bit while the CAN tries to clear it, the bit is set.

If a transmission reset is requested for a transmit mailbox with corresponding
TRS[n] bit cleared, is requested for a disabled mailbox, or is requested for a
receive mailbox, then the CAN clears the TRR[n] and sets the abort
acknowledge flag AA[n] to respond to the request.

The bits in CANTRR are set by writing a 1 from the CPU. Figure 25 and Table
19 illustrate this register.

Figure 25. Transmission Request Reset Register (CANTRR) Field Descriptions

† Relative address = + SCC/HECC_Offset
‡ HECC only, reserved in the SCC

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x0C† TRR.31:16

RS-0 ‡

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TRR.15:0

RS-0

RS = Read/Set, -n = Value after reset
60

CAN SCC/HECC Control Registers
Table 19. Transmission Request Reset Register (CANTRR) Field Descriptions

Bit Name Value Description

31–0 TRR.31:0 Transmit Request Reset Register.
A successful transmission initiates a GMIF0/GMIF1 (GIF0.15/
GIF1.15) interrupt if enabled.

0 No operation

1 Setting TRR[n] causes a transmission request to be cancelled if it
was initiated by the corresponding TRS[n] bit and is not currently
being processed. If the corresponding message is currently being
processed, the bit is reset in case of a successful transmission
(normal operation), or in case of an aborted transmission due to a
lost arbitration or an error condition detected on the CAN bus line.
If the transmission request reset bit TRR[n] is set and no TRS[n]
bit is set, then the CAN resolves the situation by clearing the
TRR[n] bit and setting the AA[n] flag.
Controller Area Network (CAN) (SPNU197E) 61

 CAN SCC/HECC Control Registers
11.5 Transmission Acknowledge Register (CANTA)

If the message of mailbox n was sent successfully, the bit TA[n] is set. This
also sets the GMIF0/GMIF1 (GIF0.15/GIF1.15) bit if the corresponding
interrupt mask bit in the CANMIM register is set. The GMIF0/GMIF1 bit
initiates an interrupt.

The CPU resets the bits in CANTA by writing a 1. This will also clear the
interrupt if an interrupt had been generated. Writing a 0 has no effect. If the
CPU tries to reset the bit while the CAN tries to set it, the bit is set. After
power-up, all bits are cleared. Figure 26 and Table 20 illustrate this register.

Figure 26. Transmission Acknowledge Register (CANTA) Field Descriptions

† Relative address = + SCC/HECC_Offset
‡ HECC only, reserved in the SCC

Table 20. Transmission Acknowledge Register (CANTA) Field Descriptions

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x10† TA.31:16

RC-0 ‡

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TA.15:0

RC-0

RC = Read/Clear, -n = Value after reset

Bit Name Value Description

31–0 TA.31:0 Transmit Acknowledge Register.

0 The message is not sent.

1 If the message of mailbox n is sent successfully, the bit n of this
register is set.
62

CAN SCC/HECC Control Registers
11.6 Abort Acknowledge Register (CANAA)

If the transmission of the message in mailbox n was aborted, the bit AA[n] is
set and the AAIF (GIF.14) bit is set which may generate an interrupt if
enabled.

Note: Additional conditions that set the AA[n] flag

The AA[n] flag is set if a transmission reset is requested and the TRS[n] bit
of the corresponding transmit mailbox is not set, a receive mailbox or a
disabled mailbox is concerned.

The bits in CANAA are reset by writing a 1 from the CPU. Writing a zero has
no effect. If the CPU tries to reset a bit and the CAN tries to set the bit at the
same time, the bit is set. After power-up all bits are cleared. Figure 27 and
Table 21 illustrate this register.

Figure 27. Abort Acknowledge Register (CANAA) Field Descriptions

† Relative address = + SCC/HECC_Offset
‡ HECC only, reserved in the SCC

Table 21. Abort Acknowledge Register (CANAA) Field Descriptions

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x14† AA.31:16

RC-0 ‡

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AA.15:0

RC-0

RC = Read/Clear, -n = Value after reset

Bit Name Value Description

31–0 TA.31:0 Abort Acknowledge Register.

0 The transmission is not aborted.

1 If the transmission of the message in mailbox n is aborted, the bit
n of this register is set.
Controller Area Network (CAN) (SPNU197E) 63

 CAN SCC/HECC Control Registers
11.7 Receive Message Pending Register (CANRMP)

If mailbox n contains a received message, the bit RMP[n] of this register is
set. These bits can only be reset by the CPU and set by the internal logic. A
new incoming message will overwrite the stored one if the OPC[n](OPC.31-
0) bit is cleared, otherwise the next mailboxes are checked for a matching ID.
In this case, the corresponding status bit RML[n] is set. The bits in the
CANRMP and the CANRML registers are cleared by a write access to the
base address of the register CANRMP, with a 1 at the corresponding bit
location. If the CPU tries to reset a bit and the CAN tries to set the bit at the
same time, the bit is set.

The bits in the CANRMP register may set GMIF0/GMIF1 (GIF0.15/GIF1.15)
if the corresponding interrupt mask bit in the CANMIM register is set. The
GMIF0/GMIF1 bit initiates an interrupt. Figure 28 and Table 22 illustrate this
register.

Figure 28. Receive Message Pending Register (CANRMP) Field Descriptions

† Relative address = + SCC/HECC_Offset
‡ HECC only, reserved in the SCC

Table 22. Receive Message Pending Register (CANRMP) Field Descriptions

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x18† RMP.31:16

RC-0 ‡

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RMP.15:0

RC-0

RC = Read/Clear, -n = Value after reset

Bit Name Value Description

31–0 RMP.31:0 Receive Message Pending Register.

0 The mailbox does not contain a message.

1 If mailbox n contains a received message, bit RMP[n] of this regis-
ter is set.
64

CAN SCC/HECC Control Registers
11.8 Receive Message Lost Register (CANRML)

If an old message has been overwritten by a new one in message object n,
bit RML[n] of this register is set. These bits can only be reset by the CPU, and
set by the internal logic. The bits can be cleared by a write access to the base
address of the register CANRMP with a 1 at the corresponding bit location. If
the CPU tries to reset a bit and the CAN tries to set the bit at the same time,
the bit is set. The CANRML register is not changed if the OPC[n] (OPC.31-0)
bit is set.

If one or more of the bits in the CANRML register are set, the RMLIF (GIF0.11/
GIF1.11) bit is also set. This may initiate an interrupt if the RMLIM (GIM.11)
bit is set. Figure 29 and Table 23 illustrate this register.

Figure 29. Receive Message Lost Register (CANRML) Field Descriptions

† Relative address = + SCC/HECC_Offset
‡ HECC only, reserved in the SCC

Table 23. Receive Message Lost Register (CANRML) Field Descriptions

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x1C† RML.31:16

RC-0 ‡

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RML.15:0

RC-0

R = Read, -n = Value after reset

Bit Name Value Description

31–0 RML.31:0 Receive Message Lost Register.

0 No message was lost.

1 An old unread message has been overwritten by a new one in that
mailbox.
Controller Area Network (CAN) (SPNU197E) 65

 CAN SCC/HECC Control Registers
11.9 Remote Frame Pending Register (CANRFP)

Whenever a remote frame request is received by the CAN module, the
corresponding bit RFP[n] in the remote frame pending register is set. If a
remote frame is stored in a receive mailbox (AAM=0, MD=1), the CPU has to
initiate the reply frame transmission and has to reset the RFP[n] flag. If a
mailbox configured in auto-answer mode (AAM=1, MD=0) receives a remote
frame, the CAN module clears the RFP[n] flag after the reply frame has been
successfully transmitted.

To prevent an auto-answer mailbox from replying to a remote frame request,
the CPU has to clear the RFP[n] flag and the TRS[n] bit by setting the
corresponding transmission request reset bit TRR[n]. The AAM bit may also
be cleared by the CPU to stop the module from sending the message.

If the CPU tries to reset a bit and the CAN module tries to set the bit at the
same time, the bit is not set. The CPU cannot interrupt an ongoing transfer.
Figure 30 and Table 24 illustrate this register.

Figure 30. Remote Frame Pending Register (CANRFP) Field Descriptions

† Relative address = + SCC/HECC_Offset
‡ HECC only, reserved in the SCC

Table 24. Remote Frame Pending Register (CANRFP) Field Descriptions

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x20† RFP.31:16

RC-0 ‡

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RFP.15:0

RC-0

RC = Read/Clear, -n Value after reset

Bit Name Value Description

31–0 RFP.31:0 Remote Frame Pending Register.

0 No remote frame request was received.

1 A remote frame request was received by the module.
66

CAN SCC/HECC Control Registers
11.10 Global Acceptance Mask Register (CANGAM)
The global acceptance mask is used by the SCC or by the HECC in SCC-
compatible mode. The global acceptance mask is used for the mailboxes 6 to
15 if the AME bit (MID.30) of the corresponding mailbox is set. A received
message will only be stored in the first mailbox with a matching identifier.

The global acceptance mask is used for the mailboxes 6 to 15 of the SCC.
Figure 31 and Table 25 illustrate this register.

Figure 31. Global Acceptance Mask Register (CANGAM) Field Descriptions

† Relative address = + SCC_Offset

Table 25. Global Acceptance Mask Register (CANGAM) Field Descriptions

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x24† AMI Reserved GAM.28:18 GAM.17:16

RWI-0 R-0 RWI-0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GAM.15:0

RWI-0

RWI = Read at any time, write during initialization mode only, -n = Value after reset

Bit Name Value Description

31 AMI Acceptance Mask Identifier extension bit.

0 The identifier extension bit stored in the mailbox determines which
messages shall be received.

1 Standard and extended frames can be received. In case of an
extended frame, all 29 bits of the identifier are stored in the mail-
box and all 29 bits of global acceptance mask register are used for
the filter. In case of a standard frame, only the first eleven bits (bit
28 to 18) of the identifier and the global acceptance mask are
used.

30–29 Reserved Reads are undefined and writes have no effect.

28–0 GAM 28:0 Global Acceptance Mask.
These bits allow any identifier bits of an incoming message to be
masked.

0 Received identifier bit value must match the corresponding identi-
fier bit of the MID register.

1 Accept a 0 or a 1 (don’t care) for the corresponding bit of the
received identifier.
Controller Area Network (CAN) (SPNU197E) 67

 CAN SCC/HECC Control Registers
11.11 Master Control Register (CANMC)

This register is used to control the settings of the CAN module.

Note: Bits Protected in User Mode

Some bits of the CANMC register cannot be changed in user mode.

Figure 32 and Table 26 illustrate this register.

Figure 32. Master Control Register (CANMC) Field Descriptions

† Relative address = + SCC/HECC Offset
‡ HECC only, reserved in the SCC

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x28† Reserved

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LNTC LNTM SCM CCR PDR DBO WUBA CDR ABO STM SRES MBNR

RWP0‡ SP-x‡ RWP0‡ RWP1 RWP-0 RWP-0 RWP-0 RW-0 RWP-0 RWP-0 S-0 RW-0‡ RW-0 RW-0 RW-0 RW-0

RWP = Read in all modes, write in privilege mode only, SP = Set in privilege mode only, -n = Value after reset, -x = Indeterminate

Table 26. Master Control Register (CANMC) Field Descriptions

Bit Name Value Description

31–16 Reserved Reads are undefined and writes have no effect.

15 LNTC Local Network Time Clear Bit.
HECC only, reserved in the SCC. This bit is protected in user
mode.

0 The LNT register is not reset.

1 The LNT register is reset to zero after a successful transmission or
reception of mailbox 16.

14 LNTM Local Network Time MSB Clear Bit.
HECC only, reserved in the SCC. This bit is protected in user
mode.

0 The LNT register is not changed.

1 The MSB (most significant bit) of the LNT register is reset to zero.
The LNTM bit is reset after one clock cycle by the internal logic.
68

CAN SCC/HECC Control Registers
13 SCM SCC-Compatibility Mode.
HECC only, reserved in the SCC.
This bit is protected in user mode.
If this bit is cleared (SCM = 0), the HECC behaves like the SCC,
and only mailboxes 15 to 0 can be used. You must refer to the
SCC specification to operate the HECC in this mode. Since this
mode is selected by default, all software developed for the SCC
runs without any change to the HECC module.

0 The HECC is in SCC-compatibility mode.

1 The HECC is in normal mode.

12 CCR Change Configuration Request.
This bit is protected in user mode.

0 The CPU requests normal operation. This can only be done after
the configuration register CANBTC is set to the allowed values.

1 The CPU requests write access to the configuration register CAN-
BTC and the acceptance mask registers (CANGAM, LAM(0) and
LAM(3)) of the SCC. After setting this bit, the CPU must wait until
the CCE flag of CANES register is at 1, before proceeding to the
CANBTC register (see Section 3.11.12). This could also mean that
the CAN module is in Bus Off state (see BO flag of CANES reg-
iste).

11 PDR Power-Down-Mode Request.
This bit is protected in user mode.

0 The CAN module power-down mode is not requested (normal
operation).

1 The CAN module power-down mode is requested.

10 DBO Data Byte Order.
This bit selects the byte order of the message data field (see Sec-
tion 3.5.3.7).This bit is protected in user mode.

0 The data is received or transmitted MSB (most significant byte)
first.

1 The data is received or transmitted LSB (least significant byte)
first.

Table 26. Master Control Register (CANMC) Field Descriptions (Continued)

Bit Name Value Description
Controller Area Network (CAN) (SPNU197E) 69

 CAN SCC/HECC Control Registers
9 WUBA Wake Up on Bus Activity.
This bit is protected in user mode.

0 The module leaves the power-down mode only after writing a 0 to
the PDR bit.

1 The module leaves the power-down mode after detecting any bus
activity.

8 CRD Change Data Field Request.
This bit allows fast data message update.

0 The CPU requests normal operation.

1 The CPU requests write access to the data field of the mailbox
specified by the MBNR.4:0 field (MC.4–0). The CPU must clear
the CDR bit after accessing the mailbox. The module does not
transmit that mailbox content while the CDR is set. This is
checked by the state machine before and after it reads the data
from the mailbox to store it in the transmit buffer.
Update data with CDR mechanism.

Note: When utilizing the CDR bit to update the data field of a
mailbox, the SCC and the HECC behave differently. The SCC
always considers new data after arbitration loss or bus error.
Whereas the HECC tries to send the former data if the mes-
sage was loaded into the internal transmit buffer before the
data update. If the software wants to force the HECC to trans-
mit updated data as soon as possible, it has to perform a
dummy write to the TRS register (e.g., TRS=0x00000000) after
the data update is finished (CDR bit cleared).

7 ABO Auto Bus On.
This bit is protected in user mode.

0 The CCR (MC.12) bit is set when Bus-Off state is detected. The
CCR bit should be cleared before resuming any CAN communica-
tion. Bus-Off state is exited after 128 × 11 recessive bits.

1 After Bus-Off state, the module will go back automatically into
Bus-On state after 128 × 11 recessive bits. This bit is protected in
user mode.

Table 26. Master Control Register (CANMC) Field Descriptions (Continued)

Bit Name Value Description
70

CAN SCC/HECC Control Registers

6 STM Self-Test Mode.
This bit is protected in user mode.

0 The module is in normal mode.

1 The module is in self-test mode. In this mode, the CAN module
generates its own acknowledge (ACK) signal, thus enabling oper-
ation without a bus connected to the module. The message is not
sent, but read back and stored in the appropriate mailbox.

5 SRES Software Reset.
This bit can only be written to and is always read as zero.

0 No effect

1 A write access to this register causes a software reset of the mod-
ule (all parameters, except the protected registers, are reset to
their default values). The mailbox contents and the error counters
are not modified. Pending and ongoing transmissions are can-
celed without perturbing the communication.=

4–0 MBNR 4:0 Mailbox Number.
The bit MBNR.4 is for HECC only, and is reserved in the SCC.
This is the number of the mailbox, for which the CPU requests a
write access to the data field. This field is used in conjunction with
the CDR bit.

Table 26. Master Control Register (CANMC) Field Descriptions (Continued)

Bit Name Value Description
Controller Area Network (CAN) (SPNU197E) 71

 CAN SCC/HECC Control Registers
11.12 Bit-Timing Configuration Register (CANBTC)

The CANBTC register is used to configure the CAN node with the appropriate
network-timing parameters. This register must be programmed before using
the CAN module.

This register is write-protected in user mode and can only be written in
initialization mode. (See Section 3.6.1 on page 3-34.)

Note: Forbidden Configuration Values

To avoid unpredictable behavior of the CAN module, the CANBTC register
should never be programmed with values not allowed by the CAN protocol
specification and by the bit timing rules listed in Section 6.1.

Figure 33 and Table 26 illustrate this register.

Figure 33. Bit-Timing Configuration Register (CANBTC)

† Relative address = + SCC/HECC_Offset

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x2C† Reserved BRP

R-x RWPI-0

 Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved ERM SJW SAM TSEG1 TSEG2

R-0 RWPI-
0 RWPI-0 RWPI-

0 RWPI-0 RWPI-0

RWPI = Read in all modes, write in privilege mode during initialization mode only, -n = Value after reset
72

CAN SCC/HECC Control Registers
Table 27. Bit-Timing Configuration Register (CANBTC) Field Descriptions

Bit Name Value Description

31–24 Reserved Reads are undefined and writes have no effect.

23–16 BRP.7:0 Time Quantum Prescaler.
Bits 7:0 of this field specify the duration of a time quantum (TQ) in
CAN module system clock units.
The length of one TQ is defined by:

where ICLK is the frequency of the CAN module system clock and
BRP is the binary value of (BRP.7:0 + 1), calculated as follows:

BRP = 1 + BRP.0 + (2 x BRP.1) + (4 x BRP.2) + (8 x BRP.3) +
(16 x BRP.4) + (32 x BRP.5) + (64 x BRP.6) + (128 x BRP.7)

BRP is programmable from 1 to 256.

The value programmed into the CANBTC register has to be decre-
mented by 1, because of the 8-bit size of the binary BRP value
(BRP.7:0):

BRPBTC = BRPCALC - 1
BRPCALC Result of bit-timing calculation.
 1 ≤ BRPCALC ≤ 256
BRPBTC Value to be programmed into the CANBTC register.
 0 ≤ BRPBTC ≤ 255

15–11 Reserved Reads are undefined and writes have no effect.

10 ERM Edge Resynchronization Mode.
This bit selects the synchronization mode with the receive data
stream on the CAN bus.

0 The CAN module will resynchronize on the falling edge only.

1 The CAN module will resynchronize on both rising and falling
edges.

TQ = BRP
ICLK
Controller Area Network (CAN) (SPNU197E) 73

 CAN SCC/HECC Control Registers
9–8 SJW 1:0 Synchronization Jump Width.
The parameter SJW indicates by how many units of TQ a bit is
allowed to be lengthened or shortened when resynchronizing with
the receive data stream on the CAN bus.
The synchronization is performed either with the falling edge
(ERM = 0) or with both edges (ERM = 1) of the bus signal.

The synchronization jump width, SJW, is calculated as follows:
 SJW = 1 + SJW.0 + (2 × SJW.1)

SJW is programmable from 1 to 4 TQ. The maximum value of
SJW is determined by the minimum value of TSEG2CALC and
4TQ:

 SJWCALC(max) ≤ min[4 TQ, TSEG2CALC]

The value programmed into the CANBTC register has to be decre-
mented by 1, because of the 2-bit size of the binary SJW value
(SJW.1:0):

 SJWBTC = SJWCALC - 1
 SJWCALC Result of the calculation.
 1 ≤ SJWCALC ≤ 4

 SJWBTC Value to be programmed into the CANBTC register.
0 ≤ SJWBTC ≤ 3

7 SAM Sample point setting.
This parameter sets the number of samples used by the CAN
module to determine the actual level of the CAN bus. When the
SAM bit is set, the level determined by the CAN bus corresponds
to the result from the majority decision of the last three values.
The sample points are at the sample point and twice before with a
distance of 1/2 TQ.

0 The CAN module samples only once at the sampling point.

1 The CAN module will sample three times and make a majority
decision. The triple sample mode shall be selected only for bit rate
prescale values greater than 4 (BRPCALC > 4).

Table 27. Bit-Timing Configuration Register (CANBTC) Field Descriptions (Continued)

Bit Name Value Description
74

CAN SCC/HECC Control Registers
6–3 TSEG1 3:0 Time Segment 1.
This parameter specifies the length of the TSEG1 segment in TQ
units. The value of TSEG1 is calculated as follows:
 TSEG1 = 1 + TSEG1.0 + (2 *TSEG1.1) + (4 *TSEG1.2) +
 (8 * TSEG1.3)

TSEG1 combines PROP_SEG and PHASE_SEG1 segments:
 TSEG1 = PROP_SEG + PHASE_SEG1

where PROP_SEG and PHASE_SEG1 are the length of these two
segments in TQ units.

TSEG1CALC value is programmable in the range of 1 TQ to 16 TQ
and has to fulfill the following timing rule:

TSEG1 must be greater than or equal to TSEG2 and IPT (for
more details about IPT refer to Section 6.1).

The value programmed into the CANBTC register has to be decre-
mented by 1, because of the 4-bit size of the binary TSEG1 value
(TSEG1.3:0):
 TSEG1BTC = TSEG1CALC - 1
 TSEG1CALC Result of the calculation.
 2 ≤ TSEG1CALC ≤ 16
 TSEG1BTC Value to be programmed into the CANBTC register.
 1 ≤ TSEG1BTC ≤ 15

Table 27. Bit-Timing Configuration Register (CANBTC) Field Descriptions (Continued)

Bit Name Value Description
Controller Area Network (CAN) (SPNU197E) 75

 CAN SCC/HECC Control Registers
2–0 TSEG2 2:0 Time Segment 2.
TSEG2 defines the length of PHASE_SEG2 segment in TQ units
and is calculated as follow:
 TSEG2 = 1 + TSEG2.0 + (2 × TSEG2.1) + (4 × TSEG2.2)

TSEG2CALC is programmable in the range of 1 TQ to 8 TQ and
has to fulfill the following timing rule:

TSEG2 must be smaller than or equal to TSEG1 and must be
greater or equal to IPT (for more details about IPT refer to
Section 6.1).

The value programmed into the CANBTC register has to be decre-
mented by 1, because of the 3-bit size of the binary TSEG2 value
(TSEG2.3:0):

 TSEG2BTC = TSEG2CALC - 1

 TSEG2CALC Result of the calculation.
 TSEG2BTC Value to be programmed into the CANBTC

Table 27. Bit-Timing Configuration Register (CANBTC) Field Descriptions (Continued)

Bit Name Value Description
76

CAN SCC/HECC Control Registers
11.13 Error and Status Register (CANES)
The error and status register comprises information about the actual status of
the CAN module and displays bus error flags as well as error status flags. The
way of storing the bus error flags (FE, BE, CRCE, SE, ACKE) and the error
status flags (BO, EP, EW) in the ES register is subject to a special
mechanism. If one of these error flags is set, then the current state of all other
error flags is frozen. To update the ES register to the actual values of the error
flags, the error flag which is set has to be acknowledged by writing a 1 to it.
This mechanism allows the software to distinguish between the first error and
all following. Figure 34 and Table 27 illustrate this register.

Figure 34. Error and Status Register (CANES)

† Relative address = + SCC/HECC_Offset

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x30† Reserved FE BE SA1 CRCE SE ACKE BO EP EW

R-0 RC-0 RC-0 R-1 RC-0 RC-0 RC-0 RC-0 RC-0 RC-0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved SMA CCE PDA Rsr’vd RM TM

R-0 R-0 R-1 R-0 R-0 R-0 R-0

R = Read, C = Clear, -n = Value after reset

Table 28. Error and Status Register (CANES) Field Descriptions

Bit Name Value Description

31–25 Reserved Reads are undefined and writes have no effect.

24 FE Form Error Flag.

0 No form error detected.

1 A form error occurred on the bus. This means that one or more of
the fixed-form bit fields had the wrong level on the bus.

23 BE Bit Error Flag.

0 No bit error detected.

1 The received bit does not match the transmitted bit outside of the
arbitration field or during transmission of the arbitration field, a
dominant bit was sent but a recessive bit was received.
Controller Area Network (CAN) (SPNU197E) 77

 CAN SCC/HECC Control Registers
22 SA1 Stuck at dominant error.
The SA1 bit is always at 1 after a hardware reset, a software reset,
or a Bus-Off condition. This bit is cleared when a recessive bit is
detected on the bus.

0 The CAN module detected a recessive bit.

1 The CAN module never detected a recessive bit.

21 CRCE CRC Error.

0 The CAN module never received a wrong CRC.

1 The CAN module received a wrong CRC.

20 SE Stuff Error.

0 No stuff bit error occurred.

1 A stuff bit error occurred.

19 ACKE Acknowledge Error.

0 All messages have been correctly acknowledged.

1 The CAN module received no acknowledge.

18 BO Bus-Off State.
The CAN module is in Bus-Off state.

0 Normal operation

1 There is an abnormal rate of errors on the CAN bus. This condi-
tion occurs when the transmit error counter (CANTEC) has
reached the limit of 256. During Bus Off, no messages can be
received or transmitted.

Bus Off state is exited automatically after 128x11 recessive bits.
After leaving Bus Off, the error counters are cleared.

When ABO=0 then the CCR bit should be cleared before resum-
ing any CAN communication. (MC.7) bit.

17 EP Error Passive State.

0 The CAN module is in error-active mode.

1 The CAN module is in error-passive mode.

Table 28. Error and Status Register (CANES) Field Descriptions (Continued)

Bit Name Value Description
78

CAN SCC/HECC Control Registers
16 EW Warning status.

0 Both error counters (CANREC and CANTEC) are less than 96.

1 One of the two error counters (CANREC or CANTEC) has
reached the warning level of 96.

15–6 Reserved Reads are undefined and writes have no effect.

5 SMA Suspend Mode Acknowledge.
This bit is set after a latency of one clock cycle—up to the length
of one frame—after the suspend mode was activated. The sus-
pend mode is activated with the debugger tool when the circuit is
not in run mode. During the suspend mode, the CAN module is
frozen and cannot receive or transmit any frame. However, if the
CAN module is transmitting or receiving a frame when the sus-
pend mode is activated, the module will enter suspend mode only
at the end of the frame.

0 The module is not in suspend mode.

1 The module has entered suspend mode.

4 CCE Change Configuration Enable.
This bit displays the configuration access right. (See Section 3.6)
This bit is set after a latency of one clock cycle up to the length of
one frame.

0 The CPU is denied write access to the configuration registers.

1 The CPU has write access to the configuration registers.

3 PDA Power Down Mode Acknowledge.

0 Normal operation

1 The CAN module has entered the power-down mode.

2 Reserved Reads are undefined and writes have no effect.

1 RM Receive mode.
The CAN protocol kernel (CPK) is in receive mode.
This bit reflects what the CPK is actually doing regardless of mail-
box configuration.

0 The CAN protocol kernel is not receiving a message.

1 The CAN protocol kernel is receiving a message.

Table 28. Error and Status Register (CANES) Field Descriptions (Continued)

Bit Name Value Description
Controller Area Network (CAN) (SPNU197E) 79

 CAN SCC/HECC Control Registers
0 TM Transmit mode.
The CPK is in transmit mode.
This bit reflects what the CPK is actually doing regardless of mail-
box configuration.

0 The CAN protocol kernel is not transmitting a message.

1 The CAN protocol kernel is transmitting a message.

Table 28. Error and Status Register (CANES) Field Descriptions (Continued)

Bit Name Value Description
80

CAN SCC/HECC Control Registers
11.14 CAN Error Counter Registers (CANTEC/CANREC)
The CAN module contains two error counters: the receive error counter
(CANREC) and the transmit error counter (CANTEC). The values of both
counters can be read via the CPU interface. These counters are incremented
or decremented according to the CAN protocol specification version 2.0.
Figure 35 and Figure 36 illustrate this register.

Figure 35. Transmit Error Counter Register (CANTEC)

† Relative address = + SCC/HECC_Offset

Figure 36. Receive Error Counter Register (CANREC)

† Relative address = + SCC/HECC_Offset

After reaching or exceeding the error passive limit (128), the receive error
counter will not be increased anymore. When a message was received
correctly, the counter is set again to a value between 119 and 127 (compare
with CAN specification). After reaching the Bus-Off state, the transmit error
counter is undefined while the receive error counter changes its function.

After reaching the Bus-Off state, the receive error counter is cleared. It will
then be incremented after every 11 consecutive recessive bits on the bus.
These 11 bits correspond to the gap between two frames on the bus. If the
counter reaches 128, the module automatically changes back to the Bus-On
status if this feature is enabled (Auto Bus On bit (ABO) (MC.7) set). All
internal flags are reset and the error counters are cleared. After leaving
initialization mode, the error counters are cleared.

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x34† Reserved

R-x

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved TEC

R-x R-0

R = Read, -n = Value after reset

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x38† Reserved

R-x

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved REC

R-x R-0

R = Read, W = Write, S = Set, C = Clear, U = Undefined, -n: Value after reset
Controller Area Network (CAN) (SPNU197E) 81

 CAN SCC/HECC Control Registers
11.15 Global Interrupt Flag Registers (CANGIF0/CANGIF1)
These registers allow the CPU to identify the interrupt source. Figure 37,
Figure 38, and Table 29 illustrate this register.

Figure 37. Global Interrupt Flag 0 Register (CANGIF0)

Figure 38. Global Interrupt Flag 1 Register (CANGIF1)

† Relative address = + SCC/HECC_Offset
‡ HECC only, reserved in the SCC

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x3C† Reserved MAIF0 TCOI
F0

R-x RC-0‡ RC-0‡

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GMIF
0 AAIF0 WDIF

0
WUIF

0
RMLI

F0 BOIF0 EPIF0 WLIF0 Reserved MIV0.
4 MIV0.3:0

R-0 RC-0 RC-0 RC-0 RC-0 RC-0 RC-0 RC-0 R-0 R-0‡ R-0

RC = Read/Clear, -n = Value after reset

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x44† Reserved MAIF1 TCOI
F1

R-x RC-0‡ RC-0‡

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GMIF
1 AAIF1 WDIF

1
WUIF

1
RMLI

F1 BOIF1 EPIF1 WLIF1 Reserved MIV1.
4 MIV1.3:0

R-0 RC-0 RC-0 RC-0 RC-0 RC-0 RC-0 RC-0 R-0 R-0‡ R-0

RC = Read/Clear, -n = Value after reset

Table 29. Global Interrupt Flag Registers (CANGIF0/CANGIF1) Field Descriptions

Bit Name Value Description

31–18 Reserved Reads are undefined and writes have no effect.

17 MAIF0/MAIF1 Message Alarm Flag. HECC only, reserved in the SCC.

0 No time out for the mailboxes occurred.

1 One of the mailboxes did not transmit or receive a message within
the specified time frame.
82

CAN SCC/HECC Control Registers
16 TCOIF0/
TCOIF1

Local Network Time Counter Overflow Flag.
HECC only, reserved in the SCC.

0 The MSB of the LNT register is 0.

1 The MSB of the LNT register is 1.

15 GMIF0/GMIF1 Global Mailbox Interrupt Flag.

0 No message has been transmitted or received.

1 One of the mailboxes transmitted or received a message success-
fully.

14 AAIF0/AAIF1 Abort-Acknowledge Interrupt Flag.

0 No transmission has been aborted.

1 A transmission request has been aborted.

13 WDIF0/WDIF1 Write-Denied Interrupt Flag.

0 The CPU’s write access to the mailbox was successful.

1 The CPU’s write access to a mailbox was not successful.

12 WUIF0/WUIF1 Wake-Up Interrupt Flag.

0 The module is still in sleep mode or normal operation

1 During local power down, this flag indicates that the module has
left sleep mode. During global power-down, this flag indicates that
there is activity on the CAN bus lines. This flag is also set when a
global power- down is requested by the CPU, but the CAN module
is not ready to enter power-down mode yet.

11 RMLIF0/
RMLIF1 Receive-Message-Lost Interrupt Flag.

0 No message has been lost.

1 At least for one of the receive mailboxes, an overflow condition
has occurred.

10 BOIF0/BOIF1 Bus-Off Interrupt Flag.

0 The CAN module is still in Bus-On mode.

1 The CAN module has entered Bus-Off mode.

Table 29. Global Interrupt Flag Registers (CANGIF0/CANGIF1) Field Descriptions

Bit Name Value Description
Controller Area Network (CAN) (SPNU197E) 83

 CAN SCC/HECC Control Registers
9 EPIF0/EPIF1 Error-Passive Interrupt Flag.

0 The CAN module is not in error-passive mode.

1 The CAN module has entered error-passive mode.

8 WLIF0/WLIF1 Warning Level Interrupt Flag.

0 None of the error counters has reached the warning level.

1 At least one of the error counters has reached the warning level.

7–5 Reserved Reads are undefined and writes have no effect.

4–0 MIV0.4:0/
MIV1.4:0

Message Object Interrupt Vector.
This vector indicates the number of the message object that acti-
vated the global mailbox interrupt flag (GMIF0/GMIF1 (GIF0.15/
GIF1.15)). It keeps that vector until the appropriate TA[n] bit or
RMP[n] bit is cleared or when a higher priority mailbox interrupt
occurred. Then, the highest interrupt vector is displayed, with mail-
box 31 having the highest priority in the HECC. In the SCC or in
SCC-compatible mode, mailbox 15 has the highest priority.
When the GMIF0/GMIF1 flag is zero, the corresponding MIV0/
MIV1 vector is undefined. MIV0.4 and MIV1.4 are not available in
the SCC.

Note: Bit 4 (MIVO.4 and MIV1.4), as previously
described, applies to the HECC only. These bits are
reserved and read as 0 in the SCC.

Table 29. Global Interrupt Flag Registers (CANGIF0/CANGIF1) Field Descriptions

Bit Name Value Description
84

CAN SCC/HECC Control Registers
11.16 Global Interrupt Mask Register (CANGIM)

This register allows the various interrupts to be enabled. If a bit is set, the
corresponding interrupt is enabled.

This register is write-protected in user mode. Figure 39 and Table 30 illustrate
this register.

Figure 39. Global Interrupt Mask Register (CANGIM)

† Relative address = + SCC/HECC_Offset
‡ HECC only, reserved in the SCC

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x40† Reserved MAIM TCOIM

R-x RW-0‡ RW-0‡

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rsr’vd AAIM WDIM WUIM RMLI
M BOIM EPIM WLIM Reserved SIL I1EN I0EN

R-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 R-0 RWP-
0 RWP-0 RWP-0

R = Read, W = Write, WP = Write in privilege mode only, -n = Value after reset

Table 30. Global Interrupt Mask Register (CANGIM) Field Descriptions

Bit Name Value Description

31–18 Reserved Reads are undefined and writes have no effect.

17 MAIM Message Alarm Interrupt Mask.
HECC only, reserved in the SCC.

0 MAIF interrupt is disabled.

1 MAIF interrupt is enabled.

16 TCOIM Local Network Time Counter Overflow Interrupt Mask.
HECC only, reserved in the SCC.

0 TCOIF interrupt is disabled.

1 TCOIF interrupt is enabled.

15 Reserved Reads are undefined and writes have no effect.
Controller Area Network (CAN) (SPNU197E) 85

 CAN SCC/HECC Control Registers
14 AAIM Abort Acknowledge Interrupt Mask.

0 AAIF interrupt is disabled.

1 AAIF interrupt is enabled.

13 WDIM Write Denied Interrupt Mask.

0 WDIF interrupt is disabled.

1 WDIF interrupt is enabled.

12 WUIM Wake-Up Interrupt Mask.

0 WUIF interrupt is disabled.

1 WUIF interrupt is enabled.

11 RMLIM Receive Message Lost Interrupt Mask.

0 RMLIF interrupt is disabled.

1 RMLIF interrupt is enabled.

10 BOIM Bus Off Interrupt Mask.

0 BOIF interrupt is disabled.

1 BOIF interrupt is enabled.

9 EPIM Error Passive Interrupt Mask.

0 EPIF interrupt is disabled.

1 EPIF interrupt is enabled.

8 WLIM Warning Level Interrupt Mask.

0 WLIF interrupt is disabled.

1 WLIF interrupt is enabled.

7–3 Reserved Reads are undefined and writes have no effect.

Table 30. Global Interrupt Mask Register (CANGIM) Field Descriptions (Continued)

Bit Name Value Description
86

CAN SCC/HECC Control Registers
2 SIL System Interrupt Level.
Define the interrupt level for TCOIF, WDIF, WUIF, BOIF, EPIF, and
WLIF.

0 All global interrupts are mapped to the HECC0INT/SCC0INT inter-
rupt line.

1 All system interrupts are mapped to the HECC1INT/SCC1INT
interrupt line.

1 I1EN Interrupt Line 1 Enable.

0 The HECC1INT/SCC1INT interrupt line is globally disabled.

1 This bit globally enables all interrupts for the HECC1INT/SCC1INT
interrupt line if the corresponding masks are set.

0 I0EN Interrupt Line 0 Enable.

0 The HECC0INT/SCC0INT interrupt line is globally disabled.

1 This bit globally enables all interrupts for the HECC0INT/SCC0INT
interrupt line if the corresponding masks are set.

Table 30. Global Interrupt Mask Register (CANGIM) Field Descriptions (Continued)

Bit Name Value Description
Controller Area Network (CAN) (SPNU197E) 87

 CAN SCC/HECC Control Registers
11.17 Mailbox Interrupt Mask Register (CANMIM)

There is one interrupt flag available for each mailbox. This may be a receive
or a transmit interrupt depending on the configuration register. After power
up, all interrupt mask bits are cleared and all interrupts are disabled.

This register is write-protected in user mode. Figure 40 and Table 31 illustrate
this register.

Figure 40. Mailbox Interrupt Mask Register (CANMIM).

† Relative address = + SCC/HECC_Offset
‡ HECC only, reserved in the SCC

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x48† MIM.31:16

RWP-0‡

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MIM.15:0

RWP-0

RWP = Read in all modes, write in privilege mode only, -n = Value after reset

Table 31. Mailbox Interrupt Mask Register (CANMIM) Field Descriptions

Bit Name Value Description

31–0 MIM 31:0 Mailbox Interrupt Mask.
These bits allow any mailbox interrupt to be masked individually.

0 Mailbox interrupt is disabled.

1 Mailbox interrupt is enabled. An interrupt is generated if a mes-
sage has been transmitted successfully (in case of a transmit
mailbox) or if a message has been received without any error (in
case of a receive mailbox).
88

CAN SCC/HECC Control Registers
11.18 Mailbox Interrupt Level Register (CANMIL)
Each of the message objects may initiate an interrupt on one of the two
interrupt lines. Depending on the setting in the mailbox interrupt level register
(CANMIL), the interrupt is generated on HECC0INT/SCC0INT (MIL[n] = 0) or
on line HECC1INT/SCC1INT (MIL[n] = 1). This applies also to the AAIF0/
AAIF1 (GIF0.14/GIF1.14) and the RMLIF0/RMLFI1 (GIF0.11/GIF1.11) flags.
Figure 41 and Table 32 illustrate this register.

Figure 41. Mailbox Interrupt Level Register (CANMIL)

† Relative address = + SCC/HECC_Offset
‡ HECC only, reserved in the SCC

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x4C† MIL.31:16

RW-0‡

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MIL.15:0

RW-0

RW = Read/Write, -n = Value after reset

Table 32. Mailbox Interrupt Level Register (CANMIL) Field Descriptions

Bit Name Value Description

31–0 MIL 31:0 Mailbox Interrupt Level.
These bits allow any mailbox interrupt level to be selected individ-
ually.

0 The mailbox interrupt is generated on interrupt line 0.

1 The mailbox interrupt is generated on interrupt line 1.
Controller Area Network (CAN) (SPNU197E) 89

 CAN SCC/HECC Control Registers
11.19 Overwrite Protection Control Register (CANOPC)
If there is an overflow condition for mailbox n (RMP[n] is set to 1 and a new
receive message would fit for mailbox n), the new message is stored
depending on the settings in the CANOPC register. If the corresponding bit
OPC[n] is set to 1, the old message is protected against being overwritten by
the new message; thus, the next mailboxes are checked for a matching ID. If
no other mailbox is found, the message is lost without further notification. If
the bit OPC[n] is cleared to 0, the old message is overwritten by the new one.
This will be notified by setting the receive message lost bit RML[n]. Figure 42
and Table 33 illustrate this register.

Figure 42. Overwrite Protection Control Register (CANOPC)

† Relative address = + SCC/HECC_Offset
‡ HECC only, reserved in the SCC

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x50† OPC.31:16

RW-0 ‡

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OPC.15:0

RW-0

RW = Read/Write, -n = Value after reset

Table 33. Overwrite Protection Control Register (CANOPC) Field Descriptions

Bit Name Value Description

31–0 OPC 31:0 Overwrite Protection Control Register.

0 If the bit OPC[n] is not set, the old message may be overwritten by
a new one.

1 If the bit OPC[n] is set to 1, an old message stored in that mailbox
is protected against being overwritten by the new message.
90

CAN SCC/HECC Control Registers
11.20 CAN I/O Control Registers (CANTIOC, CANRIOC)
The CANTX and CANRX pins may be configured as normal I/O pins if the
HECC/SCC is not used. This is done using the CANTIOC and CANRIOC
registers. Figure 43 and Table 34 illustrate the CANTIOC register, and Figure
44 and Table 35 illustrate the CANRIOC register.

Figure 43. CAN I/O Control Register (CANTIOC)

† Relative address = + SCC/HECC_Offset

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x54† Reserved

R-x

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Reserved TX
FUNC

TXDI
R

TXOU
T TXIN

R-x R-0 RWP-
0 RW-0 RW-0 R-x

RW = Read/Write, RWP = Read in all modes, write in privilege mode only, -n = Value after reset, x = indeterminate

Table 34. CAN I/O Control Register (CANTIOC) Field Descriptions

Bit Name Value Description

31–4 Reserved Reads are undefined and writes have no effect.

3 TXFUNC External Pin I/O Enable Flag.
This bit is protected in user mode.

Note: When the CANTX pin is configured for CAN functions,
the flags TXDIR and TXOUT have no meaning and can be set
either to 0 or 1. The TXIN flag always shows the actual value
of the CANTX pin.

0 The CANTX pin is used as a normal I/O pin; the CAN protocol ker-
nel (CPK) output is unconnected.

1 The CANTX pin is used for the CAN transmit functions.

2 TXDIR Transmit Pin Direction Flag.

0 The CANTX pin is used as an input pin if CANTX is configured as
an I/O pin (TXFUNC = 0).

1 The CANTX pin is used as an output pin if CANTX is configured
as an I/O pin (TXFUNC = 0).
Controller Area Network (CAN) (SPNU197E) 91

 CAN SCC/HECC Control Registers
Figure 44. RX I/O Control Register (CANRIOC)

† Relative address = + SCC/HECC_Offset

1 TXOUT Output value for CANTX pin.
This value is output on the CANTX pin if CANTX is configured as
an I/O pin (TXFUNC = 0) and as an output (TXDIR = 1).

0 TXIN Reflects the value on the CANTX pin.

0 Logic 0 is present on pin.

1 Logic 1 is present on pin.

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x58† Reserved

R-x

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Reserved RXFU
NC

RXDI
R

RXOU
T RXIN

R-x R-0 RWP-
0 RW-0 RW-0 R-x

RW = Read/Write, RWP = Read in all modes, write in privilege mode only, -n = Value after reset, x = indeterminate

Table 35. RX I/O Control Register (CANRIOC) Field Descriptions

Bit Name Value Description

31–4 Reserved Reads are undefined and writes have no effect.

3 RXFUNC External Pin I/O Enable Flag.
This bit is protected in User Mode.

Note: When the CANRX pin is configured for CAN functions,
the flags RXDIR and RXOUT have no meaning and can be set
either to 0 or 1. The RXIN flag always shows the actual value
of the CANRX pin.

0 The CANRX pin is used as a normal I/O pin. The RX signal is still
internally connected to the CPK.

1 The CANRX pin is used for the CAN receive functions.

Table 34. CAN I/O Control Register (CANTIOC) Field Descriptions

Bit Name Value Description
92

CAN SCC/HECC Control Registers
2 RXDIR Receive Pin Direction Flag.

0 The CANRX pin is used as an input pin if CANRX is configured as
an I/O pin (RXFUNC = 0).

1 The CANRX pin is used as an output pin if CANRX is configured
as an I/O pin (RXFUNC = 0).

1 RXOUT Output value for CANRX pin.
This value is output on the CANRX pin if CANRX is configured as
an I/O pin (RXFUNC = 0) and as an output (RXDIR = 1).

0 RXIN Reflects the value on the CANRX pin.

0 Logic 0 is present on pin

1 Logic 1 is present on pin.

Table 35. RX I/O Control Register (CANRIOC) Field Descriptions

Bit Name Value Description
Controller Area Network (CAN) (SPNU197E) 93

 CAN Operation Examples
12 CAN Operation Examples

This section provides examples on how to use the HECC and the SCC in
specific applications.

12.1 Configuration of SCC or HECC

The following steps must be performed to configure the SCC/HECC for
operation:

Note: Protected Registers Access.

This sequence must be done in TMS470 privilege mode.

 1) Set the CANTX and the CANRX pins to CAN functions:

Write CANTIOC.3:0 = 0x08

Write CANRIOC.3:0 = 0x08

 2) After a reset, bit CCR (MC.12) and bit CCE (ES.4) are set to 1. This
allows the user to configure the bit-timing configuration register
(CANBTC).

If the CCE bit is set (ES.4 = 1), proceed to next step; otherwise, set the
CCR bit (MC.12 = 1) and wait until CCE bit is set (ES.4 = 1).

 3) Program the CANBTC register with the appropriate timing values. Make
sure that the values TSEG1 and TSEG2 are not 0. If they are 0, the
module does not leave the initialization mode. For example:

Write BTC = 0x1021A

 4) For the SCC, program the acceptance masks now. For example:

Write LAM(3) = 0x3c0000
94

CAN Operation Examples
 5) Program the master control register (CANMC) as follows:

Clear CCR (MC.12) = 0

Clear PDR (MC.11)= 0

Clear DBO (MC.10) = 0

Clear WUBA (MC.9)= 0

Clear CDR (MC.8) = 0

Clear ABO (MC.7) = 0

Clear STM (MC.6) = 0

Clear SRES (MC.5) = 0

Clear MBNR (MC.4-0) = 0

 6) Verify the CCE bit is cleared (ES.4 = 0), indicating that the CAN module
has been configured.

Note: In the case that the Bus-Off condition occurs after the ABO=0 and the
CCR=0, the CCR bit is set automatically by the CAN module; after the
occurrence of 128x11 recessive bits, the CCE will be set. The CPU must
then clear the CCR bit and wait for the CCE to be cleared to resume normal
operation.

This completes the setup for the basic functionality.
Controller Area Network (CAN) (SPNU197E) 95

 CAN Operation Examples
12.2 Transmit Mailbox

12.2.1 Configuring a Mailbox for Transmit

To transmit a message, the following steps need to be performed (in this
example, for object 1):

 1) Clear the appropriate bit in the CANTRS register to 0:

Clear TRS.1 = 0 (Writing a 0 to TRS has no effect; instead, set TRR.1 and
wait until TRS.1 clears.)

 2) Disable the object by clearing the corresponding bit in the mailbox enable
(CANME) register.

Clear ME.1 = 0

 3) Load the message identifier (MID) register of the object. Clear the AME
(MID.30) and AAM (MID.29) bits for a normal send mailbox (MID.30 = 0
and MID.29 = 0). This register is usually not modified during operation. It
can only be modified when the mailbox is disabled. For example:

Write MID(1) = 0x15ac0000

Write the data length into the DLC field of the message control field
register (MCF.3:0). The RTR flag is usually cleared (MCF.4 = 0). The
CANMCF register is usually not modified during operation and can only
be modified when the object is disabled. For example:

MCF(1) = 2

Set the mailbox direction by clearing the corresponding bit in the CANMD
register.

Clear MD.1 = 0

 4) Set the mailbox enable by setting the corresponding bit in the CANME
register

Set ME.1 = 1

This configures object 1 for transmit mode.

12.2.2 Transmitting a Message

To start a transmission (in this example, for object 1):

 1) Write the message data into the mailbox data field.

Since DBO (MC.10) is set to zero in the configuration section and MCF(1)
is set to 2, the data are stored in the 2 MSBytes of MDL(1).
96

CAN Operation Examples
Write MDL(1) = xxxx0000h

 2) Set the corresponding flag in the transmit request register (CANTRS.1 =
1) to start the transmission of the message. The CAN module now
handles the complete transmission of the CAN message.

 3) Wait until the transmit-acknowledge flag of the corresponding mailbox is
set (TA.1 = 1). After a successful transmission, this flag is set by the CAN
module.

 4) The TRS flag is reset to 0 by the module after a successful or aborted
transmission (TRS.1 = 0).

 5) The transmit acknowledge must be cleared for the next transmission.

Set TA.1 = 1

Wait until read TA.1 is 0

 6) To transmit another message in the same message object, the mailbox
RAM data must be updated. Setting the TRS.1 flag starts the next
transmission.
Controller Area Network (CAN) (SPNU197E) 97

 CAN Operation Examples
12.3 Receive Mailbox

12.3.1 Configuring Mailboxes for Receive

To configure a mailbox to receive messages, the following steps must be
performed (in this example, mailbox 3):

 1) Disable the mailbox by clearing the corresponding bit in the mailbox
enable (CANME) register.

Clear ME.3 = 0

 2) Write the selected identifier into the corresponding MID register. The
identifier extension bit must be configured to fit the expected identifier. If
the acceptance mask is used, the acceptance mask enable (AME) bit
must be set (MID.30 = 1). For example:

Write MID(3) = 0x4f780000

 3) For HECC only: If the AME bit is set to 1, the corresponding acceptance
mask must be programmed.

For the SCC: The acceptance masks must be programmed during the
initialization phase. (See Section 3.12.1 on page 3-86.) For example:

Write LAM(3) = 0x03c0000.

 4) Configure the mailbox as a receive mailbox by setting the corresponding
flag in the mailbox direction register (MD.3 = 1). Make sure no other bits
in this register are affected by this operation.

 5) If data in the mailbox is to be protected, the overwrite protection control
register (CANOPC) should be programmed now. This protection is useful
if no message must be lost. If OPC is set, the software has to make sure
that an additional mailbox (buffer mailbox) is configured to store 'overflow'
messages. Otherwise messages can be lost without notification.

Write OPC.3 = 1

 6) Enable the mailbox by setting the appropriate flag in the mailbox enable
register (CANME). This should be done by reading CANME, and writing
back (CANME |= 0x0008) to make sure no other flag has changed
accidentally.

The object is now configured for the receive mode. Any incoming message
for that object is handled automatically.
98

CAN Operation Examples
12.3.2 Receiving a Message

This example uses message object 3. When a message is received, the
corresponding flag in the receive message pending register (CANRMP) is set
to 1 and an interrupt may be initiated. The CPU may then read the message
from the mailbox RAM. Before the CPU reads the message from the mailbox,
it should first clear the RMP bit (RMP.3 = 1). The CPU should also check the
receive message lost flag RML.3 = 1. Depending on the application, the CPU
has to decide how to handle this situation.

After reading the data, the CPU needs to check that the RMP bit has not been
set again by the module. If the RMP bit has been set to 1, the data may have
been corrupted. The CPU needs to read the data again because a new
message was received while the CPU was reading the old one.

12.3.3 Handling of Overload Situations

If the CPU is not able to handle important messages fast enough, it may be
advisable to configure more than one mailbox for that identifier. Here is an
example where the objects 3, 4, and 5 have the same identifier and share the
same mask. For the SCC, the mask is LAM(3). For the HECC, each object
has its own LAM: LAM(3), LAM(4), and LAM(5), all of which need to be
programmed with the same value.

To make sure that no message is lost, objects 4 and 5 set the OPC flag, which
will prevent unread messages from being overwritten. If the CAN module
needs to store a received message, it will first check mailbox 5. If the mailbox
is empty, the message is stored there. If the RMP flag of object 5 is set
(mailbox occupied), the CAN module will check the condition of mailbox 4. If
that mailbox is also busy, the module will check in mailbox 3 and store the
message there since the OPC flag is not set for mailbox 3. It also sets the
RML flag of object 3, which may initiate an interrupt.

It also may be advisable to have object 4 generate an interrupt telling the CPU
to read mailboxes 4 and 5 at once. This technique is also useful for messages
that require more than 8 bytes of data (i.e., more than one message). In this
case, all data needed for the message can be collected in the mailboxes and
be read at once.

12.4 Handling of Remote Frame Mailboxes

There are two functions for remote frame handling. One is a request by the
module for data from another node, the other is a request by another node for
data that the module needs to answer.
Controller Area Network (CAN) (SPNU197E) 99

 CAN Operation Examples
12.4.1 Requesting Data From Another Node

To request data from another node, the object is configured as receive
mailbox. (See Section 3.12.3.1 on page 3-89.) Using object 3 for this
example, the CPU needs to do the following:

 1) Set the RTR bit in the message control field register (CANMCF) to 1.

Write MCF(3) = 0x12

 2) Write the correct identifier into the message identifier register (MID).

Write MID(3) = 0x4f780000

 3) Set the TRS flag for that mailbox. Since the mailbox is configured as
receive, it will only send a remote request message to the other node.

Set TRS.3 = 1

 4) Now, the module stores the answer in that mailbox and sets the RMP bit
when it is received. This action may initiate an interrupt. Also, make sure
no other mailbox has the same ID.

Wait for RMP.3 = 1

 5) Now read the received message as explained in Section 3.12.3.2 on
page 3-91.

12.4.2 Answering a Remote Request

 1) The object needs to be configured as a transmit mailbox, as explained in
Section 3.12.2.1 on page 3-88 steps 1 to 4.

 2) The auto answer mode (AAM) (MID.29) bit must be set in the MID
register before the mailbox is enabled.

MID(1) = 0x35ac0000

 3) The data field must be updated.

MDL(1) = xxxx0000h

 4) Now the mailbox can be enabled by setting the ME flag to 1.

ME.1 = 1

 5) When a remote request is received from another node, the TRS flag is
set automatically and the data is transmitted to that node. The identifier
of the received message and the transmitted message are the same.

 6) After transmission of the data, the TA flag is set. The CPU may then
update the data.

Wait for TA.1 = 1
100

CAN Operation Examples
12.4.3 Updating the Data Field

To update the data of an object that is configured in auto answer mode, the
following steps need to be performed. This sequence can also be used to
update the data of an object configured in normal transmission with TRS flag
set.

 1) Set the change data request (CDR) (MC.8) bit and the mailbox number
(MBNR) of that object in the master control register (CANMC). This tells
the CAN module that the CPU wants to change the data field. For
example, for object 1:

Write MC = 0x0000101

 2) Write the message data into the mailbox data register. For example:

Write MDL(1) = xxxx0000h

 3) Clear the CDR bit (MC.8) to enable the object.

Write MC = 0x00000000

12.5 Interrupt Handling

The CPU is interrupted by asserting one of the two interrupt lines. After
handling the interrupt, which should generally also clear the interrupt source,
the interrupt flag must be cleared by the CPU. To do this, the interrupt flag
must be cleared in the CANGIF0 or CANGIF1 register by writing a 1 to the
interrupt flag. This also releases the interrupt line if no other interrupt is
pending.

12.5.1 Configuring for Interrupt Handling

To configure for interrupt handling, the mailbox interrupt level register
(CANMIL), the mailbox interrupt mask register (CANMIM), and the global
interrupt mask register (CANGIM) need to be configured. The steps to do this
are described below:

 1) Write the CANMIL register. This defines whether a successful
transmission will assert interrupt line 0 or 1. For example, CANMIL =
0xFFFFFFFF will set all mailbox interrupts to level 1.

 2) Configure the mailbox interrupt mask register (CANMIM) to mask out the
mailboxes that should not cause an interrupt. This register could be set
to 0xFFFFFFFF, which enables all mailbox interrupts. Mailboxes that are
not used will not cause any interrupts anyhow.

 3) Now configure the CANGIM register. The flags AAIM, WDIM, WUIM,
BOIM, EPIM, and WLIM (GIM.14-9) should always be set (enabling these
interrupts). In addition, the SIL (GIM.2) bit may be set to have the global
Controller Area Network (CAN) (SPNU197E) 101

 CAN Operation Examples
interrupts on another level than the mailbox interrupts. Both the I1EN
(GIM.1) and I0EN (GIM.0) flags should be set to enable both interrupt
lines. The flag RMLIM (GIM.11) may also be set depending on the load
of the CPU.

This configuration puts all mailbox interrupts on line 1 and all system
interrupts on line 0. Thus, the CPU can handle all system interrupts (which
are always serious) with high priority, and the mailbox interrupts (on the other
line) with a lower priority. All messages with a high priority can also be
directed to the interrupt line 0.

12.5.2 Handling Mailbox Interrupts

There are three interrupt flags for mailbox interrupts. These are listed below:

GMIF0/GMIF1: One of the objects has received or transmitted a message.
The number of the mailbox is in MIV0/MIV1(GIF0.4-0/GIF1.4-0). The normal
handling routine is as follows:

 1) Do a half-word read on the GIF register that caused the interrupt. If the
value is negative, a mailbox caused the interrupt. Otherwise, check the
AAIF0/AAIF1 (GIF0.14/GIF1.14) bit (abort-acknowledge interrupt flag) or
the RMLIF0/RMLIF1 (GIF0.11/GIF1.11) bit (receive-message-lost
interrupt flag). Otherwise, a system interrupt has occurred. In this case,
each of the system-interrupt flags must be checked.

 2) If the RMLIF (GIF0.11) flag caused the interrupt, the message in one of
the mailboxes has been overwritten by a new one. This should not
happen in normal operation. The CPU needs to clear that flag by writing
a 1 to it. The CPU must check the receive-message-lost register (RML)
to find out which mailbox caused that interrupt. Depending on the
application, the CPU has to decide what to do next. This interrupt comes
together with an GMIF0/GMIF1 interrupt.

 3) If the AAIF (GIF.14) flag caused the interrupt, a send transmission
operation was aborted by the CPU. The CPU should check the abort
acknowledge register (AA.31-0) to find out which mailbox caused the
interrupt and send that message again if requested. The flag must be
cleared by writing a 1 to it.

 4) If the GMIF0/GMIF1 (GIF0.15/GIF1.15) flag caused the interrupt, the
mailbox number that caused the interrupt can be read from the MIV0/
MIV1 (GIF0.4-0/GIF1.4-0) field. This vector may be used to jump to a
location where that mailbox is handled. If it is a receive mailbox, the CPU
should read the data as described above and clear the RMP.31-0 flag by
writing a 1 to it. If it is a send mailbox, no further action is required, unless
the CPU needs to send more data. In this case, the normal send
procedure as described above is necessary. The CPU needs to clear the
transmit acknowledge bit (TA.31-0) by writing a 1 to it.
102

	TMS470R1x Controller Area Network (CAN) Reference Guide
	Important Notice
	REVISION HISTORY
	Contents
	Figures
	Tables

	Controller Area Network (CAN)
	1 CAN Overview
	1.1 CAN Protocol Processor Features
	1.2 SCC Features
	1.3 HECC Features

	2 Overview of the CAN Network and Module
	2.1 CAN Protocol Overview
	2.2 CAN Controller Overview

	3 Standard CAN Controller (SCC) Overview
	3.1 SCC Memory Map
	3.2 SCC Registers

	4 High-End CAN Controller (HECC) Overview
	4.1 SCC-Compatible Mode
	4.2 HECC Memory Map
	4.3 HECC Registers

	5 Message Objects
	5.1 SCC Message Objects
	5.2 HECC Message Objects
	5.3 CAN Message Mailbox
	5.3.1 Transmit Mailbox
	5.3.2 Receive Mailbox
	5.3.3 Handling of Remote Frames
	5.3.4 CPU Message Mailbox Access
	5.3.5 Message Identifier Register (MID)
	5.3.6 Message Control Field Register (MCF)
	5.3.7 Message Data Registers (MDL, MDH)

	5.4 CAN Acceptance Filter
	5.4.1 SCC Acceptance Filtering
	5.4.2 HECC Acceptance Filtering
	5.4.3 Local Acceptance Mask Register (LAM)

	6 CAN Module Initialization
	6.1 CAN Bit-Timing Configuration
	6.2 CAN Bit Rate Calculation

	7 CAN Interrupts
	7.1 Interrupts Scheme
	7.2 Message Object Interrupt

	8 CAN Power-Down Mode
	8.1 Local Power Down
	8.2 Global Power Down

	9 Timer Management Unit
	9.1 Time Stamp Functions
	9.2 Local Network Time Register (LNT)
	9.3 Message Object Time Stamp Registers (MOTS)

	10 Time-Out Functions
	10.1 Message Object Time-Out Registers (MOTO)
	10.2 Time Out Control-Register (TOC)
	10.3 Time Out Status Register (TOS)

	11 CAN SCC/HECC Control Registers
	11.1 Mailbox Enable Register (CANME)
	11.2 Mailbox Direction Register (CANMD)
	11.3 Transmission Request Set Register (CANTRS)
	11.4 Transmission Request Reset Register (CANTRR)
	11.5 Transmission Acknowledge Register (CANTA)
	11.6 Abort Acknowledge Register (CANAA)
	11.7 Receive Message Pending Register (CANRMP)
	11.8 Receive Message Lost Register (CANRML)
	11.9 Remote Frame Pending Register (CANRFP)
	11.10 Global Acceptance Mask Register (CANGAM)
	11.11 Master Control Register (CANMC)
	11.12 Bit-Timing Configuration Register (CANBTC)
	11.13 Error and Status Register (CANES)
	11.14 CAN Error Counter Registers (CANTEC/CANREC)
	11.15 Global Interrupt Flag Registers (CANGIF0/CANGIF1)
	11.16 Global Interrupt Mask Register (CANGIM)
	11.17 Mailbox Interrupt Mask Register (CANMIM)
	11.18 Mailbox Interrupt Level Register (CANMIL)
	11.19 Overwrite Protection Control Register (CANOPC)
	11.20 CAN I/O Control Registers (CANTIOC, CANRIOC)

	12 CAN Operation Examples
	12.1 Configuration of SCC or HECC
	12.2 Transmit Mailbox
	12.2.1 Configuring a Mailbox for Transmit
	12.2.2 Transmitting a Message

	12.3 Receive Mailbox
	12.3.1 Configuring Mailboxes for Receive
	12.3.2 Receiving a Message
	12.3.3 Handling of Overload Situations

	12.4 Handling of Remote Frame Mailboxes
	12.4.1 Requesting Data From Another Node
	12.4.2 Answering a Remote Request
	12.4.3 Updating the Data Field

	12.5 Interrupt Handling
	12.5.1 Configuring for Interrupt Handling
	12.5.2 Handling Mailbox Interrupts

