
SPRABF3—November 2010  Connecting AIF2 to FFTC Guide for KeyStone Devices Application Report Page 1 of 38
Submit Documentation Feedback 

SPRABF3—November 2010
Application Report

Connecting AIF2 to FFTC Guide for KeyStone Devices
High-Performance and Multicore Processors

Abstract/Purpose/Benefit
The purpose of the document is to explain how to configure AIF2 and FFTC so that 
they can work together seamlessly in any usage scenarios.

Contents
1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Basic Elements for Using PKTDMA with KeyStone Devices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3 AIF2 Packet for Antenna Traffic  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 AIF2 Packet Descriptor Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Setting Up AIF2 Ingress Rx FDQ Packet Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 Setting Up AIF2 Egress Packet Descriptors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 FFTC Packet Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.1 FFTC Packet Descriptor Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Setting Up FFTC Tx Packet Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 Setting Up FFTC Rx FDQ Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 High Level View of Data Flow Between AIF2 and FFTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.1 Inbound Data Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Outbound Data Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6 Connecting AIF2 and FFTC for Inbound Antenna Traffic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.1 Basic Pass-Through Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.2 Intermediate Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.3 Advanced Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.4 Example LTE PUSCH and PUCCH Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7 Connecting FFTC and AIF2 for Outbound Antenna Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8 Special Notes on Using AIF2 DIO Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

List of Tables 
Table 1 Bit Description for TX PS Flags. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 2 PS Control Header Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 3 PS Local Configuration Words. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

List of Figures 
Figure 1 AIF2 Packet Format for Antenna Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 2 FFTC Input Packet Monolithic Packet Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 3 FFTC Input Packet Host Packet Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 4 FFTC input packet host packet example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 5 Inbound Data Flow Between AIF2 and FFTC with Direct Connection . . . . . . . . . . . . . . . . . . . . 13
Figure 6 Inbound Data Flow Between AIF2 and FFTC Without Direct Connection . . . . . . . . . . . . . . . . 14
Figure 7 Outbound Data Flow Between FFTC and AIF2  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 8 Reconstruct FFTC Input Packet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 9 Single Queue DSP Intervention Data Path  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?


Page 2 of 38 Connecting AIF2 to FFTC Guide for KeyStone Devices Application Report SPRABF3—November 2010
Submit Documentation Feedback 

www.ti.com

Figure 10 Multi-Queue DSP Intervention Free Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 11 Example Usage of FFTC for LTE PUSCH and PUCCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 12 Constructing Packets in DIO Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
http://www.ti.com


SPRABF3—November 2010  Connecting AIF2 to FFTC Guide for KeyStone Devices Application Report Page 3 of 38
Submit Documentation Feedback 

1 Introductionwww.ti.com

1 Introduction
The Antenna Interface Subsystem (AIF2) and Fast Furrier Transform Coprocessor 
Subsystem (FFTC) are useful for OFDM-based applications like the LTE physical layer. 
Both of the peripherals are Packet DMA (PKTDMA) peripherals and data need to be 
passed in and transferred out by the PKTDMA engine and managed by the Queue 
Manager Subsystem (QMSS) queues. This application note focuses on how to 
configure AIF2 and FFTC so that they can work together seamlessly. The description is 
focused on how to set up the PKTDMA from a high-level perspective, which is 
comprised of the QMSS and PKTDMA subsystems. It is beyond the scope of this 
document to configure registers in these peripherals.

2 Basic Elements for Using PKTDMA with KeyStone Devices
When PKTDMA is used, it involves setting up several elements. On the transmit side, 
it needs to set up the Tx PKTDMA channel, Tx queue, and Tx completion queue. On 
the receive side, it needs to set up the Rx PKTDMA channel, Rx flow, Rx free descriptor 
queue (FDQ) and Rx queue. In this application note, Tx queue and input queue are 
used interchangeably, and Rx queue, destination queue, and output queue are used 
interchangeably.

When a job needs to be submitted to a PKTDMA peripheral, a packet descriptor is 
prepared and pushed into the Tx queue of the peripheral. The Tx PKTDMA will pop 
the descriptor from the Tx queue, stream the data, and recycle the descriptor to the Tx 
completion queue. Often the packet descriptors can be prepared in advance and held 
in a queue, which we call Tx free descriptor queue (FDQ) in the document. When a 
packet is pushed to a Tx queue, it is required that packet descriptor size is pushed 
together with the descriptor address using the 4 LSB of the descriptor address. 
However, when the Tx PKTDMA recycles the packet descriptor to the Tx completion 
queue, the size information is not pushed to the Tx completion queue. Therefore the 
Tx completion queue can not be one of the Tx queues. But the Tx completion queue 
can still act as a holding queue for free descriptors. Throughout this document, we 
interchangeably use Tx completion queue and Tx FDQ whenever there is no confusion.

For receive, the Rx PKTDMA uses a flow which tells the Rx PKTDMA how to process 
the Rx packet. Each PKTDMA peripheral supports a pre-defined number of flows and 
the flow setups are stored in the flow table. When PKTDMA needs to transfer a packet, 
the Rx PKTDMA will use the flow ID to find the Rx FDQ associated with the flow in 
the flow table, pop one or more packet descriptors if necessary when host packet is 
used, stream the data and push the packet descriptor to the Rx queue. Usually the flow 
ID comes from the packet descriptor that is submitted to the Tx queue. For FFTC it is 
the src_tag_lo field in the Tx packet descriptor that is used as flow ID. But for AIF2 the 
flow ID doesn’t come from the packet descriptor, instead it has a one to one mapping 
with the PKTDMA channel number. Rx FDQ needs to be populated before Rx 
PKTDMA can send packets out.

QMSS supports a total of 8192 queues, among which Tx queues are designated queues 
for PKTDMA peripherals and they are hard allocated at time of chip layout. All the 
other queues are available for general purpose use, although some can have special 
functionality associated with them like accumulation. The usage of them depends on 
the application. Rx FDQ and Tx completion queue can be any queue other than Tx 
queues, and Rx queue can be any queue including Tx queues if it is intended to forward 
the packet to another PKTDMA peripheral.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
http://www.ti.com


Page 4 of 38 Connecting AIF2 to FFTC Guide for KeyStone Devices Application Report SPRABF3—November 2010
Submit Documentation Feedback 

3 AIF2 Packet for Antenna Traffic www.ti.com

3 AIF2 Packet for Antenna Traffic
3.1 AIF2 Packet Descriptor Format

AIF2 can be set up to work in DIO mode or packet mode. DIO mode is not the focus 
of this application note, but it will be briefly discussed later. Although AIF2 supports 
both monolithic packet and host mode packet types, when AIF2 is used to transfer 
antenna traffic, it is mandatory to use the monolithic packet type. The AIF2 packet 
format for antenna data is shown in Figure 1.
Figure 1 AIF2 Packet Format for Antenna Data

The highlighted words in red contain protocol specific (PS) data for AIF2. AIF2 can 
have another form of protocol specific data which contains OBSAI address and 
ingress/egress indication, which is beyond the scope of this application note.

One important thing to note here, from the PKTDMA standpoint the monolithic 
packet format can be different than what is shown in Figure 1, because optional EPIB 
and NULL regions may be present in the packet descriptor. However for performance 
reasons, it is strongly recommended to use the packet format shown in Figure 1 for 
AIF2 antenna traffic, especially with egress antenna traffic. When there are a large 
number of antenna carriers to support, it is strongly recommended to set 
tx_AIF_mono_mode in the Tx PKTDMA channel configuration of AIF2 to guarantee 
the real time requirement for DMA. When tx_AIF_mono_mode is set, the packet 
descriptor is assumed to have the fixed form shown in Figure 1, which means 12 bytes 
of the mandatory header for a monolithic packet, 4 bytes of the protocol specific data, 
and payload starts at an offset of 16 bytes from the beginning of the packet descriptor. 

Packet Id, Packet Type, Data Offset, Packet Length

Source Tag Hi, Source Tag Lo, Dest Tag Hi, Dest Tag Lo

EPIB, PS Word Count, Error Flag, PS Flag, Return Policy, 
Packet Return Q Mgr #, Packet Return Q #

AxC Number, Symbol number, Ingress/ Egress

Payload

0

4

8

16

12

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
http://www.ti.com


SPRABF3—November 2010  Connecting AIF2 to FFTC Guide for KeyStone Devices Application Report Page 5 of 38
Submit Documentation Feedback 

3 AIF2 Packet for Antenna Trafficwww.ti.com

Tx PKTDMA will fetch the packet descriptor and three quad-words of the payload 
together in one transaction of four quad-words (64 bytes) instead of fetching the packet 
descriptor and the payload in separate transactions as it normally does when 
tx_AIF_mono_mode is not set. 

Another point of interest, AIF2 does not necessarily guarantee that the packets in the 
output queue are in antenna order. AIF2 processes the packets in the order of arrival. 
When multiple antenna carriers arrive at different times, the order of packets in the 
output queue will be the same as the arrival order. When multiple antenna carriers 
arrive at the same time, if they are within the same AIF2 link, as the data of antenna 
carriers are time-division multiplexed together, the order of packets in the output 
queue will be the same as the order of how they are multiplexed. If they are across 
multiple AIF2 links, because of the timing variations from link to link, it is not 
guaranteed which link will be processed first. Therefore, the order of the output packets 
cannot be guaranteed. 

3.2 Setting Up AIF2 Ingress Rx FDQ Packet Descriptors
On ingress traffic, it is necessary to set up an Rx FDQ per flow. Different flows can use 
different Rx FDQs or share the same Rx FDQ queue which can be set in the flow table. 
Depending on the application, different fields of the packet descriptor in the Rx FDQ 
need to be set accordingly. 

Due to the Rx overwrite feature, only the fields that will not be overwritten by Rx 
PKTDMA need to be set, which include:

• Return push policy
• Packet return queue mgr #
• Packet return queue #
• Source tag hi (configurable)
• Source tag lo (configurable)
• Dest Tag hi (configurable)
• Dest tag lo (configurable)

When the AIF2 output queue is connected directly to another PKTDMA peripheral’s 
input queue, then the first 3 fields in the above list have to be set so that the Tx 
PKTDMA of the next PKTDMA peripheral knows how to recycle the packet 
descriptor. Otherwise, the application code can make the recycle decision independent 
of what is set in the descriptor. For the next 4 fields, the flow configuration determines 
whether or not each is independently overwritten. It is only when the Rx overwrite 
feature is not configured then the value set in the packet descriptor in Rx FDQ will 
appear in the Rx packet. However AIF2 doesn’t use those 4 fields set in the packet 
descriptors in Rx FDQ.

All the other fields shown in Figure 1 in the Rx packet will be overwritten by the Rx 
PKTDMA. Note if the flow is configured to have EPIB in the Rx packet, since AIF2 
doesn’t provide any EPIB information, the EPIB fields in the Rx packet will be filled 
with 0s. In other words, the EPIB information is either not present or all 0s in the AIF2 
Rx packets.

The final values appearing in Rx packet are a result of the joint configuration of Rx FDQ 
packet descriptor and the flow table. 

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
http://www.ti.com


Page 6 of 38 Connecting AIF2 to FFTC Guide for KeyStone Devices Application Report SPRABF3—November 2010
Submit Documentation Feedback 

3 AIF2 Packet for Antenna Traffic www.ti.com

3.3 Setting Up AIF2 Egress Packet Descriptors
For egress packet, the mandatory fields are:

• Packet ID
• Data offset
• Packet length
• Protocol specific valid word count
• Return push policy
• Packet return queue mgr #
• Packet return queue #
• AxC number
• Symbol number
• Egress

It is fine to set all the necessary fields in the packet descriptor shown in Figure 1 based 
on the application requirements. However the following fields are not used by AIF2:

• Packet type
• Source tag hi 
• Source tag lo
• Dest Tag hi
• Dest tag lo
• EPIB info block present flag
• Error flags
• Protocol specific flags
• EPIB info if present
• PS words more than 4 bytes

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
http://www.ti.com


SPRABF3—November 2010  Connecting AIF2 to FFTC Guide for KeyStone Devices Application Report Page 7 of 38
Submit Documentation Feedback 

4 FFTC Packet Formatwww.ti.com

4 FFTC Packet Format
4.1 FFTC Packet Descriptor Format

FFTC supports both monolithic and host mode packets. The input and output can 
choose to use either mode independently. It is up to the application to choose which 
packet mode to use.

The monolithic input packet format is shown in Figure 2.
Figure 2 FFTC Input Packet Monolithic Packet Format

Packet Id, Packet Type, Data Offset, Packet Length

Source Tag Hi, Source Tag Lo , Dest Tag Hi, Dest Tag Lo

EPIB, PS Word Count, Error Flag , PS Flag, Return Policy, 
Packet Return Q Mgr#, Packet Return Q #

Control Header

0

4

8

12

Local Config 1

Local Config 5

Local Config 4

Local Config 3

Local Config 2

DFT Size List Group 0

DFT Size List Group N

PS Pass through 1

PS Pass through N

Payload

FFTC 
PS 

Words

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
http://www.ti.com


Page 8 of 38 Connecting AIF2 to FFTC Guide for KeyStone Devices Application Report SPRABF3—November 2010
Submit Documentation Feedback 

4 FFTC Packet Format www.ti.com

The highlighted fields in red are protocol-specific words for FFTC packet. All of them 
are optional and the application can choose to use them selectively. If any are present 
they should appear in the order depicted. All five of the local configuration words need 
to be specified if local configuration words are present. Control header specifies 
whether or not local configuration words, DFT size list and pass through fields are 
present. 

However, the pass-through field can also be present without control header in the 
packet. Whether or not the control header is present is specified by the protocol specific 
flag (PS flag) in word 2 of the monolithic packet. For easy reference here, several tables 
regarding the PS words are taken from the FFTC user’s guide. The PS flag is given in 
Table 1.

Table 1 Bit Description for TX PS Flags

Control header is given in Table 2.

Table 2 PS Control Header Word

Bit Field Description
0 Header Present 0:  Control header not present in packet.

1:  Control header present in packet.
1 Debug Halt 0: Do nothing

1: Issue a halt
2 EOP Interrupt 0: Do nothing

1: FFTC generates the EOP interrupt.
3 Reserved
End of Table 1

Bit Field Description
31:29 RESERVED
28:24 PS_field_length The length of the pass-through data, in 32-bit words (1 

to 4)
23:21 RESERVED
20:16 DFT_sizes_list_length Indicates the length of the DFT sizes list in 32-bit words 

(1 to 26)
15:3 RESERVED
2 PS pass-through present Indicates that there is a protocol specific field that 

should be forwarded to the receiver

      0 – Pass-through word not present

      1 – Pass-through word present
1 DFT sizes list present Indicates that the list of DFT sizes is present

      0 – DFT sizes list not present.

      1 – DFT sizes list present.
0 Local configuration data present Indicates that the five local control registers are 

present. If present, configuration data is always 5 
32-bit words.

      0 – Configuration word not present.

      1 – Configuration word present.
End of Table 2

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
http://www.ti.com


SPRABF3—November 2010  Connecting AIF2 to FFTC Guide for KeyStone Devices Application Report Page 9 of 38
Submit Documentation Feedback 

4 FFTC Packet Formatwww.ti.com

If local configuration words are present, then all 5 of them must be specified. Each word 
maps to a corresponding FFTC configuration register. The mapping of the words and 
registers are shown in Table 3. Although the local configuration words belong to a 
packet, the configuration changes the register setting for the input queue to which the 
packet is submitted. Therefore it affects all the packets submitted to that queue 
afterwards until the register setting is changed again either directly or through the local 
configuration words of another packet submitted to the queue.

Table 3 PS Local Configuration Words

The host packet format is shown in Figure 3.
Figure 3 FFTC Input Packet Host Packet Format

The highlighted fields are protocol-specific words, which are the same as in the 
monolithic packet, so it is condensed into one block for simplicity of the picture. There 
are two choices for where the PS words can be in host mode, at the end of the packet 
descriptor or at the start of payload (SOP), as shown by the dashed line rectangle boxes. 

Word Register
1 FFTC_QUEUE_x_DESTINATION_QUEUE_AND_SHIFTING REGISTER
2 FFTC_QUEUE_x_SCALING _REGISTER
3 FFTC_QUEUE_x_CYCLIC_PREFIX_REGISTER
4 FFTC_QUEUE_x_CONTROL_REGISTER
5 FFTC_QUEUE_x_LTE_FREQUENCY_SHIFT_REGISTER
End of Table 3

Packet Id, Packet Type, PS Region Location , Packet 
Length

Source Tag Hi, Source Tag Lo , Dest Tag Hi, Dest Tag Lo

EPIB, PS Word Count , Error Flag , PS Flag, Return Policy, 
Packet Return Q Mgr#, Packet Return Q #

Buffer 0 Length

0

4

8

12

Buffer 0 Pointer

FFTC PS Words

Original Buffer 0 Pointer

Completion Tag , Original Buffer 0 Length

Next Descriptor Pointer

16

20

24

28

32

Payload

FFTC PS Words

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
http://www.ti.com


Page 10 of 38 Connecting AIF2 to FFTC Guide for KeyStone Devices Application Report SPRABF3—November 2010
Submit Documentation Feedback 

4 FFTC Packet Format www.ti.com

When it is at the end of the packet descriptor, it must be there in its entirety. When it 
is at the SOP, due to the nature of the host mode packet, it doesn’t have to be co-located 
with the payload. However it has to be in one contiguous buffer in its entirety. This is 
illustrated in Figure 4. 

The example shown in Figure 4 has one buffer for PS words, and three parts of payload 
buffer. The blue arrows show the linked packet descriptors and buffer descriptors. The 
red arrows show the buffer pointers. Although FFTC will use the existing register 
configurations to process the input packet unless the register setting is changed directly 
or through the local configuration words of the input packet, this feature can be useful 
when the PS words are the same for many packets and homogeneous processing of 
them is desired. Therefore there is no need to repeat PS words in every packet so as to 
save some memory. This feature is also particularly useful when connecting AIF2 and 
FFTC in the advanced use case without DSP intervention, which will be explained later.
Figure 4 FFTC input packet host packet example

4.2 Setting Up FFTC Tx Packet Descriptor
For an input packet to FFTC, the mandatory fields to be set are:

• Packet ID
• Packet length
• Source tag lo – if Qx_FLWID_OVRD is not set
• Protocol specific valid word count
• Protocol specific flags
• Return push policy
• Packet return queue mgr #
• Packet return queue #

If the packet is a host mode packet, the additional mandatory fields for the input packet 
include:

• Protocol specific region location – if PS words are present
• Return policy
• Buffer length
• Buffer pointer
• Next descriptor buffer

PD BD BD

P
ay

lo
ad

P
ar

t1

P
ay

lo
ad

P
ar

t0P
S

w
or

ds
P

ar
t0

BD

P
ay

lo
ad

P
ar

t2

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
http://www.ti.com


SPRABF3—November 2010  Connecting AIF2 to FFTC Guide for KeyStone Devices Application Report Page 11 of 38
Submit Documentation Feedback 

4 FFTC Packet Formatwww.ti.com

The following fields can be set in the Tx packet which are not used by FFTC but can be 
configured to pass through to Rx packet

• Packet type
• Source tag hi
• Dest tag hi
• Dest tag lo

Note that source tag lo field can also be configured to pass through to Rx packet. The 
following fields are dropped by FFTC:

• EPIB info block present
• Error flags
• EPIB info
• Completion tag
• Original buffer length – if host packet 
• Original buffer pointer – if host packet

Note that although original buffer length and original buffer pointer fields are not used 
by FFTC for Tx packet, it is a good coding practice to fill them as they will not be 
overwritten. Therefore it may be useful sometime or helpful for debugging purposes.

4.3 Setting Up FFTC Rx FDQ Descriptors
It is necessary to set up at least one Rx FDQ for each flow. Different flows can have 
different Rx FDQs or share the same Rx FDQ queue which can be set in the flow table. 
Which flow to use can be different from packet to packet or on an input queue basis. 
For each input queue, the Qx_FLWID_OVRD bit of the 
FFTC_CONFIGURATION_REGISTER can be set to configure the flow used. When 
Qx_FLWID_OVRD is set, the incoming queue number will be used as the flow ID. If 
the Qx_FLWID_OVRD is not set, then the source tag lo field in the Tx packet will be 
used as the flow ID. 

The mandatory fields to set in the packet descriptor if host packet is used include:
• Original buffer length – if host packet 
• Original buffer pointer – if host packet

Due to Rx overwrite, only the fields that will not be overwritten by Rx PKTDMA need 
to be set, which include:

• Return policy – if host packet
• Return push policy
• Packet return queue mgr #
• Packet return queue #
• Source tag hi (configurable)
• Source tag lo (configurable)
• Dest Tag hi (configurable)
• Dest tag lo (configurable)

When the FFTC output queue is connected to another PKTDMA peripheral’s input 
queue directly, then the first 3 (or 4 if host packet) fields in the above list have to be set 
so that the Tx PKTDMA of the next PKTDMA peripheral knows how to recycle the 
packet descriptor. Otherwise, the application can make the recycle decision 

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
http://www.ti.com


Page 12 of 38 Connecting AIF2 to FFTC Guide for KeyStone Devices Application Report SPRABF3—November 2010
Submit Documentation Feedback 

4 FFTC Packet Format www.ti.com

independent of what is set in the descriptor. For the next 4 fields, the flow configuration 
determines whether or not each is independently overwritten. It is only when the Rx 
overwrite feature is not configured then the value set in the packet descriptor in Rx 
FDQ will appear in the Rx packet. However FFTC doesn’t use those 4 fields set in the 
packet descriptors in Rx FDQ. 

If the flow is configured to have EPIB in the Rx packet, since FFTC doesn’t provide any 
EPIB information, the EPIB fields in the Rx packet will be filled with 0s. In other words, 
the EPIB information is either not present or all 0s in the FFTC Rx packets.

The final value which will appear in Rx packet is a result of joint configuration of Rx 
FDQ packet descriptor and the flow table. 

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
http://www.ti.com


SPRABF3—November 2010  Connecting AIF2 to FFTC Guide for KeyStone Devices Application Report Page 13 of 38
Submit Documentation Feedback 

5 High Level View of Data Flow Between AIF2 and FFTCwww.ti.com

5 High Level View of Data Flow Between AIF2 and FFTC
5.1 Inbound Data Flow

When antenna data arrives at AIF2, the Rx PKTDMA of AIF2 will pop a packet 
descriptor from the Rx free descriptor queue (FDQ) for the antenna carrier, fill the data 
in the buffer and push the packet descriptor in the output queue when data is complete 
for the packet. AIF2 can support up to 128 antenna carriers and each antenna carrier 
corresponds to one PKTDMA channel and one flow. 

Since FFTC is also a peripheral using PKTDMA, it is possible to connect the AIF2 and 
FFTC directly through queues. In this case, the output queue of AIF2 can be specified 
as one of the input queues of FFTC. When AIF2 pushes the packet descriptor into the 
queue, it triggers the QPEND status of the corresponding queue. Then the Tx 
PKTDMA of FFTC will pop the descriptor from the input queue and start transferring 
the data. The FFTC then begins to process the data. When the processing completes, 
the Rx PKTDMA will pop a descriptor from FFTC Rx FDQ, transfer the results into the 
buffer and push the packet descriptor to the FFTC output queue. 

The output queue of FFTC can be further processed by other PKTDMA modules or the 
DSP. The data flow is illustrated in Figure 5. The blue curved arrows indicate the 
possible routes for recycling. After the packet in the input queue of FFTC is retrieved 
by FFTC Tx PKTDMA, if there is no other module that needs to use the same data, then 
the packet can be set to return to the AIF2 Rx FDQ which is performed automatically 
by FFTC Tx PKTDMA. Depending on the next stage of processing after the FFTC, 
either the DSP needs to recycle the FFTC output queue back to the FFTC Rx FDQ, or 
the next PKTDMA module can do it automatically.

Figure 5 Inbound Data Flow Between AIF2 and FFTC with Direct Connection

Since it is not always desirable to have the output queue of AIF2 be the same as the input 
queue of FFTC, they can be set to use different queues. This is shown in Figure 6. In this 
case, when a packet descriptor is pushed into the AIF2 output queue, the packet needs 
to be reconstructed by popping a descriptor from the FFTC Tx FDQ, linking the data 
buffer to the received antenna data then pushing the packet into a FFTC input queue. 
This can be done using the DSP or using other methods, which will be explained later. 

When it comes to recycling, AIF2 output queue, FFTC input queue and FFTC output 
queue all need to be recycled. The blue curved arrows in Figure 6 indicate the possible 
recycle routes. In this figure, only FFTC input queue can be automatically recycled by 
FFTC Tx PKTDMA. The other two need to be recycled by the DSP or using other 
methods. Because the reconstructed packets are recycled by FFTC Tx PKTDMA while 

AIF2

AIF2 Rx 
FDQ

CDMA

FFTC

FFTC Rx 
FDQ

CDMA
FFTC 

Output Q

AIF 2 
Output Q /

FFTC 
Input Q

FFTC Engine

CPU

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
http://www.ti.com


Page 14 of 38 Connecting AIF2 to FFTC Guide for KeyStone Devices Application Report SPRABF3—November 2010
Submit Documentation Feedback 

5 High Level View of Data Flow Between AIF2 and FFTC www.ti.com

AIF2 output packets are recycled by other methods, the timing of the recycling may not 
be aligned. Therefore it is important to allocate enough descriptors in AIF2 Rx FDQ so 
that it will not starve or the recycled packets will not be overwritten before it is used by 
FFTC.

Figure 6 Inbound Data Flow Between AIF2 and FFTC Without Direct Connection

In AIF2, each antenna carrier corresponds to a separate flow, and each flow can be set 
up to have different Rx FDQs and output queues, they can also be set up to have the 
same Rx FDQ and output queue independently. 

5.2 Outbound Data Flow
On the outbound side, it is the DSP’s responsibility to feed the input queue of FFTC 
either directly or by other mechanisms. For example, the DSP needs to pop a packet 
descriptor from Tx FDQ, configure all the fields of the packet descriptor, prepare the 
payload data, and push the packet descriptor into one of the input queues of FFTC. The 
Tx PKTDMA of FFTC will pop the descriptor, stream the data in and recycle the packet 
descriptor to the queue specified in the packet descriptor. When FFTC is finished 
processing, it pops a packet descriptor from Rx FDQ, fills in the data and deposits the 
packet descriptor into the output queue specified either in the flow table or in the 
packet descriptor. If no other processing is needed before data goes out to the antenna 
interface, then the output queue of FFTC can be one of the input queues of AIF2. AIF2 
can support up to 128 antenna carriers, and each antenna carrier needs to have a 
separate queue on the outbound traffic. After the Tx PKTDMA of AIF2 pops the packet 
from its input queue, it will stream the data out and recycle the packet descriptor to the 
queue specified in the packet descriptor. The blue curved arrows show a sample 
recycling path.

Figure 7 Outbound Data Flow Between FFTC and AIF2

AIF2

AIF2 Rx 
FDQ

CDMA

FFTC

FFTC Rx 
FDQ

CDMA
FFTC 

Output Q

AIF 2 
Output Q

FFTC 
Input Q

FFTC Engine

CPU

FFTC Tx 
FDQ

FFTC

FFTC Rx 
FDQ

CDMA

FFTC 
Output Q

FFTC 
Input Q

FFTC Engine

CPU

FFTC Tx 
FDQ

AIF2

CDMA

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
http://www.ti.com


SPRABF3—November 2010  Connecting AIF2 to FFTC Guide for KeyStone Devices Application Report Page 15 of 38
Submit Documentation Feedback 

6 Connecting AIF2 and FFTC for Inbound Antenna Trafficwww.ti.com

6 Connecting AIF2 and FFTC for Inbound Antenna Traffic
6.1 Basic Pass-Through Usage

This section describes a very basic use case for connecting AIF2 and FFTC on inbound 
traffic. The AIF2 output queue is one of the input queues of FFTC, so they are 
connected directly. As shown in Figure 5, this use case uses 4 logically different kinds 
of queues: AIF2 Rx FDQ, FFTC Rx FDQ, output queue of AIF2 (which is one of the 
input queues of FFTC) and output queue of FFTC. AIF2 Rx FDQ and FFTC Rx FDQ 
can be any queue that is not a Tx queue of a PKTDMA peripheral. The output queue of 
FFTC can be any queue that is not a Tx queue of a PKTDMA peripheral or can be a Tx 
queue of another PKTDMA peripheral if FFTC output is taken and processed by the 
PKTDMA peripheral directly. 

Example 1: One or more antennas direct connection between AIF2 and FFTC 
This example shows how to configure the AIF2 and FFTC such that they can connect 
together through queues. All the antenna carrier output will be directed to a single 
FFTC input queue, be processed in the same way by FFTC, then go to a single 
destination queue.

This example assumes that antenna carrier 1 of AIF2 is used, therefore AIF2 flow 1 is 
used. When there are multiple antenna carriers, more AIF2 flows are used but all flows 
can be configured to have the same parameters. Assume FFTC_A input queue 1 is used 
and FFTC_A flow 1 is used. Note that for FFTC, the input queue and flow don’t 
necessarily have any connection and they can be independently chosen by application. 
Monolithic packets are used for FFTC output.

• AIF2 flow 1 setup
FLOW_TBL *flowPtr;

/* there is PS info in the Rx packet */

flowPtr -> Reg_A.rx_psinfo_present = 1;

/* Rx packet is a monolithic packet, so the Rx FDQ packet descriptors need to be 
monolithic packet type */

flowPtr -> Reg_A.rx_desc_type = 2;

/* payload starts at the offset of 16 bytes in the packet descriptor */

flowPtr -> Reg_A.rx_sop_offset = 16;

/* the output queue of this flow is FFTCA input queue 1 */

flowPtr -> Reg_A.rx_dest_qmgr = (FFTCA_INPUT_Q1 >> 12) & 0x3;

flowPtr -> Reg_A.rx_dest_qnum = FFTCA_INPUT_Q1 & 0x0fff;

/* rx packet descriptor src_tag_lo field is set not to be overwritten by the Rx 
Packet DMA */

flowPtr -> Reg_C.rx_src_tag_lo_sel = 0;

/* this flow uses AIF2_RX_FDQ as the FDQ */

flowPtr -> Reg_E.rx_fdq0_sz0_qmgr = (AIF2_RX_FDQ >> 12) & 0x3;

flowPtr -> Reg_E.rx_fdq0_sz0_qnum = AIF2_RX_FDQ & 0x0fff;

Other fields of the flow table can be cleared to 0. The key thing to note here is that by 
setting rx_src_tag_lo_sel in register C to 0, AIF2 Rx PKTDMA will not overwrite the 
src_tag_lo field specified in the packet descriptor in Rx FDQ. 

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
http://www.ti.com


Page 16 of 38 Connecting AIF2 to FFTC Guide for KeyStone Devices Application Report SPRABF3—November 2010
Submit Documentation Feedback 

6 Connecting AIF2 and FFTC for Inbound Antenna Traffic www.ti.com

• AIF2_RX_FDQ packet descriptor setup
MONOLITHIC_DESCRIPTOR *pdPtr;

/* src_tag_lo specified here will not be overwritten by Rx Packet DMA because it is 
set in the flow register. Since the output queue of AIF2 is the input queue of FFTC, 
src_tag_lo field will be used by FFTC as the flow ID for FFTC which is 1 */

pdPtr -> src_tag_lo = 1;

/* this information is used by FFTC Tx Packet DMA and the value can be set to other 
value which depends on the application */

pdPtr -> ret_push_policy = 0;

/* the packet descriptor will be recycled to AIF2_RX_FDQ by FFTC Tx Packet DMA */

pdPtr -> pkt_return_qmgr = (AIF2_RX_FDQ >> 12) & 0x3;

pdPtr -> pkt_return_qnum = AIF2_RX_FDQ & 0x0fff;

The Rx FDQ can be set up to have as many descriptors as needed based on the 
application. All of them can have the same parameters.

Since in flow setup, it is set not to overwrite the src_tag_lo field. The src_tag_lo field set 
in the packet descriptors in Rx FDQ, which is 1, will be preserved in the AIF2 output 
packet. When this packet is presented to FFTC, FFTC will take the src_tag_lo as the 
flow ID to use. This is one of the methods to configure the FFTC flow ID through the 
AIF2 packet. There are other methods to set this field which will be explained in other 
examples later.

Rx PKTDMA of AIF2 doesn’t need the recycling information. However since the 
output queue of AIF2 is the input queue of FFTC, the Tx PKTDMA of FFTC needs to 
know the recycling policy and which queue to recycle the packet descriptor to. Other 
fields of the packet descriptor will be overwritten by the Rx PKTDMA based on flow 
setup, so it is not necessary to set them here.

Because monolithic packets have packet descriptor headers that are contiguous with 
the data buffer and don’t support linked packets, Rx PKTDMA doesn’t check if the 
buffer is big enough to hold the data. It is up to the application to make sure that the 
buffer is big enough. The maximum allowed payload buffer is 65535 bytes. Rx 
PKTDMA will place the data contiguously in the payload buffer until the end of the 
actual payload or until it reaches 65535 bytes, and writes the actual size to the packet 
length field. 

• FFTC flow 1 setup
FLOW_TBL *flowPtr;

/* there is PS info in the Rx packet, as we want the PS words of AIF2 to be carried 
to the output of FFTC */
flowPtr -> Reg_A.rx_psinfo_present = 1;

/* Rx packet is a monolithic packet, so the Rx FDQ packet descriptors need to be 
monolithic packet type */
flowPtr -> Reg_A.rx_desc_type = 2;

/* payload starts at the offset of 16 bytes in the packet descriptor */
flowPtr -> Reg_A.rx_sop_offset = 16;

/* the output queue of this flow is any desired output queue */
flowPtr -> Reg_A.rx_dest_qmgr = (FFTCA_OUTPUT_Q >> 12) & 0x3;
flowPtr -> Reg_A.rx_dest_qnum = FFTCA_OUTPUT_Q & 0x0fff;

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
http://www.ti.com


SPRABF3—November 2010  Connecting AIF2 to FFTC Guide for KeyStone Devices Application Report Page 17 of 38
Submit Documentation Feedback 

6 Connecting AIF2 and FFTC for Inbound Antenna Trafficwww.ti.com

/* this flow uses FFTC_RX_FDQ as the FDQ */
flowPtr -> Reg_E.rx_fdq0_sz0_qmgr = (FFTC_RX_FDQ >> 12) & 0x3;
flowPtr -> Reg_E.rx_fdq0_sz0_qnum = FFTC_RX_FDQ & 0x0fff;

Other fields of the flow table can be cleared to 0. Because the AIF2 doesn’t guarantee 
the order of the packet in the output queue to be in antenna order, it is necessary to have 
the AIF2 protocol specific words at the output of the FFTC so that the next stage 
processing knows to which antenna the data belongs by checking the AxC (antenna 
carrier) number in the descriptor.

• FFTC_RX_FDQ packet descriptor setup
MONOLITHIC_DESCRIPTOR *pdPtr;

/* the following information is only needed if FFTC output is sent to another input 
queue of Packet DMA peripheral directly and the value can be set to other value 
depending on the application, otherwise it is optional if the recycling of FFTC 
output queue is handled by host and host can choose what to do */
pdPtr -> ret_push_policy = 0;
pdPtr -> pkt_return_qmgr = (FFTC_RX_FDQ >> 12) & 0x3;
pdPtr -> pkt_return_qnum = FFTC_RX_FDQ & 0x0fff;

Other fields of the packet descriptor will be overwritten by the Rx PKTDMA of FFTC 
based on flow setup, so it is not necessary to set them here.

When AIF2 and FFTC are connected directly through a queue, no FFTC PS words can 
be added in the packet descriptor. For each input queue of FFTC, specific settings can 
be set directly in the registers corresponding to the input queue. For LTE inbound 
antenna data flow, although the cyclic prefix length can be different in each symbol, no 
special handling is needed as the FFTC takes the last N samples from the 
CYCLIC_PREFIX_REMOVE_OFFSET when FFT size is N. Since the offset and the 
samples taken are counted from the tail of data buffer in the packet, different lengths of 
cyclic prefix are removed from the beginning of the buffer if the packet lengths vary. 
When cyclic prefix removal is enabled, each packet can only contain a single FFT block.

After AIF2 Rx PKTDMA fills in the fields in the packet descriptor, the output packet of 
AIF2 will look like: 
Packet descriptor:
packet_id: 2
packet_type: 0 
data_offset: 16
packet_length: (OFDM symbol length + CP length)*size of sample in bytes
source_tag_hi: 0
source_tag_lo: 1
dest_tag_hi: 0
dest_tag_lo: 0
extended_packet_info_block_present: 0
protocol_specifc_valid_word_count: 1
error_flags: 0 
protocol_specific_flag: 0 
ret_push_policy: 0
pkt_return_qmgr: (AIF2_RX_FDQ >> 12) & 0x3
pkt_return_qnum: AIF2_RX_FDQ & 0x0fff
protocol_specifc_word: AxC = 1, Symbol number within a frame/subframe, ingress
payload: cyclic prefix and OFDM symbol

The packet type field is a user defined field and can be set in the Ingress Data Buffer 
Channel Configuration Registers field PKT_TYPE. Error flag is set by AIF2 to indicate 
whether or not there is error for this packet. In case of an error, the last bit of the 
error_flags is set. The protocol_specific_flag field is not used in AIF2 and is set to 0.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
http://www.ti.com


Page 18 of 38 Connecting AIF2 to FFTC Guide for KeyStone Devices Application Report SPRABF3—November 2010
Submit Documentation Feedback 

6 Connecting AIF2 and FFTC for Inbound Antenna Traffic www.ti.com

This packet will be presented to FFTC which will use flow 1 as specified in the 
src_tag_lo field. Since FFTC flow 1 is configured to have protocol specific data in the 
output packet, the AIF2 protocol specific data will be passed through to the FFTC 
output packet. Otherwise the protocol specific data in the input packet will be dropped. 
Assuming cyclic prefix removal is enabled, the FFTC output packet will look like:
Packet descriptor:
packet_id: 2
packet_type: 0 
data_offset: 16
packet_length: OFDM symbol length*size of sample in bytes
source_tag_hi: 0
source_tag_lo: 0
dest_tag_hi: 0
dest_tag_lo: 0
extended_packet_info_block_present: 0
protocol_specifc_valid_word_count: 1
error_flags: 0 
protocol_specific_flag: 0 
ret_push_policy: 0
pkt_return_qmgr: (FFTC_RX_FDQ >> 12) & 0x3
pkt_return_qnum: FFTC_RX_FDQ & 0x0fff
protocol_specifc_word: AxC = 1, Symbol number within a frame/subframe, ingress
payload: FFT output data

FFTC passes through packet type and protocol specific flags from Tx packet to Rx packet. 
The last bit of Error flags is set when there is an error for the packet.

6.2 Intermediate Usage
In some applications, a simple homogeneous setting for all antennas is not always 
desired. For example, it may be necessary to have different cores process different 
antenna’s data after FFTC. Another example is, since AIF2 can support multiple 
bandwidths at the same time, in the LTE context, different antenna output may need 
different frequency shift setup. In this section, more control and flexibility can be 
programmed to allow different settings for different antennas.

Example 2: Directing different antenna data to different destinations with direct 
connection between AIF2 and FFTC
This example shows how to set different antenna carriers to different destinations by 
using one option of Rx PKTDMA overwrite capability. There are four antenna carriers 
used in this example with two antenna carriers being processed by each of two cores 
after FFTC. 

Assume antenna 1, 2, 3, and 4 are used in AIF2, therefore AIF2 flow 1, 2, 3 and 4 are 
used. Since there is no need to set the FFTC processing configuration differently in this 
example, all antenna carrier’s output goes to FFTC_A input queue 1. Two flows of 
FFTC_A are used, FFTC_A flow 1 and flow 2. Both FFTC_A output flows will use host 
mode packets with protocol specific data in the start of the payload. The output of 
antenna carrier 1 and 2 of AIF2 will use FFTC_A flow 1, and the output of antenna 
carrier 3 and 4 of AIF2 will use FFTC_A flow 2. The output of FFTC_A flow 1 will be 
stored in the L2 memory of core 1 and processed by core 1. The output of FFTC_A flow 
2 will be stored in the L2 memory of core 2 and processed by core 2.

For simplicity, the common part of flow or FDQ setup is elaborated for the first 
example when multiple flows or FDQs are used, and omitted in other flow or FDQ 
setup.

• AIF2 flow 1 setup
FLOW_TBL *flowPtr;

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
http://www.ti.com


SPRABF3—November 2010  Connecting AIF2 to FFTC Guide for KeyStone Devices Application Report Page 19 of 38
Submit Documentation Feedback 

6 Connecting AIF2 and FFTC for Inbound Antenna Trafficwww.ti.com

/* there is PS info in the Rx packet */
flowPtr -> Reg_A.rx_psinfo_present = 1;

/* Rx packet is a monolithic packet, so the Rx FDQ packet descriptors need to be 
monolithic packet type */
flowPtr -> Reg_A.rx_desc_type = 2;

/* payload starts at the offset of 16 bytes in the packet descriptor */
flowPtr -> Reg_A.rx_sop_offset = 16;

/* the output queue of this flow is FFTCA input queue 1 */
flowPtr -> Reg_A.rx_dest_qmgr = (FFTCA_INPUT_Q1 >> 12) & 0x3;
flowPtr -> Reg_A.rx_dest_qnum = FFTCA_INPUT_Q1 & 0x0fff;

/* rx packet descriptor src_tag_lo field is overwritten by the src_tag_lo field 
specified in the register B here. Since the output queue of AIF2 is the input queue 
of FFTC, src_tag_lo field in the Rx packet will be used by FFTC as the flow ID for 
FFTC which is 1 */

flowPtr -> Reg_B.rx_src_tag_lo = 1;

flowPtr -> Reg_C.rx_src_tag_lo_sel = 1;

/* this flow uses AIF2_RX_FDQ as the FDQ */
flowPtr -> Reg_E.rx_fdq0_sz0_qmgr = (AIF2_RX_FDQ >> 12) & 0x3;
flowPtr -> Reg_E.rx_fdq0_sz0_qnum = AIF2_RX_FDQ & 0x0fff;

• AIF2 flow 2 setup
FLOW_TBL *flowPtr;

/* rx packet descriptor src_tag_lo field is overwritten by the src_tag_lo field 
specified in the register B here. Since the output queue of AIF2 is the input queue 
of FFTC, src_tag_lo field in the Rx packet will be used by FFTC as the flow ID for 
FFTC which is 1 */

flowPtr -> Reg_B.rx_src_tag_lo = 1;
flowPtr -> Reg_C.rx_src_tag_lo_sel = 1;

• AIF2 flow 3 setup
FLOW_TBL *flowPtr;

/* rx packet descriptor src_tag_lo field is overwritten by the src_tag_lo field 
specified in the register B here. Since the output queue of AIF2 is the input queue 
of FFTC, src_tag_lo field in the Rx packet will be used by FFTC as the flow ID for 
FFTC which is 2 */

flowPtr -> Reg_B.rx_src_tag_lo = 2;
flowPtr -> Reg_C.rx_src_tag_lo_sel = 1;

• AIF2 flow 4 setup
FLOW_TBL *flowPtr;

/* rx packet descriptor src_tag_lo field is overwritten by the src_tag_lo field 
specified in the register B here. Since the output queue of AIF2 is the input queue 
of FFTC, src_tag_lo field in the Rx packet will be used by FFTC as the flow ID for 
FFTC which is 2 */

flowPtr -> Reg_B.rx_src_tag_lo = 2;
flowPtr -> Reg_C.rx_src_tag_lo_sel = 1;

Other fields of the flow table can be cleared to 0. The key thing to note here is that by 
setting rx_src_tag_lo_sel in register C to 1, AIF2 streaming interface will use the 
src_tag_lo field set in the flow register to set the src_tag_lo field in the Rx packet. When 
the packet is presented to FFTC, FFTC will take the src_tag_lo as the flow ID to use. 
This is one option demonstrating how the flow used in FFTC is configured through the 
AIF2 packet.

• AIF2_RX_FDQ packet descriptor setup
MONOLITHIC_DESCRIPTOR *pdPtr;

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
http://www.ti.com


Page 20 of 38 Connecting AIF2 to FFTC Guide for KeyStone Devices Application Report SPRABF3—November 2010
Submit Documentation Feedback 

6 Connecting AIF2 and FFTC for Inbound Antenna Traffic www.ti.com

/* this information is used by FFTC Tx Packet DMA and the value can be set to other 
value which depends on the application */
pdPtr -> ret_push_policy = 0;

/* the packet descriptor will be recycled to AIF2_RX_FDQ by FFTC Tx Packet DMA */
pdPtr -> pkt_return_qmgr = (AIF2_RX_FDQ >> 12) & 0x3;
pdPtr -> pkt_return_qnum = AIF2_RX_FDQ & 0x0fff;

All antenna carriers can use the same FDQ. 

• FFTC flow 1 setup
FLOW_TBL *flowPtr;

/* there is PS info in the Rx packet, as we want the PS words of AIF2 to be carried 
to the output of FFTC */
flowPtr -> Reg_A.rx_psinfo_present = 1;

/* Rx packet is a host packet, so the Rx FDQ packet descriptors need to be host 
packet type */
flowPtr -> Reg_A.rx_desc_type = 0;

/* the PS words will be in front of the payload in data buffer */
flowPtr -> Reg_A.rx_ps_location = 1;

/* the SOP offset is 0, so the first word of the data buffer is the PS word */
flowPtr -> Reg_A.rx_sop_offset = 0;

/* the output queue of this flow is any desired output queue */
flowPtr -> Reg_A.rx_dest_qmgr = (FFTCA_OUTPUT_Q_1 >> 12) & 0x3;
flowPtr -> Reg_A.rx_dest_qnum = FFTCA_OUTPUT_Q_1 & 0x0fff;

/* this flow uses FFTC_RX_FDQ as the FDQ */
flowPtr -> Reg_E.rx_fdq0_sz0_qmgr = (FFTC_RX_FDQ_1 >> 12) & 0x3;
flowPtr -> Reg_E.rx_fdq0_sz0_qnum = FFTC_RX_FDQ_1 & 0x0fff;

• FFTC flow 2 setup
FLOW_TBL *flowPtr;

/* the output queue of this flow is any desired output queue */
flowPtr -> Reg_A.rx_dest_qmgr = (FFTCA_OUTPUT_Q_2 >> 12) & 0x3;
flowPtr -> Reg_A.rx_dest_qnum = FFTCA_OUTPUT_Q_2 & 0x0fff;

/* this flow uses FFTC_RX_FDQ as the FDQ */
flowPtr -> Reg_E.rx_fdq0_sz0_qmgr = (FFTC_RX_FDQ_2 >> 12) & 0x3;
flowPtr -> Reg_E.rx_fdq0_sz0_qnum = FFTC_RX_FDQ_2 & 0x0fff;

• FFTC_RX_FDQ_1 packet descriptor setup
HOST_DESCRIPTOR *pdPtr;

/* this information is read by Rx Packet DMA to determine if the buffer size is big 
enough to hold the entire packet or not, if not, then another packet descriptor needs 
to be popped from the 2nd FDQ specified in the flow */
pdPtr -> original_buffer0_length = symbol length*size of sample in bytes;

/* this information is read by Rx Packet DMA to determine where the buffer is */
pdPtr -> original_buffer0_pointer = fft_output_buffer_core1_ptr;

/* the following information is only needed if FFTC output is sent to another input 
queue of Packet DMA peripheral and the value can be set to other which depends on 
the application, otherwise it is optional if the recycling of FFTC output queue is 
handled by host and host can choose what to do */
pdPtr -> ret_policy = 0;
pdPtr -> ret_push_policy = 0;
pdPtr -> pkt_return_qmgr = (FFTC_RX_FDQ_1 >> 12) & 0x3;
pdPtr -> pkt_return_qnum = FFTC_RX_FDQ_1 & 0x0fff;

The Rx FDQ can be set up to have as many descriptors as needed based on the 
application. All of them can have the same parameters except the buffer pointer which 
can be set depending on the application.

• FFTC_RX_FDQ_2 packet descriptor setup

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
http://www.ti.com


SPRABF3—November 2010  Connecting AIF2 to FFTC Guide for KeyStone Devices Application Report Page 21 of 38
Submit Documentation Feedback 

6 Connecting AIF2 and FFTC for Inbound Antenna Trafficwww.ti.com

HOST_DESCRIPTOR *pdPtr;

/* this information is read by Rx Packet DMA to determine where the buffer is */
pdPtr -> original_buffer0_pointer = fft_output_buffer_core2_ptr;

pdPtr -> pkt_return_qmgr = (FFTC_RX_FDQ_2 >> 12) & 0x3;
pdPtr -> pkt_return_qnum = FFTC_RX_FDQ_2 & 0x0fff;

After AIF2 Rx PKTDMA fills in the fields in the packet descriptor, the output packet of 
AIF2 will look like: 
Packet descriptor:
packet_id: 2
packet_type: 0 
data_offset: 16
packet_length: (OFDM symbol length + CP length)*size of sample in bytes
source_tag_hi: 0
source_tag_lo: 1 for antenna carrier 1 and 2 or 2 for antenna carrier 3 and 4
dest_tag_hi: 0
dest_tag_lo: 0
extended_packet_info_block_present: 0
protocol_specifc_valid_word_count: 1
error_flags: 0 
protocol_specific_flag: 0 
ret_push_policy: 0
pkt_return_qmgr: (AIF2_RX_FDQ >> 12) & 0x3
pkt_return_qnum: AIF2_RX_FDQ & 0x0fff
protocol_specifc_word: AxC = {1, 2, 3, 4}, Symbol number within a frame/subframe, 
ingress
payload: cyclic prefix and OFDM symbol

When this packet is presented to FFTC, FFTC will use either flow 1 or 2 as given in 
src_tag_lo field to decide which Rx FDQ to use, pop a descriptor from the FDQ, store 
the output packet to the buffer specified in the packet descriptor and direct the output 
packet to output queue specified by the flow. In another words, Rx FDQ, output buffer 
and output queue are all tied with the flow used. In this example, since the flows of 
FFTC_A are specified to have protocol specific data, the AIF2 protocol specific data will 
be passed through to the FFTC output. Assuming cyclic prefix removal is enabled, the 
FFTC output packet will look like:
Packet descriptor:
packet_id: 0
packet_type: 0
protocol_specific_data_location: 1
packet_length: OFDM symbol length*size of sample in bytes
source_tag_hi: 0
source_tag_lo: 0
dest_tag_hi: 0
dest_tag_lo: 0
extended_packet_info_block_present: 0
protocol_specifc_valid_word_count: 1
error_flags: 0
protocol_specific_flag: 0
ret_policy: 0
ret_push_policy: 0
pkt_return_qmgr: (FFTC_RX_FDQ_1(or 2) >> 12) & 0x3
pkt_return_qnum: FFTC_RX_FDQ_1(or 2) & 0x0fff
buffer0_length: OFDM symbol length*size of sample in bytes
buffer0_pointer: data buffer starting address
next_descriptor_pointer: NULL

Data buffer:
protocol_specifc_word: AxC = {1, 2, 3, 4}, Symbol number within a frame/subframe, 
ingress
payload: FFT output data

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
http://www.ti.com


Page 22 of 38 Connecting AIF2 to FFTC Guide for KeyStone Devices Application Report SPRABF3—November 2010
Submit Documentation Feedback 

6 Connecting AIF2 and FFTC for Inbound Antenna Traffic www.ti.com

Example 3: Different antenna data requires different FFTC settings with direct 
connection between AIF2 and FFTC
This example shows how to direct different antenna carriers to different input queues 
of FFTC by using another option of Rx PKTDMA overwrite capability. The FFTC can 
be configured based on input queue for different parameters. There are two antenna 
carriers used in this example, each antenna output goes to a separate input queue of 
FFTC. 

Assume antenna carrier 1 and 2 of AIF2 are used, therefore AIF2 flow 1 and 2 are used. 
Antenna 1 carries 20MHz LTE data, and antenna 2 carries 10MHz LTE data. LTE 
7.5KHz frequency shift needs to be done by FFTC. Since antenna 1 data goes to 
FFTC_A input queue 1, and Antenna 2 data goes to FFTC_A input queue 2, the 
frequency shift register for each input queue can be set accordingly based on the 
bandwidth. Two flows are used, FFTC_A flow 1 and 2, so that the output of each 
antenna can be stored and processed by different cores. Both FFTC_A output flows will 
use host mode packets with protocol specific data in the packet descriptor. The output 
of antenna carrier 1 of AIF2 will use FFTC_A flow 1, and the output of antenna carrier 
2 of AIF2 will use FFTC_A flow 2. The output of FFTC_A flow 1 will be stored in the 
L2 memory of core 1 and processed by core 1. The output of FFTC_A flow 2 will be 
stored in the L2 memory of core 2 and processed by core 2.

• AIF2 flow 1 setup
FLOW_TBL *flowPtr;

/* there is PS info in the Rx packet */
flowPtr -> Reg_A.rx_psinfo_present = 1;

/* Rx packet is a monolithic packet, so the Rx FDQ packet descriptors need to be 
monolithic packet type */
flowPtr -> Reg_A.rx_desc_type = 2;

/* payload starts at the offset of 16 bytes in the packet descriptor */
flowPtr -> Reg_A.rx_sop_offset = 16;

/* the output queue of this flow is FFTCA input queue 1 */
flowPtr -> Reg_A.rx_dest_qmgr = (FFTCA_INPUT_Q1 >> 12) & 0x3;
flowPtr -> Reg_A.rx_dest_qnum = FFTCA_INPUT_Q1 & 0x0fff;

/* rx packet descriptor src_tag_lo field is overwritten by the flow ID used in AIF2 
which will be 1 in this case. Since the output queue of AIF2 is the input queue of 
FFTC, src_tag_lo field will be used by FFTC as the flow ID for FFTC which is 1 */
flowPtr -> Reg_C.rx_src_tag_lo_sel = 2;

/* this flow uses AIF2_RX_FDQ as the FDQ */
flowPtr -> Reg_E.rx_fdq0_sz0_qmgr = (AIF2_RX_FDQ_1 >> 12) & 0x3;
flowPtr -> Reg_E.rx_fdq0_sz0_qnum = AIF2_RX_FDQ_1 & 0x0fff;

• AIF2 flow 2 setup
FLOW_TBL *flowPtr;

/* the output queue of this flow is FFTCA input queue 2 */
flowPtr -> Reg_A.rx_dest_qmgr = (FFTCA_INPUT_Q2 >> 12) & 0x3;
flowPtr -> Reg_A.rx_dest_qnum = FFTCA_INPUT_Q2 & 0x0fff;

/* rx packet descriptor src_tag_lo field is overwritten by the flow ID used in AIF2 
which will be 2 in this case. Since the output queue of AIF2 is the input queue of 
FFTC, src_tag_lo field will be used by FFTC as the flow ID for FFTC which is 1 */
flowPtr -> Reg_C.rx_src_tag_lo_sel = 2;

/* this flow uses AIF2_RX_FDQ as the FDQ */
flowPtr -> Reg_E.rx_fdq0_sz0_qmgr = (AIF2_RX_FDQ_2 >> 12) & 0x3;
flowPtr -> Reg_E.rx_fdq0_sz0_qnum = AIF2_RX_FDQ_2 & 0x0fff;

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
http://www.ti.com


SPRABF3—November 2010  Connecting AIF2 to FFTC Guide for KeyStone Devices Application Report Page 23 of 38
Submit Documentation Feedback 

6 Connecting AIF2 and FFTC for Inbound Antenna Trafficwww.ti.com

Other fields of the flow table can be cleared to 0. The key thing to note here is that by 
setting rx_src_tag_lo_sel in register C to 2, AIF2 Rx PKTDMA will use its flow ID, 
which is the PKTDMA channel number, to fill the src_tag_lo field in the output packet 
descriptor. 

• AIF2_RX_FDQ_1 packet descriptor setup
MONOLITHIC_DESCRIPTOR *pdPtr;

/* this information is used by FFTC Tx Packet DMA and the value can be set to other 
value which depends on the application */
pdPtr -> ret_push_policy = 0;

/* the packet descriptor will be recycled to AIF2_RX_FDQ_1 by FFTC Tx Packet DMA */
pdPtr -> pkt_return_qmgr = (AIF2_RX_FDQ_1 >> 12) & 0x3;
pdPtr -> pkt_return_qnum = AIF2_RX_FDQ_1 & 0x0fff;

• AIF2_RX_FDQ_2 packet descriptor setup
MONOLITHIC_DESCRIPTOR *pdPtr;

/* this information is used by FFTC Tx Packet DMA and the value can be set to other 
value which depends on the application */
pdPtr -> ret_push_policy = 0;

/* the packet descriptor will be recycled to AIF2_RX_FDQ_2 by FFTC Tx Packet DMA */
pdPtr -> pkt_return_qmgr = (AIF2_RX_FDQ_2 >> 12) & 0x3;
pdPtr -> pkt_return_qnum = AIF2_RX_FDQ_2 & 0x0fff;

• FFTC flow 1 setup
FLOW_TBL *flowPtr;

/* there is PS info in the Rx packet, as we want the PS words of AIF2 to be carried 
to the output of FFTC */
flowPtr -> Reg_A.rx_psinfo_present = 1;

/* Rx packet is a host packet, so the Rx FDQ packet descriptors need to be host 
packet type */
flowPtr -> Reg_A.rx_desc_type = 0;

/* the PS words will be in the packet descriptor */
flowPtr -> Reg_A.rx_ps_location = 0;

/* the SOP offset is 0, so the first word of the data buffer is the payload */
flowPtr -> Reg_A.rx_sop_offset = 0;

/* the output queue of this flow is any desired output queue */
flowPtr -> Reg_A.rx_dest_qmgr = (FFTCA_OUTPUT_Q_1 >> 12) & 0x3;
flowPtr -> Reg_A.rx_dest_qnum = FFTCA_OUTPUT_Q_1 & 0x0fff;

/* this flow uses FFTC_RX_FDQ as the FDQ */
flowPtr -> Reg_E.rx_fdq0_sz0_qmgr = (FFTC_RX_FDQ_1 >> 12) & 0x3;
flowPtr -> Reg_E.rx_fdq0_sz0_qnum = FFTC_RX_FDQ_1 & 0x0fff;

• FFTC flow 2 setup
FLOW_TBL *flowPtr;

/* the output queue of this flow is any desired output queue */
flowPtr -> Reg_A.rx_dest_qmgr = (FFTCA_OUTPUT_Q_2 >> 12) & 0x3;
flowPtr -> Reg_A.rx_dest_qnum = FFTCA_OUTPUT_Q_2 & 0x0fff;

/* this flow uses FFTC_RX_FDQ as the FDQ */
flowPtr -> Reg_E.rx_fdq0_sz0_qmgr = (FFTC_RX_FDQ_2 >> 12) & 0x3;
flowPtr -> Reg_E.rx_fdq0_sz0_qnum = FFTC_RX_FDQ_2 & 0x0fff;

• FFTC_RX_FDQ_1 packet descriptor setup
HOST_DESCRIPTOR *pdPtr;

/* this information is read by Rx Packet DMA to determine if the buffer size is big 
enough to hold the entire packet or not, if not, then another packet descriptor needs 
to be popped from the 2nd FDQ */
pdPtr -> original_buffer0_length = symbol length*size of sample in bytes;

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
http://www.ti.com


Page 24 of 38 Connecting AIF2 to FFTC Guide for KeyStone Devices Application Report SPRABF3—November 2010
Submit Documentation Feedback 

6 Connecting AIF2 and FFTC for Inbound Antenna Traffic www.ti.com

/* this information is read by Rx Packet DMA to determine where the buffer is */
pdPtr -> original_buffer0_pointer = fft_output_buffer_core1_ptr;

/* the following information is only needed if FFTC output is sent to another input 
queue of Packet DMA peripheral and the value can be set to other which depends on 
the application, otherwise it is optional if the recycling of FFTC output queue is 
handled by host and host can choose what to do */
pdPtr -> ret_policy = 0;
pdPtr -> ret_push_policy = 0;
pdPtr -> pkt_return_qmgr = (FFTC_RX_FDQ_1 >> 12) & 0x3;
pdPtr -> pkt_return_qnum = FFTC_RX_FDQ_1 & 0x0fff;

• FFTC_RX_FDQ_2 packet descriptor setup
HOST_DESCRIPTOR *pdPtr;

/* this information is read by Rx Packet DMA to determine where the buffer is */
pdPtr -> original_buffer0_pointer = fft_output_buffer_core2_ptr;

pdPtr -> pkt_return_qmgr = (FFTC_RX_FDQ_2 >> 12) & 0x3;
pdPtr -> pkt_return_qnum = FFTC_RX_FDQ_2 & 0x0fff;

The FFTC_QUEUE_1_LTE_FREQUENCY_SHIFT_REGISTER needs to be set based 
on 20MHz to remove the 7.5KHz frequency shift. Assuming there is no initial phase 
needed, the value for the register should be 0x00010001. 

The FFTC_QUEUE_2_LTE_FREQUENCY_SHIFT_REGISTER needs to be set based 
on 10MHz to remove the 7.5KHz frequency shift. Assuming there is no initial phase 
needed, the value for the register should be 0x00018001. 

 After AIF2 Rx PKTDMA fills in the fields in the packet descriptor, the output packet 
of AIF2 will look like: 
Packet descriptor:
packet_id: 2
packet_type: 0 
data_offset: 16
packet_length: (OFDM symbol length + CP length)*size of sample in bytes
source_tag_hi: 0
source_tag_lo: 1 for antenna carrier 1 or 2 for antenna carrier 2
dest_tag_hi: 0
dest_tag_lo: 0
extended_packet_info_block_present: 0
protocol_specifc_valid_word_count: 1
error_flags: 0 
protocol_specific_flag: 0 
ret_push_policy: 0
pkt_return_qmgr: (AIF2_RX_FDQ_1(or 2) >> 12) & 0x3
pkt_return_qnum: AIF2_RX_FDQ_1(or 2) & 0x0fff
protocol_specifc_word: AxC = 1 or 2, Symbol number within a frame/subframe, ingress
payload: cyclic prefix and OFDM symbol

When this packet is presented to FFTC, FFTC will use either flow 1 or 2 as specified in 
the src_tag_lo field to decide which FDQ to use, pop a descriptor from the FDQ, store 
the output packet to the buffer specified in the packet descriptor and direct the output 
packet to output queue specified by the flow. In another words, FDQ, output buffer and 
output queue are all tied with the flow used. In this example, since the flows of FFTC_A 
are specified to have protocol specific data, the AIF2 protocol specific data will be 
passed through to the FFTC output. Assuming cyclic prefix removal is enabled, the 
FFTC output packet will look like:
Packet descriptor:
packet_id: 0
packet_type: 0
protocol_specific_data_location: 0
packet_length: OFDM symbol length*size of sample in bytes
source_tag_hi: 0
source_tag_lo: 0
dest_tag_hi: 0
dest_tag_lo: 0

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
http://www.ti.com


SPRABF3—November 2010  Connecting AIF2 to FFTC Guide for KeyStone Devices Application Report Page 25 of 38
Submit Documentation Feedback 

6 Connecting AIF2 and FFTC for Inbound Antenna Trafficwww.ti.com

extended_packet_info_block_present: 0
protocol_specifc_valid_word_count: 1
error_flags: 0
protocol_specific_flag: 0
ret_policy: 0
ret_push_policy: 0
pkt_return_qmgr: (FFTC_RX_FDQ_1(or 2) >> 12) & 0x3
pkt_return_qnum: FFTC_RX_FDQ_1(or 2) & 0x0fff
buffer0_length: OFDM symbol length*size of sample in bytes
buffer0_pointer: data buffer starting address
next_descriptor_pointer: NULL
protocol_specifc_word: AxC = 1 or 2, Symbol number within a frame/subframe, ingress

Data buffer:
payload: FFT output data

6.3 Advanced Usage
In the previous sections, the FFTC settings are the same for all the packets of the same 
antenna. In some use cases, it is desirable to have a packet by packet configuration for 
FFTC. Therefore the protocol specific words of FFTC need to be used to configure the 
FFTC on a packet by packet basis. An example of LTE PUSCH and PUCCH receiver is 
given in Section ‘‘6.4 Example LTE PUSCH and PUCCH Usage’’ on page 32. Since 
when AIF2 and FFTC are connected directly through a queue, no protocol specific 
words for FFTC can be added for the input packets. Therefore, AIF2 and FFTC can not 
be connected directly through a queue in this case. It is necessary to reconstruct the 
FFTC input packet.

6.3.1 Reconstructing the FFTC Packet
As mentioned above, in order to add FFTC protocol-specific words into the packet, it 
is necessary to reconstruct the packet before sending it to FFTC. The reconstruction is 
illustrated in Figure 8. The gray block in the lower right hand side is the monolithic 
packet descriptor of the AIF2 output, the green packet descriptor linked with yellow 
buffer descriptor is the reconstructed packet. The linked buffer feature supported by 
host packet is used to reconstruct the packet to avoid buffer copy. 

The first buffer contains PS words for FFTC and is pointed by the packet descriptor 
shown in green background. The second buffer contains the payload which is part of 
the monolithic packet of the AIF2 output and is pointed by the buffer descriptor shown 
in yellow background. If the protocol specific words of AIF2 are desired at the output 
of FFTC, then they need to be copied to the end of the FFTC PS word buffer either by 
DSP or by EDMA because the PS words have to be contiguous. 

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
http://www.ti.com


Page 26 of 38 Connecting AIF2 to FFTC Guide for KeyStone Devices Application Report SPRABF3—November 2010
Submit Documentation Feedback 

6 Connecting AIF2 and FFTC for Inbound Antenna Traffic www.ti.com

Figure 8 Reconstruct FFTC Input Packet

Example 4: Configure FFTC PS words with non-direct connection between AIF2 and 
FFTC
This example shows how to reconstruct the packet as shown in Figure 8 to add PS 
words for FFTC. 

• AIF2 flow setup
FLOW_TBL *flowPtr;

/* there is PS info in the Rx packet */
flowPtr -> Reg_A.rx_psinfo_present = 1;

/* Rx packet is a monolithic packet, so the Rx FDQ packet descriptors need to be 
monolithic packet type */
flowPtr -> Reg_A.rx_desc_type = 2;

/* payload starts at the offset of 16 bytes in the packet descriptor */
flowPtr -> Reg_A.rx_sop_offset = 16;

/* the output queue is AIF2_OUTPUT_Q_x */
flowPtr -> Reg_A.rx_dest_qmgr = (AIF2_OUTPUT_Q_x >> 12) & 0x3;
flowPtr -> Reg_A.rx_dest_qnum = AIF2_OUTPUT_Q_x & 0x0fff;

/* this flow uses AIF2_RX_FDQ_x as the FDQ */
flowPtr -> Reg_E.rx_fdq0_sz0_qmgr = (AIF2_RX_FDQ_x >> 12) & 0x3;
flowPtr -> Reg_E.rx_fdq0_sz0_qnum = AIF2_RX_FDQ_x & 0x0fff;

• AIF2_RX_FDQ packet descriptor setup
MONOLITHIC_DESCRIPTOR *pdPtr;

/* this information is used by the recycling Packet DMA and the value can be set to 
other value which depends on the application */
pdPtr -> ret_push_policy = 0;

Packet Id, Packet Type, Data Offset, Packet 
Length

Src Tag Hi, Src Tag Lo, Dest Tag Hi, Dest Tag Lo

EPIB, PS Word Count, Error Flag, PS Flag, Return 
Policy, Packet Return Q Mgr#, Packet Return Q #

AxC Number, Symbol number, Ingress/Egress

Payload

FFTC PS Words

Packet Id, Packet Type, PS Region Location, 
Packet Length

Src Tag Hi, Src Tag Lo, Dest Tag Hi, Dest Tag Lo

EPIB, PS Word Count, Error Flag, PS Flag, Return 
Policy, Packet Return Q Mgr#, Packet Return Q #

Buffer 0 Length

Buffer 0 Pointer

Original Buffer 0 Pointer

Completion Tag, Original Buffer 0 Length

Next Descriptor Pointer

Reserved

Reserved

Return Policy, Packet Return Q Mgr#, Packet Return Q 
#

Buffer 1 Length

Buffer 1 Pointer

Original Buffer 1 Pointer

Original Buffer 1 Length

Next Descriptor Pointer

AxC Number, Symbol number, Ingress/Egress EDMA

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
http://www.ti.com


SPRABF3—November 2010  Connecting AIF2 to FFTC Guide for KeyStone Devices Application Report Page 27 of 38
Submit Documentation Feedback 

6 Connecting AIF2 and FFTC for Inbound Antenna Trafficwww.ti.com

/* the packet descriptor will be recycled to AIF2_RX_FDQ_x by the recycling Packet 
DMA */
pdPtr -> pkt_return_qmgr = (AIF2_RX_FDQ_x >> 12) & 0x3;
pdPtr -> pkt_return_qnum = AIF2_RX_FDQ_x & 0x0fff;

If the output packets are to be recycled by some other PKTDMA automatically, then it 
is necessary to set the above fields in the packet descriptors in FDQ. However if the DSP 
is used to recycle the output queue, it is not mandatory to set those fields. If DSP 
intervention free recycling is done by EDMA, as explained later, it is not necessary to 
set the above fields in packet descriptors in Rx FDQ.

Each flow can be set up to use different Rx FDQs and output queues or share the same 
FDQ and output queue. If different queues are used for different antenna carriers, it is 
clear which packet belongs to which antenna carrier even if they can arrive out of order. 
This eliminates the need to copy the AIF2 PS words to the end of the FFTC PS word’s 
buffer. However, as it will be explained later, each DSP intervention free mechanism 
has its own pros and cons. 

Here is an example of how fields of the reconstructed packet descriptor and buffer 
descriptor need to be set. 

• Reconstructed packet descriptor setup
HOST_DESCRIPTOR *pdPtr;

/* host packet is used */
pdPtr -> packet_id = 0;

/* protocol specific data is located in SOP buffer. This can also be set to 0 to 
leave the PS words in the packet descriptor itself but the packet descriptor needs 
to be configured big enough to hold all the PS words including the AIF2 PS word if 
a copy is needed */
pdPtr -> ps_region_location = 1;

/* packet length in host packet doesn’t include descriptor header or the protocol 
specific words */
pdPtr -> packet_length  = (OFDM symbol length + CP length)*size of sample in bytes;

/* the flow used for FFTC can be set to any number between 0~7 depending on 
application */
pdPtr -> src_tag_lo = FFTC flow for this packet;

/* the number of PS words in this example is set to 7*4=28 bytes, which include FFTC 
control header, local configuration words, and AIF2 PS word */
pdPtr -> psv_word_count = 7;

/* this field indicates FFTC control header is present in protocol specific words */
pdPtr -> ps_flags  = 1;

/* this field sets up the return of the packet including buffer descriptor will be 
returned as a whole still linked together to the tail of the queue */
pdPtr -> ret_policy = 0;
pdPtr -> ret_push_policy = 0;

/* this is needed for FFTC Tx Packet DMA to recycle the Tx packet */
pdPtr -> pkt_return_qmgr = (FFTC_TX_FDQ >> 12) & 0x3;
pdPtr -> pkt_return_qnum = FFTC_TX_FDQ & 0x0fff;

/* buffer 0 length is set to 0 as the buffer length doesn’t include PS words and 
buffer 0 only contains PS words with no payload */
pdPtr -> buffer_len = 0; 

/* buffer 0 points to the PS words which include control header and local 
configuration words */
pdPtr -> buffer_ptr = fft_ps_word_buffer;

pdPtr -> next_desc_ptr  = (Uint32)bdPtr;

• Reconstructed buffer descriptor setup
HOST_DESCRIPTOR *bdPtr;

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
http://www.ti.com


Page 28 of 38 Connecting AIF2 to FFTC Guide for KeyStone Devices Application Report SPRABF3—November 2010
Submit Documentation Feedback 

6 Connecting AIF2 and FFTC for Inbound Antenna Traffic www.ti.com

/* buffer 1 length is set to the payload length as buffer length doesn’t include PS 
words */
bdPtr -> buffer_len = (OFDM symbol length + CP length)*size of sample in bytes;

/* buffer 1 points to the payload part in AIF2 output packet which is at the offset 
of 16 bytes from the beginning of the packet descriptor */
bdPtr -> buffer_ptr = AIF2_output_PD_addr + 16;

bdPtr -> next_desc_ptr = NULL;

Since the input packet is reconstructed, the FFTC protocol specific word can be added 
to each packet, it is possible to assign flow, FFTC parameters and output queue on a 
packet by packet basis. 

If DSP intervention free data path is desired, then the above descriptors can be 
prepared at initialization time and stored in the Tx FDQ. The number of descriptors to 
have in the Tx FDQ depends on the application. If DSP intervention is needed, the 
reconstruction can also be done at run time. 

6.3.2 DSP Intervention Free Data Path
The solution to achieving DSP intervention free data path is to use the EDMA to copy 
the reconstructed packet descriptor from the FFTC Tx FDQ to the FFTC input queue, 
because popping is accomplished by reading the head packet pointer from and pushing 
is accomplished by writing the packet descriptor address to a specific address in the 
Queue Manager that corresponds to the queue. The EDMA transfer needs to be 
synchronized with the antenna packet arrival. There are several ways to generate the 
synchronization event. One way is to use the accumulator functionality of the QMSS to 
trigger the event when the desired number of antenna packets has arrived in the AIF2 
output queue. The other way is to use AIF2 timer which can be set to align with the 
OFDM symbol timing with programmable offset. 

6.3.2.1 Single Queue Data Path

If the AIF2 PS word is copied to the end of FFTC PS words buffer, then it is not 
necessary to have different Rx FDQs or output queues per antenna carrier. The queue 
set up is shown in Figure 9. 

Figure 9 Single Queue DSP Intervention Data Path

If the accumulator is used to generate the synchronization event, it can be generated 
when all antenna data of one OFDM symbol are received. Upon the synchronization 
event trigger, the following steps need be done by the EDMA either by chaining 
different EDMA channels or by self-chaining and linking to the same EDMA channel:

1. Copy the AIF2 PS words to the end of the FFTC PS word buffer

AIF2

AIF2 Rx 
FDQ

CDMA

FFTC

FFTC Rx 
FDQ

CDMA
FFTC 

Output Q

AIF 2 
Output Q

FFTC 
Input Q

FFTC Engine

CPU

FFTC Tx 
FDQ

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
http://www.ti.com


SPRABF3—November 2010  Connecting AIF2 to FFTC Guide for KeyStone Devices Application Report Page 29 of 38
Submit Documentation Feedback 

6 Connecting AIF2 and FFTC for Inbound Antenna Trafficwww.ti.com

2. En-queue FFTC by reading from the FFTC Tx FDQ and writing to the input 
queue of FFTC

3. Recycle the AIF2 output queue by reading the AIF2 output queue and writing to 
the AIF2 Rx FDQ

4. Clear CP_INTC interrupt pending register by writing to system interrupt status 
indexed clear register (STATUS_CLR_INDEX_REG)

5. Clear QMSS interrupt distributor (INTD) event of the corresponding 
accumulator queue by writing to the end of interrupt register (EOI)

If AIF2 timer is used to generate the synchronization event, then the trigger can be set 
to happen with all antenna packets of one OFDM symbol are received. Since AIF2 
timer events are routed directly to TPCC1 as primary events, there is no need to clear 
the interrupt pending registers of CP_INTC and INTD. Therefore only the first 3 steps 
are needed. 

Since the reconstructed FFTC Tx packet will be recycled by FFTC Tx PKTDMA 
automatically while the AIF2 output packet which contains the antenna data will be 
recycled by EDMA, the timing of them can be different. In order not to starve AIF2 Rx 
FDQ or overwrite the data buffer which has not been taken by FFTC yet, enough packet 
descriptors need to be allocated in the AIF2 FDQ which depends on the application. 
For example, for 20MHz LTE application with 8 receive antennas, if one FFTC is 
dedicated for UL front end IFFT processing, then a symbol-based ping-pong descriptor 
allocation for AIF2 Rx FDQ will guarantee no starvation and no overwriting because 
FFTC can process 8 size 2048 IFFT in less than a OFDM symbol time. 

It is important to note that the FFTC output queue will be in the same order as the AIF2 
output queue which is not guaranteed to be in antenna order. However as AxC number 
is available in the PS words of FFTC output packets, the application can do the 
processing accordingly based on AxC number.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
http://www.ti.com


Page 30 of 38 Connecting AIF2 to FFTC Guide for KeyStone Devices Application Report SPRABF3—November 2010
Submit Documentation Feedback 

6 Connecting AIF2 and FFTC for Inbound Antenna Traffic www.ti.com

6.3.2.2 Multi-Queue Data Path

If the AIF2 PS word is not copied to the end of FFTC PS word’s buffer, then it is 
necessary to have separate AIF2 Rx FDQs and output queues for different antenna 
carriers, as well as separate FFTC Tx FDQs so that they have a one to one 
correspondence. For example, for antenna carrier 1, the reconstructed packet in FFTC 
Tx FDQ 1 would point to the payload of the descriptor of AIF2 Rx FDQ 1 which will 
appear in the AIF2 output queue 1 when the packet is received by AIF2. The queue set 
up is shown in Figure 10. 

Figure 10 Multi-Queue DSP Intervention Free Path

If the accumulator is used to generate the synchronization event, then multiple high 
priority queues are needed as there are multiple AIF2 output queues. Since each 
accumulator queue corresponds to one antenna carrier, the accumulator event can be 
triggered when the packet of the antenna carrier for one ODFM symbol is received. As 
a result, multiple EDMA channels need to be used with one EDMA channel triggered 
by one accumulator event. Steps 2 to 5 above need to be done with each EDMA channel 
only handling one antenna. It is important to note here that although it is known at the 
output of FFTC which output packet belongs to which antenna, the order of the 
multiple antennas within a symbol is not guaranteed. So it is necessary to use some field 
that can be defined by the application to indicate to which antenna the packet belongs. 
For example, source_tag_hi, dest_tag_hi, and dest_tag_lo. FFTC will pass those fields 
from the Tx packet to Rx packet if the flow table is configured accordingly.

If AIF2 timer is used to generate the synchronization event, then the trigger can be set 
to happen when all antenna packets of one OFDM symbol are received. Therefore only 
one EDMA channel is needed to do the FFTC en-queue transfer traversing all the FFTC 
Tx FDQs. Similarly, one single EDMA channel is enough to do the recycling transfer 
for AIF2 output queue. It is important to note that in order to use a single EDMA 
channel to do the FFTC en-queue or AIF2 output queue recycling transfer, the multiple 
queues used for FFTC Tx queues, AIF2 output queues and AIF2 Rx FDQs need to be 
continuous or equally spaced queues so that EDMA can be programmed to jump from 
one queue to another queue. Upon the AIF2 timer event, steps 2 and 3 above need to 
be done. If the AIF2 timer is set to generate the event when all antenna packets of one 
OFDM symbol are received, the EDMA can en-queue them to FFTC in the antenna 
order so that it is known at the output which packet belongs to which antenna. 

AIF2

AIF2 Rx 
FDQ N

CDMA

FFTC

FFTC Rx 
FDQ

CDMA
FFTC 

Output Q

AIF2 
Output Q 1

FFTC 
Input Q

FFTC Engine

CPU

FFTC Tx 
FDQ N

AIF2 
Output Q N

AIF2 Rx 
FDQ 1

…
..

…
..

FFTC Tx 
FDQ 1

…
..

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
http://www.ti.com


SPRABF3—November 2010  Connecting AIF2 to FFTC Guide for KeyStone Devices Application Report Page 31 of 38
Submit Documentation Feedback 

6 Connecting AIF2 and FFTC for Inbound Antenna Trafficwww.ti.com

6.3.2.3 Comparisons 

When accumulator events are used as the synchronization events, subject to the latency 
of accumulator events, the EDMA can be triggered as soon as the packets arrive in the 
AIF2 output queue. When AIF2 timer is used as the synchronization event, since the 
packet arrival time may be jittery due to various factors, some buffer time needs to be 
added between antenna packet arrival and the AIF2 timer trigger point to guarantee the 
data has arrived before the trigger is generated.

When accumulator events are used as the synchronization events, if the multi-queue 
data path is used, then more system resources are needed including high priority 
accumulator queues and EDMA channels. When AIF2 timer is used as the 
synchronization event, regular queues can be used and a single EDMA channel is 
enough. 

When accumulator events are used as the synchronization events, it is necessary to 
clear the interrupt pending registers of CP_INTC and INTD. When AIF2 timer is used 
as the synchronization event, there is no need to clear the interrupt pending registers 
of CP_INTC and INTD.

When AIF2 timer is used as synchronization event, since the AIF2 output queue status 
is irrelevant provided that AIF2 timer event is offset to guarantee that it is only 
generated when the packets have arrived, the AIF2 output queue can the same as AIF2 
Rx FDQ. Therefore the recycling step for the AIF2 output queue can be saved.

Other options and different variants of the methods described in this section can also 
be used to achieve the seamless connection between AIF2 and FFTC.

Since the descriptors in the Tx completion queue do not contain the descriptor size 
information, when DSP intervention free method is used, the Tx completion queue can 
not be used directly as the source queue, namely Tx FDQ here, for EDMA transfer. 
There are two ways to work around this issue:

1. Use two separate queues for the Tx FDQ, and the Tx completion queue and DSP 
needs to pop descriptors from the Tx completion queue and push descriptors 
with size information to the Tx FDQ. This can be done in post FFTC processing 
at an appropriate time depending on the application. EDMA will still read from 
the Tx FDQ for DSP intervention free connection between AIF2 and FFTC. 

2. Use an array to replace the Tx FDQ. The array will contain the descriptor 
addresses with size information in the 4 LSB. EDMA will always read from the 
array and push to the Tx queue. Although the packets will still be recycled to Tx 
completion queue, they will not be read from there. The Tx completion queue 
needs to be flushed appropriately so that no descriptors will be present 
simultaneously in both the Tx queue and the Tx completion queue. Since pushing 
a NULL descriptor flushes a queue, one way to flush the Tx completion queue is 
to do an extra EDMA transfer of a NULL descriptor to the Tx completion queue 
at an appropriate time depending on the application. Using an array provides a 
DSP intervention-free connection between AIF2 and FFTC without post FFTC 
handling of the queues, however extra care needs to be taken when using this 
method as using an array assumes fixed packet order at all times.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
http://www.ti.com


Page 32 of 38 Connecting AIF2 to FFTC Guide for KeyStone Devices Application Report SPRABF3—November 2010
Submit Documentation Feedback 

6 Connecting AIF2 and FFTC for Inbound Antenna Traffic www.ti.com

6.4 Example LTE PUSCH and PUCCH Usage
Figure 11 Example Usage of FFTC for LTE PUSCH and PUCCH

Figure 11 shows a complete picture of an example usage of LTE PUSCH and PUCCH 
around FFTC. It uses the single queue data path idea as described in section 
‘‘6.3 Advanced Usage’’ on page 25 to reconstruct the packets so as to connect AIF2 and 
FFTC on inbound traffic. 

As AIF2 part is the same as Figure 9, it is omitted in the picture. For simplicity of 
drawing, it shows a four receive antenna system. The same design idea can be applied 
to other system configurations, for example 2 receive antennas or 8 receive antennas. 
The load balancing, system partitioning, scheduling and memory usage are all achieved 
by using PKTDMA with different settings of FFTC PS words on a packet by packet 
basis.

There is one Tx FDQ for FFTC and one input queue of FFTC is used. The partition and 
scheduling information is contained in the Tx FDQ descriptors by using the 
destination queue in the local configuration words of FFTC. Each core will only process 
packets contained in 3 queues assigned to it. The partition is a round robin based 
method. For data symbols, it is symbol based round robin such that each core processes 
all antennas of 3 data symbols each. For pilot symbol, it is antenna based round robin 
so that ¼ of antennas of each pilot symbol is processed on each core. 

Core 
0

Core 
3

Tx Q0

L2

L2

Flow 1 FDQ 1 , 2, 3

Tx Q0 FDQ

Q_P0

Q_D0

Flow ID: {0,1,2 3}
Dest Q: {Q_D0, Q_P0, 
… Q_D3 , Q_P3}
Buf Ptr : { ping0...ping7 
, pong0, … pong 7}

Buf ptr
Buf ptr

Buf Ptr
Buf Ptr

Q_P3

Q_D3

Flow 0 FDQ 1 , 2 , 3

Flow 2 FDQ 1, 2 , 3 Flow 3 FDQ 1, 2 , 3

Flow 0 Data

Flow 1 Data

Flow 2 Data

Flow 3 Data

Flow 0 Pilot

Flow 1 Pilot

Flow 2 Pilot

Flow 3 Pilot

Flow 0 Guard

Flow 1 Guard

Flow 2 Guard

Flow 3 Guard

Q_T3

Q_T0

Core 
2

L2

Q_P2

Q_D2

Q_T2

Core 
1 L2

Q_P1

Q_D1

Q_T1

Triplet descriptors

Linked host packet with 
triplet descriptors

Sym 3 & 10 
except last Ant

Sym 0, 5, 9

Last Ant of Sym 
3, 9 & 10

f0

f0

f0

f1

Sym 3 & 10 
except last Ant

Sym 1, 6, 11

Last Ant of Sym 
3, 10, & 11

f1

f1

Sym 3 & 10 
except last Ant

f2F
F

T
C

A

Sym 2, 7, 12

f2

Last Ant of Sym 
3, 10, & 12

f2

Sym 3 & 10 
except last Ant

f3

Sym 4, 8, 13
f3

f3

Last Ant of Sym 
3, 10, & 13

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
http://www.ti.com


SPRABF3—November 2010  Connecting AIF2 to FFTC Guide for KeyStone Devices Application Report Page 33 of 38
Submit Documentation Feedback 

6 Connecting AIF2 and FFTC for Inbound Antenna Trafficwww.ti.com

For example, core 0 processes data symbol 0, 5, and 9, and antenna 0 of two pilot 
symbols. This is achieved by setting different output queues based on symbol or 
antenna number. For example, data symbol 0, 5 and 9 go to output queue Q_D0. Since 
the pilot symbols need to be processed first, data symbols and pilot symbols are routed 
to separate output queues so that there is no need to pop data symbols in order to get 
to pilot symbols. This is shown in the picture by Q_Px and Q_Dx. 

Since the DSP may need to do other processing, it is preferred to interrupt the DSP 
when certain events happen instead of letting the DSP poll the output queue status. In 
addition, it is also preferred to only interrupt the DSP which will process the job. 
Therefore an interrupt queue is used per core which is shown in the picture by Q_Tx. 
In this example, three interrupts will be generated per subframe, once when pilot 
symbol 3 is done by FFTC, once when pilot symbol 10 is done by FFTC and once when 
the last data symbol is done by FFTC. Since the fastest way to trigger interrupt is by 
using the QPEND signal, all four Q_Tx queues are queues supporting QPEND event. 
However QPEND event is triggered only based on non-empty status. So only the 
output of FFTC of the last antenna of each pilot symbol goes to the Q_Tx queue, and 
the output of FFTC of the last antenna of the last data symbol goes to Q_Tx queue. 

For example, last antenna of data symbol 9, 11, 12, and 13 goes to Q_T0, Q_T1, Q_T2 
and Q_T3 respectively. Since there is only 1 antenna per pilot per core in this example, 
this pilot symbol output also goes to Q_Tx respectively and Q_Px is not used. If there 
is more than 1 pilot antenna processed per core, then except for the last antenna per 
pilot symbol, the FFTC output goes to Q_Px while the last antenna per pilot symbol 
goes to Q_Tx. Since Q_Tx queues are the queues with QPEND event, it can generate 
interrupts to the DSP to trigger processing. Channel estimation is triggered when the 
last antenna of each pilot symbol is processed by FFTC, data symbol processing can 
start immediately after channel estimation is done without having to wait the last data 
symbol per core. When the last antenna of last data symbol has arrived in the Q_Tx 
queue, DSP will be notified by interrupt.

Four flows of FFTC are used with each flow assigned to each destination core. Because 
Rx FDQ is associated with a flow, then each core can prepare its own Rx FDQ with local 
L2 memory addresses for FFTC output. Each flow uses 3 Rx FDQs with them all being 
the same queue. And the descriptors in the Rx FDQ have a triplet pattern. The first one 
has a buffer big enough to hold the left guard tones, the second one has a buffer big 
enough to hold the desired data tones, and the third one has a buffer big enough to hold 
the right guard tones. Since the guard tones are discarded after FFTC processing, it is 
not necessary to allocate separate memory for different symbols. They can all point to 
the same buffer to save memory usage. 

For each FFT packet, the Rx PKTDMA will need to pop Rx FDQ 1, 2 and 3 to put the 
entire output packet in. Because Rx FDQ 1, 2 and 3 are set to the same queue with the 
triplet descriptor pattern, the output of the packet will be a linked host packet with 
three descriptors. It is important to note that the triplet descriptors in the Rx FDQs are 
3 separate packet descriptors, while they become one linked host packet in the output 
queue in which there is only the first descriptor of the triplet descriptors.

The FFTC Tx FDQ can be prepared at initialization time with one or multiple 
subframes worth of descriptors, each with its own PS words set to achieve the load 
balancing, partitioning, scheduling and memory usage model described above. This 
doesn’t add significant overhead in memory usage as host packet mode is used and only 

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
http://www.ti.com


Page 34 of 38 Connecting AIF2 to FFTC Guide for KeyStone Devices Application Report SPRABF3—November 2010
Submit Documentation Feedback 

6 Connecting AIF2 and FFTC for Inbound Antenna Traffic www.ti.com

packet descriptors are allocated for one or multiple subframes. For AIF2 output, only 
symbol based ping-pong descriptors need to be allocated. The FFTC Tx FDQ needs to 
be set up such that the packet descriptors point to the correct payload buffers of the 
AIF2 output ping-pong descriptors.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
http://www.ti.com


SPRABF3—November 2010  Connecting AIF2 to FFTC Guide for KeyStone Devices Application Report Page 35 of 38
Submit Documentation Feedback 

7 Connecting FFTC and AIF2 for Outbound Antenna Trafficwww.ti.com

7 Connecting FFTC and AIF2 for Outbound Antenna Traffic
On the outbound traffic, since FFTC is capable of outputting packets with protocol 
specific words for AIF2 by using the pass through field, FFTC can be connected to AIF2 
directly via queues without any loss of flexibility.

On the outbound path, AIF2 requires that each antenna carrier has a separate input 
queue. If the number of transmit antennas to support is not more than available FFTC 
flows, it is acceptable to use different FFTC flows to direct different antenna symbols to 
different AIF2 input queues. Otherwise the destination queue can be specified by using 
the local configuration words of protocol specific words for FFTC. 

Example 5: Using FFTC PS words to connect FFTC and AIF2 directly
In this example, FFTC protocol specific words are used to control the output queue for 
each packet, and to fill in the protocol specific words in the output packet for AIF2.

• FFTC input packet
HOST_DESCRIPTOR *pdPtr;

/* host packet is used */
pdPtr -> packet_id = 0;

/* protocol specific data is located in SOP buffer */
pdPtr -> ps_region_location = 1;

/* packet length in host packet doesn’t include descriptor header or the protocol 
specific words */
pdPtr -> packet_length  = (number of data subcarriers)*size of sample in bytes;

/* the flow used for FFTC can be set to any number between 0~7 depending on the 
application, this does not necessarily have a one to one correspondence with the 
output queue as output queue can be specified in the FFTC PS words */
pdPtr -> src_tag_lo = FFTC flow for this packet;

/* the number of PS words in this example is set to 7*4=28 bytes, which include FFTC 
control header, local configuration words, and AIF2 PS word */
pdPtr -> psv_word_count = 7;

/* this field indicates FFTC control header is present in protocol specific words */
pdPtr -> ps_flags  = 1;

/* this field sets up the return of the packet including buffer descriptor will be 
returned as a whole still linked together to the tail of the queue */
pdPtr -> ret_policy = 0;
pdPtr -> ret_push_policy = 0;

/* this is needed for FFTC Tx Packet DMA to recycle the Tx packet */
pdPtr -> pkt_return_qmgr = (FFTC_TX_FDQ >> 12) & 0x3;
pdPtr -> pkt_return_qnum = FFTC_TX_FDQ & 0x0fff;

/* buffer 0 length is set to the same as packet length */
pdPtr -> buffer_len = (number of data subcarriers)*size of sample in bytes;

/* buffer 0 points to input data buffer */
pdPtr -> buffer_ptr = fft_input_data_buffer
pdPtr -> next_desc_ptr  = NULL;

Depending on the application, the protocol specific words can be set to choose which 
destination queue each packet is sent and to fill in the AIF2 protocol specific words 
including AxC number, symbol number and egress. The control header of the protocol 
specific words should indicate the pass through fields are present so that FFTC will pass 
the protocol specific words set for AIF2 to output packets.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
http://www.ti.com


Page 36 of 38 Connecting AIF2 to FFTC Guide for KeyStone Devices Application Report SPRABF3—November 2010
Submit Documentation Feedback 

7 Connecting FFTC and AIF2 for Outbound Antenna Traffic www.ti.com

Since in this example the Tx packet is configured to contain only the useful data 
subcarriers, FFTC needs to be configured to pad 0s. If the input data is arranged in the 
subcarrier order, then FFTC needs to be configured to do the input left / right shift. In 
addition, as FFTC output is given to AIF2 directly, FFTC needs to be configured to add 
cyclic prefix.

• FFTC flow setup
FLOW_TBL *flowPtr;

/* there is PS info in the Rx packet, as we want the PS words of AIF2 to be carried 
to the output of FFTC */
flowPtr -> Reg_A.rx_psinfo_present = 1;

/* Rx packet is a monolithic packet, so the Rx FDQ packet descriptors need to be 
monolithic packet type */
flowPtr -> Reg_A.rx_desc_type = 2;

/* payload offset is 16bytes in the output monolithic packet */
flowPtr -> Reg_A.rx_sop_offset = 16;

/* this flow uses FFTC_RX_FDQ as the FDQ */
flowPtr -> Reg_E.rx_fdq0_sz0_qmgr = (FFTC_RX_FDQ >> 12) & 0x3;
flowPtr -> Reg_E.rx_fdq0_sz0_qnum = FFTC_RX_FDQ & 0x0fff;

• FFTC_RX_FDQ packet descriptor setup
MONOLITHIC_DESCRIPTOR *pdPtr;

/* the following information is used by AIF2 Tx Packet DMA to recycle the descriptor 
*/
pdPtr -> ret_push_policy = 0;
pdPtr -> pkt_return_qmgr = (FFTC_RX_FDQ >> 12) & 0x3;
pdPtr -> pkt_return_qnum = FFTC_RX_FDQ & 0x0fff;

• The output packet of the FFTC looks like:
Packet descriptor:
packet_id: 2
packet_type: 0
data_offset: 16
packet_length: (OFDM symbol length + CP length)*size of sample in bytes
source_tag_hi: 0
source_tag_lo: 0
dest_tag_hi: 0
dest_tag_lo: 0
extended_packet_info_block_present: 0
protocol_specifc_valid_word_count: 1
error_flags: 0 
protocol_specific_flag: 0 
ret_push_policy: 0
pkt_return_qmgr: (FFTC_RX_FDQ) >> 12) & 0x3
pkt_return_qnum: FFTC_RX_FDQ & 0x0fff
protocol_specifc_word: AxC number, Symbol number within a frame/subframe, egress
payload: cyclic prefix and symbol

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
http://www.ti.com


SPRABF3—November 2010  Connecting AIF2 to FFTC Guide for KeyStone Devices Application Report Page 37 of 38
Submit Documentation Feedback 

8 Special Notes on Using AIF2 DIO Modewww.ti.com

8 Special Notes on Using AIF2 DIO Mode
Other than packet mode, AIF2 also supports DIO mode. DIO mode is a simple circular 
buffer write to memory or read from memory, so it doesn’t have the concept of symbols 
or packets. The advantage of using DIO mode is that the output data buffer can be 
contiguous.

Figure 12 Constructing Packets in DIO Mode

When DIO mode is used, as there is no queue involved, packets need to be constructed 
before sending to FFTC. This is shown in Figure 12 with the red arrows indicating the 
buffer pointer to the circular buffer for each packet. If there is no memory usage 
limitation, it is desirable to keep the entire subframe of antenna output data or at least 
one whole slot of the antenna data as it is simpler to calculate pointers for 
reconstructing packets. However in most cases, it is not possible to store an entire 
subframe or one whole slot of antenna data. 

As DIO is a simple read / write circular buffer, it cannot be configured to handle 
different lengths of LTE symbols. So when the output buffer size can only be a fraction 
of a slot, the data offset per OFDM symbol or per PRACH packet needs to be calculated 
carefully depending on the buffer size chosen. It is better to choose the buffer size to be 
divisible by the number of samples in a subframe or in a slot so that the pointers align 
on a subframe or a slot basis.

When DIO mode is used, as there is no queue involved, AIF2 timer can be used to 
generate the synchronizing event to trigger the EDMA transfer to do the en-queue for 
FFTC.

AIF2

CDMA

FFTC

FFTC Rx 
FDQ

CDMA
FFTC 

Output Q

FFTC 
Input Q

FFTC Engine

CPU

FFTC Tx 
FDQ

Circular 
buffer

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
http://www.ti.com


Page 38 of 38 Connecting AIF2 to FFTC Guide for KeyStone Devices Application Report SPRABF3—November 2010
Submit Documentation Feedback 

9 References www.ti.com

9 References

C66x CorePac User Guide SPRUGW0

Fast Fourier Transform Coprocessor (FFTC) for KeyStone Devices User Guide SPRUGS2

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
http://www.ti.com
http://www.ti.com/lit/sprugs2
http://www.ti.com/lit/sprugw0


IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DLP® Products www.dlp.com Communications and www.ti.com/communications
Telecom

DSP dsp.ti.com Computers and www.ti.com/computers
Peripherals

Clocks and Timers www.ti.com/clocks Consumer Electronics www.ti.com/consumer-apps

Interface interface.ti.com Energy www.ti.com/energy

Logic logic.ti.com Industrial www.ti.com/industrial

Power Mgmt power.ti.com Medical www.ti.com/medical

Microcontrollers microcontroller.ti.com Security www.ti.com/security

RFID www.ti-rfid.com Space, Avionics & www.ti.com/space-avionics-defense
Defense

RF/IF and ZigBee® Solutions www.ti.com/lprf Video and Imaging www.ti.com/video

Wireless www.ti.com/wireless-apps

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2010, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://www.dlp.com
http://www.ti.com/communications
http://dsp.ti.com
http://www.ti.com/computers
http://www.ti.com/clocks
http://www.ti.com/consumer-apps
http://interface.ti.com
http://www.ti.com/energy
http://logic.ti.com
http://www.ti.com/industrial
http://power.ti.com
http://www.ti.com/medical
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/space-avionics-defense
http://www.ti.com/lprf
http://www.ti.com/video
http://www.ti.com/wireless-apps

	Titlepage
	Abstract/Purpose/Benefit
	Contents
	List of Tables
	List of Figures
	1 Introduction
	2 Basic Elements for Using PKTDMA with KeyStone Devices
	3 AIF2 Packet for Antenna Traffic
	3.1 AIF2 Packet Descriptor Format
	3.2 Setting Up AIF2 Ingress Rx FDQ Packet Descriptors
	3.3 Setting Up AIF2 Egress Packet Descriptors

	4 FFTC Packet Format
	4.1 FFTC Packet Descriptor Format
	4.2 Setting Up FFTC Tx Packet Descriptor
	4.3 Setting Up FFTC Rx FDQ Descriptors

	5 High Level View of Data Flow Between AIF2 and FFTC
	5.1 Inbound Data Flow
	5.2 Outbound Data Flow

	6 Connecting AIF2 and FFTC for Inbound Antenna Traffic
	6.1 Basic Pass-Through Usage
	6.2 Intermediate Usage
	6.3 Advanced Usage
	6.3.1 Reconstructing the FFTC Packet
	6.3.2 DSP Intervention Free Data Path
	6.3.2.1 Single Queue Data Path
	6.3.2.2 Multi-Queue Data Path
	6.3.2.3 Comparisons


	6.4 Example LTE PUSCH and PUCCH Usage

	7 Connecting FFTC and AIF2 for Outbound Antenna Traffic
	8 Special Notes on Using AIF2 DIO Mode
	9 References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue true
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (These settings apply to all documents created for posting on ti.com.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [1200 1200]
  /PageSize [612.000 792.000]
>> setpagedevice




