&

PRINTED WITH

SOYINK|_

TMS320C3x/C4x
Assembly Language Tools
User’s Guide

Literature Number: SPRU035D
June 1998

Q’ TEXAS
INSTRUMENTS

o

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.

Tl warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent
Tl deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER'’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

Tl assumes no liability for applications assistance or customer product design. Tl does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of Tl covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI's publication of information regarding any third
party’s products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright 0 1998, Texas Instruments Incorporated

About This Manual

Preface

Read This First

The TMS320C3x/C4x Assembly Language Tools User’s Guide tells you how
to use these assembly language tools:

U
U
u
U

Assembler

Archiver

Linker

Hex conversion utility

Before you can use this book, you should read the TMS320C3x/C4x Code
Generation Tools Getting Started Guide to install the assembly language
tools.

How to Use This Manual

The goal of this book is to help you learn how to use the Texas Instruments
assembly language tools specifically designed for the TMS320C3x/C4x
floating-point DSPs. This book is divided into four distinct parts:

a

Part I: Introductory Information gives you an overview of the assembly
language development tools and also discusses common object file
format (COFF) which helps you to use the TMS320C3x and TMS320C4x
tools more efficiently. Read Chapter 2 before using the assembler and
linker.

Part II: Assembler Description contains detailed information about
using the assembler. This section explains how to invoke the assembler
and discusses source statement format, valid constants and expressions,
assembler output, and assembler directives.

Part Ill: Additional Assembly Language Tools describes in detail each
of the tools provided with the assembler to help you create assembly
language source files. For example, Chapter 8 explains how to invoke the
linker, how the linker operates, and how to use linker directives.
Chapter 10 explains how to use the hex conversion utility.

How to Use This Manual/Notational Conventions

o

Notational Conventions

Part IV: Reference Material provides supplementary information. This
section contains technical data about the internal format and structure of
COFF object files. It discusses symbolic debugging directives that the
TMS320C3x/C4x C compiler uses. Finally, it includes sample linker
command files, assembler and linker error messages, and a glossary.

This document uses the following conventions.

a

Program listings, program examples, and interactive displays are shown
in a special typeface similar to a typewriter’s. Examples use a bold
version of the special typeface for emphasis; interactive displays use a
bold version of the special typeface to distinguish commands that you
enter from items that the system displays (such as prompts, command
output, error messages, etc.).

Here is a sample program listing:

0011 0005 0001 field 1,2
0012 0005 0003 field 3,4
0013 0005 0006 field 6,3
0014 0006 .even

In syntax descriptions, the instruction, command, or directive is in a bold
typeface fontand parameters are in an italic typeface. Portions of a syntax
that are in bold should be entered as shown; portions of a syntax that are
in italics describe the type of information that should be entered. Here is
an example of command line syntax:

asm30 filename

Here asm30 is a command. The command invokes the assembler and
has one parameter, indicated by filename. When you invoke the
assembler, you supply the name of the file that the assembler uses as
input.

Square brackets ([and]) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets; you
don't enter the brackets themselves. Here’s an example of an instruction
that has an optional parameter:

hex30 [—options] filename

The hex30 command has two parameters. The first parameter, —options,
is optional. Since options is plural, you may select several options. The
second parameter, filename, is required.

Notational Conventions

Square brackets are also used as part of the pathname specification for
VMS pathnames; in this case, the brackets are actually part of the
pathname (they are not optional).

In assembler syntax statements, column one is reserved for the first
character of alabel or symbol. If the label or symbolis optional , itis usually
not shown. If it is a required parameter, then it will be shown starting
against the left margin of the shaded box, as in the example below. No
instruction, command, directive, or parameter, other than a symbol or
label, should begin in column one.

symbol .usect ” section name”, size in bytes

The symbolis required for the .usect directive and must begin in column
one. The section name must be enclosed in quotes, and the section size in
bytes must be separated from the section name by a comma.

Braces({and})indicate alist. The symbol | (read as or) separates items
within the list. Here’s an example of a list:

U)
This provides three choices: *, *+, or *— .

Unless the listis enclosed in square brackets, you must choose one item
from the list.

Some directives can have a varying number of parameters. For example,
the .byte directive can have up to 100 parameters. The syntax for this
directive is:

.byte valuey [, ..., valuey]

This syntax shows that .byte must have at least one value parameter, but
you have the option of supplying additional value parameters, separated
by commas.

Read This First v

Related Documentation From Texas Instruments

Related Documentation From Texas Instruments

vi

The following books describe the TMS320C3x/C4x and related support tools.
To obtain a copy of any of these Tl documents, call the Texas Instruments
Literature Response Center at (800) 477-8924. When ordering, please
identify the book by its title and literature number.

TMS320C3x/C4x Code Generation Tools Getting Started Guide (literature
number SPRU119) describes how to install the TMS320C3x/C4x
assembly language tools and the C compiler. Installation instructions are
included for MS-DOS, Windows 3.x, Windows NT, Windows 95,
SunOS, Solaris, and HP-UX[systems.

TMS320C3x/C4x Optimizing C Compiler User’s Guide (literature number
SPRUO034) describes the TMS320 floating-point C compiler. This C
compiler accepts ANSI standard C source code and produces TMS320
assembly language source code for the 'C3x and 'C4x generations of
devices.

TMS320C3x C Source Debugger User's Guide (literature number
SPRUO053) tells you how to invoke the 'C3x emulator, evaluation module,
and simulator versions of the C source debugger interface. This book
discusses various aspects of the debugger interface, including window
management, command entry, code execution, data management, and
breakpoints. It also includes a tutorial that introduces basic debugger
functionality.

TMS320C4x C Source Debugger User's Guide (literature number
SPRUO054) tells you how to invoke the 'C4x emulator and simulator
versions of the C source debugger interface. This book discusses
various aspects of the debugger interface, including window
management, command entry, code execution, data management, and
breakpoints. It also includes a tutorial that introduces basic debugger
functionality.

TMS320C3x User’s Guide (literature number SPRUO031) describes the 'C3x
32-bit floating-point microprocessor (developed for digital signal
processing as well as general applications), its architecture, internal
register structure, instruction set, pipeline, specifications, and DMA and
serial port operation. Software and hardware applications are included.

TMS320C32 Addendum to the TMS320C3x User’s Guide (literature
number SPRU132) describes the TMS320C32 floating-point
microprocessor (developed for digital signal processing as well as
general applications). Discusses its architecture, internal register
structure, specifications, and DMA and serial port operation. Hardware
applications are also included.

Related Documentation From Texas Instruments

TMS320C4x User’s Guide (literature number SPRU063) describes the 'C4x
32-bit floating-point processor, developed for digital signal processing as
well as parallel processing applications. Covered are its architecture,
internal register structure, instruction set, pipeline, specifications, and
operation of its six DMA channels and six communication ports.

Parallel Processing with the TMS320C4x (literature number SPRA031)
describes parallel processing and how the 'C4x can be used in parallel
processing. Also provides sample parallel processing applications.

TMS320C4x General-Purpose Applications User’'s Guide (literature
number SPRU159) describes software and hardware applications for
the 'C4x processor. Also includes development support information,
parts lists, and XDS510 emulator design considerations.

TMS320C30 Evaluation Module Technical Reference (literature number
SPRUO069) describes board-level operation of the TMS320C30 EVM.

Digital Signal Processing Applications With the TMS320C30 Evaluation
Module Selected Application Notes (literature number SPRA021)
contains useful information for people who are preparing and debugging
code. The book gives additional information about the TMS320C30
EVM, as well as C coding tips.

TMS320 DSP Development Support Reference Guide (literature number
SPRUO011) describes the TMS320 family of digital signal processors and
the tools that support these devices. Included are code-generation tools
(compilers, assemblers, linkers, etc.) and system integration and debug
tools (simulators, emulators, evaluation modules, etc.). Also covered are
available documentation, seminars, the university program, and factory
repair and exchange.

Digital Signal Processing Applications with the TMS320 Family , Volumes
1, 2, and 3 (literature numbers SPRA012, SPRA016, SPRA017)
Volumes 1 and 2 cover applications using the 'C10 and 'C20 families of
fixed-point processors. Volume 3 documents applications using both
fixed-point processors, as well as the 'C30 floating-point processor.

TMS320 DSP Designer’s Notebook: Volume 1 (literature number
SPRT125) presents solutions to common design problems using 'C2x,
'C3x, 'C4x, 'C5x, and other TI DSPs.

TMS320 Third-Party Support Reference Guide (literature number
SPRUO052) alphabetically lists over 100 third parties that provide various
products that serve the family of '320 digital signal processors. A myriad
of products and applications are offered—software and hardware
development tools, speech recognition, image processing, noise
cancellation, modems, etc.

Read This First vii

Trademarks

Trademarks

viii

HP-UX is a trademark of Hewlett-Packard Company.

MS-DOS is a registered trademark of Microsoft Corporation.

PC-DOS is a trademark of International Business Machines Corporation.
Solaris is a trademark of Sun Microsystems, Inc.

SunOS is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries,
licensed exclusively through X/Open Company Limited.

XDS is a trademark of Texas Instruments Incorporated.

If You Need Assistance

If You Need Assistance . . .

1 World-Wide Web Sites
Tl Online http://www.ti.com
Semiconductor Product Information Center (PIC) http://www.ti.com/sc/docs/pic/home.htm
DSP Solutions http://www.ti.com/dsps
320 Hotline On-line™ http://www.ti.com/sc/docs/dsps/support.htm
1 North America, South America, Central America
Product Information Center (PIC) (972) 644-5580
Tl Literature Response Center U.S.A. (800) 477-8924
Software Registration/Upgrades (214) 638-0333 Fax: (214) 638-7742
U.S.A. Factory Repair/Hardware Upgrades (281) 274-2285
U.S. Technical Training Organization (972) 644-5580
DSP Hotline (281) 274-2320 Fax: (281) 274-2324 Email: dsph@ti.com
DSP Modem BBS (281) 274-2323
DSP Internet BBS via anonymous ftp to ftp://ftp.ti.com/pub/tms320bbs
1 Europe, Middle East, Africa
European Product Information Center (EPIC) Hotlines:
Multi-Language Support +33130701169 Fax:+33130701032 Email: epic@ti.com
Deutsch +49 8161 80 33 11 or +331 307011 68
English +33130701165
Francais +33130701164
Italiano +33130701167
EPIC Modem BBS +33 130701199
European Factory Repair +33 493222540
Europe Customer Training Helpline Fax: +49 81 61 80 40 10
1 Asia-Pacific
Literature Response Center +852 2 956 7288 Fax: +852 2 956 2200
Hong Kong DSP Hotline +852 2956 7268 Fax: +852 2 956 1002
Korea DSP Hotline +82 2551 2804 Fax: +82 2551 2828
Korea DSP Modem BBS +82 2551 2914
Singapore DSP Hotline Fax: +65 390 7179
Taiwan DSP Hotline +886 2377 1450 Fax: +886 2 377 2718
Taiwan DSP Modem BBS +886 2 376 2592
Taiwan DSP Internet BBS via anonymous ftp to ftp://dsp.ee.tit.edu.tw/pub/TI/
O Japan
Product Information Center +0120-81-0026 (inJapan) Fax: +0120-81-0036 (in Japan)
+03-3457-0972 or (INTL) 813-3457-0972 Fax: +03-3457-1259 or (INTL) 813-3457-1259
DSP Hotline +03-3769-8735 or (INTL) 813-3769-8735 Fax: +03-3457-7071 or (INTL) 813-3457-7071
DSP BBS via Nifty-Serve Type “Go TIASP”
1 Documentation

When making suggestions or reporting errors in documentation, please include the following information that is on the title
page: the full title of the book, the publication date, and the literature number.
Mail: Texas Instruments Incorporated Email: comments@books.sc.ti.com
Technical Documentation Services, MS 702
P.O. Box 1443
Houston, Texas 77251-1443

Note: When calling a Literature Response Center to order documentation, please specify the literature number of the

book.

Read This First ¢

Contents

INErOdUCTION .. e e e

Provides an overview of the assembly language development tools, installation information,
and a walkthrough.

1.1 Software Development TOOIS OVEIVIEWottt e 1-2
1.2 TOOIS DESCHPLONS ...ttt ettt et e ettt e e e e e e 1-3
Introduction to Common Object File Format i 2-.1|:|

Discusses the basic COFF concept of sections and how they can help you use the assembler
and linker more efficiently. Common Object File Format, or COFF, is the object file format used
by the TMS320 family floating-point tools. Read Chapter 2 before using the assembler and
linker.

2.1 COFF File TYPES ittt ettt et e e e e e e e e

2.2 SBCHONS .t

2.3 How the Assembler Handles Sections
2.3.1 Uninitialized SECLONS it
2.3.2 Initialized SECHIONS ot
2.3.3 Named SeCONSot
2.3.4 SUBSECHONS ...\t
2.3.5 Section Program COUNLEISttt
2.3.6 An Example That Uses Sections Directivesccciiiiin...

2.4 Howthe Linker Handles Sections i 2-12
2.4.1 Default Allocation -12
2.4.2 Placing Sections in the MEMOrY Map b-19

25 RelOCALON\ttt e e p-18

2.6 RUNME REIOCALON\ttt ettt et D-20

2.7 Loading a Programt D-21!

2.8 Symbolsina COFF File e e e P-22)
2.8.1 External Symbols D-22,
2.8.2 TheSymbol Table D-22)

Xi

Contents

3 Assembler DesCription ... i S—E

Tells you how to invoke the assembler and discusses source statement format, valid constants
and expressions, and assembler output.

Xii

3.1
3.2
3.3
3.4
3.5

3.6

3.7

3.8
3.9

3.10

3.11
3.12

ASSEMDIEr OVEIVIEW . . oo e

Assembler Development FIOW

Invoking the Assembler

Porting Upward Compatible Code i

Naming Alternate Directories for Assembler Input,

35.1 =i ASSEMDBIEr OPLONttt e e B-7
3.5.2 Environment Variable (A_DIR)

Source Statement Format 3-10
3.6.1 Label Field 3-10
3.6.2 Mnemonic Field 3-11
3.6.3 Operand Field 3-11
3.6.4 CommentField 3-11
CONSIANTS . .o 3-12
3.7.1 Binary INtegerS . ..ot 3-12
3.7.2 OCtal INtBOEIS ..ottt 3-12
3.7.3 Decimal INtegerS . ..o 3-12
3.7.4 Hexadecimal INtEOErSt 3-13
3.7.5 Character Constantsottt e 3-13
3.7.6 Floating-Point Constants i 3-13
3.7.7 Assembly-Time CONStants 3-14
CharaCter StNGSottt e e e e e e e B-15
SYMBOIS . o B-16
B.9.1 LAbEIS ..t B-16
3.9.2 CONSIANTS . ..ottt 3-16
3.9.3 Symbolic CoNnStantsiut i e 3-17
3.9.4 Substitution SymboIs 3-18
EXPIESSIONS « . .ottt 3-20
3.10.1 Floating-Point EXPressionsot 3-20
3.10.2 Floating-Point to Integer Conversionst ennen.n. -21
3.10.3 OPEIAtOIS ..ottt e e -22
3.10.4 Expression Overflow or Underflow -22
3.10.5 Well-Defined EXPresSSiONSottt ittt B-22
3.10.6 Conditional EXPresSSiONSttt e 3-23
3.10.7 Relocatable Symbols and Legal Expressions, -23
SOUICE LIStINGSottt B-25
Cross-Reference LiStingsot B-27]

Contents

4 Assembler Directives 4
Describes the directives according to function, and lists the directives in alphabetical order.
4.1 DireCtiVES SUMMAIY ...ttt ettt ettt e et ettt et et -2
4.2 Directives That Define SECtioNS -6
4.3 Directives That Initialize Constantso i b-7
4.4 Directives That Align the Section Program Counter, 4-10|
4.5 Directives That Format the OUtpUt LIStiNGuuneeeeeiieaanen... [a-11]
4.6 Directives That Reference Other Filesouiieiriiiiiainnns. h-13
4.7 Conditional Assembly Directives i, E
4.8 Assembly-Time Symbol DIreCtVESeieeiii e, k-19
4.9 Miscellan@ous DIF€CHVESeueree et b-1q
4.10 DirectivesReference E
INSIIUCHION SEt .o @

Summarizes the TMS320C3x and TMS320C4x instruction sets alphabetically and according
to function, with information on addressing modes, optional syntaxes, condition codes and
flags, abbreviations and symbols.

5.1 Using the Instruction Set Summaryi it E
5.1.1 Addressing Modeso B-2
5.1.2 Optional SYNtaXottt E
5.1.3 ConditionCodesandFlags i b4
5.1.4 Symbols and Abbreviations i B-6
5.2 Functional Summary of the Instruction Set E
5.2.1 Load-and-Store INStructionsiiiiiiiiii s B-8
5.2.2 Arithmetic INStructions p-10
5.2.3 LOGIC INSITUCHONS . .+« e e vt et e e e e e e e e e, 5-11]
5.2.4 Program-Control INStructions i |5-11
5.2.5 Interlocked-Operation INStrUCONSovueeeeee e, 5-12]
5.2.6 Conversion INStruCtioNSt 5-13
5.2.7 Three-Operand Instructions E
5.2.8 Parallel InStructions -14
5.2.9 TMS320C4Ax-0Only INStrUCtioNSot 5-18
5.2.10 LDP and LDPK INStructions, B-19
5.3 Instruction Set SumMmary Tableouiniee 5-20
MaCIO LaNQUAGEottt e e e e @

Describes an easy way to create your own instructions to better automate repetitive machine
tasks. Included is information on macro directives and substitution symbols used as macro
parameters.

6.1 USINGMACIOSttt e e e e e 6-2
6.2 Defining MacCIOS @

Contents

6.3 Macro Parameters/Substitution Symbols
6.3.1 Substitution SymboIS
6.3.2 Directives That Define Substitution Symbols
6.3.3 Built-In Substitution FUNCLiONS
6.3.4 Recursive Substitution Symbols
6.3.5 Forced SUDSHIIULION o e
6.3.6 Accessing Individual Characters of Subscripted Substitution Symbols
6.3.7 Substitution Symbols as Local Variablesin Macros.......................

6.4 Macro Librarieso

6.5 Using Conditional Assembly iNn Macrosc.cuuiieiiiiinininnnnn

6.6 Using Labels in Macros e

6.7 Producing Messages iN MacCrOSttt

6.8 Formatting the Output LiStingot 5-19]

6.9 Using Recursive and Nested MacCroS ...ttt et

6.10 Macro DireCtives SUMMAIYottt e e e e eas

7 Archiver DESCIIPLION ..ot e e e Y-E

Contains instructions for invoking the archiver, creating new archive libraries and modifying
existing libraries.

7.1 Archiver Development FIOWouene it 7-2
7.2 InvoKing the ArChIVET 7-3
7.3 ArChiVer EXamplesottt 7-5
8 Linker DesCription e @

Describes the process of creating executable modules by combining COFF object files;
describes how to invoke and use the linker, and presents a detailed example.

8.1 Linker Development FIOW
8.2 Invoking the LINKer i e e e
8.3 LINKEr OptiONS ..o
8.3.1 Relocation Capability (—aand —r Options)ccoiiiiiiinann.
8.3.2 Disable Merge of Symbolic Debugging Information (—b Option)
8.3.3 C Language Options (—c and —cr Options)c.iiiiiininannnn.
8.3.4 Define an Entry Point (—e global symbol Option)
8.3.5 Set Default Fill Value (—fcc Option) ...,
8.3.6 Make All Global Symbols Static (-<h Option)
8.3.7 Keep a Global Symbol (—g symbol Option)
8.3.8 Define Heap Size
(~heap size, —heap8 size, and —heapl16 size Options)
8.3.9 Alter the Library Search Algorithm (—i dir & —I filename/C_DIR)
8.3.10 —iLinker Optionii
8.3.11 Environment Variable (C_DIROrA DIR)
8.3.12 Create a Map File (—-m filename Option),
8.3.13 Name an Output Module (—o filename Option),
8.3.14 Specifya Quiet Run (—q Option)t e

Xiv

8.4
8.5
8.6

8.7

8.8

8.9

8.10

8.11

8.12
8.13

8.14

8.15

Contents

8.3.15 Strip Symbolic Information (—=s Option)t 8-14
8.3.16 Define Stack Size (—stack size Option), 8-15
8.3.17 Introduce an Unresolved Symbol (—u symbol Option) E
8.3.18 COFF Format Version (—vn Option)t 8-16
8.3.19 Warning Switch (=W OptioN)o 8-16
8.3.20 Exhaustively Read Libraries (=X 0ption)ceoeiuuiieii... B-17
Linker Command Files B-18
ObjeCt LIbraries o -21
The MEMORY DIr€CHVEttt ettt e et e B-23
8.6.1 Default Memory Model 8-23
8.6.2 MEMORY DirecCtive SYNtaxcuuuiiriiiiin ittt 8-23
The SECTIONS DIreCtiveo e e e -27
8.7.1 Default Sections Configurationeeeeierienaeeenennnin. B-27
8.7.2 SECTIONS Directive SyntaxXcouiuiiiiiii et 8-27
8.7.3 Specifying the Address of Output Sections (Allocation) 8-29
8.7.4 Specifying INPUL SECHONSo\ttt e e B-32
Specifying a Section’s RUNtiMe AdAreSSuurieeieiaeeeaannn. 8-35
8.8.1 Specifying TWO AdAreSSESttt 8-35
8.8.2 Uninitialized SeCtioNS 8-36
8.8.3 Referring to a Load Address by Using the .label Directive B-36
Using UNION and GROUP StAtEMENLS .« . . .o v e e et e 8-39
8.9.1 Overlaying Sections With the UNION Directive 8-39
8.9.2 Grouping Output Sections Togetheroeieeeeai, B-41]
Overlay Pages e -42
8.10.1 Using the MEMORY Directive to Define Overlay Pages [8-42
8.10.2 Using Overlay Pages With the SECTIONS Directive B-44
8.10.3 Page Definition Syntaxoo B-45
Default AlloCation B-47,
8.11.1 Allocation Algorithm B-47]
8.11.2 General Rules for OUtput SECHONSo.itiiiiii i B-48
Special Section Types (DSECT, COPY,and NOLOAD)cciviiiennnn. 8-49
Assigning Symbols at Link Time 8-50
8.13.1 Syntax of Assignment Statementso i 8-50
8.13.2 Assigning the SPCt0 @ SYMBOlottt 8-50
8.13.3 AsSignMmeNnt EXPressions 8-51]
8.13.4 Symbols Defined by the Linker i 8-53
Creating and Filling HoleS e 8-54
8.14.1 Initialized and Uninitialized Sections i, 3-54
8.14.2 Creating Holes B-54
8.14.3 FilliNG HOIES\ttt e e B-56]
8.14.4 Explicit Initialization of Uninitialized Sections 8-57
Partial (Incremental) LINKINGo 3-58

Contents XV

Contents

10

XVi

8.16 LINKING C COe . ..ottt e e e B-60
8.16.1 Runtime Initialization B3-60
8.16.2 Object Libraries and Runtime Support ... 8-60
8.16.3 Setting the Size of the Stack and Heap Sections 8-61
8.16.4 Autoinitialization (ROM and RAM Models), 8-61
8.16.5 The —c and —cr Linker OptionNs oot B-63

8.17 Linker EXample e B-64

Absolute Lister DesCription o -

Explains how to invoke the absolute lister to obtain a listing of the absolute addresses of an
object file.

9.1 Producing an Absolute LiStingo it e
9.2 Invoking the Absolute Listero it e e
9.3 Absolute Lister EXample
Hex Conversion Utility Description 10

Tells you how to use the hex conversion utility to translate a COFF object file into one of several
standard ASCII hexadecimal formats suitable for loading into an EPROM programmer.

10.1 Hex Conversion Utility Development Flow it 10-2
10.2 Invoking the Hex Conversion Utility i, 10-3
10.3 UsingCommand Files e e e e 10-6
10.4 Creating a Compatible File Format i e 10-7
10.4.1 Defining Input Datainthe 'C32 i 10-8
10.4.2 Specifyingthe Width 10-9
10.4.3 Partitioning Data Into OQutput Files flo-12]
10.4.4 A Memory Configuration Example flo-14]
10.4.5 Specifying Word Order for Output Filesoiuernereennn... fl0-14]
10.5 Using the ROMS Directive to Specify Memory Configuration 10-16
10.5.1 When to Use the ROMS Directiveiiiiiiiinainnennen.. 10-18
10.5.2 An Example ofthe ROMS Directive ..., 10-19
10.5.3 Creating Map Files and the —mapoption............., 10-21
10.6 Using the SECTIONS Directive to Convert COFF File Sections 10-22
10.7 OUPUL FIlENamMES . . . oo e e 0-24
10.8 Image Mode and the —fill Option i 10-26
10.8.1 The —image Optionot 0-26
10.8.2 Specifyinga Fill Value 10-27
10.8.3 Stepsto FollowinImage Mode 10-27

Contents

10.9 Building a Boot-Table From an On-Chip Boot Loader [10-28|
10.9.1 Description of the Boot Tableovee et flo-28]
10.9.2 TheBootTable Format i i, @
10.9.3 Howto Buildthe BootTable, @
10.9.4 Booting From a Device Peripheralouuiiiniinienai., [10-31]
10.9.5 Setting the Entry Point for the Boot Table E
10.9.6 Setting Control Registers ... f0-31]
10.9.7 Creating a Boot Loader Table forthe 'C31 [10-32]
10.9.8 TMS320C32 Boot Loader Table Generation [10-34]
10.9.9 TMS320C4x Boot Loader Table Generation [10-37]

10.10 Controlling the ROM Device AdAressot 0-39
10.10.1 Controlling the Starting ADdress 0-39
10.10.2 Controlling the Address Increment INAEXcovueereeenn... [10-41]
10.10.3 Dealing With Address Holes i E

10.11 Description of the Object FOIMALSoue et f0-43]
10.11.1 ASCII-Hex Object Format (—a Option)c.ccueuirereenenan... fl0-44]
10.11.2 Intel MCS-86 Object Format (—i OPtioN)oeeeeeneeennn... [10-45]
10.11.3 Motorola-S Object Format (-m1, —m2, —m3 Options) fLO-46]
10.11.4 TI-Tagged Object Format (—t Option)c.cviiiiiiiii i, @
10.11.5 Extended Tektronix Object Format (—x Option) @

10.12 Hex Conversion Utility Effor MESSAGES vvee et [10-49]

Common Object File Format ... A

Contains supplemental technical data about the internal format and structure of COFF object
files.

Al How the COFF File IS StUCIUIEA\\'eetie ettt A-2
A.1.1 Impact of Switching Operating Systems ..., E
A2 File Header Structure E
A.3 Optional File Header Format e E
A4 Section Header Structure E
A5 Structuring Relocation Informationo A-10
A.6 Line-Number Table StrUCtUreiriretie e s, A-12
A.7 Symbol Table Structure and Content i A-14
A7.1 Special SYMbOIS ...ttt A-16
A.7.2 Symbol Name FOMMAaLottt e e A-1g
A.7.3 String Table Structure E
ATA StOrage ClaSSESttt e A-19
AT.5 SymbolValues o A-20
AT7.6 SECtion NUMDETttt ettt e e A-21]
ATT TYPE ENMY « ottt e e e e A-21]
A7.8 Auxiliary ENtries o A-23

Contents XVii

Contents

XViii

Symbolic Debugging DIreCtivest e B-
Lists several directives that the TMS320 floating-point C compiler uses for symbolic debugging.

Assembler Error MESSagEeSttt C
Lists the fatal, nonfatal and macro error messages that the assembler issues.

LINKEr ErrOr MESSa0gES o ottt ettt e e e e et e e e e D

Lists all the types of error messages issued by the linker, including syntax and command errors,
allocation errors and I/O errors.

Hex Conversion Utility EXamples E-D
lllustrates command file development for a variety of memory systems and situations.

E.1 Building a Command File for Two 16-Bit EPROMScciiiiion... -3
E.2 Building a Command File for Booting From the 'C4x Communications Port E-9
E.3 Building a Command File to Convert Codefora’'C32 E-15
E.4 Building a Command File for a Four 8-Bit EPROM System E-20
E.5 Avoiding Holes Between Multiple Sections E-21
E.6 Building a Command File for a 'C31 Serial Port BootLoad E-23
E.7 Dealing With Three Different Addresseso, E-24
E.8 Building a Command File to Generate a Boot Table forthe 'C32 E-26

GlOSSary ... E
Explains the terms and phrases and acronyms used in this book.

8-10
8-11
9-1
9-2
9-3
101
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9
10-10
10-11

Figures

TMS320 Family Assembly Language Development Flow -2
Partitioning Memory Into Logical BIOCKS -3
Object Code Generated by Example 2—1 i [2-11
Default Allocation for the Object Code in Figure 2—2 0-13
Combining Input Sections From Two Files (Default Allocation) 2-14
Rearranging the Memory Map From Figure 2—3 i 2-17)
Assembler Development FIOW e -3
The .align DIreClive o e e e e -18
The .space DIreCHIVEo e e 4-62
The .USECt DIreCtiVe e 4-71
Archiver Development FIOW 7-2
Linker Development FIOW i 8-3
Memory Map Defined in Example 8—3 3-26]
Section Allocation Defined by Example 8—4 i 8-29
Runtime Execution of Example 8—6 -38
Memory Allocation for Example 8—7 and Example 8-8 8-40)
Section Allocation Defined by Example 8=9 3-41]
Overlay Pages Defined by Example 810 ... e 8-43
RAM Model of Autoinitialization 8-62
ROM Model of Autoinitialization 8-63
Linker Command File, demo.cmd 8-65
Output Map File, demo.Mapo.iuii i B-66
Absolute Lister Development FIow i e 0-2
MOAUIE LISt . . . 0-9
MOAUIE 2. ISt . . . -10
Hex Conversion Utility Development Flow i 10-2!
Hex Conversion Utility Process FIow i 10-7
Target and Data WIdthsottt 0-9
Target, Data, and Memory Widths e 10-11
Target, Memory, and ROM Widths e 10-13
'C3x/'C4x Memory Configuration Example i 10-14
Varying the Word Order e e 10-15
The infile.out File from Example 10-1 Partitioned Into Eight Output Files [10-20]
ASCII-HeX ODJECt FOIMALot o ettt e e e e e e e 10-44)
Intel Hex Object FOrmato e 10-45
MOtOrola-S FOIMAL e e 10-46

Contents

Xix

Figures

10-12 TI-Tagged Object FOrmatt e et ettt
10-13 Extended Tektronix Hex Object Format i

A-1
A-2
A-3
A-4
A-5
A-6

XX

COFRF File StrUCIUIE . ..ot e e
Sample COFF Object File
An Example of Section Header Pointers for the .text Section
Line-Number BIOCKS e
Line-Number Entries EXample e
Symbol Table CoNtents
Symbols for BIOCKSo
Symbols for FUNCHONS o e
Sample String Table
System With Two 16-bit EPROMS e
Linker Command File for Two 16-bit EPROMS i,
Data From Output File resulting from Example E=2 it
A Sample EPROM System for @’CAXo

Data From Output File (boot.tbl) resulting from Example E-5
Sample EPROM System for a’C32t
Data from Hex Output File (tutor3.hex) Resulting From Example E-8
Sample EPROM System for a’C32ottt e e
Output File for Example 8 (example8.hex) Resulting From Example E-18

10-1
10-2
10-3
10-4

OB ALONS . o ittt -22
Expressions With Absolute and Relocatable Symbols 3-23
Symbol AttrbBULES . .. -28
DIr€CHIVES SUMMAIY oo e e et e e e e 4-2
INIreCt AAreSSING . . . oottt e b-3
Condition Codes and Flagsottt e e b-5
INStrUCtion SYMDbOIS . . oo b-6
Summary of Load-and-Store InStructions i 5-9
Summary of Arithmetic INStructions e 5-10
Summary of Logical INStruCtionNS it 5-11]
Summary of Program-Control INStructions i 5-11
Summary of Interlocked-Operation Instructions i, 5-12,
Summary of Conversion INStrUCtIONSot e 5-13
Summary of Three-Operand INStrUCtioNSt e 5-14
Summary of Parallel INStrucCtions oo 5-16
Summary of TMS320C4x-Only INStrUCHONSo\ttt e e e e 5-18
Function Definitions -8
Creating MaCrOS ottt e e -22
Manipulating Substitution Symbols 6-22,
Conditional ASSEMDIY o -22
Producing Assembly-Time MeSSagesoviii it e e 6-23
Formatting the LiStingot -23
Linker OptioNS SUMMANYottt e et et e e et ettt -6
Operators in ASSIgNment EXPresSSioNSttt 8-52,
BasSiC OPliONS ..ottt 0-4
Boot-Loader Utility Options oo 10-29
Control Register OptioNSttt e e 10-32
Options for Specifying Hex CONVersion FOMMALSovueueeeeeeanan, fl0-43
File Header Contentsttt e e e et A-5
File Header Flags (Bytes 18 and 19)ttt e A-6
Optional File Header CONtENtS it e A-6
Section Header Contents for COFF 0 and COFF1 Files A-7
Section Header Contents for COFF2 Files i A-7)
SeCtion HEAEr FIAGS . . .« v e ettt et e A-8
Relocation Entry CONtentsSo e -10
Relocation Types (Bytes 8 and Q) ...t e A-11]

Contents XXi

Tables

A-9

A-10
A-11
A-12
A-13
A-14
A-15
A-16
A-17
A-18
A-19
A-20
A-21
A-22
A-23
A-24
A-25
A-26
A-27

XXii

Line-Number Entry Format i e e e
Symbol Table Entry CONtentSot e e e
Special Symbols inthe Symbol Table i i
Symbol Storage ClasSest
Special Symbols and Their Storage Classes ...
Symbol Values and Storage Classest
Section NUMDEIS .. o
BaASIC TY PSS .ot ee
DENVEA TYPES ottt ettt e e e
Auxiliary Symbol Table Entries Format i
Filename Format for Auxiliary Table Entries i
Section Format for Auxiliary Table Entries i
Tag Name Format for Auxiliary Table Entries
End-of-Structure Format for Auxiliary Table Entries o ..
Function Format for Auxiliary Table Entriesc. i
Array Format for Auxiliary Table ENtries
End-of-Blocks and Functions Format for Auxiliary Table Entries
Beginning-of-Blocks and Functions Format for Auxiliary Table Entries
Structure, Union, and Enumeration Names Format for Auxiliary Table Entries

6-10
6-11
6-12
6-13
6-14
6-15
6-16

Examples

UsSiNg Section DIreCtiVESot e e -10
MEMORY and SECTIONS Directives for Figure 2-5 2-16
Code That Generates Relocation Entries P-18
An Assembler LiSting -26
An Assembler Cross-Reference LiSting ... 3-27]
Initialization DIFeCHIVES e A4-8
The field DireCtive 4-9
The .space DIreCliVe o e e -9
The .align DIreCtiveo #-10
The .@VeN DIFECHVEottt et e et e e e e e e e 4-10
The .even DIreCtiVE -32,
The field Directive 1-36
Defining Two Uninitialized, Named SECtioNSoviririeieininannn... 4-71
Macro Definition, Call, and EXpansionccuuiiiiiei ittt -4
Calling a Macro With Varying Numbers of Arguments it -6
Using the .asg DIreCtiVe it -7
Using the .eval DireCtiveo e -7
Using Built-In Substitution Symbol Functions to Redefine an Instruction 6-8
Recursive SUDSHItULIONot -9
Using the Forced Substitution Operatort 6-10
Using Subscripted Substitution Symbols 6-11
Using Subscripted Substitution Symbols to Find Substrings 6-11]
Using the .loop/.break/.endloop Directivest 6-15
Nested Conditional Assembly DireCtiveS e 6-15
Using the .if, .else, and .endif Directivesc i 6-15
Unique Labels in @ MacCro -16
Producing Messages in @ Macrot 6-18
USING NESEEA MACIOS oo et et e et e e e e e 5-20
USING RECUISIVE MACIOS . .. oottt ettt e e e e e e e e e e 5-21!
An Example of a Linker Command File i 3-18
A Command File With Linker Directives i 3-19
The MEMORY DIr€CHVE\ttt e e e e 8-24
The SECTIONS DireCtive e 8-28
The Most Common Method of Specifying Section Contents 8-32
Copying a Section From ROM O RAM oo e 8-37
lllustrates the Form of the UNION Statement 8-39

Contents XXiii

Examples

E-10
E-11
E-12
E-13
E-14
E-15
E-16
E-17
E-18

XXiV

lllustrates Separate Load Addresses for UNION Sections -39
Using the GROUP DIreCtiVet e e et e it B-41
OVEIaY Pages . ottt B-43
SECTIONS Directive Definition for Figure 8—7 i -44,
A ROMS Directive Example 0-19
Map File Output from Example 10-1 Showing Memory Ranges 10-21
Using the TMS320C31 Boot Loadert [LO-33]
Using the TMS320C32 BOOt LOAAET\ttt et fL0-36]
Using the 'CAxX BoOt LOAAET\ttt et flo-38]
Hex Command File For Hole AVOIdanceoeuiuieeeeeeeanaen.. flo-42]
SAMPIE ASM COUE . . .ot E-2
Command File for Two 16-bit EPROMS E-6
Hex Conversion Map File Resulting From Example E=2 £-8
Linker Command File for Booting From the 'C4x COMM Port E-10
Command File for Booting From the 'C4x COMM Port, E-12
Map File Resulting From Example E=5 F-14
Linker Command File for a'C32t E-16
Sample Hex Command File for a’C32 F-18
Code for Four 8-Bit EPROM Files e E-20
Linker Command File for Avoiding Holes: Method One E-21
Hex Conversion Utility Command File for Avoiding Holes: Method One E-22
Linker Command File for Avoiding Holes: Method Two E-22
Hex Conversion Utility Command File for Avoiding Holes: Method Two E-22]
Command File for a'C31 SERIAL Port Boot Loadccovevneenn... [E-23
Linker Command File for Dealing With Three Different Addresses [E-24
Hex Command File for Dealing With Three Different Addresses [E-25]
Linker Command File for a'C32t E-27
Hex Command File Fora’'C32 BootTable E-28

Chapter 1

Introduction

The TMS320C3x/C4x DSPs are supported by the following assembly
language tools:

J Assembler

] Archiver

] Linker

[Hex conversion utility

This chapter shows how these tools fit into the general software tools develop-
ment flow and gives a brief description of each tool. For convenience, it also
summarizes the C compiler and debugging tools; however, the compiler and
debugger are not shipped with the assembly language tools. For detailed
information on the compiler and debugger and for complete descriptions of the
TMS320C3x/C4x devices, refer to books listed in Related Documentation
From Texas Instruments, page Vi.

The assembly language tools create and use object files in common object file
format (COFF) to facilitate modular programming. Object files contain sepa-
rate blocks (called sections) of code and data that you can load into TMS320
memory spaces. You can program the TMS320 devices more efficiently if you
have a basic understanding of COFF. Chapter 2, Introduction to Common
Object File Format, discusses this object format in detail.

Topic Page
1.1 Software Development Tools Overview — _‘L-EI
1.2 T00IS DESCHPHONS . ..ottt e et il

11

Software Development Tools Overview

1.1 Software Development Tools Overview
Figure 1-1 shows the assembly language development flow. The shaded

portion highlights the most common development path; the other portions are
optional.

Figure 1-1. TMS320 Family Assembly Language Development Flow

! B el

+ Executable +

e ——
" . File .

Hex Conversion ° ° |
R

Programmer TMS320C4x

*

— r
- | . . |
Archiver | + Assembler « |
———/ | . Source |
— e
: s | |
.+ Macro | |
s Library ¢ ——}—p| Assembler :
. .
[
| |
| |
—\ | |: corr :]] |
Archiver J—1 . Object . I Library Build
T . Files | Utility
~— —
v | |
L] . I I . . .
+ Library of ¢ | | 0 I;unnm? s
+ Object I . . Support .
P Files @ | Linker : Library s
|
|
|
|
|
|

Debugging
Tools

1-2

Tools Descriptions

1.2 Tools Descriptions

a

The C compiler translates C source code into TMS320C3x or
TMS320C4x assembly language source code. The C compiler is not in-
cluded as part of the assembly language tools package.

The assembler translates assembly language source files into machine
language object files. Source files can contain instructions, assembler
directives, and macro directives. You can use assembler directives to con-
trol various aspects of the assembly process, such as the source listing
format, data alignment, and section content.

The linker combines object files into a single executable object module.
As it creates the executable module, it performs relocation and resolves
external references. The linker accepts relocatable COFF object files (cre-
ated by the assembler) as input. It also accepts archiver library members
and output modules created by a previous linker run. Linker directives
allow you to combine object file sections, bind sections or symbols to ad-
dresses or within memory ranges, and define or redefine global symbols.

The archiver allows you to collect a group of files into a single archive file.
For example, you can collect several macros together into a macro library.
The assembler will search through the library and use the members that
are called as macros by the source file. You can also use the archiver to
collect a group of object files into an object library. The linker will include
the members in the library that resolve external references during the link.

The absolute lister accepts linked object files as input and creates .abs
files as output. You assemble .abs files to produce a listing that contains
absolute rather than relative addresses. Without the absolute lister, pro-
ducing such a listing would be tedious and require many manual opera-
tions.

The main purpose of this development process is to produce a module that
can be executed in a system that contains a TMS320 device . There are
several debugging tools available for the various TMS320 devices:

B The simulator is a software program that simulates TMS320 instruc-
tions. The simulator can execute linked COFF object modules. The
simulator is not included with the assembly language package.

B The XDS (extended development support) emulator is a real-time,
in-circuit emulator with the same screen—oriented interface as the
software simulator. The emulator is not included with the assembly
language package.

Introduction 1-3

Tools Descriptions

B The evaluation module (EVM) is alow-cost development board that
provides full-speed in-circuit emulation and hardware debugging. The
EVM is available now for the TMS320C3x devices and will be avail-
able soon for the TMS320C4x devices.

B The Csource debugger is asoftware interface to the simulator, emu-
lator, and EVM.

(1 The TMS320C3x/4x devices accept COFF files as input, but most
EPROM programmers do not. The hex conversion utility —converts a
COFF object file into TI-tagged, Intel, Motorola S1/S2/S3, or Tektronix
object format. The converted file can be downloaded to an EPROM
programmer.

Chapter 2

Introduction to Common Object File Format

The assembler and linker create object files that can be executed by a
TMS320C3x/C4x device. The format that these object files are in is called
common object file format, or COFF.

COFF makes modular programming easier because it encourages you to
think in terms of blocks of code and data when you write an assembly language
program. These blocks are known as sections . Both the assembler and the
linker provide directives that allow you to create and manipulate sections.

In addition to this chapter, Appendix A details COFF object file structure. For
example, it describes the fields in a file header and the structure of a symbol
table entry. Appendix A is useful mainly for those of you who are interested in
the internal format of object files.

Topic Page
21 COFF IR TYPES vt e e
2.2 SECHONS ..ttt
2.3 How the Assembler Handles Sections Z-D
2.4 How the Linker Handles Sections 2-
2.5 REIOCALION ..ttt 3-18 |
2.6 Runtime ReloCAtiononeee i 2
2.7 Loading @ Programeeieii 2}21 |
2.8 SymbolsinaCOFFFile 2[22]

2-1

COFF File Types

2.1 COFF File Types

2.2 Sections

2-2

The following types of COFF files exist:

O COFFO
O COFF1
O COFF2

Each COFF file type has a different header format. The data portions of the
COFF files are identical. For details about the COFF file structure, see
Appendix A, Common Object File Format.

The TMS320C3x/C4x assembler and C compiler create COFF2 files. The
linker can read and write all types of COFF files. By default, the linker creates
COFF2 files. Use the —v linker option to specify a different format. The linker
supports COFF0 and COFF1 files for older versions of the assembler and C
compiler only.

The smallest unit of an object file is called a section . A section is a block of
code or data that will ultimately occupy contiguous space in the
TMS320C3x/C4x memory map. Each section of an object file is separate and
distinct from the other sections. COFF object files always contain three default
sections:

text usually contains executable code.
.data usually contains initialized data.
.bss usually reserves space for uninitialized variables.

In addition, the assembler and linker allow you to create, name, and link
named sections that are used similarly to the .data, .text, and .bss sections.

It is important to note that there are two basic types of sections:

Initialized sections contain data or code. The .text and .data sections
are initialized; named sections created with the
.sect and .asect assembler directives are also in-
itialized.

Uninitialized sections reserve space in the memory map for uninitialized
data. The .bss section is uninitialized; named sec-
tions created with the .usect assembler directive
are also uninitialized.

Sections

The assembler provides several directives that allow you to associate various
portions of code and data with the appropriate sections. The assembler builds
these sections during the assembly process, creating an object file that is or-
ganized similarly to the object file shown in Figure 2—1.

One ofthe linker’s functions is to relocate sections into the target memory map;
this is called allocation . Because most systems contain several different
types of memory, using sections can help you to use target memory more effi-
ciently. All sections are independently relocatable; you can place different sec-
tions into various blocks of target memory. For example, you can define a sec-
tion that contains an initialization routine and then allocate the routine into a
portion of the memory map that contains EPROM.

Figure 2—1 shows the relationship between sections in an object file and a hy-
pothetical target memory.

Figure 2—1. Partitioning Memory Into Logical Blocks

Initialized Uninitialized
Program Memory Object File Data Memory
r———— -
\ \
External \ \ on-chip
EPROM : -data i RAM
| \
| \
External \ ‘
EPROM i text |
| |
\ \
} .bss [}
\ \
- u

Introduction to Common Object File Format 2-3

How the Assembler Handles Sections

2.3 How the Assembler Handles Sections

The assembler identifies the portions of an assembly language program that
belongin asection. The assembler has six directives that support this function:

.bss
.usect
ext
.data
.sect
.asect

oo oo

The .bss and .usect directives create uninitialized sections; the .text, .data,
.sect, and .asect directives create initialized sections.

Note: Default Section Directive

If you don’t use any of the sections directives, the assembler assembles
everything into the .text section.
L

2.3.1 Uninitialized Sections

2-4

Uninitialized sections reserve space in TMS320C3x/C4x memory; they are
usually allocated into RAM. These sections have no actual contents in the
object file; they simply reserve memory. A program can use this space at run
time for creating and storing variables.

Uninitialized data areas are built by using the .bss and .usect assembler
directives. The .bss directive reserves space in the .bss section. The .usect
directive reserves space in a specific uninitialized named section. Each time
you invoke the .bss directive, the assembler reserves more space in the .bss
section. Each time you invoke the .usect directive, the assembler reserves
more space in the specified named section.

The syntax for each directive is

.bss symbol, size in words
symbol .usect "section name”, size in words [alignment flag]

How the Assembler Handles Sections

symbol points to the first byte reserved by this invocation of the .bss
or .usect directive. The symbol corresponds to the name of
the variable for which you're reserving space. It can be ref-
erenced by any other section and can also be declared as
a global symbol (with the .global assembler directive).

size is an absolute expression. The .bss directive reserves size
words in the .bss section; the .usect directive reserves size
words in section name. There is no default size for the .bss
section.

section name tells the assembler which named section to reserve space
in. For more information about named sections, refer to
subsection 2.3.3.

blocking flag is an optional parameter. If present and nonzero, the flag
means that this section will be blocked. Blocking is an ad-
dress alignment mechanism similar to alignment, but
weaker. It means a section is guaranteed not to cross a
page boundary (128 words) if it is smaller than a page, and
to start on a page boundary if it is larger than a page. This
blocking applies to the section, not to the object declared
with this instance of the .usect directive.

alignment flag is an optional parameter. If present and nonzero, the sec-
tion will be aligned to a long word boundary.

The .text, .data, .sect, and .asect directives tell the assembler to stop
assembling into the current section and begin assembling into the indicated
section. The .bss and .usect directives, however, do not end the current
section and begin a new one; they simply escape from the current section
temporarily. The .bss and .usect directives can appear anywhere in an initial-
ized section without affecting the contents of the initialized section.

2.3.2 Initialized Sections

Initialized sections contain executable code or initialized data. The contents
of these sections are stored in the object file and placed in TMS320C3x/C4x
memory when the program is loaded. Each initialized section is separately
relocatable and may reference symbols that are defined in other sections. The
linker automatically resolves these section-relative references.

Introduction to Common Object File Format 2-5

How the Assembler Handles Sections

Three directives tell the assembler to place code or data into a section. The
syntax for each directive is

text
.data
.sect ” section name” [, value]

When the assembler encounters one of these directives, it stops assembling
into the current section; the directive acts as an implied “end current section”
command. The assembler then assembles subsequent code into the section
designated by the directive until it encounters another .text, .data, or .sect
directive.

Sections are built up through an iterative process. For example, when the as-
sembler firstencounters a .data directive, the .data section is empty. The state-
ments following this first .data directive are assembled into the .data section
(until the assembler encounters a .text, .sect, or .asect directive). If the assem-
bler encounters subsequent .data directives, it adds the statements following
these .data directives to the statements that are already in the .data section.
This creates a single .data section that can be allocated contiguously into
memory.

2.3.3 Named Sections

2-6

Named sections are sections that you create. You can use them like the default
.text, .data, and .bss sections, but they are assembled separately from the de-
fault sections.

For example, repeated use of the .text directive builds up a single .text section
in the object file. When linked, this .text section is allocated into memory as a
single unit. Suppose there is a portion of executable code (perhaps an initiali-
zation routine) that you don’t want allocated with .text. If you assemble this
segment of code into a named section, it will be assembled separately from
.text, and you will be able to allocate it into memory separately from .text. Note
that you can also assemble initialized data that is separate from the .data sec-
tion, and you can reserve space for uninitialized variables that is separate from
the .bss section.

Three directives let you create named sections:

[The .usect directive creates sections that are used like the .bss section.
These sections reserve space in RAM for variables.

[The .sect directive creates sections that can contain code or data, similar
to the default .text and .data sections. The .sect directive creates named
sections with relocatable addresses.

How the Assembler Handles Sections

The syntax for each directive is:

symbol .usect “ section name”, size in words [, alignment flag]
.sect “ section name” [, value]

The section name parameter is the name of the section. Section names are
significant to 8 characters. You can create up to 32,767 separate hamed sec-
tions.

Each time you invoke one of these directives with a new name, you create a
new named section. Each time you invoke one of these directives with a name
that was already used, the assembler assembles code or data (or reserves
space) into the section with that name. You cannot use the same names with
different directives. That is, you cannot create a section with the .usect direc-
tive and then try to use the same section with .sect.

Introduction to Common Object File Format 2-7

How the Assembler Handles Sections

2.3.4 Subsections

Subsections are smaller sections within larger sections. Like sections, sub-
sections can be manipulated by the linker. Subsections give you tighter control
of the memory map. You can create subsections by using the .sect or .usect
directive. The syntax for a subsection name is:

section name:subsection name

A subsection is identified by the base section name followed by a colon, then
the name of the subsection. A subsection can be allocated separately or
grouped with other sections using the same base name. For example, to
create a subsection called _func within the .text section, enter the following:

.sect ".text:_func”

You can allocate _func separately or within all the .text sections.
You can create two types of subsections:

(1 Initialized subsections are created using the .sect directive. See subsec-
tion 2.3.2, Initialized Sections, on page 2-5.

[0 Uninitialized subsections are created using the .usect directive. See
subsection 2.3.1, Uninitialized Sections, on page 2-4.

Subsections are allocated in the same manner as sections. See Section 8.7,
The SECTIONS Directive, on page 8-27 for more information.

2.3.5 Section Program Counters

2-8

The assembler maintains a separate program counter for each section. These
program counters are known as section program counters, or SPCs.

An SPC represents the current address within a section of code or data.
Initially, the assembler sets each SPC to 0. As the assembler fills a section with
code or data, itincrements the appropriate SPC. If you resume assembling into
a section, the assembler remembers the appropriate SPC’s previous value
and continues incrementing the SPC at that point.

The assembler treats each section as if it begins at address 0; the linker relo-
cates each section according to its final location in the memory map.

How the Assembler Handles Sections

2.3.6 An Example That Uses Sections Directives

Figure 2—1 shows how you can build COFF sections incrementally, using the
sections directives to swap back and forth between the different sections. You
can use sections directives to

[Begin assembling into a section for the first time, or

[Continue assembling into a section that already contains code. In this
case, the assembler simply appends the new code to the code that is al-
ready in the section.

The format in this example is a listing file. Example 2—1 shows how the SPCs
are modified during assembly. A line in a listing file has four fields:

Field 1 contains the source code line counter.

Field 2 contains the section program counter.

Field 3 contains the object code.

Field 4 contains the original source statement.

Introduction to Common Object File Format 2-9

How the Assembler Handles Sections

Example 2—-1. Using Section Directives

1
2 ** Assemble an initialized table into data **
3
4 00000000 .data
5 00000000 00000011 coeff .word 011h, 022h, 033h
00000001 00000022
00000002 00000033
6
7 ** Reserve space in .bss for two variables **
8
9 00000000 .bss varl,1l
10 00000001 .bss buffer, 10
11
12
13 *k Still in data *k
14
15 00000003 00000123 ptr .word 0123h
16
17
18 *x Assemble code into .text section **
19
20 00000000 text
21 00000000 0869000a add: LDI 10,AR1
22 00000001 08610000 LDI O,R1
23 00000002 aloop:
24 00000002 02412001 ADDI *ARO++,R1
25 00000003 6e46fffe DBNZ AR1,aloop
26 00000004 15210000- STI R1,@varl
27
28
29 b Assemble another initialized table **
30 *x into the data section *x
31
32 00000004 .data
33 00000004 000000aa ivals .word 0AAh, 0BBh, 0CCh
00000005 000000bb
00000006 000000cc
34
35 ** Define another section for more variables**
36
37 00000000 var2 .usect " newvars ”,1
38 00000001 inbuf .usect " newvars "7
39
40
41 ** Assemble more code into .text section **
42
43 00000005 text
44 00000005 0869000a mpy: LDI 10,AR1
45 00000006 08610000 LDI 0O,R1
46 00000007 mloop
47 00000007 0acl12001 MPYI *ARO++,R1
48 00000008 6e4b6fffe DBNZ AR1,mloop
49 00000009 15210000- STI R1,@var2
50
51
52 ** Define a nameed section for int. vectors **
53
54 00000000 .sect " vectors "
55 00000000 00000000’ .word add,mpy
00000001 00000005
V/ ~— — N—
Field 1 Field 2 Field 3 Field 4

2-10

How the Assembler Handles Sections

As Figure 2-2 shows, the file in Example 2—1 creates five sections:

text
.data

vectors

.bss

newvars

contains 10 words of object code.

contains 7 words of object code.

is a named section created with the .sect directive; it contains 2
words of initialized data.

reserves 11 words in memory.

is a named section created with the .usect directive; it reserves

8 words in memory.

The second column shows the object code that is assembled into these sec-
tions; the first column shows the source statements that generated the object

code.

Figure 2-2. Object Code Generated by Example 2—1

Line Numbers

37,38

Object Code

0869000A
08610000
02412001
6E46FFFE
15210000
0869000A
0861000A
0AC12001
6E46FFFE
15210000

00000011
00000022
00000033
00000123
000000AA
000000BB
000000CC

00000000
00000005

No data
11 words
reserved

No data 8
words
reserved

Section

.text section

.data section

vectors

.bss

newvars

Introduction to Common Object File Format 2-11

How the Linker Handles Sections

2.4 How the Linker Handles Sections

The linker has two main functions in regard to sections. First, the linker uses
the sections in COFF object files as building blocks; it combines input sections
(when more than one file is being linked) to create output sections in an exe-
cutable COFF output module. Second, the linker chooses memory addresses
for the output sections.

The linker provides two directives that support these functions:

[0 The MEMORY directive allows you to define the memory map of a target
system. You can name portions of memory and specify their starting ad-
dresses and their lengths.

(1 The SECTIONS directive tells the linker how to combine input sections
and where to place the output sections in memory.

It is not always necessary to use linker directives. If you don’t use them, the
linker uses the target processor’s default allocation algorithm described in
subsection 2.4.1. When you do use linker directives, you must specify them
in a linker command file.

Refer to the following sections for more information about linker command files
and linker directives:

Section Page
8.4 LinkerCommand Files i, -18
8.6 The MEMORY Directiveccoiiiiiiiiann. 8-23
8.7 The SECTIONS Directivet 8-27
8.11 Default Allocationc it -47

2.4.1 Default Allocation

2-12

You can link files without specifying a MEMORY or SECTIONS directive. The
linker uses a default model to combine sections (if necessary) and allocate
them into memory. When using the default model, the linker

1) Assumes that memory begins at address Oh.

2) Assumes that 232 words are available to allocate object code into.
3) Allocates .text into memory, beginning at address 0.

4) Allocates .data into memory, immediately following .text.

5) Allocates .bss into memory, immediately following .data.

6) Allocates all named sections into memory, immediately following .bss.
Named sections are allocated in the order that they’re encountered in the
input files.

How the Linker Handles Sections

Figure 2—-3 shows how a single file would be allocated into memory by using
default allocation for the TMS320C3x/C4x. Note that the linker does not actu-
ally place object code into memory; it assigns addresses to sections so that
a loader can place the code in memory.

Figure 2-3. Default Allocation for the Object Code in Figure 2—2

Object Code Section
00000000h
text 0869000A
08610000
02412001
6E46FFFE
15210000 text size = 10
0869000A E— words
0861000A
0AC12001
6E46FFFE
15210000 0000000AN
— N .
.data 00000011 data size=7
00000022 A : words
00000033
00000123
000000AA 00000011h
000000BB
000000CC
vectors .bss size = 11
00000000 words
00000005
.bss No data
11 words 0000001Ch
reserved
N size=8
newvars No data | newvars words
8 words Y
reserved
L~ 00000024h
vectors size =2
words

As Figure 2—3 shows, the linker:

1) Allocates the .text section first, beginning at address Oh. The .text section
contains 10 words of object code.

2) Allocates the .data section next, beginning at address Ah. The .data sec-
tion contains 7 words of object code.

3) Allocates the .bss section third, beginning at address 11h. The .bss sec-
tion reserves 11 words in memory.

Introduction to Common Object File Format 2-13

How the Linker Handles Sections

4) Allocates the named section, newvars, at address 1Ch. (newvars was the
first named section encountered in the original input file. See
Example 2—-1.) The newvars section reserves 8 words in memory.

5) Allocates the named section vectors at address 24h. The vectors section
contains 2 words of object code.

Figure 2—4 shows a simple example of how two files would be linked together.
When you link several files using the default algorithm, the linker combines all
input sections that have the same name into one output section that has this
same name. For example, the linker combines the .text sections from two input
files to create one .text output section.

Figure 2—4. Combining Input Sections From Two Files (Default Allocation)

2-14

filel.obj Memory
filel
text e
7 file2
.data toxt
filel
.bss .data
L N
newvars] 4 file2
(named section) data
filel
file2.0bj . -bss
1 [" file2
text [
filel
.data newvars
— N
T file2
-bss newvars
vectors A file2
(named section) % vectors
newvars
(named section)

How the Linker Handles Sections

In Figure 2-4, filel.obj and file2.0bj each contain the .text, .data, and .bss
default sections and a named section called newvars; file2.0bj also contains
a named section called vectors. As Figure 2—4 shows, the linker:

1) Combines filel.text with file2.text to form one .text output section. The
.text output section is allocated at address Oh.

2) Combines filel .data with file2 .data to form the .data output section. The
.data output section is allocated following the .text output section.

3) Combines filel.bss with file2.bss to form the .bss output section. The .bss
output section is allocated following the .data output section.

4) Combines filel newvars with file2 newvars to form the newvars output
section. (The newvars section is the first named section that is encoun-
tered during the link, so it is allocated before the second named section,
vectors.) The newvars output section is allocated following the .bss output
section.

5) Allocates the vectors section from file2 after the newvars section.

For more information about default allocation algorithms, refer to Section 8.11
on page 8-47.

2.4.2 Placing Sections in the Memory Map

Figure 2—3 and Figure 2—4 illustrate the linker’s default methods for combining
sections and allocating them into memory. Sometimes you may not want to
use the default setup. For example, you may not want to combine all of the .text
sections into a single .text section. Or, you might want a named section placed
at address 40h instead of the .text section. Most memory maps are composed
of various types of memories (DRAM, ROM, EPROM, etc.) in varying
amounts; you may want to place a section in a particular type of memory.

The next two illustrations show another possible combination of the sections
from Figure 2-3:

Example 2—2 contains linker MEMORY and SECTIONS definitions.

Figure 2-5 shows how the sections from Example 2—2 are allocated into the
memory map.

Introduction to Common Object File Format 2-15

How the Linker Handles Sections

Example 2-2. MEMORY and SECTIONS Directives for Figure 2-5

/‘ * * * * * * /
/* Linker command file Fkkk |

[FHrFFI RIS KKKk Kkkkkkkkkkkkkkkkkkk 7(/

MEMORY

{
VECS: origin = 00000000h length = 40h
ROM: origin = 00000040h length = FCOh
RAMO: origin = 00801000h length = 400h
RAM1: origin = 00801400h length = 400h

}

SECTIONS

{
vectors : load = 0000000h
text : load = ROM
.data : load = ROM
.bss . load = RAMO
newvars:load = RAM1

}

(1 The MEMORY directive in Example 2—2 defines four memory ranges:

VECS
ROM

RAMO
RAM1

The origin for each of these ranges identifies the range’s starting address
in memory. The length specifies the length of the range. For example,
memory range RAMO, with starting address 00801000h and length 400h,
defines the addresses 00801000h through 008013FFh in memory.

(1 The SECTIONS directive in Example 2—2 defines the order in which the
sections are allocated into memory. The vectors section must begin at
address 0. Both .text and .data are allocated into the ROM area that was
defined by the MEMORY directive. The .bss section is allocated into
RAMO, and newvars is allocated into RAM1.

2-16

How the Linker Handles Sections

Figure 2-5. Rearranging the Memory Map From Figure 2-3

text

.data

vectors

.bss

newvars

Object Code

0869000A
08610000
02412001
6E46FFFE
15210000
0869000A
0861000A
0AC12001
6E46FFFE
15210000

00000011
00000022
00000033
00000123
000000AA
000000BB
000000CC

00000000
00000005

I—

No data
11 words
reserved

No data 8
words
reserved

—_— N
——————
—_— N
e ——

Section

vectors
2 words

unused memory

text
(size = 10
words)

.data
(size=7
words)

unused memory

.bss

(size =11
words)

unused memory

newvars
(size =8
words)

unused memory

00000000h
(interrupt vectors)
00000002h

00000040h
(internal ROM)

0000004Ah

00000051h

00801000h
(RAM block0)

00801400h
(RAM block1)

00801408h

00801800h

Introduction to Common Object File Format 2-17

Relocation

2.5 Relocation

The assembler treats each section as if it begins at address 0. All relocatable
symbols (labels) are relative to address O in their sections. Of course, all
sections can't actually begin at address 0 in memory, so the linker relocates
sections by:

(1 Allocating sections into the memory map so that they begin at the
appropriate address

(1 Adjusting symbol values to correspond to the new section addresses

[0 Adjusting references to relocated symbols to reflect the adjusted symbol
values

The linker uses relocation entries to adjust references to symbol values. The
assembler creates a relocation entry each time a relocatable symbol is refer-
enced. The linker then uses these entries to patch the references after the
symbols are relocated. Example 2—3 contains a code segment that generates
relocation entries.

Example 2-3. Code That Generates Relocation Entries
1 ref X
2 00000000 text
3 00000000 60FFFFFF! BR X ; Generates a relocation entry
4 00000001 08200002’ LDI @Y,R0 ; Generates a relocation entry
5 00000002 06000000 Y: IDLE

2-18

In Example 2-3, both symbols X and Y are relocatable. X is defined in some
other module; Yis defined in the .text section of this module. When assembled,
X has a value of 0 (the assembler assumes all undefined external symbols
have values of 0) and Y has a value of 2 (relative to address 0 in the .text sec-
tion). The assembler generates two relocation entries, one for X and one for
Y. The reference to Xis an external reference (indicated by the ! character in
the listing). The reference to Yis to an internally defined relocatable symbol
(indicated by the ' character in the listing).

After linking, suppose that Xis relocated to address 100h. Suppose also that
the .text section is relocated to begin at address 200h; Y now has a relocated
value of 204h. The linker uses the two relocation entries to patch the two refer-
ences in the object code:

60000000 BR X becomes 60000100
08200002 LDI @Y,RO becomes 08200202

Relocation

Each section in a COFF object file has a table of relocation entries. The table
contains one relocation entry for each relocatable reference in the section. The
linker usually removes relocation entries after it uses them. This prevents the
output file from being relocated again (if it is relinked or when it is loaded). A
file that contains no relocation entries is an absolute file (all of its addresses
are absolute addresses). If you want the linker to retain relocation entries,
invoke the linker with the —r option.

Introduction to Common Object File Format 2-19

Runtime Relocation

2.6 Runtime Relocation

2-20

It may be necessary or desirable at times to load code into one area of memory
and run itin another. For example, you may have performance critical code in
a ROM-based system. The code must be loaded into ROM but would run much
faster if it were in RAM.

The linker provides a simple way to specify this. In the SECTIONS directive,
you can optionally direct the linker to allocate a section twice: once to set its
load address, and again to set its run address.

Use the load keyword for the load address and the run keyword for the run
address.

The load address determines where a loader will place the raw data for the
section. Any references to the section (such as labels in it) refer to its run ad-
dress. The application must copy the section from its load address to its run
address; this does not happen automatically just because you specify a sepa-
rate run address.

If you provide only one allocation (either load or run) for a section, the section
is allocated only once and will load and run atthe same address. If you provide
both allocations, the section is actually allocated as if it were two different sec-
tions of the same size.

Uninitialized sections (such as .bss) are notloaded, so the only address of sig-
nificance is the run address. The linker allocates uninitialized sections only
once: if you specify both run and load addresses, the linker warns you and ig-
nores the load address.

For a complete description of runtime relocation, see Section 8.8 on
page 8-35.

Loading a Program

2.7 Loading a Program

The linker produces executable COFF object modules. An executable object
file has the same COFF format as objectfiles that are used as linker input; how-
ever, the sections in an executable object file are combined and relocated to
fit into target memory.

In order to run a program, the data in the executable object module must be
transferred, or loaded , into target system memory.

Several methods can be used for loading a program, depending on the execu-
tion environment. Some of the more common situations are listed below.

[The TMS320C3x/C4x debugging tools, including the software simulator,
XDS emulator, and software development system, have built-in loaders.
Each of these tools has a LOAD command that invokes a COFF loader;
the loader reads the executable file and copies the program into target
memory.

[J Ifyouare usinga ROM- or EPROM-based system, you can use the object
format converter, which is shipped as part of the assembly language pack-
age, to convert the executable COFF object module into one of several
hexadecimal object file formats. You can then use the converted file with
an EPROM programmer to burn the program into an EPROM.

1 Some TMS320C3x/C4x programs are loaded under the control of an oper-
ating system or monitor software running directly on the target system. In
this type of application, the target system usually has an interface to the
file system on which the executable module is stored. You must write a
custom loader for this type of system. Refer to Appendix A for supplemen-
tary information about the internal format of COFF object files. The loader
must comprehend the file system (in order to access the file) as well as the
memory organization of the target system (to load the program into mem-

ory).

Source code for the TMS320C3x/C4x COFF loader is available through the
TI DSP bulletin board (call the DSP hotline listed in the front of this manual for
instructions). This loader provides all the basic mechanisms for reading a
TMS320C3x/C4x COFF file and loading it into a target system. A simple inter-
face allows customization to fit the requirements of most applications.

Introduction to Common Object File Format 2-21

Symbols in a COFF File

2.8 Symbols in a COFF File

A COFF file contains a symbol table that stores information about symbols in
the program. The linker uses this table when it performs relocation. Debugging
tools can also use the symbol table to provide symbolic debugging.

2.8.1 External Symbols

External symbols are symbols that are defined in one module and referenced

in another module. You can use the .global directive to identify symbols as

external. In a source module, an external symbol can be either a ref or def:

Defined (DEF) Defined in the current module and used in another
module

Referenced (REF) Referenced in the current module, but defined in an-
other module

The following code segment illustrates these definitions.

.global x ;. DEF of x
.global vy ;. REFofy

X: LDI RO,R1 ;. Define x
LDI @y,R0 ; Referencey

The .global definition of x says that it is an external symbol defined in this mod-
ule and that other modules can reference x. The .global definition of y says that
it is an undefined symbol that is defined in some other module.

The assembler places both x and yin the object file’s symbol table. When the
file is linked with other object files, the entry for x defines unresolved refer-
ences to xfrom other files. The entry for y causes the linker to look through the
symbol tables of other files for y’s definition.

The linker must match all references with corresponding definitions. If the
linker cannot find a symbol’s definition, it prints an error message about the
unresolved reference. This type of error prevents the linker from creating an
executable object module.

2.8.2 The Symbol Table

The assembler always generates an entry in the symbol table when it encoun-
ters an external symbol (both definitions and references). The assembler also
creates special symbols that point to the beginning of each section; the linker
uses these symbols to relocate references to other symbols in a section.

The assembler does not usually create symbol table entries for any other type
of symbol, because the linker does not use them. For example, labels are not
included in the symbol table unless they are declared with .global. For sym-
bolic debugging purposes, it is sometimes useful to have entries in the symbol
table for each symbol in a program. To accomplish this, invoke the assembler
with the —s option.

2-22

Chapter 3

Assembler Description

The assembler translates assembly-language source files into object files.
These files are in common object file format (COFF), which is discussed in
Chapter 2 and Appendix A. Source files can contain the following assembly
language elements:

Assembler directives described in Chapter 4
Assembly language instructions described in Chapter 5
Macro directives described in Chapter 6
Topic Page
3.1 Assembler OVEIVIEWut ittt 3
3.2 Assembler Development Flow 34
3.3 Invoking the Assembler i 3-['
3.4 Porting Upward Compatible Code 3-
3.5 Naming Alternate Directories for Assembler Input ~ 3-7 |:|
3.6 Source Statement Format 3
3.7 CONStANtS ... -12
3.8 CharaCter StNGSt 3}15 |
3.9 SYymMbBOIS ... -16
B.10 EXPrESSIONS ..t vvovete et e et e e 320 |
3.1 S0UMCe LIStNGS .« .o ov ettt et et e e e 3125 |
3.12 Cross-Reference Listings ...t 3p7 |

3-1

Assembler Overview

3.1 Assembler Overview

The assembler does the following:

a

a

[

Processes the source statements in a text file to produce a relocatable
object file

Produces a source listing (if requested) and provides you with control over
this listing

Allows you to segment your code into sections and maintain an SPC
(section program counter) for each section of object code

Defines and references global symbols and appends a cross-reference
listing to the source listing (if requested)

Assembles conditional blocks
Supports macros, allowing you to define macros inline or in a library

Allows you to assemble TMS320C3x and TMS320C4x code

Assembler Development Flow

3.2 Assembler Development Flow

Figure 3—1 illustrates the assembler’s role in the assembly language develop-
ment flow. The assembler accepts assembly language source files as input.
The TMS320C3x/C4x floating-point assembler also accepts assembly
language files created by the TMS320C3x/C4x C compiler.

Figure 3—1. Assembler Development Flow

C

o0 0000
o0 0000

C Compiler
—
. I : .
Archiver | + Assembler +
. .
| . Source
| L :
. _ O
. Macro ¢ I
: Library ¢ Assembler
. L]

|
i Library Build
Archiver | Utilty
|
. . I ~] .
+ Library of ¢ | 0 Runtime s
e Object e —» . +— . Sl_Jpport .
: Files i Linker | + Library
| |
| |
I L] .
« Executable
v ' ¢ COFF
) | . File |
Hex Conversion | * - . |
Utility ._____ﬁ ’____J
Programmer
A

Assembler Description 3-3

Invoking the Assembler

3.3

Invoking the Assembler

To invoke the assembler, enter the following:

asm30 [input file [object file [listing file]]1] [—options]

asm30

input file

object file

listing file

options

is the command that invokes the assembler.

names the assembly language source file. If you do not supply
an extension for input file, the assembler assumes that the in-
put file has the default extension .asm. If you do not supply an
input filename when you invoke the assembler, the assembler
will prompt you for one.

names the object file that the assembler creates. If you do not
supply an extension, the assembler uses .obj as a default ex-
tension. If you do not supply an object file, the assembler cre-
ates a file that uses the input file name with the .objextension.

names the optional listing file that the assembler can create.
If you do not supply a name for a listing file, the assembler does
not create one unless you use the —I option. In this case, the
assembler uses the input filename and, if you do not supply an
extension, the assembler uses .Ist as a default extension.

identify the assembler options that you want to use.

Options are not case sensitive and can appear anywhere on
the command line, following the command. Precede each op-
tion with a hyphen (). You can string the options together; for
example,—Ic is equivalentto—|—c. Note that the assembler ac-
cepts —mbir, which is equivalent to —mb —mi —mr. However, it
will not accept —mbirqg, because the “q” is read as —mq and not
as —(. The valid assembler options are as follows:

-a creates an absolute listing. When you use
—a, the assembler does not produce an ob-
jectfile. The —a option is used in conjunction
with the absolute lister.

—C makes case insignificant in the assembly
language files. For example, —c will make
the symbols ABC and abc equivalent. /f you
do not use this option, case is significant
(default).

F-dname[=def] predefines the constant name for the as-
sembler. This is equivalent to
inserting #define name def at the top of
each source file. If the optional def is
omitted, —dname sets name equal to 1.

—uname

Invoking the Assembler

specifies a directory where the assembler
can find files named by the .copy, .include,
or .mlib directives. The format of the —i op-
tionis —ipathname. You can specify up to 10
directories in this manner; each pathname
must be preceded by the —i option.

(lowercase “L") produces a listing file.

predefines the .BIGMODEL symbol. This
option is used when assembly code will be
linked with a C module that uses the large
memory runtime model.

predefines the .C30INTERRUPT symbol.
This option is used when the assembly
code will be used with code compiled with
the shell’s —mi option.

predefines the .REGPARM symbol. This
option is used when assembly code will be
linked with a C module that uses the regis-
ter-argument runtime model.

predefines the .TMX320C40 symbol. This
option is used to support legacy assembly
code and may be removed in a future re-
lease.

(quiet) suppresses the banner and all pro-
gress information.

puts all defined symbols in the object file’s
symbol table. The assembler usually puts
only global symbols into the symbol table.
When you use —s, symbols that are defined
as labels or as assembly-time constants are
also placed in the symbol table. See also
subsection 2.8.2 on page 2-22.

overrides any —d options for the specified
constant and undefines the predefined
constant name.

Assembler Description 3-5

Invoking the Assembler/Porting Upward Compatible Code

—Mmsrev X

3.4 Porting Upward Compatible Code

specifies a version. The version tells the as-
sembler which of the following
TMS320C3x/C4x devices it should produce
code for (The default is —v30):

—v30 selects the TMS320C30
—v31 selects the TMS320C31
—v32 selects the TMS320C32
—v40 selects the TMS320C40
—v44 selects the TMS320C44

the x=1, 2, 3, etc.

specifies the silicon revision of the target
chip to enable additional functionality for
more recent silicon releases. Used in con-
junction with —v flag.

Example:

—msrevé —v31: enable new (1996) 'C31
parallel instructions

—msrev2 —v32: enable new (1996) 'C32
parallel instructions

produces a cross-reference table and ap-
pends it to the end of the listing file. If you do
not request a listing file, the assembler cre-
ates one anyway, but the listing contains
only the cross-reference table.

The floating-point processors in the TMS320C3x/C4x family are upwardly
source code compatible. For example, code originally written for the
TMS320C30 can be assembled for the TMS320C40 with —v40 assembler op-
tion. The —v version option is explained in detail on page 3-6.

All of the processors are capable of handling upwardly ported code as long as
the target processor’s number is the same as or greater than the original target
processor. Porting code downward, however, produces undefined results; in
most cases the code will fail to assemble.

The TMS320C3x and TMS320C4x families are not object code compatible.
Code for the 'C3x must be reassembled in order to run on a 'C4x and vice

versa.

Naming Alternate Directories for Assembler Input

3.5 Naming Alternate Directories for Assembler Input

The .copy, .include, and .mlib directives tell the assembler to use code from
external files. The .copy and .include directives tell the assembler to read
source statements from another file, and the .mlib directive names a library
that contains macro functions. Chapter 4, Assembler Directives, contains ex-
amples of the .copy, .include, and .mlib directives. The syntax for these direc-
tives is

.copy ’“filename”

.include “filename”

.mlib "filename”

The filename names a copy/include file that the assembler reads statements
from or a macro library that contains macro definitions. The filename may be
a complete pathname or a filename with no path information. If you provide a
pathname, the assembler uses that path and does not look for the file in any
other directories. If you do not provide path information, the assembler
searches for the file in the following directories:

1) The directory that contains the current source file. The current source file
is the file being assembled when the .copy, .include, or .mlib directive is
encountered.

2) Any directories named with the —i assembler option.
3) Any directories set with the environment variable A_DIR.
You can augment the assembler’s directory search algorithm by using the —i
assembler option or the environment variable.
3.5.1 -i Assembler Option

The —i assembler option names an alternate directory that contains copy/
include files or macro libraries. The format of the —i option is as follows:

asm30 —ipathname source filename

You can use up to 10 —i options per invocation; each —i option names one path-
name. In assembly source, you can use the .copy, .include, or .mlib directive
without specifying any path information. If the assembler doesn'’t find the file
in the directory that contains the current source file, it searches the paths pro-
vided by the —i options.

Assembler Description 3-7

Naming Alternate Directories for Assembler Input

For example, assume that a file called source.asmis in the current directory;
source.asm contains the following directive statement:

.copy "copy.asm”

Pathname for copy.asm Invocation Command
DOS c:\dsp\files\copy.asm asm30 —ic:\dsp\files source.asm
UNIX /dspf/files/copy.asm asm30 —i/dsp/files source.asm

The assembler first searches for copy.asm in the current directory because
source.asm is in the current directory. Then, the assembler searches in the di-
rectory named with the —i option.

3.5.2 Environment Variable (A_DIR)

3-8

An environment variable is a system symbol that you define and assign a string
to. The assembler uses the environment variable A_DIR to name alternate di-
rectories that contain copyl/include files or macro libraries. The command for
assigning the environment variable is as follows:

Invocation Command

DOS set A _DIR= pathname;another pathname ...

UNIX setenv A DIR " pathname;another pathname ... "

The pathnames are directories that contain copy/include files or macro librar-
ies. You can separate the pathnames with a semicolon or with blanks. In as-
sembly source, you can use the .copy, .include, or .mlib directive without speci-
fying any path information. If the assembler doesn’t find the file in the directory
that contains the current source file or in directories named by —i, it searches
the paths named by the environment variable.

Naming Alternate Directories for Assembler Input

For example, assume that a file called source.asm contains these statements:

.copy "copyl.asm”
.copy "copy2.asm”

Pathname Invocation Command
DOS c:\320\files\copyl.asm set A_DIR=c:\dsys
c:\dsys\copy2.asm asm30 —ic:\320\files source.asm
UNIX /320/files/copyl.asm set A_DIR /dsys
/dsys/copy2.asm asm30 -i/320/files source.asm

The assembler first searches for copyl.asm and copy2.asm in the current
directory because source.asm is in the current directory. Then, the assembler
searches in the directory named with the —i option and finds copyl.asm. Fi-
nally, the assembler searches the directory named with A_DIR and finds
copy2.asm.

Note that the environment variable remains set until you reboot the system or
reset the variable by entering one of these commands:

DOS set A_DIR=

UNIX unsetenv A _DIR

Assembler Description 3-9

Source Statement Format

3.6 Source Statement Format

3.6.1 Label Field

3-10

TMS320C3x/C4x assembly language source programs consist of source
statements that can contain assembler directives, assembly language instruc-
tions, macro directives, and comments. Source statementlines can be as long
as the source file format allows, but the assembler reads up to 200 characters
per line. If a statement contains more than 200 characters, the assembler trun-
cates the line and issues a warning.

The next several lines show examples of source statements:

SYM1 .set 0A5h ; Symbol SYM = 0A5h
Begin: ADDI SYM+5,R1 ; Add (SYM+5) to the contents of R1
LDI R1,R2 : Move contents of R1 to R2

A source statement can contain four ordered fields. The general syntax for
source statements is as follows:

| [label] [] mnemonic [operand list] [;comment]

Follow these guidelines:
(1 Allstatements mustbegin with alabel, a blank, an asterisk, or a semicolon.
[Labels are optional; if used, they must begin in column 1.

[One ormore blanks must separate each field. Note that tab characters are
equivalent to blanks.

(1 Comments are optional. Comments that begin in column 1 can begin with
an asterisk or a semicolon (* or ;), but comments that begin in any other
column must begin with a semicolon.

Labels are optional for all assembly language instructions and for most (but
not all) assembler directives. When used, a label must begin in column 1 of
a source statement. A label can contain up to 32 alphanumeric characters (A—
Z,a-z,0-9, ,and$). Labels are case sensitive, and the first character cannot
be a number. A label can be followed by a colon (:); the colon is not treated as
part of the label name. If you don’t use a label, then the first character position
must contain a blank, a semicolon, or an asterisk.

When you use a label, its value is the current value of the section program
counter (the label points to the statement it's associated with). If, for example,
you use the .word directive to initialize several words, a label would point to
the first word. In the following example, the label Start has the value 40h.

Source Statement Format

2 0000003F * Assume some other code was assembled
3 00000040 0O00000OA Start: .word 0Ah,3,7

00000041 00000003

00000042 00000007

A label on a line by itself is a valid statement. It assigns the current value of
the section program counter to the label; this is equivalent to the following
directive statement:

label .set $; $ provides the current value of the SPC

When a label appears on a line by itself, it points to the instruction on the next
line (the SPC is not incremented):

5 00000050 Here:
6 00000050 08010000 LDI RO, R1

3.6.2 Mnemonic Field

The mnemonic field follows the label field. The mnemonic field cannot start in
column 1, or it would be interpreted as a label. The mnemonic field can contain
one of the following opcodes:

1 Machine-instruction mnemonic (such as ADDI, MPYF, LDI)
(O Assembler directive (such as .data, .list, .set)
[J Macro directive (such as .macro, .loop, .endloop)

[J A macro invocation

3.6.3 Operand Field

The operand field is a list of operands that follow the mnemonic field. An
operand can be a constant (see Section 3.7), a symbol (see Section 3.9), or
a combination of constants and symbols in an expression. You must separate
operands with commas.

3.6.4 Comment Field

A comment can begin in any column and extends to the end of the source line.
A comment can contain any ASCII character, including blanks. Comments are
printed in the assembly source listing, but they do not affect the assembly.

A source statement that contains only a comment s valid. If it begins in column
1, it can start with a ; or a *. Comments that begin anywhere else on the line
must beginwith a ;. The * symbol identifies a comment only if it appears in col-
umn 1.

Assembler Description 3-11

Constants

3.7 Constants

The assembler supports seven types of constants:

Binary integer constants

Octal integer constants
Decimal integer constants
Hexadecimal integer constants
Floating-point constants
Character constants
Assembly-time constants

oo oo

The assembler maintains each constant internally as a 32-bit quantity. Note
that constants are not sign extended . For example, the constant OFFFFH is
equal to 0000FFFFg or 65,5351 (; it does not equal —1.

3.7.1 Binary Integers

3.7.2 Octal Integers

A binary integer constant is a string of up to 32 binary digits (0s and 1s) fol-
lowed by the suffix B (or b). If less than 32 digits are specified, the assembler
right-justifies the value and zero-fills the unspecified bits. Examples of valid
binary constants include:

00000000B Constant equal to 0

0100000b Constant equal to 321 or 2016
01b Constant equal to 1

11111000B Constant equal to 2481 or OF815

An octalinteger constantis a string of up to 11 octal digits (O through 7) followed
by the suffix Q (or q). Examples of valid octal constants include:

10Q Constant equal to 8
100000Q Constant equal to 32,7681 or 800014
226Q Constant equal to 1501 or 9614

3.7.3 Decimal Integers

3-12

A decimal integer constant is a string of decimal digits, ranging from
—2,147,483,647 to 4,294,967,295. Examples of valid decimal constants
include:

1000 Constant equal to 10001 or 3E81¢
—-32768 Constant equal to —32,7681 or 800014
25 Constant equal to 2519 or 1914

Constants

3.7.4 Hexadecimal Integers

A hexadecimal integer constant is a string of up to 8 hexadecimal digits fol-
lowed by the suffix H (or h). Hexadecimal digits include the decimal values 0-9
and the letters A—F and a—f. A hexadecimal constant must begin with a decimal
value (0-9). If less than 8 hexadecimal digits are specified, the assembler
right-justifies the bits. Examples of valid hexadecimal constants include:

78h Constant equal to 1201 or 00784¢
OFh Constant equal to 151 or 000F 14
37ACH Constant equal to 14,2521 or 37AC1g

3.7.5 Character Constants

A character constant is a string of 1 to 4 characters enclosed in single quotes.
The characters are represented internally as 8-bit ASCII characters. Two con-
secutive single quotes are required to represent each single quote within a
character constant. A character constant consisting only of two single quotes
(no letter) is valid and is assigned the value 0. If more than one character is
specified, the assembler packs them into a 32-bit word, starting with the least-
significant byte. If fewer than four characters is specified, the assembler right-
justifies the bits. Examples of valid character constants include:

‘ab’ Represented internally as 000062611 g
'C Represented internally as 000000431¢
"D’ Represented internally as 000044274¢

‘abcd’ Represented internally as 646362611 g

Note the difference between character constants and character strings
(Section 3.8 discusses character strings). A character constant represents a
single integer value; a string is a list of characters.

3.7.6 Floating-Point Constants

A floating-point constant is a string of decimal digits, followed by an optional
decimal point, fractional portion, and exponent portion. The syntax for a
floating-point number is:

[+|-]1[nnn].[nnn[Ele[+|-]nnn]]

where nnn s a string of decimal digits. A floating-point constant may be pre-
ceded with a + or a —. You must specify a decimal point; for example, 3.e5 is
valid, but 3e5 is illegal. The exponent indicates a power of 10.

Assembler Description 3-13

Constants

Valid floating-point constants include:
3.0

3.14

3

—0.314e13

+314.59e-2

For more information about floating-point format, refer to the TMS320C3x
User’s Guide and the TMS320C4x User’s Guide.

3.7.7 Assembly-Time Constants

3-14

If you use the .set directive to assign a constant value to a symbol, the symbol
becomes an assembly-time constant. In order to use this constant in expres-
sions, the value that is assigned to it must be absolute. For example:

sym set 3
LDI sym,R0O ; Load the constant 3 into RO

If you assign a floating-point constant to a symbol, then the symbol can be
used only as a floating-point constant. Similarly, if you assign an integer con-
stant to a symbol, then the symbol can be used only as an integer constant.
The following example is illegal:

sym set 3 ; Integer constant
LDF sym,R0O ; Invalid — floating-point
; constant required

You can also use the .set directive to assign symbolic constants for register
names. In this case, the symbol becomes a synonym for the register:

sym .set RO
LDI 10,sym

Character Strings

3.8 Character Strings

A character string is a string of characters enclosed in double quotes. Double
quotes that are part of character strings are represented by two consecutive
double quotes. The maximum length of a string varies and is defined for each
directive that requires a character string. Characters are represented inter-
nally as 8-bit ASCII characters.

These are examples of valid character strings:
"sample program” defines a 14-character string, sample program

"PLAN ™C™” defines an 8-character string, PLAN "C”
Character strings are used for the following:

[J Filenames as in .copy "filename”

[Section names as in .sect "section name”

(1 Data initialization directives as in .byte "charstring”

[0 Operand of .string directive

Assembler Description 3-15

Symbols

3.9 Symbols

3.9.1 Labels

3.9.2 Constants

3-16

Symbols are used as labels, constants, and substitution symbols. A symbol
name is a string of up to 32 alphanumeric characters (A-Z, a—z, 0-9, $, and
_). The first character in a symbol cannot be a number; symbols cannot con-
tain embedded blanks. The symbols you define are case sensitive; for
example, the assembler recognizes ABC, Abc, and abc as three unique sym-
bols. You can override case sensitivity with the —c assembler option. This type
of symbol is valid only during the assembly in which it is defined, unless you
use the .global directive to declare it as an external symbol.

Note: If You Use the —c Option

If you use the —c option, the assembler translates all symbols to uppercase.
If other modules that reference these symbols were not also assembled with
the —c option, the linker may fail to match global symbols.

Symbols that are used as labels become symbolic addresses that are asso-
ciated with locations in the program. A label used locally within a file must be
uniqgue. Mnemonic opcodes and assembler directive names (without the *.’
prefix) are valid label names.

Labels can also be used as the operand of a .global, .ref, .def, or .bss directive;
for example,

.global labell
label2 nop

add labell

b label2

Symbols can be set to constant values. By using constants, you can equate
meaningful names with constant values. The .set and .struct/.tag/.endstruct
directives enable you to set constants to symbolic names. Symbolic constants
cannot be redefined. The following example shows how these directives can
be used:

Symbols

K .set 1024 ; constant definitions
maxbuf.set 2*K

item .struct : item structure definition
.int value ; constant offsets value = 0
.int delta ; constant offsets delta = 1
i_len .endstruct ; constant offset i_len =2
array .tag item ; array declaration

.bss array, i_len*K
LDI RO, array.delta ; array+1

The assembler also has several predefined symbolic constants; these are dis-
cussed in the next section.

3.9.3 Symbolic Constants
The assembler has several predefined symbols, including the following:

1 $, the dollar sign character, represents the current value of the section
program counter (SPC).

(] Register symbols :

ARO-AR7 IRO RE RO-R7

BK IR1 RC SP

DP PC RS ST

and, for the 'C3x only;

IF IE IOF

plus, for the 'C4x only;

R8-R11 DIE IE IF IVTP
TVTP

[Version symbols are predefined assembler constants that you can use
to direct the assembler to produce code for various target processors. Use
the version symbols with the target version switch or the .version directive.

Symbols Value Description

.TMS320xx 30, 31, 32,40, 0r 44 setaccording to —v flag
.C3X or .C3x lorO 1if-v30, —v31, or —v32
.C30 lor0 1if—v30

.C31 lor0 1if—v31

.C32 lor0 1if—v32

.C4X or .C4x lorO 1 if —v40 or —v44

.C40 lor0 1if—v40

.C44 lor0 1if—v44

Assembler Description 3-17

Symbols

The following symbols are currently supported, but are obsolete and will
be removed in a later release:

Symbols Value Description
.TMS320C30 lorO 1if-v30, -v31, or —v32
.TMS320C31 lor0 1if-v31

.TMS320C32 lor0 1if-v32

.TMS320C40 lor0 1 if —v40 or —v44
.TMS320C44 lor0 1if—v44

The .TMS320xx constant is set to the value of the version switch. For
example, if the assembler is invoked with the following command
asm30 —v30 filename

then . TMS320xx equals 30.

You can use the version symbols to direct the assembler to produce code
for specific target devices. For example, the following code can produce
code for differing target devices, depending on how you invoked the as-
sembler.

if. TMS320xx = 30

.endﬁ
.if.C40

.endﬁ
(1 C Compiler Model Symbols are predefined assembler constants corre-

sponding to the code generation model of the C compiler. You can use
these to vary the source code to correctly interface to C code.

Symbols Value Description
.REGPARM lor0 1 if —mr option used
.BIGMODEL lorO 1 if —mb option used

3.9.4 Substitution Symbols

3-18

Symbols can be assigned a string value (variable). This enables you to alias
strings of text by equating them to symbolic nhames. Symbols that represent
text strings are called substitution symbols. When the assembler encounters
a substitution symbol, its string value is substituted for the symbol name. Un-
like symbolic constants, substitution symbols can be redefined.

A string can be assigned to a substitution symbol anywhere within a program;
for example,

.asg ar3’, FP ; frame pointer
.asg "™FP(2)",PARM1
LDI PARM1, RO ; expands to LDI *~FP(2), RO

Symbols

When you are using macros, substitution symbols are important because
macro parameters are actually substitution symbols that are assigned a macro
argument. The following code shows how substitution symbols are used in
macros:

SUMI .macrosrcl,src2,dest
LDI srcl,dest
ADDI src2,dest
.endm

invocation:
SUMI @a, @b, R4

For more information about macros, refer to Chapter 6.

Assembler Description 3-19

Expressions

3.10 Expressions

An expression is an integer or floating-point constant, a symbol equated to an
integer or floating-point value, or a series of constants and symbols separated

by arithmetic operators.

The range of valid expression values is

-2,147,483,647 to 4,294,967,295 (—(231-1) to (232-1)).

Three factors influence the order of expression evaluation:

Parentheses

Precedence groups

Left-to-right evaluation

3.10.1 Floating-Point Expressions

3-20

Expressions that are enclosed in parentheses are
always evaluated first.

Example: 8/(4/2) =4, but 8/4/12=1

Note that you cannot substitute braces ({}) or
brackets ([]) for parentheses.

Operators (listed in Table 3-1) are divided into
four precedence groups. When the order of ex-
pression evaluation is not determined by paren-
theses, the highest-precedence operation is
evaluated first.

Example: 8 +4/2 =10 (4/2 is evaluated first)

When parentheses and precedence groups do not
determine the order of expression evaluation, the
expressions are evaluated from left to right; note
that the highest precedence group is evaluated
from right to left.

Example: 8/4*2 =4, but 8/(4*2) =1

A floating-point constant is a string of decimal digits, followed by a decimal
point, a fractional portion, and an exponent portion.

The syntax for a floating-point constant is as follows:

[+/-1nnn.nnn[Efe [+/-] hnn]

nnnis a string of decimal digits.

Floating-point constants may be preceded by a + or a — sign; + is the default.
Floating-point constants may be assigned to symbols with the .set directive.
Symbols equated to floating-point values may be used freely in place of

floating-point constants.

Expressions

A floating-point expression is an expression with at least one floating-point
value in it. You can use a floating-point expression as an operand for the .set,
float, and .double directives, and for any instruction that expects a floating-
point value as an operand. Integer values used in floating-point expressions
are converted to floating-point values automatically by the assembler. If you
use a floating-point expression in an instruction that expects an integer value,
the assembler will generate an error. You cannot use bitwise operators in
floating-point expressions. Floating-point expressions can be converted to
Integers using one of the conversion functions.

Here are some examples of legal floating-point expressions:

Examples
fltl .set 1.23

This example attaches the constant 1.23 to the symbol flt1. This symbol
can be used in another floating-point expression:

flt2 .float6.57 —flt1

After this example is executed, flt2 is the symbolic address of the value
5.34 in memory.

3.10.2 Floating-Point to Integer Conversions

The assembler provides four built-in functions which round floating-point
values to integer values:

$trunc returns the result of the expression rounded towards zero.
$round returns the result of the expression rounded to the nearest integer.
$floor returns the largest integer that is not greater than the expression.

$ceil returns the smallest integer that is not less than the expression.

Each function returns a signed integer value. Here are some examples that
use floating-point to integer conversions:
Examples

fltl .set 1.23
flt2 .set 3.45/ltl
flt3 .set flt2 * $ceil(fltl)

This example attaches a value roughly equal to 5.61 to flt3.

Assembler Description 3-21

Expressions

3.10.3 Operators

Table 3-1 lists the operators that can be used in expressions. They are listed
according to precedence group.

Table 3-1. Operators

Group 1 (Highest Precedence) Group 3
Right-to-Left Evaluation Left-to-Right Evaluation
+ Unary plus (positive expression) + Addition
- Unary minus (negative expression) - Subtraction
~ 1s complement n Bitwise exclusive-OR
| Bitwise OR
& Bitwise AND
| Logical OR
&& Logical AND
Group 2 Group 4 (Relational Opera-
Left-to-Right Evaluation tors) Left-to-Right Evaluation
* Multiplication < Less than
/ Division > Greater than
% Modulo <= Less than or equal to
<< | Left shift >= Greater than to equal to
>> | Right shift = (==) Equal to
1= Not equal to

Notes: 1) Operators within parentheses () indicate an alternate form.

2) Bitwise operations on floating-point constants will cause an error

3.10.4 Expression Overflow or Underflow

The assembler checks for overflow and underflow conditions when arithmetic
operations are performed at assembly time. The assembler will issue a Value
Truncated warning whenever an overflow or underflow occurs. The assembler
does not check for overflow or underflow in multiplication.

3.10.5 Well-Defined Expressions

Some assembler directives require well-defined expressions as operands.
Well-defined expressions contain only symbols or assembly-time constants
that are defined before they are encountered in the expression. The evaluation
of a well-defined expression must be absolute. This is an example of a well-
defined expression:

1000h+X X has been previously defined as an absolute symbol.

3-22

Expressions

3.10.6 Conditional Expressions

The assembler supports relational operators that can be used in any expres-
sion; they are especially useful for conditional assembly. Relational operators
include the following:

>= Greater than or equal to = Not equal to
== Equal < Less than
<= Lessthan or equal to > Greater than

These operations have the lowest precedence; however, each has the same
precedence within the group, so they are evaluated left to right. Conditional
expressions evaluate to 1 if true and O if false.

3.10.7 Relocatable Symbols and Legal Expressions

Table 3—-2 summarizes valid operations on absolute, relocatable, and external
symbols. An expression cannot multiply or divide by a relocatable or external
symbol. An expression cannot contain unresolved symbols that are
relocatable with respect to different sections.

Table 3—2. Expressions With Absolute and Relocatable Symbols

If Alis... and Bis... A+Bis... A-Bis...
absolute absolute absolute absolute
absolute external external illegal
absolute relocatable relocatable illegal
relocatable absolute relocatable relocatable
relocatable relocatable illegal absolute T
relocatable external illegal illegal
external absolute external external
external relocatable illegal illegal
external external illegal illegal

T A and B must be in the same section; otherwise, this is illegal.

Here are some examples of expressions that use relocatable and absolute
symbols. These examples use four symbols that are defined as follows:

.global extern_1 ;Defined in an external module

intern_1: .word 1234 ;Relocatable, defined in current module
LAB1: .set 2 ;absolute
intern_2: ;Relocatable, defined in current module

Assembler Description 3-23

Expressions

3-24

Example 1

The statements in this example use an absolute symbol, LAB1. The first
statement puts the value 51 into register RO, the second statement puts
the value 8033h in RO, and the third puts 27 in memory address 8033h.

LDI LABL+ ((4+3)*7), ARO ;ARO=51
LDI LABl+4+3*7, ARO - ARO = 27

Example 2

All legal expressions can be reduced to one of two forms:
relocatable symbol + absolute symbol

or
absolute value

Unary operators can be applied only to absolute values; they cannot be
applied to relocatable symbols. Expressions that cannot be reduced to
contain only one relocatable symbol are illegal. The first statement in the
following example is legal; the statements that follow it are invalid.

LDl extern_1-10, ARO ;Legal

LDl 10-extern_1, ARO ;Can’t negate reloc. symbol

LDl —(intern_1), ARO ;Can’t negate reloc. symbol

LDl extern_1/10, ARO ;/isn’t an additive operator
LDI intern_1 + extern_1, ARO ; Multiple relocatables

Example 3

The first statement below is legal; although intern_1 and intern_2 are
relocatable, their difference is absolute because they're in the same
section. Subtracting one relocatable symbol from another reduces the
expression to absolute value + relocatable symbol which s relocatable.
The second statement is illegal because the sum of two relocatable
symbols is not an absolute value.

LDI intern_1 —intern_2 + extern_1,AR0 ; Legal
LDI intern_1 + intern_2 + extern_1,AR0 ; lllegal

Example 4

An external symbol’s placement in an expression is important to expres-
sion evaluation. Although the statement below is similar to the first
statement in the previous example, it is illegal. This is because of left-to-
right operator precedence; the assembler attempts to add intern_1 to
extern_1.

LDI intern_1 + extern_2 — intern_2,AR0 ; lllegal

Source Listings

3.11 Source Listings

A source listing shows source statements and the object code they produce.
To obtain a listing file, invoke the assembler with the —I (lowercase “L”) option.

At the top of each source listing page are two banner lines, a blank line, and
a title line. Any title supplied by a .title directive is printed on this line; a page
number is printed to the right of the title. If you don’t use the .title directive, the
title area is left blank. The assembler inserts a blank line below the title line.

Each line in the source file may produce a line in the listing file that shows a
source statement number, an SPC value, the object code assembled, and the
source statement. A source statement may produce more than one word of
object code. The assembler lists the SPC value and object code on a separate
line for each additional word. Each additional line is listed immediately follow-
ing the source statement line.

Field 1 Source Statement Number
Line Number

The source statement number is a decimal number. The assembler
numbers source lines as it encounters them in the source file; some
statements increment the line counter but are not listed (for exam-
ple, .title statements and statements following a .nolist are not
listed). The difference between two consecutive source line num-
bers indicates the number of statements in the source file that are
not listed.

Include File Letter

The assembler may precede a line with a letter; the letter indicates
that the line is assembled from an include file.

Nesting Level Number

The assembler may precede a line with a number; the number indi-

cates the nesting level of macro expansions and loop blocks.
Field 2 Section Program Counter

This field contains the section program counter, or SPC, value
(hexadecimal). Each section (.text, .data, .bss, and named sec-
tions) maintains a separate SPC. Some directives do not affect the
SPC,; they leave this field blank.

Assembler Description 3-25

Source Listings

Field 3

Field 4

Object Code

This field contains the hexadecimal representation of the object
code. All machine instructions and directives use this field to list
object code. This field also indicates the relocation type by append-
ing one of the following characters to the end of the field:

I undefined external reference .text relocatable

” .data relocatable + .sect relocatable
— .bss, .usect relocatable N .asect relocatable

Source Statement Field

This field contains the characters of the source statement as they
were scanned by the assembler. The assembler accepts a
maximum line length of 200 characters. Spacing in this field is de-
termined by the spacing in the source statement.

Example 3-1 shows an example of an assembler listing with each of the four
fields identified.

Example 3—1. An Assembler Listing

18 00000000
19 00000000

21 00000001
22 00000002
23 00000003
24 00000004
25 00000005

27 00000006

28 00000007
29 00000008

-

TMS320C3x/4x COFF Assembler
Copyright (c) 1987-1997 Texas Instruments Incorporated

C20100C0

03EOFFES8
03E1FFES8
0ACO00001
0AC1C000
880800C0

03E20018

02000002
78800000

v/

Field 1 Field2 Field 3

Version x.xx ~ Wed Jan 22 10:59:27 1997

PAGE 1
* TMS320C30 32x32 Integer Multiply *
* Inputs: x in RO, y in R1 *
* ARO points to 2 words of temporary memory — *
* *
* Qutputs: x *y in RO *
* Operation: *
* Let x0 = 8 MSBs of x, yO = 8 MSBs of y *
* *
* result = (x0 *y) + (yO * X) + xy *
.global mpy32
mpy32:
STI RO,*ARO ; save X
Il STI R1,*+AR0O ; savey
ASH —24,R0 ; X0 into RO
ASH —24,R1 ; y0 into R1
MPYI *+AR0,RO ; mpy upper bytes: x0 *y
MPYI *ARO,R1 ; y0 *x
MPYI *ARO,*+ARO0,RO ; mpy lower words
ADDI RO,R1,R2 ; add product MSBs
ASH 24,R2 ; shift back to top of word
ADDI R2,R0 ; add to LSBs
RETS
.end
Field 4

3-26

Cross-Reference Listings

3.12 Cross-Reference Listings

A cross-reference listing shows symbols and their definitions. To obtain a
cross-reference listing, invoke the assembler with the —x option or use the
.option directive. The assembler will append the cross-reference to the end of
the source listing.

Example 3—2. An Assembler Cross-Reference Listing

TMS320C3x/4x COFF Assembler Version x.xx Wed Jan 22 10:59:27 1997
Copyright (c) 1987-1997 Texas Instruments Incorporated
PAGE 3
LABEL VALUE DEFN REF
K16 0000AABB 0007 0041
K24 00AABBCC 0008 0049
K32 AABBCCDD 0009 0057
K8 000000AA 0006 0071
KFLOAT E5541885 0010 0065
ext REF 0011 0026 0034 0042 0050
0058 0072
label0 00000002+ 0019 0028 0036 0044 0052 0060
0074
labell 00000003' 0028 0027 0035 0043 0051 0059
0073
label column contains each symbol that was defined or referenced
during the assembly.
value column contains a 8-digit hexadecimal number, which is the
value assigned to the symbol or a name that describes the
symbol’s attributes. A value may also be followed by a character
that describes the symbol's attributes. Table 3-3 lists these
characters and names.
definition (DEFN) column contains the statement number that defines the
symbol. This column is blank for undefined symbols.
reference (REF) column lists the line numbers of statements that reference

the symbol. A blank in this column indicates that the symbol was
never used.

Assembler Description 3-27

Cross-Reference Listings

Table 3-3. Symbol Attributes

3-28

Character or Name

Meaning

REF
UND

External reference (global symbol)
Undefined

Symbol defined in a .text section
Symbol defined in a .data section
Symbol defined in a .sect section

Symbol defined in a .bss or .usect section

Chapter 4

Assembler Directives

Assembler directives supply program data and control the assembly process.
Assembler directives allow you to:

Assemble code and data into specified sections
Reserve space in memory for uninitialized variables
Control the appearance of listings

Initialize memory

Assemble conditional blocks

Define global variables

Specify libraries that the assembler can obtain macros from

U0 uJod oo dd

Examine symbolic debugging information

This section is divided into two parts: the first part (Sections 4.1 through 4.9)
describes the directives according to function, and the second part
(Section 4.10) is an alphabetical reference. This section includes:

Topic Page
4.1 Directives Summary 4
4.2 Directives That Define Sections 4-E|
4.3 Directives That Initialize Constants , 4-

4.4 Directives That Align the Section Program Counter ~4.-1E|
4.5 Directives That Format the Output Listing 4-.1E|
4.6 Directives That Reference Other Files 4-
4.7 Conditional Assembly Directives — oo, 4.—
4.8 Assembly-Time Symbol Directives —4.-
4.9 Miscellaneous DireCtives ...ttt 4

4.10 Directives Referenceccoeoeiiiiiuaiinennnn.. .. AT

Directives Summary

4.1 Directives Summary

Table 4-1 summarizes the assembler directives. All source statements that
contain a directive may have a label and a comment. To improve readability,
they are not shown as part of the directive’s syntax.

Table 4-1. Directives Summary

Directives That Define Sections

Mnemonic and Syntax Description
.asect "section name”, address Assemble into an absolute named (initialized) section (This
directive is obsolete)
.bss symbol, size in words [, blocking flag] Reserve size words in the .bss (uninitialized data) section
.data Assemble into the .data (initialized data) section
.sect "section name” Assemble into a named (initialized) section
text Assemble into the .text (executable code) section
symbol .usect "section name”, size in words, Reserve size words in a named (uninitialized) section
[blocking flag]

Directives That Initialize Constants (Data and Memory)

Mnemonic and Syntax Description

.byte value; [, ... , valuep] Initialize one or more successive bytes in the current section

.double value; [, ..., value,] Initialize one or more 32-bit, TMS320 single precision,
floating-point constants

field value [, size in bits] Initialize a variable-length field

float value; [, ..., value,] Initialize one or more 32-bit, TMS320 single precision,
floating-point constants

.hword valuey [, ..., value,] Initialize one or more 16-bit (half-word) values

.ieee valuey [, ..., valuey] Initialize one or more 32-bit, single precision, IEEE floating-
point constant

.int valueq [, ..., valueg] Initialize one or more16-bit integers

.double value Initialize a 40-bit long double extended precision floating-
point constant in a compiler supported format

dong valuey |, ..., valuey] Initialize one or more 32-bit integers

sfloat value; [, ... , valuey) (C32 only) Initialize one or more 32-bit, single precision,

TMS320 floating-point constants

.space size in bits Reserve size bits in the current section; a label points to the
beginning of the reserved space

4-2

Directives Summary

Table 4-1. Directives Summary (Continued)

Mnemonic and Syntax

Directives That Initialize Constants (Data and Memory)

Description

.string "string; [, ..., "stringp’]

.word valuey [, ..., value,]

Initialize one or more text strings

Initialize one or more 16-bit integers

Mnemonic and Syntax

Directives That Align the Section Program Counter (SPC)

Description

.align

.even

Align the SPC on a page boundary

Align the SPC on an even word boundary

Mnemonic and Syntax

Directives That Format the Output Listing

Description

.drlist

.drnolist

fclist

fenolist

Jlength page length
Jlist

.mlist

.mnolist

.nolist

.option {B|D|F|L[M|T|X}

.page
.sslist
.ssnolist
title "string”

.width page width

Enable listing of all directive lines (default)

Inhibit listing of certain directive lines

Allow false conditional code block listing (default)
Inhibit false conditional code block listing

Set the page length of the source listing

Restart the source listing

Allow macro listings and loop blocks (default)
Inhibit macro listings and loop blocks

Stop the source listing

Select output listing options

Eject a page in the source listing

Allow expanded substitution symbol listing

Inhibit expanded substitution symbol listing (default)
Print a title in the listing page heading

Set the page width of the source listing

Assembler Directives 4-3

Directives Summary

Table 4-1. Directives Summary (Continued)

Mnemonic and Syntax

Directives That Reference Other Files

Description

.copy [Ifilename][’]

.def symbol; [, ... , symbol,]

.global symbol; [, ..., symbol,]
.include ["filename|’]
.mlib ["filename[’]

.ref symbol; [, ..., symbol,]

Include source statements from another file

Identify one or more symbols that are defined in the current
module and used in other modules

Identify one or more global (external) symbols
Include source statements from another file
Define macro library

Identify one or more symbols that are used in the current mod-
ule but defined in another module

Mnemonic and Syntax

Conditional Assembly Directives

Description

.break [well-defined expression]

.else

.elseif well-defined expression

.endif
.endloop
.if well-defined expression

loop [well-defined expression)

End .loop assembly if condition is true. The .break construct
is optional.

Assemble code block if the .if condition is false. The .else
construct is optional.

Assemble code block if the .if condition is false and the .elseif
condition is true. The .elseif construct is optional.

End .if code block
End .loop code block
Assemble code block if the condition is true

Begin repeatable assembly of a code block

4-4

Directives Summary

Table 4-1. Directives Summary (Concluded)

Assembly-Time Symbols

Mnemonic and Syntax

Description

.asg ["] character string ["], substitution symbol
.endstruct

.eval well-defined expression, substitution symbol
Jabel” symbol "

.set

.struct

tag

Assign a character string to a substitution symbol
End structure definition

Perform arithmetic on numeric substitution symbols
Define a load-time relocatable label in a section
Equate a value with a symbol

Begin structure definition

Assign structure attributes to a label

Miscellaneous Directives

Mnemonic and Syntax

Description

.emsg string

.end

.mmregs

.mmsg string

.regalias

.version generation #number

.wmsg string

Send user-defined error messages to the output device
End program

Enter memory-mapped registers into symbol table
Send user-defined messages to the output device

Use Fnregisters as aliases for Rn registers

Set processor version

Send user-defined warning messages to the output device

Assembler Directives 4-5

Directives That Define Sections

4.2 Directives That Define Sections

4-6

Six directives associate the various portions of an assembly language
program with the appropriate sections:

d
EI

The .bss directive reserves space in the .bss section for variables.

The .usect directive reserves space in an uninitialized named section.
The .usect directive is similar to the .bss directive, but it allows you to re-
serve space separately from the .bss section.

The .text directive identifies portions of code in the .text section. The .text
section usually contains executable code.

The .data directive identifies portions of code in the .data section. The
.data section usually contains initialized data.

The .sect directive defines initialized named sections, and associates
subsequent code or data with that section. Named sections are initialized
and contain code or data.

The .asect directive creates initialized named sections that have absolute
addresses. You can use the .label directive to define labels with absolute
addresses.

Chapter 2 discusses COFF sections in detalil.

Directives That Initialize Constants

4.3 Directives That Initialize Constants

Several directives assemble values into the current section:

a

The .byte directive places one or more 8-bit values into consecutive words
of the current section. This directive is similar to .word, except that the
width of each value is restricted to 8 bits.

The .hword directive places one or more 16-bit half-word values into con-
secutive words in the current section. This directive is similar to .word, ex-
cept that the width of each value is restricted to 16 bits.

The .word , .int, and .long directives place one or more 32-bit values into
consecutive locations in the current section.

The .string directive places 8-bit characters from one or more character
strings into the current section. This directive is similar to .byte, except that
four 8-bit values are packed into each word. The last word in a string is
padded with null characters (0s) if necessary.

The .float and .double directives calculate the single-precision (32-bit)
floating-point representations of specified floating-point values and store
them in consecutive words in the current section. Here’s an example of a
.float directive and the object code that it generates:

5 00000003 0274ED91 float 7.654

The .ieee directive is like the .float directive, but the floating-point values
are converted to single-precision IEEE floating-point format.

The .ldouble directive calculates the extended—precision floating-point
representation of a long double floating-point constant and stores it into
two consecutive 32-bit words in the current section. Each constant is con-
verted to a floating-point value in 40-bit format.

The .sfloat directive is available only with the —v32 assembler option. The
.Sfloat directive calculates the single-precision (32-bit) floating-point
representations of specified floating-point values and stores them in
consecutive words in the current section. The format is the normal single-
precision format right shifted by 16 bits.

Note: How the Initializing Directives Function in a .struct/.endstruct
Sequence

The .byte, .word, .int, .long, .string, .float, ieee, .sfloat, and .field directives
do notinitialize memory when they are part of a .struct/.endstruct sequence;
rather, they define a member’s size. For more information about the
.struct/.endstruct directives, refer to Section 4.8.

Assembler Directives 4-7

Directives That Initialize Constants

Example 4-1 compares the .byte, .hword, .word, and .string directives; for this
example, assume the following code was assembled:

1 00000000 000000AB .byte 0ABh
2 00000001 OOOOCDEF .hword OCDEFh
3 00000002 89ABCDEF .word 089ABCDEFh
4 00000003 706C6568 .string "help”
Example 4-1. Initialization Directives
Word Contents
31
1 0 0 0 0 0 0 A B
——
1 byte
2 0 0 0 0 C D E F
2 bytes (half word)
3 8 9 A B C D E F
whole word
4 70 6C 65 68
p | e h

Code

.byte 0ABh

.hword
OCDEFh

.word
089ABCDEFh

.string
"help”

(1 The .field directive places a single value into a specified number of bits
in the current word, starting with the least significant bits of the word. You
can pack multiple fields into a single word; the assembler will not incre-
ment the SPC until a word is filled.

Example 4—-2 shows how fields are packed into a word. For this example,
assume the following code has been assembled; notice that the SPC
doesn’t change (the fields are packed into the same word):

6 00000004 00000003

7 00000004 00000083
8 00000004 00002083

field 3,4
field 8,5
field 16,7

Directives That Initialize Constants

Example 4-2. The .field Directive

X 3 2 1 0
| 0 0 1 1| field 3,4
\— p—
4 bits
X 8 7 6 5 4
| 0100 0|o 0 1 1| field 8,5
31 o 15 14 13 12 11 10 9

| 0 01 0000/01000[/00 1 1] fieldis?

[The .space directive reserves a specified number of words in the current
section. The assembler fills these reserved words with 0s.

Example 4-3 shows the .space directive; assume the following code has
been assembled:

154 00001027A 080F000C LDI AR4,AR7
155 0000027B 00000000 .space 27
156 00000296 0000000F .word 15

Example 4-3. The .space Directive

LDI AR4, AR7 LDI AR4, AR7

- h

(a) Current words
SPC 27Ah of O's

v
word 15 \

o~ _—~_ (b) New SPC = 296h
e 4 after assembling a
.space 27 directive

Assembler Directives 4-9

Directives That Align the Section Program Counter

4.4 Directives That Align the Section Program Counter

(1 The .align directive aligns the SPC on a 32-word (20 hex) boundary. This
ensures that the code following the .align directive begins on a cache
boundary. If the SPC is already aligned at a 32-word boundary, then it is
not incremented and .align has no effect. Example 4-4 shows the .align
directive; assume that the following code has been assembled:

202 00000C11 00000004 .byte 4
201 00000C11 00000000 .align
203 00000C20 00000003 .byte 3

Example 4—-4. The .align Directive

— T~ — T~
~_ — 4 ~N_ — V

(a) Current 0C1th 0CHh (h) New SPC = 0C20h

SPC =0C11h after assembling an

.align directive
(b) Bext gache - 0C20h 0C20h /
oundary =
0C20h - P

e -

(1 The .even directive aligns the SPC so that it points to the next full word.
You should use .even between field directives when you want the next field
to start in a new word. Any unused bits in the current word are filled with
0Os.

Example 4-5 shows the effect of assembling a .even directive after a .field
directive. Assume the following code has been assembled:

6 00000004 00000003 field 3,4
7 00000004 00000083 field 8,5
8 00000005 .even

Example 4-5. The .even Directive

31 0
IO0000000000000000000000010000011|

These bits are filled with 0s These bits were filled
after assembling a .even directive by .field directives

4-10

Directives That Format the Output Listing

4.5 Directives That Format the Output Listing

Several directives format the listing file:

a

The source code contains a listing of false conditional blocks that do not
generate code. The .fclist and .fcnolist directives turn this listing on and
off. You can use the .fclist directive to list false conditional blocks exactly
as they appear in the source code. You can use the .fcnolist directive to
list only the conditional blocks that are actually assembled.

The .drlist and .drnolist directives turn the printing of directive lines to the
listing file on and off. You can use the .drnolist directive to inhibit the
printing of the following directives:

.asg .eval, length .mnolist .var
.break fclist .mmsg .sslist, .width
.emsg fcnolist .mlist .ssnolist .wmsg

The .length directive controls the page length of the listing file. You can
use this directive to adjust listings for various output devices.

The .width directive controls the page width of the listing file. You can use
this directive to adjust listings for various output devices.

The .list and .nolist directives turn the output listing on and off. You can
use the .nolist directive to stop the assembler from printing selected
source statements in the listing file. Use the .list directive to turn the listing
back on.

The .mlist and .mnolist directives allow and inhibit macro expansion list-
ings.

The .option directive controls several features in the listing file. This direc-
tive has several operands:

Limits the listing of .byte directives to one line.

Limits the listing of .hword directives to one line.

Resets the B, H, L, M, and T options.

Limits the listing of .long, .int, and .word directives to one line.
Limits macro expansions to one line.

Limits the listing of .string directives to one line.

X 4 2~ T I W

Produces a cross-reference listing of symbols. (You can also ob-
tain a cross-reference listing by invoking the assembler with the -x
option.)

The .page directive causes a page eject in the output listing.

Assembler Directives 4-11

Directives That Format the Output Listing

The .sslist and .ssnolist directives allow and inhibit substitution symbol
expansion listing. These directives are useful for debugging substitution
symbols outside of macros.

The .title directive supplies a title that the assembler prints on the second
line of each page.

4-12

Directives That Reference Other Files

4.6 Directives That Reference Other Files

These directives supply information for or about other files:

a

The .copy and .include directives tell the assembler to begin reading
source statements from another file. When the assembiler is finished read-
ing the source statements in the copyl/include file, it resumes reading
source statements from the current file. The statements read from a
copied file are printed in the listing file; the statements read from an in-
cluded file are not printed in the listing file.

The .global directive declares a symbolto be external so thatitis available
to other modules at link time. The .global directive does double duty, acting
as a .deffor defined symbols and as a .ref for undefined symbols. Note that
the linker will resolve an undefined global symbol only if it is used in the
program.

The .def directive identifies a symbol that is defined in the current module
and can be used by other modules. The assembler puts the symbol in the
symbol table.

The .ref directive identifies a symbol that is used in the current module but
defined in another module. The assembler marks the symbol as an unde-
fined external symbol and puts it in the object symbol table so that the
linker can resolve its definition.

The .mlib directive supplies the assembler with the name of an archive
library that contains macro definitions. When the assembler encounters
a macro that is not defined in the current module, it will then be able to
search for it in the specified macro library.

Assembler Directives 4-13

Conditional Assembly Directives

4.7 Conditional Assembly Directives

Conditional assembly directives enable you to instruct the assembler to
assemble certain sections of code according to a true or false evaluation of an
expression. Two sets of directives allow you to assemble conditional blocks of

code:

[The .if/.elseifl.elsel.endif directives tell the assembler to conditionally
assemble a block of code according to the evaluation of an expression.

if expression

.elseif expression

.else

.endif

Marks the beginning of a conditional block and
assembles code if the .if condition is true.

Marks a block of code to be assembled if .if is false
and .elseif is true.

Marks a block of code to be assembled if .if is false.

Marks the end of a conditional block and terminates
the block.

(1 The .loop/.break/.endloop directives tell the assembler to repeatedly
assemble a block of code according to the evaluation of an expression.

loop expression

.break expression

.endloop

Marks the beginning a repeatable block of code.

Continue to repeatedly assemble when the .break
expression is false. Go to code immediately after
.endloop if expression is true.

Marks the end of a repeatable block.

The assembler supports several relational operators that are especially useful
for conditional expressions. For more information about relational operators,
refer to Section 3.10 on page 3-20.

4-14

Assembly-Time Symbol Directives

4.8 Assembly-Time Symbol Directives

These directives equate meaningful symbol names to constant values or
strings.

1 The .set directive sets a constant value to a symbol. The symbol is stored
in the symbol table and cannot be redefined; for example,
bval .set 0100h

.word bval, bval*2, bval+12
LDI bval, RO

Note that the .set directive produces no object code.

[The .struct/.endstruct directives set up C-like structure definitions, and
the .tag directive assigns the C-like structure characteristics to a label.

The .struct/.endstruct directives enable you to set up a C-like structure
definition so that similar elements can be grouped together. Element offset
calculation is then left up to the assembler. The .struct/.endstruct direc-
tives do not allocate memory. They simply create a symbolic template that
can be used repeatedly.

The .tag directive assigns structure characteristics to a label. This
simplifies the symbolic representation and also provides the ability to de-
fine structures that contain other structures.The .tag directive does not
allocate memory, and the structure tag (stag) must be defined before it is

used.
type .struct ; structure tag definition
X .int ; member x offset =0
y .int ; member y offset = 1
t_len .endstruct ; end structure, symbol t_len =2
coord .tag type ; associate coord w/ structure type

ADDI @coord.y, RO

.bss coord, t_len ; actual memory allocation

[The.asg directive assigns a text string to a substitution symbol. The value
is stored in the substitution symbol table. When the assembler encounters
a substitution symbol, it replaces the symbol with its character string value.
Substitution symbols can be redefined.

.asg "10, 20, 30, 40", coefficients

.word coefficients

[J The .eval directive evaluates an expression, translates the results into a
text string and assigns the string to a substitution symbol. This directive
is most useful for manipulating counters; for example,

.asg 1,x ; assigns “1” to x
.eval x+1, X ; assigns “2” to x

Assembler Directives 4-15

Miscellaneous Directives

4.9 Miscellaneous Directives

4-16

This section discusses miscellaneous directives.

a

a

The .version directive is the same as the —v assembler option. This tells
the assembler which generation processor the code is for. Valid
generation numbers are 30 and 40. The default is 30. The .version direc-
tive must appear before any other instruction or directive, or else an error
will occur.

The .end directive terminates assembly. It should be the last source
statement of a program. This directive has the same effect as an end-of-
file.

The .regalias directive allows Fn registers to be used as aliases for Rn
registers.

These three directives enable you to produce your own error and warning
messages:

a

The .emsg directive sends error messages to the standard output device.
The .emsg directive generates errors in the same manner as the assem-
bler does, incrementing the error count and preventing the assembler from
producing an object file.

The .wmsg directive sends warning messages to the standard output de-
vice. The .wmsg directive functions in the same manner as the .emsg
directive but increments the warning count.

The .mmsg directive sends assembly-time messages to the standard out-
put device. The .mmsg directive functions in the same manner as the
.emsg and .wmsg directives but does not set the error count or the warning
count, and does not prevent an object file from being produced.

Directives Reference

4.10 Directives Reference

The remainder of this chapter is a reference. Generally, the directives are
organized alphabetically, one directive per page; however, related directives
(such as .if/.else/.endif) are presented together on one page. Here’s an alpha-

betical table of contents for the directives reference:

Directive Page Directive Page
align 4-18] Idouble 4-46
asect -19 dength, 4-4
ASO o 4-20 dist oo -48
break ... - long ..o [2-4
bss o 22 00D + oo 450
byte ..o -23 mlib ... [452
COPY wveeeee i 4-24) mlist [2-54
data...................... -26 MMSY oo 4-29
def oo 14-39 mnolist
st g newblonk o5

nolist 4-48
drolist ... 4-27 option, -
else ... -42 page ... -5
elseif ... 4-42 ref [4-3
emSg ... 1-29 regalias................... 4-59
end ... 4-31 sect EESe
endloop ...l [4-50 SeE
endif ... 4-4 sfloat 4-37]
.endstruct SPACE L. 4-62]
.equ SSlist Lo [4-63
.eval sssnolist 4-63
.even SNG ..o 223
fclist SUUCE . o 465
fenolist dab .o 67
field dBG 14-65
.float dext oo 4-64
global ditle oo 4-6
.hword usect ..., |4-
ieee VETSION .o 47
if width ..o 4-4
.include WMST . oivieei e 4-29
.int word ... 4-44
label

Assembler Directives 4-17

Syntax .align

Description The .align directive aligns the section program counter on the next 32-word
boundary. If necessary, the assembler inserts words containing NOPs. If more
than 4 NOPs are inserted, the assembler also inserts a branch instruction
around the NOPs to the next instruction. This directive is useful for aligning
code on a cache boundary.

Using the .align directive has two effects:

(1 The assembler aligns the SPC on a 32-word boundary within the current
section.

[The assembler sets a flag that forces the linker to align the entire section
on a 32-word boundary. This ensures that individual alignments remain in-
tact when a section is loaded into memory.

Example This example aligns the SPC on the next 32-word boundary to ensure that the
code that follows it will start on a cache boundary. Figure 4-1 shows how this
code aligns the SPC.

1 00000000 08010000 LDl RO,R1
2 .align
300000020 08020001 x: LDl R1,R2
4 00000021 08030002 LDl R2,R3

Figure 4-1. The .align Directive

LDIRO, R1 | Oh LDI RO, LDI RO, R1| Oh
(a) Current R1 B 20
SPC =0h B 20 NOP
NOP NOP
NOP NOP
NOP .
(b) nextcache 20h 20h
boundary = LDI R1, R2
20h LDI R2, R3
| | | | 2%h
(a) LDI RO, R1 (b) .align | |
| |
| |
(c) LDIR1,
R2
LDI R2, R3

4-18

Syntax

Description

.asect " section name”, address

The .asect directive defines a named section whose addresses are absolute
with respect to address. This command is obsolete. Any section can now be
loaded and run at two separate addresses using the linker. The command
functions as before for compatibility.

section name a required parameter that identifies the name of the
absolute section. It be enclosed in double quotes.

address a required parameter that identifies the section’s absolute
starting address in target memory, which is requiredthe first
time you assemble into a specific absolute section. If you
use .asect to continue an assembly into an a section that
contains code, you cannot use the address parameter.

Absolute sections are useful for loading sections of code from off-chip memory
into faster on-chip memory. In order to use an absolute section, you must know
which location you want the section to execute from and specify it as the
address parameter.

Most sections directives create sections with relocatable addresses. The
starting SPC value for these sections is always zero; the linker then relocates
them where appropriate. The starting SPC value for an absolute section,
however, is the specified address. The addresses of all code assembled into
an absolute section are offsets from the specified address. The linker does
relocate sections defined with .asect; however, any labels defined within an
absolute section retain their absolute (runtime) addresses. Thus, references
to these labels refer to their runtime addresses, even though the section is not
initially loaded at its runtime address.

All labels in an absolute section have absolute addresses. The .label directive
creates labels with relocatable addresses; this allows you to define a symbol
that points to the section’s loadtime location in off-chip memory.

Note that after you define a section with .asect, you can use the .sect directive
later in the program to continue assembling code into the absolute section.

Note: The .asect Directive Is Obsolete

The .asect directive is obsolete because the linker's SECTIONS directive
now allows separate load and run addresses for any section. The .asect
directive is fully functional to allow compatibility with previous versions of the
assembler. For more information, refer to Section 8.7 on page 8-27.

4-19

Syntax

Description

4-20

.asg ["]character string["], substitution symbol
.eval well-defined expression, substitution symbol

The .asg directive assigns character strings to substitution symbols. Substitu-
tion symbols are stored in the substitution symbol table.

The .asg directive can be used in many of the same ways as the .set directive,
but while .set assigns a constant value (cannot be redefined) to a symbol, .asg
assigns a string (can be redefined) to a substitution symbol.

The .eval directive performs arithmetic on substitution symbols. This directive
evaluates the expression and assigns the string value of the result to the sub-
stitution symbol. The .eval directive is especially useful as a counter in
.loop/.endloop blocks.

character string Is assigned to the substitution symbol by the
assembler. The quotation marks are optional. If
there are no quotation marks, the assembler
reads characters up to the first comma and
removes leading and trailing blanks. In either
case, a character string is read and assigned to
the substitution symbol.

substitution symbol Is arequired parameter that must be a valid sym-
bol name. The substitution symbol may be 32
characters long and must begin with a letter.
Remaining characters of the symbol can be a
combination of alphanumeric characters, under-
scores, and dollar signs. When the assembler
encounters a substitution symbol in a source
statement, it substitutes the assigned string for
the symbol and rescans the line. In this way, sub-
stitution symbols provide a general textreplace-
ment mechanism.

well-defined expression |s an alphanumeric expression consisting of
legal values that have been previously defined,
so that the result is an absolute.

Example

This example shows how .asg and .eval can be used.

FRrHPHRP R PR R, R PR ®R

1 .sslist
2 .asg AR3, FP
3 .asg RO, TEMP

4 00000000 02400302 ADDI *+FP(2), TEMP
ADDI *+AR3(2), RO
5 00000001 02400301 ADDI *+AR3(1), RO
6
7 .asg 0,
8 doop 5
9 .eval x+1, X
10 .word X
11 .endloop
.eval x+1, X
.eval 0+1, x
00000002 00000001 .word X
.word 1
.eval x+1, x
.eval 1+1,x
00000003 00000002 .word X
.word 2
.eval x+1, x
.eval 2+1, x
00000004 00000003 .word X
.word 3
.eval x+1, X
.eval 3+1, x
00000005 00000004 .word X
.word 4
.eval x+1, x
.eval 4+1, x
00000006 00000005 .word X
.word 5

4-21

Syntax .bss symbol, size in words
Description The .bss directive reserves space in the .bss section for variables. This direc-
tive is usually used to allocate variables in RAM.
symbol Is a required parameter. It defines a label that points
to the firstlocation reserved by the directive. The sym-
bol name should correspond to the variable thatyou're
reserving space for.
Size in words Is a required parameter; it must be an absolute
expression. The assembler allocates sizewords in the
.bss section. There is no default size.
Note that the .usect directive is similar to the .bss directive; it also reserves
space in memory. However, .usect creates named uninitialized sections that
can be allocated separately from the .bss section.
Other section directives (.text, .data, .sect, and .asect) end the current section
and begin assembling into another section. The .bss directive, however, does
not affect the current section. The assembler assembles the .bss directive and
then resumes assembling code into the current section. For more information
about COFF sections, see Chapter 2.
Example This example uses the .bss directive to allocate space for the variable array.
The symbol array points to 100 words of uninitialized space (the .bss SPC =
0). Note that symbols declared with the .bss directive can be referenced in the
same manner as other symbols and can also be declared external.
1 * *kkkk * *k%k
2 * Begin assembling into .text *
3 *k*k *
4 00000000 text
5 00000000 08010000 LDl RO,R1
6 *
7 * Allocate 100 words in .bss *
8
9 00000000 .bss array,100
10 R
11 * Still in .text *
12 oo
13 00000001 08020001 LDI R1,R2
14 * * * *
15 * Declare external .bss symbol *
16 * * * * *
17 .global array

4-22

Syntax

Description

Example

.byte value; [, ... , valuep]

The .byte directive places one or more 8-bit values into consecutive words in
the current section. Each value can be either:

[An expression that the assembler evaluates and treats as an 8-bit signed
number, or

[A character string enclosed in double quotes. Each character represents
a separate value.

Values are not packed or sign extended; each byte value occupies the least
significant 8 bits of a full 32-bit word. The assembler truncates values that are
greater than 8 bits. You can define up to 100 values per .byte instruction, how-
ever, the line length, including label (if any), the .byte directive itself and all val-
ues, cannot exceed 200 characters. Each character in a string is counted as
a separate operand.

If you use a label, it points to the location at which the assembler places the
first byte.

This example places the 8-bit values 10, —1, abc and a into four consecutive
words in memory. The label strx has the value 64h, which is the location of the
first initialized word.

1
2 00000064 O00OOO00OCA strx: .byte 10,-1,"abc”,’a’
00000065 000000FF
00000066 00000061
00000067 00000062
00000068 00000063
00000069 00000061

4-23

Syntax

Description

Example 1

4-24

.copy ["Ifilename[”]
.include ["]filename]”]

The .copy and .include directives tell the assembler to read source statements
from a different file. The statements that are assembled from a copy file are
printed in the assembly listing. The statements that are assembled from an in-
cluded file are not printed in the assembly listing, regardless of the number of
ist/.nolist directives that are assembled. The assembler:

1) Stops assembling statements in the current source file,
2) Assembles the statements in the copied/included file, and

3) Resumes assembling statements in the main source file, starting with the
statement that follows the .copy or .include directive.

The filename is a required parameter that names a source file; the filename
may be enclosed in double quotes. The filename must follow operating system
conventions. You can specify a full pathname (for example, .copy
c:\dsp\filel.asm). If you do not specify a full pathname, the assembler
searches for the file in:

1) The directory that contains the current source file.
2) Any directories named with the -i assembler option.
3) Any directories specified by the environment variable A_DIR.

For more information about the -i option and the environment variable, see
Section 3.5, Naming Alternate Directories for Assembler Input, on page 3-7.

The .copy and .include directives may be nested within a file being copied or
included. The assembler limits this type of nesting to ten levels; the host oper-
ating system may set additional restrictions. The assembler precedes the line
numbers of copied files with a letter code to identify the level of copying. An
A indicates the first copied file, B indicates a second copied file, etc.

This example uses the .copy directive to read and assemble source state-
ments from other files, then resumes assembling into the current file.

The original file, copy.asm, contains a .copy statement copying the file
byte.asm. When copy.asm assembles, the assembler copies byte.asm into its
place inthe listing (note listing below). The copy file byte.asm contains a .copy
statement for a second file, word.asm.

When itencounters the .copy statement for word.asm, the assembler switches
to word.asm to continue copying and assembling. Then the assembler returns
to its place in byte.asm to continue copying and assembling. After completing
assembly of byte.asm, the assembler returns to copy.asm to assemble its
remaining statement.

copy.asm byte.asm word.asm

.space 29 ** |n byte.asm ** |In word.asm

.copy byte.asm .byte 32,1+'A’ .word OABCDh, 56q
** Back in copy.asm .copy "word.asm”

.string "done” ** Back in byte.asm

.byte 67h + 3q

This is the listing file:

1 00000000 00000000 .space 29
2 .copy byte.asm
1 ** |n byte.asm
2 0000001d 00000020 .byte 32,1+'A’
0000001e 00000042
3 .copy "word.asm”
1 ** |n word.asm
2 0000001f 0000abcd .word OABCDh, 56q
00000020 0000002e
4 ** Back in byte.asm
5 00000021 0000006a .byte 67h + 3q
3 ** Back in copy.asm
4 00000022 656e6f64 .string "done”

>» WwWw> >>

Example 2 This example uses the .include directive to read and assemble source state-
ments from other files, then resumes assembling into the current file.

include.asm byte2.asm word2.asm

.Space 29 ** |n byte2.asm ** |n word2.asm

.include byte2.asm .byte 32,1+'A’ .word OABCDh, 56q
** Back in include.asm .include "word2.asm”

.string "done” ** Back in byte2.asm

.byte 67h + 3q

This is the listing file:

1 00000000 00000000 .space 29

2 .include byte2.asm

3 ** Back in include.asm

4 00000022 656e6f64 .string "done”

4-25

Syntax .data

Description The .data directive tells the assembler to begin assembling source code into
the .data section; .data becomes the current section. The .data section is nor-
mally used to contain tables of data or preinitialized variables.

Chapter 2 provides a detailed explanation about COFF sections.

Note that the assembler assumes that .text is the default section. Therefore,
at the beginning of an assembly, the assembler assembles code into the .text
section unless you specify an explicit section control directive.

Example This example assembles code into the .data and .text sections.
l xxxxxxxxxx *kkkk
2 ** Reserve space in .data *x
3
4 00000000 .data
5 00000000 00000000 .space 0CCh
6 *kkkkkk *kkkk *k%k
7 ** Assemble into .text *x
8 *k*k * *k*k
9 00000000 text
10 00000000 00800000 ABSI RO
11 * *
12 ** Assemble into .data *
13 * i *
14 000000cc table: .data

15 000000cc ffffffff word -1 ; Assemble 32—hit
; constant into .data
16 000000cd 000000ff .byte OFFh ; Assemble 8-bit
; constant into .data
17 000000ce 08010000 LDI RO,R1 ; Assemble code into .data

18 ook e
19 ** Assemble into .text xk

20 * il

21 00000001 text

22 00000001 08010000 LDI RO,R1

23 Rtk ook
24 ** Resume assembling into .data**
25 ** at address OCFh xk

26 ok ok

27 000000cf .data

28

4-26

Syntax

Description

Example

.drlist
.drnolist

The .drlist directive causes the assembler to print to the listing file all directives
lines. By default the assembler behaves as if you had used .drlist. The .drnolist
directive suppress the printing of the followings directives in the listing file:

.asg felist .mmsg .var
.break fcnolist .mnolist .wmsg
.emsg length .sslist .width
.eval .mlist .ssnolist

This example shows how .drnolist inhibits the listing of the above nhamed direc-
tives. By default, the assembler behaves as if you had used .drlist.

Source file:
*

.drlist/.drnolist example
Jlength 65
.width 85
.asg 0,x
Jdoop 2
.eval x+1, x
.endloop

.drnolist

length 55
.width 95
.asg 1,x
doop 3
.eval x+1, x
.endloop

4-27

Listing file:

1 *
2
* drlist/.drnolist example
3 *
4 length 65
5 .width 85
6 .asg 0, x
7 Jdoop 2
8 .eval x+1, x
9 .endloop
1 .eval 0+1, x
1 .eval 1+1, x
10
12
16 Joop 3
17 .eval x+1, x
18 .endloop

4-28

Syntax

Description

Example

.emsg string
.mmsg string
.wmsg string

Use these directives to produce your own error and warning messages. Note
that the assembler tracks the number of errors and warnings it encounters and
prints these numbers on the last line of the listing file.

[0 The.emsg directive sends error messages to the standard output device.
The .emsg directive generates errors in the same manner as the assem-
bler does, incrementing the error count and preventing the assembler from
producing an object file.

1 The.wmsg directive sends warning messages to the standard output de-
vice. The .wmsg directive functions in the same manner as the .emsg
directive but increments the warning count.

[The.mmsg directive sends assembly-time messages to the standard out-
put device. The .mmsg directive functions in the same manner as the
.emsg and .wmsg directives but does not set the error count or the warning
count, and does not prevent the assembler from producing an object file.

In this example, the macro MSG_EX requires one parameter. The firsttime the
macro is invoked it has a parameter, PARAM, and it assembles normally. The
second time, the parameter is missing and an error is generated.

Source file:

MSG_EX .macro a
if $symlen(a) =0
.emsg "ERROR — MISSING PARAMETER”

.else

ADDI @a, R4
.endif

.endm
.global param
MSG_EX param
MSG_EX

4-29

PR RRR

1
1

Listing file:

1 MSG_EX .macro a

2 if $symlen(a) =0

3 .emsg "ERROR — MISSING PARAMETER”
4 .else

5 ADDI @a, R4

6 .endif

7 .endm

8
9

.global param
10 00000000 MSG_EX param
if $symlen(a) =0
.emsg "ERROR — MISSING PARAMETER”

.else
00000000 02240000! ADDI @param, R4
.endif
11
12 00000001 MSG_EX

if $symlen(a) =0
.emsg "ERROR — MISSING PARAMETER”

Frrkk USER ERROR — ERROR — MISSING PARAMETER

1
1
1

.else
ADDI @a, R4
.endif

13

1 Error, No Warnings

4-30

The following message is sent to standard output when the file is assembled:

"emsg.asm” line 12: ** USER ERROR **
ERROR — MISSING PARAMETER

1 Error, No Warnings

Errors in source — Assembler Aborted

Syntax

Description

Example

.end

The .end directive is an optional directive that terminates assembly. It should
be the last source statement of a program. The assembler will ignore any
source statements that follow an .end directive.

Note that this directive has the same effect as an end-of-file.

Note: Use .endm to End a Macro

Do not use the .end directive to terminate a macro; use the .endm macro
directive instead.

This example shows how the .end directive terminates assembly. If any source
statements follow the .end directive, the assembler ignores them.

0000 Start: .space 300
OOOF temp .set 15
0000 .bss locl,48h

0013 CE1B ABS

0014 0O0OF ADD temp

0015 6000 SACL locl
.end

~NOoO o~ wWNRE

4-31

Syntax .even

Description The .even directive aligns the section program counter (SPC) on the next full
word. When you use the .field directive, you can follow it with the .even direc-
tive. This forces the assembler to write out a partially filled word before initializ-
ing fields in the next word. The assembler will fill the unused bits with 0s. If the
SPC is already on a word boundary (no word is partially filled), .even has no
effect.

All directives that initialize memory other than .field (such as .word and .float)
perform an implicit .even. Therefore, it is necessary to use .even only after a
field directive, and only when word alignment is required for another immedi-

ately following .field directive.

Note that when you use .even in a .struct/.endstruct sequence, .even aligns
structure members; it does not initialize memory. For more information about
.struct/.endstruct, refer to Section 4.8.

Example Here’s an example of the .even directive. Word 0 is initialized with several
fields; the .even directive causes the next field to be placed in word 1.

1 00000000 00000003 field 03h,2 ; Initialize a 2—-bit field

2 00000000 0000002f field 0Bh,5 ; Initialize a 5-hit field

3 00000001 .even : Write out the word

4 00000001 00000007 field 07h,3 ; field is in the next word

Example 4—-6 shows how this example initializes word 0. The first 7 bits are in-
itialized by .field directives; the remaining bits are set to 0 by the .even direc-
tive. The next 3-bit .field goes into word 1.

Example 4—-6. The .even Directive

15 0
00{/011110010000 1 1

v \V

Filled by Filled by the field directives

the .even

directive

4-32

Two directives enable you to control the listing of false conditional blocks.

[The .fclist directive allows the listing of conditional blocks that do not pro-
duce code (false blocks). By default, the assembler behaves as if you had

[The .fenolist directive inhibits the listing of false conditional blocks. Only
code in the conditional block that actually assembles appearsin the listing.
The .if, .elseif, .else, and .endif directives do not appear.

This example shows the assembly language file and the listing file for code

with and without the conditional blocks listed. This is the unassembled file:

Syntax fclist
fcnolist
Description
used .fclist.
Example
Source file:
a set 1
b set 0
fclist
if a
ADDI 5, RO
.else
ADDI 5*10, RO
.endif
fcnolist
Jif a
ADDI 5, RO
.else
ADDI 5*10, RO
.endif
Listing file:
1 00000001 a set 1
2 00000000 b set 0
3 fclist ; list false
4 ; conditional blocks
5
6 if a
7 00000000 02600005 ADDI 5, R0
8 .else
9 ADDI 5*10, RO
10 .endif
11
12 fcnolist ; do not list
13
15 00000001 02600005 ADDI 5,R0

; list false
; conditional blocks

; do not list

4-33

Syntax

Description

4-34

field value [, size in bits]

The .field directive initializes multiple-bit fields within a single word of memory.
This directive has two operands:

[The valueis arequired parameter; itis an expression thatis evaluated and
placed in the field. If the value is relocatable, size must be 32.

(1 The sizeis an optional parameter; it specifies a number from 1-32, which
is the number of bits the field consists of. If you do not specify a size, the
assembler uses a default size of 32 bits. Note that the assembler will trun-
cate the value if you specify a field that is not wide enough to contain the
value. For example, .field 3,1 will cause the assembler to truncate the val-
ue 3 tol; the assemble also prints the message:

***warning — value truncated

Successive field directives pack values into the specified number of bits in the
currentword. Fields are packed starting at the least significant part of the word,
moving toward the most significant part as more fields are added. If the assem-
bler encounters a field size that does not fit into the current word, it writes out
the word, increments the SPC, and begins packing fields into the next word.

You can use the .even directive to force the next .field directive to begin pack-
ing into a new word. If you use a label, it points to the word that contains the
field.

Note also that when you use .field in a .struct/.endstruct sequence, .field de-
fines a member’s size; it does not initialize memory. For more information
about .struct/.endstruct, refer to Section 4.8.

This example shows how fields are packed into a word. Notice that the SPC

Example
does not change until a word is filled and the next word is begun.
1 *kkkk *kkkk
2 * |nitialize a 24—bit field *
3 *k*k * *k*k
4 00000000 00bbccdd field 0BBCCDDh,24
5 *k%k *kk
6 * Initialize a 5-bit field *
7 *kkkk * *k%k
8 00000000 Oabbccdd field 0Ah,5
9 *hkkkkkkkkkkkkkkkkkkkkkkkkkk *kkkkkk
10 * |nitialize a 4—bit field (new) word *
12 00000001 0000000c field 0Ch,4
13
14 * Initialize a 3-bit field *
15
16 00000001 0000001c x: .field 01h,3
17
18 * Initialize a 32-bit relocatable *
19 * field in the next word *
21 00000002 00000001 field x
22

Example 4—7 shows how the directives in this example affect memory.

4-35

Example 4-7. The .field Directive

4-36

Word
31302928272625242322212019181716 1514131211109 8 7 6 5 4 3 2 1 0
@0 | 10111011110011001101110 1f
24-bit field
31302928272625242322212019181716 1514131211109 8 7 6 5 4 3 2 1 0
®o | 01010/10111011110011001101110 1]
——
5-bit field
24-bit field
31302928272625242322212019181716 1514131211109 8 7 6 5 4 3 2 1 0
©0 fooolo1o010f10111011110011200112011101f
31302928272625242322212019181716 1514131211109 8 7 6 5 4 3 2 1 0
1| 1100
——
4-bit field
31302928272625242322212019181716 1514131211109 8 7 6 5 4 3 2 1 0
@1 | oof1100| .
[—
3-bit field

31302928272625242322212019181716 1514131211109

76543210

(e) 1 |OOOOOOOOOOOOOOOOOOOOOOO

oloof1100| .

31302928272625242322212019181716 1514131211109

76543210

O | |O |®

2 |OOOOOOOOOOOOOOOOOOOOOOO

0000000 1

Code

.field 0BBCCDDh, 24

field 0Ah, 5

field OCh, 4

field 01h, 3

field x

Syntax

Description

float value; [, ..., valuen]
.double value; [, ..., values]
ieee valueq [, ..., valuey]
Sfloat valuep [, ..., valuep]

The .float directive places the floating-point representation of one or more
floating-point constants into successive words in the current section. Each
value must be either a floating-point constant or a symbol that has been
equated to a floating-point constant. Each constant is converted to a floating-
point value in TMS320 single-precision (32-bit) format.

The .double directive behaves just like the .float; it is generated by the
compiler for double variables.

The .ieee directive (available with the —v40 assembler option) also behaves
like the .float except that the value is converted to IEEE single-precision
(32-bit) format.

The IEEE floating-point format consists of three fields:
[A 1-bit sign field (s)

1 An 8-bit biased exponent (exponent)

4-37

4-38

[A 23-bit normalized mantissa (mantissa)

31 30 23 22 16
S exponent mantissa
15 0
mantissa

value = (— 1)° x (1.0 + 0.mantissa) x 2ewronen-127

The .sfloat directive is available only with the —v32 assembler option. The
.sfloat directive places the floating-point representation of one or more
floating-point constants into successive words in the current section. Each
value must be either a floating-point constant or a symbol that has been
equated to a floating-point constant. The format is the normal single-precision
format right-shifted by 16 bits so that:

[Bits 31 through 16 are zero

(1 Bits 15 through 8 are the 8-bit exponent
[Bit 7 is the sign bit

[Bits 6 through 0 are the 7-bit mantissa

15 8 7 6 0

exponent | S | mantissa |

The .sfloat directive can be used to place floating point values into 16-bit
external memory. When the values are loaded into the CPU registers (LDF),

Example

the number will be loaded in the upper 16-bits with the lower 16-bits set to 0.
See page 4-2 of the 1995 TMS320C32 Addendum to the TMS320C3x User’s
Guide for more information.

Note that when you use .float in a .struct/.endstruct sequence, .float defines
a member’s size; it does not initialize memory. For more information about
.struct/.endstruct, refer to Section 4.8.

Here are some examples of the .float directive.

1 00000000 53fba6af float —1.0e25

2 00000001 01400000 float 3

3 00000002 06760000 float 123, 0.5
00000003 ff000000

4 0003243f PI: .set 3.14159

5 0002b7el E: .set 2.71828

6 00000004 01490fd0 float PLE
00000005 012df84d

4-39

Syntax

Description

Example

4-40

.global symbol; [, ..., symbol,]
.def symbol; [, ..., symbol,]
ref symboly [, ..., symbol,]

The .global, .def, and .ref directives identify global symbols, which are defined
externally, or can be referenced externally.

(1 The .def directive identifies a symbol that is defined in the current module
and can be accessed by other files. The assembler places this symbol in
the the symbol table.

(1 The .ref directive identifies a symbol that is used in the current module but
defined in another module. The linker resolves this symbol’s definition at
link time.

(1 The .global directive acts as a .ref or a .def, as needed.

A global symbol is defined in the same manner as any other symbol; that is,
it appears as a label or is defined by the .set, .bss, or .usect directive. As with
all symbols, if a global symbol is defined more than once, the linker issues a
multiple-definition error. Note that .ref always creates an entry for a symbol,
whether the module uses the symbol or not; .global, however, creates a sym-
bol table entry only if the module actually uses the symbol.

A symbol may be declared global for two reasons:

1) Ifthe symbolis not defined in the current module (including macro, .copy,
and include files), the .global or .ref directive tells the assembler that the
symbolis defined in an external module. This prevents the assembler from
issuing an unresolved reference error. At link time, the linker looks for the
symbol’s definition in other modules.

2) Ifthe symbol is defined in the current module, the .global or .def directive
declares that the symbol and its definition can be used externally in other
modules. These types of references are resolved at link time.

This example uses four files:

(1 filel.Ist and file3.Ist are equivalent. Both files define the symbol /nit and
make it available to other modules; both files use the external symbols x,
y,and z. filel.Ist uses the .global directive to identify these global symbols;
file3.Ist uses .ref and .def to identify the symbols.

(1 file2.Ist and file4.Ist are equivalent. Both files define the symbols X, y;, and
z and make them available to other modules; both files use the external
symbol Init. file2.Ist uses the .global directive to identify these global sym-
bols; file4.Ist uses .ref and .def to identify the symbols.

filel.Ist:

.global

.global
Init:

LDI

.word

.end

file2.Ist:

.global

.global
set 1
set 2
.set

.word

.end
file3.lst:
.def

Init
X, Y, Z

RO,R1
X

X, Y, Z

Init

X+y
Init

Init

ref x,y,z

Init:
LDI
.word X

.end

file4.Ist:

.def
.ref
X. .set 1
.set 2
.set
.word

.end

RO,R1

X, Y, Z
Init

X+y
Init

; Global symbol defined in this file
; Global symbols defined file2.Ist
; Symbol definition

; Global symbols defined this file
; Global symbol defined in filel.Ist
; Symbol definitions

; Global symbol defined in this file
; Global symbols defined in file4.Ist
; Symbol definition

; Global symbols defined in this file
; Global symbol defined in file3.Ist
; Symbol definitions

4-41

Syntax

Description

Example

4-42

.hword valueg [, ... , valueg]

The .hword directive places one or more 16-bit values into consecutive words
in the current section. Each value may be either:

[An expression that the assembler evaluates and treats as a 16-bit signed
number, or

(1 A character string enclosed in double quotes. Each character represents
a separate value.

Values are not packed or sign extended; each value occupies the least signifi-
cant 16 bits of a full 32-bit word.

The assembler truncates any value that is greater than 16 bits. The .hword di-
rective can have up to 100 operands, but they must fit on a single line.

If you use a label, it points to the location of the first word that is initialized.

This example assembles several 16-bit values into words in the current sec-
tion. The label viisthas the value 6Ah, which is the location of the firstinitialized
word.

1
2
3 0000006A 0000000A vlist:.hword 10,—1,"abc”,’ab '
0000006B OO0OFFFF
0000006C 00000061
0000006D 00000062
0000006E 00000063
0000006F 00006261

Syntax

.if well-defined expression
assemble code block when the expression is true
.elseif well-defined expression

assemble code block when the .if expression is false
and the .elseif expression is true

.else
assemble code block when the expression is false
.endif

terminate condition block

Description Four directives provide conditional assembly:

a

a

The .if directive marks the beginning of a conditional block. The
expression is a required parameter.

B If the expression evaluates to frue (nonzero), then the assembler as-
sembles the code that follows it (up to an .elseif, an .else, or an .endif).

B Ifthe expression evaluatesto false (0), then the assembler assembles
code that follows a .elseif (if present), a else (if present), or a .endif (if
no .elseif or .else is present).

The .elseif directive identifies a block of code to be assembled when the
.ifexpressionisfalse (0) and the .elseif expressionis true (nonzero). When
the .elseif expression is false, the assembler continues to a .else (if pres-
ent) or an .endif. The .elseif directive is optional in the conditional block;
if an expression is false and there is no .elseif statement, the assembler
continues with the code that follows a .else (if present) or a .endif.

The .else directive identifies a block of code that the assembler assembles
when the .if expression is false (0). This directive is optional in the condi-
tional block; if an expression is false and there is no .else statement, then
the assembler continues with the code that follows the .endif.

The .endif directive terminates a conditional block.

The .elseif and .else directives can be used in the same conditional assembly
block and can be used more than once within a conditional assembly block.

Forinformation on the conditional operators that the assembler supports, refer
to subsection 3.10.6, Conditional Expressions, on page 3-23.

4-43

Example

1 00000001 syml .set 1

2 00000002 sym2 .set 2

3 00000003 sym3 .set 3

4 00000004 sym4 .set 4

5 If_4: .if sym4=sym2*sym2

6 00000000 00000004 .byte sym4 ; equal values
7 .else

8 .byte sym2 * sym2 ; unequal values
9 .endif

10 If_ 5: .if syml<=10

11 00000001 0000000a .byte 10 ; less than/equal
12 .else

13 .byte symi ; greater than

14 .endif

15 If_6: .if sym3*sym2!=sym4 +sym2

16 .byte sym3 * sym2 ; unequal values
17 17 .else

18 .byte sym4 + sym2 ; equal values
19 .endif

20 If 7. .if syml=2

21 .byte syml

22 .ifelse sym2 + sym3

23 .endif

24

4-44

Here are some examples of conditional assembly:

Syntax

Description

Example 3

5 00000070
6 00000071
00000072
00000073
00000074
00000075
00000076
00000077

Example 4

1 00000000
00000001

Example 5

1 00000000
00000001
00000002
00000003
00000004

int value; [, ..., valuep]
dong valuej [, ..., valueg]
.word value; [, ..., valueg]

The .int, .long, and .word directives are equivalent; they place one or more
values into consecutive 32-bit fields in the current section. Each value is either:

[An expression that the assembler evaluates and treats as a 32-bit signed
value, or

[A character string enclosed in double quotes. Each character represents
a separate value.

The values can be either absolute or relocatable expressions. If an expression
is relocatable, the assembler generates a relocation entry that refers to the ap-
propriate symbol; the linker can then correctly patch (relocate) the reference.
This allows you to initialize memory with pointers to variables or labels.

You can use as many values as fit on a single line. If you use a label, it points
to the first word that is initialized.

This example uses the .int directive to initialize words. Notice that the symbol
symptr puts the symbol’s address in the object code and generates a relocat-
able reference (indicated by the ' character appended to the object word).

08010000 symptr LDI RO,R1

0000000A .int 10,symptr,—1,"abc”,’abc’
00000070’

FFFFFFFF

00000061

00000062

00000063

00636261

This example initializes two 32-bit fields and defines DAT1 to point to the first
location. The contents of the resulting 32-bit fields are FFFFABCDh and 141h.

FFFFABCD DAT1: .long OFFFFABCDH,’A'+100h
00000141

This example initializes five words. The symbol WordX points to the first word.

00000C80 WordX: .word 3200,1+'AB’,—'AF’,0F410h,’A’
00004242
FFFFBOBF
0000F410
00000041

4-45

Syntax

Description

4-46

Jlabel symbol

The .label directive defines a special symbol that refers to the loadtime ad-
dress rather than the runtime address within the current section. Most sections
created by the assembler have relocatable addresses. The assembler as-
sembles each section as if they start at zero, and the linker relocates them to
the address at which they load and run.

For some applications, itis desirable to have a section load at one address and
run at adifferent address. For example, you may wish to load a block of perfor-
mance-critical code into slower off-chip memory to save space, and then move
the code to high-speed on-chip memory to run it.

Such a section is assigned two addresses at link time: a load address and a
separate run address. All labels defined in the section are relocated to refer
to the runtime address so that references to the section (such as branches)
are correct when the code runs.

The .label directive creates a special “label” that refers to the /oadtime ad-
dress. This is useful primarily so that the code that relocates the section knows
where the section was loaded. For example:

Jlabel Example

.sect ".examp”

labelexamp_load ; load address of section
start: ; run address of section <code>
finish: ; run address of section end
.label examp_end ; load address of section end

For more information about assigning runtime and loadtime addresses in the
linker, refer to Section 8.8 on page 8-35.

Syntax .Idouble value
Description The .Idouble directive places the floating-point representation of a long double
floating-point constant into two consecutive 32-bit words in the current section.
The value must be a floating-point constant. Each constant is converted to a
floating-point value in 40-bit LDF/LDI format with a 24-bit overlap.
32 bits of firstword —\
39 31 7 0
32 bits of second word
Example Here are some examples of the .Idouble directive.
1 00000 c¢520 .Idouble -1.0e25
00002 8b2a
00004 2c28
00006 0291
2 00008 4008 .Idouble 3
0000a 0000
0000c 0000
0000e 0000
300010 405e Idouble 123
00012 c000
00014 0000
00016 0000
4

To load an .Idouble value, execute a LDF and then an LDI into the same data
register from successive memory locations:

LDF @var,R0O
LDI @var+1,R0

;Load upper bits
;:Load lower bits

The LDF must be performed first, as it clears the lower 8 bits of the register.

4-47

Syntax Jlength page length
.width page width

Description The .length directive sets the page length of the output listing file. It affects the
current page and following pages; you can reset the page length with another
Jength directive.

[Default length: 60 lines
[Minimum length: 20 lines
[Maximum length: 32,767 lines

The .width directive sets the page width of the output listing file. It affects the
next line assembled and following lines; you can reset the page width with an-
other .width directive.

(0 Default width: 80 characters
[Minimum width: 80 characters
(1 Maximum width: 200 characters

Note that the width refers to a full line in alisting file; the line counter value, SPC
value, and object code are counted as part of the width of a line. Comments
and other portions of a source statement that extend beyond the page width
are truncated in the listing.

The assembler does not list the .width and .length directives.

Example The following example sets the page length and page width to various values.

TMS320C3x/4x COFF Assembler Version x.xx Wed Feb 1 09:55:52 1997
Copyright (c) 1987-1997 Texas Instruments Incorporated

*xkkk | ength and Width ***** PAGE 1
2 * * * * *
3 ** The page length is limited to 60 b
4 ** lines per page. The page width is *x
5 ** limited to 80 characters per line. *
6 *k%k * *k%k * *k%k * *k%k * * * *
7 length 60
8 .width 80
9 * * * * *
10 ** The page length is limited to 50 *x
11 ** |ines per page. The page width is *
12 ** |imited to 200 characters per line. xk
13 * Hhk * *
14 .length 50
15 .width 200
16

4-48

Syntax

Description

Description

Example

ist
.nolist

The .nolist directive suppresses the source listing output until a .list directive
is encountered. The .list directive tells the assembler to resume printing the
source listing after it has been stopped by a .nolist directive. By default, the
assembler acts as if a .list directive had been specified. The .nolist directive
can be used to reduce assembly time and the size of the source listing; it can
be used in macro definitions to inhibit the listing of the macro expansion.

The .nolist directive suppresses the source listing output until a .list directive
is encountered. The .list directive tells the assembler to resume printing the
source listing after it has been stopped by a .nolist directive. By default, the
assembler behaves as if a .list directive has been specified. The .nolist direc-
tive can be used to reduce assembly time and the size of the source listing;
itis frequently used in macro definitions to inhibit the listing of the macro expan-
sion.

The assembler does not print the .list or .nolist directives or the source state-
ments that appear after a .nolist directive; however, it continues to increment
the line counter. You can nest the .list/.nolist directives; each .nolist needs a
matching .listto restore the listing. At the beginning of an assembly, the assem-
bler acts as if it has assembled a .list directive.

Note: Using the .list Directive Without Requesting a Listing File

If you don't request a listing file when you invoke the assembler, the assem-
bler ignores the .list directive.

This example uses the .copy directive to insert source statements from an-
other file. The first time this directive is encountered, the assembler lists the
copied source lines in the listing file. The second time .copy is encountered the
assembler does not list the copied source lines, because a .nolist directive was
assembled. Note that the .nolist, the second .copy, and .list directives do not
appear in the listing file; note also that the line counter is incremented even
when source statements are not listed.

Source file:
.copy byte.asm
.nolist
.copy byte.asm
Jist

* Back in original file
.string "Done”

4-49

4-50

Listing file:

A
A

1
1
2

o Ol

00000000 00000020
00000001 00000042

00000004 656e6f44

.copy byte.asm
** IN BYTE.ASM (copy file)
.byte 32, 1+'A’

* Back in original file
.string "Done”

Syntax

Description

Example

.loop [well-defined expression]
repeatedly assemble code block
.break [well-defined expression]

assemble repeatedly while the .break expression is false
(zero); go to code following .endloop if true (nonzero)

.endloop
execute when .break directive is true (nonzero) or when

number of loops performed equals loop count given
by .loop

Three directives enable you to repeatedly assemble a block of code:

[The.loop directive begins arepeatable block of code. The optional expres-
sion evaluates to the loop count (the number of loops to be performed).
Ifthere is no expression, the loop count defaults to 1024, unless the assem-
bler first encounters a .break directive with an expression that is true
(nonzero) or omitted.

[The .break directive is optional, along with its expression. When the
expression is false (0), the loop continues. When the expression is true
(nonzero), or omitted, the assembler breaks the loop and assembles the
code after the .endloop directive.

[0 The .endloop directive terminates a repeatable block of code.

This example illustrates how these directives can be used with the .eval direc-
tive. The following assembly language code generates the listing shown on the
next page.

Source file:

.eval 0,x
coef .loop :coefficient table

.word X *2
.eval x+1,x
.break x =6
.endloop

4-51

4-52

Listing file:

PRRRPRRPRPRRRRPRPRRREPRPRPRRRPRPEPRRRRERER

1

~NooabhwnN

.eval 0, x

coef .loop ;coefficient table

word X *2
.eval x+1,x
.break x =6
.endloop

00000000 00000000 .word
.eval 0+1,x
.break 1=6

00000001 00000002 .word
.eval 1+1,x
.break 2=6

00000002 00000004 .word
.eval 2+1,x
.break 3=6

00000003 00000006 .word
.eval 3+1,x
.break 4=6

00000004 00000008 .word
eval 4+1,x
.break 5=6

00000005 0000000a .word
.eval 5+1,x
.break 6 =6

0*2

1*2

2*2

3*2

4*2

Syntax

Description

.mlib ["]filename[”]

The .mlib directive provides the assembler with the name of a macro library.
A macro library is a collection of files that contain macro definitions. These files
are bound into a single file (called an archive or library) by the archiver. Each
file in a macro library may contain one macro definition that corresponds to the
name of the file. Note that:

(J Macro library members must be source files (not object files).

(1 The filename of a macro library member must be the same as the macro
name, and its extension must be .asm.

The filename must follow host operating system conventions; it may be en-
closed in double quotes. You can specify a full pathname (for example, .mlib
C:\dsp\macs.lib). If you do not specify a full pathname, the assembler
searches for the file in:

1) The directory that contains the current source file.
2) Any directories named with the -i assembler option.
3) Any directories specified by the environment variable A_DIR.

For more information about the -i option and the environment variable, see
Section 3.5, Naming Alternate Directories for Assembler Input, on page 3-7.

When the assembler encounters an .mlib directive, it opens the library and cre-
ates a table of its contents. The assembler enters the names of the individual
library members into the opcode table as library entries; this redefines any ex-
isting opcodes or macros that have the same name. If one of these macros is
called, the assembler extracts the entry from the library and loads it into the
macro table. The assembler expands the library entry in the same manner as
other macros, but it does not place the source code into the listing. Only mac-
ros that are actually called from the library are extracted.

4-53

Example This example creates a macro library that defines two macros, inc1 and decl.
The file incl.asm contains the definition of incl, and decl.asm contains the
definition of decl.

incl.asm decl.asm
** Macro for incrementing a register ** ** Macro for decrementing a register **
incl .macro reg decl .macro reg

ADDI 1, reg SUBI 1, reg

.endm .endm

Use the archiver to create a macro library:
ar30 —a mac incl.asm decl.asm

Now you can use the .mlib directive to reference the macro library and call the
incl and decl macros:

.mlist

.mlib "mac.lib”

incl RO :macro call
decl R1 :macro call

This is the resulting assembly:

1 .mlist

2 .mlib "mac.lib”

3 00000000 incl RO ;macro call
1 00000000 02600001 ADDI 1,RO

4 00000001 decl R1 :macro call

1 00000001 18610001 SUBI 1,R1

4-54

Syntax

Description

Example

O WNPF

© oo~NO®

00000000
00000000
00000001
00000002

00000003

0000000a
0000000a
0000000b
0000000c
0000000d
0000000e

.mlist
.mnolist

Two directives provide you with the ability to control the listing of macro expan-
sions in the listing file:

[J The .mlist directive allows macro expansions in the listing file (default.)
(1 The .mnolist directive inhibits macro expansions in the listing file.

By default, all macro expansions are listed. The line counter restarts counting
at 1 during a macro expansion; it resumes counting from its previous value
when the macro expansion is complete.

This example defines a macro named str_3. The first time the macro is called,
the macro expansionis listed (by default). The second time the macroiis called,
the macro expansion is not listed because a .mnolist directive was assembled.
The third time the macro is called, the macro expansion is again listed because
a .mlist directive was assembled.

str_3 .macro parml, parm2, parm3
.String ":parml:”, ":parm2:”, ":parm3:”

.endm
str 3 "red”, "green”, "blue”
67646572 .string "red”, "green”, "blue”
6€656572
65756¢62
.mnolist
str_3 "Raphael”, "Michelangelo”, "Donatello”
.mlist
str_3 "Huron”, "Michigan”, "Superior”
6f727548 .string "Huron”, "Michigan”, "Superior”
63694d6e
61676968
7075536e
61697265

0000000f 00000072

4-55

Syntax

Description

Example

4-56

.newblock

The .newblock directive undefines any local labels currently defined. A local
label, by nature, is temporary; the .newblock directive resets local labels and
terminates their scope.

A local label is a label in the form $n, where nis a single decimal digit. A local
label, like other labels, points to an instruction byte. Unlike other labels, local
labels cannot be used in expressions; they can be used only as the operand
in 8-bit jump instructions. Local labels are not included in the symbol table.

After a local label has been defined and (perhaps) used, you should use the
.newblock directive to reset it. Note that the .text, .data, and .sect directives
also reset local labels and that local labels that are defined within an include
file are not valid outside of the include file.

This example shows how the local label $1 is declared, reset, and then de-
clared again.

100000 0223 Labell: mov r2,r3
2 00002 ’'c401 bne $1
300004 1a03 mov #-1,r3

00006 ffff
400008 6031%1 cmp r3,r1
5 .newblock ; undefine $1
6 0000a ’'c400 bne $1
7 0000c 8213 inc r3
8 0000e 3034 $1 add r3,r4
9

Syntax

Description

.option option list

The .option directive selects several options for the assembler output listing.
The option listis a list of options separated by commas; each option selects
a listing feature. Valid options include:

B

E
H
L
M
T
X

Limits the listing of .byte directives to one line.

Resets the B, M, T, and W options.

Limit the listing of .hword directives to one line.

Limit the listing of .long, .int, and .word directives to one line.
Turns off macro expansions in the listing.

Limits the listing of .string directives to one line.

Produces a symbol cross-reference listing.

Options are not case sensitive.

4-57

Example This example limits the listings of the .byte, .hword, .long, .word, .int, and
.string directives to one line each.

1 * * * *
2 * Limit the listing of .byte, .word, *
3 * .string directives to 1 line each *
4 * * * *% *%
5 .option B, W, T
6 0000 bd .byte —'C’, 0BOh, 5
7 0003 15aa .word 5546, 78h
8 0007 59 .string "YES”
9 * *kkkkk K*khkkkkkkkkk *% *kkkkkkkk
10 * Reset the listing options *
12 .option F
13 000a bd .byte —'C’, OBOh, 5
000b b0
000c 05
14 000d 15aa .word 5546, 78h
000f 0078
15 0011 59 .string "YES”
0012 45
0013 53
16 * Rk RR Rk
17 * Use the A option to ignore all *
18 * other options and directives *
19 *hkkkkkkkkkkkkkhkkkhkhkhkhkhkhhhhhhhhhhhhhhhihh
20 .option A
21 .nolist
22 .option B, W, T
23 0014 bd .byte —'C’, 0BOh, 5
0015 b0
0016 05
24 0017 15aa .word 5546, 78h
0019 0078
25 001b 59 .string "YES”
001lc 45
001d 53
26 list

4-58

Syntax -page

Description The .page directive produces a page eject in the listing file. The source state-
ment is not printed in the source listing, but the line counter is incremented.
Using the .page directive to divide the source listing into logical divisions im-
proves program readability.

Example This example causes the assembler to begin a new page of the source listing.

This is the source file:

title "*** The PAGE DIRECTIVE ****”
.string "Page 1"

.page ;the directive won'’t be printed
.string "Page 2"

This is the listing file:

TMS320C3x/4x COFF Assembler Version x.xx Wed Feb 111:09:27 1997
Copyright (c) 1987-1997 Texas Instruments Incorporated

**** The PAGE DIRECTIVE **** PAGE 1
2 00000000 65676150 .string "Page 1”
00000001 00003120

TMS320C3x/4x COFF Assembler Version x.xx Wed Feb 111:09:27 1997
Copyright (c) 1987-1997 Texas Instruments Incorporated

+% The PAGE DIRECTIVE ** PAGE 2
4 00000002 65676150 .string "Page 2"
00000003 00003220
5

4-59

Syntax

Description

Example

4-60

.regalias

The .regalias directive allows registers named Fn to be aliases for
floating-point versions of Rn data registers. This type of aliasing makes
floating-point operations more obvious within the assembly code.

This directive should be placed near the beginning of an assembly file. The
assembler does not accept F register aliasing by default, since you may have
existing code that uses F aliases for other purposes.

The code generator uses this directive in everyfile it creates, because it always
refers to F registers in floating-point instructions.

The code below displays assembly instructions without F aliasing:

addi r1,r2,r3
sti 13,@C1
addf r4,r5,r6
stf r6,@C2
fix r3,r3

Here is the equivalent code that includes the .regalias directive and F aliasing:

.regalias

addi r1,r2,r3
sti 13,@C1
addf 415,16
stf f6,@C2
fix f3,r3

Syntax .sect " section name” [, value]

Description The .sect directive defines named sections that are used like the default .text
and .data sections. The .sect directive begins assembling source code into the
named section. Named sections can be used for data or code that must be allo-
cated into memory separately from .text or .data.

The section nameidentifies a section that the assembler assembles code into.
The name is significant to 8 characters and may be enclosed in quotes.

Note that the .asect directive is similar to the .sect directive; however, .asect
creates a named section that has absolute addresses. If you use the .asect
directive to define an absolute named section, you can use the .sect directive
later in the program to continue assembling code into the absolute section.

Chapter 2 provides additional information about named sections.

Example This example defines a section, Sym Defs, and assembles code into it.
1 * * * * * * * * *
2 ** Begin assembling into .text b
3 * * * * *
4 00000000 text

5 00000000 07020001 LDF R1,R2
6 00000001 07040003 LDF R3,R4

7

8 ** Begin assembling into Sym_.Defs ~ **
9 * * * * * * * *

10 00000000 .sect "Sym_Defs”

11 00000000 0148f5c3 float 3.14
12 00000001 0000000f .hword OFh

13 00000002 0706000 LDF R5,R6

14 * * * *

15 ** Resume assembling into .text xk
16 * *

17 00000002 text

18 00000002 080a0009 LDl AR1,AR2
19 00000003 00000003 .byte 3,4

00000004 00000004
20 * * * *
21 ** Resume assembling into Sym_.Defs **
22 kK kK kA kK *
23 00000003 .sect "Sym_Defs”
24 00000003 aabbccdd Jdong Oaabbccddh

4-61

Syntax symbol .set value
symbol .equ value

Description The .set and .equ directives equate a constant value to a symbol. The symbol
can then be used in place of a value in assembly source. This allows you to
equate meaningful names with constants and other values. The .setand .equ
directives are identical and can be used interchangeably.

[The symbol must appear in the label field.

[The value must be a well-defined expression; that is, all symbols in the
expression must have been previously defined in the current module.

Undefined symbols or symbols that are defined later in the module cannot be
used in the expression. If the expression is relocatable, the symbol to which
it is assigned is also relocatable.

The value of the expression appears in the object field of the listing. This value
is not part of the actual object code and is not written to the output file.

Symbols defined with .set can be made externally visible with the .def or .global
directive. In this way you can define “global” absolute constants.

The .asg directive can be used in many of the same ways as the .set directive,
but while .set assigns a constant value (cannot be redefined) to a symbol, .asg
assigns a string (can be redefined) to a substitution symbol.

Example This example shows how symbols can be assigned with .set.
1
2 ** Equate symbol FP with register AR3 **
3

4 0000000b FP .set ARS3
5 00000000 0840c300 LDI *FP, RO

6 *kk * *k%k * *kk * *kk * *k%k *
7 ** Set symbol "count” to an integer and **
8 ** yse it as an immediate operand *
9 * * * * *

10 0000012c count .set 300

11 00000001 0860012¢c LDI count, RO

12

13 ** Set Pl and use it as a constant o
14 ok

15 0003243f Pl .equ 3.141592654
16 00000002 01490fdb float PI

4-62

Syntax .space size in words

Description The .space directive reserves size number of words in the current section and
fills them with Os. The section program counter is incremented to point to the

word following the reserved space.

The .space directive is equivalent to size number of .word O directives.

Example This example reserves 100 O-filled words in the .text section. Note that the
SPC equals 03h before the .space directive is assembled; after the .space di-

rective is assembled, the SPC is incremented to equal 067h.

1 *kk * *kk

2 * Begin assembling into .text *

3 * *

4 00000000 text

5 00000000 0000000a .word OAh, OBh
00000001 0000000b

6 00000002 00305241 .string "ARQ”

7 *kkkk *kkk*k

8 * Reserve a block of 100 words in .text *

9 *%k%k * *%k%k *

10 00000003 00000000 Sp_X: .space 100

11 00000067 0000000c .word OCh ; Still in .text

12 00000068 00000003’ .word Sp_X
13

Figure 4-2. The .space Directive

Oh

3h

67h

0000000A
0000000B
00305241

100 words
reserved

0000000C

4-63

Syntax

Description

Example

4-64

.sslist
.ssnolist

Two directives enable you to control substitution symbol expansion in the list-
ing file:

[The.sslist directive allows substitution symbol expansioninthe listingfile.
The expanded line appears below the actual source line.

(1 The.ssnolist directive inhibits substitution symbol expansion in the listing
file.

By default, all substitution symbol expansion in the listing file is inhibited. The
lines with the pound (#) character denote expanded substitution symbols.

This example shows code that by default (.ssnolist directive) inhibits the listing
of substitution symbol expansion, and it shows the .sslist directive assembled,
which tells the assembler to list substitution symbol code expansion.

1 00000000 Jbss x, 1
2 00000001 Jbss y, 1
ADDTWO .macro a, b, reg
LDl @a, reg
ADDI @b, reg
STl reg, @98EAh
.endm

o~NO O~ w

9 00000000 ADDTWO x,y,R0
00000000 08200000— LDI @x, RO
00000001 02200001— ADDI @y, RO
00000002 152098ea STl RO, @98EAh
10 .sslist
11 00000003 ADDTWO x,y,R1
00000003 08210000— LDl @a, reg
LDI @x, R1

00000004 02210001— ADDI @b, reg
ADDI @y, R1

00000005 152198ea STl reg, @98EAh
STl R1, @98EAh

[N

P HPHR

Syntax

Description

Example

.string string;” [, ... , "stringy"]

The .string directive places 8-bit characters from a character string into the cur-
rent section. The data is packed so that each word contains four 8-bit values.
Each string is either:

[Anexpression thatthe assembler will evaluate and treat as a 32-bit signed
number, or

[A character string enclosed in double quotes. Each character represents
a separate value.

Values are packed into words, starting with the least significant byte of the
word and moving toward the most significant portion as more bytes are added.
Any unused space is padded with null bytes (0s). This directive differs from
.byte in that .byte does not pack values into words.

The assembler truncates any values that are greater than 8 bits. You may have
up to 100 operands, but they must fit on a single source statement line.

If you use a label, it points to the first word that is initialized.

This example places 8-bit values into words in the current section.

1 00000000 44434241 Str_3: .string "ABCD”

2 00000001 54535251 .string 51h, 52h, 53h, 54h

3 00000002 73756F48 .string "Houston”
00000003 O0OO06E6F74

4 00000004 00000030 .string 36+ 12

4-65

Syntax

Description

4-66

[stag]
[memp]

[memy]

[me’;7n]

[mer'nN]
[size]

label

.struct [expr]
element [expry]
element [expry]
.tag stag [expry]
element [expry]
.endstruct

.tag Stag

The .struct directive assigns symbolic offsets to the elements of a data struc-
ture definition. This enables you to group similar data elements together and
then let the assembler do the element offset calculation. This is similarto a C
structure or a Pascal record. The .struct directive does not allocate any
memory; it merely creates a symbolic template that can be used repeatedly.

The .tag directive gives structure characteristics to a label, simplifying the sym-
bolic representation and providing the ability to define structures that contain
other structures. .tag does not allocate memory. The structure tag (stag) of a
.tag directive must have been previously defined.

[stag]

[expr]

[memp,]

element

[expry |

[size]

Is the structure’s tag. Its value is associated with the beginning of
the structure. If no stag is present, this tells the assembler to put the
structure members in the global symbol table with their value being
their absolute offset from the top of the structure.

Is an expression indicating the beginning offset of the structure.
Structures default to start at 0.

Is a label for a member of the structure. This label is absolute and
equates to the present offset from the beginning of the structure.
A label for a member structure cannot be declared global.

Is one of the following descriptors: .string, .byte, .word, .float, .tag,
.struct, and .field. All of these, except .tag, are typical directives that
initialize memory. Following a .struct directive, these directives de-
scribe the structure element’s size. They do not allocate memory.
A .tag directive is a special case because a stag must be specified
(as in the definition).

Is an expression for the number of elements described. This value
defaults to 1. Note that a .string element is considered to be one
byte in size, and a .field element is one bit.

Is a label for the total size of the structure.

Note: The Types of Directives That Can Appear in a struct/.endstruct
Sequence

The only directives that can appear in a .struct/.endstruct sequence are
element descriptors, conditional assembly directives, and the .align
directive, which aligns the member offsets on byte boundaries. Note that
empty structures are illegal.

Example 1 1 0000 real_rec .struct ; stag
2 0000 nom .byte ;. memberl =0
3 0001 den .byte ; member2 =1
4 0002 real_len .endstruct ; real len = 2
5
6 0000 -8a0001 mov &real+real_rec.den, A; access
7
8 0000 .bss real, real_len ; allocate
Example2 6 0000 cplx_rec .struct ; stag
7 0000 reali tag real_rec ; memberl =0
8 0002 imagi tag real_rec ; member2 = 2
9 0004 cplx_len .endstruct ; cplx_len = 4
10
11 complex .tag cplx_rec
12 0000 .bss complex, cplx_len ; allocate
13
14 0000 -8a0002 mov &complex.imagi.nom, A
15 0003 -8d0001 cmp &complex.reali.den, A
16
Example3 1 0000 .Sstruct ; no stag puts memNs into
2 0000 ; global symbol table
3 0000 X .byte ; create 3 dim templates
4 0001 y .byte
5 0002 z .byte
6 .endstruct
Example4 1 0000 bit_rec.struct ; stag
2 0000 stream .string 64
3 0040 bit7 field 7
4 0040 bitl field 1
5 0041 bit5 field 5
6 0042 x_int .byte
7 0043 bit_len.endstruct
8
9
10 bits .tag bit_rec
11 0000 .bss bits, bit_len
12
13 0000 -8a0040 mov &bits.bit7, A ; load field
14 0003 237f and #7fh, A ; mask off garbage

4-67

Syntax tab size

The .tab directive defines the tab size. Tabs encountered in the source input

Description
will be translated to size spaces in the listing. The default tab size is eight.
Example Each of the following lines consists of a single tab character followed by a NOP
instruction, another tab, and a comment.
1 ; default tab size

2 00000000 0c800000 nop ;no—op
3 00000001 0c800000 nop ;no—op
4 00000002 0c800000 nop ;no—op
5 tab 4

6 00000003 0c800000 nop ;no—op

7 00000004 0c800000 nop ;no—op

8 00000005 0c800000 nop ;no—op

9 .tab 16

10 00000006 0c800000 nop ;no—op
11 00000007 0c800000 nop ;n0—op
12 00000008 0c800000 nop ;no—op
13

4-68

Syntax text
Description The .text directive tells the assembler to begin assembling into the .text sec-
tion, which typically contains executable code. The section program counter
is set to 0 if nothing has yet been assembled into the .text section. If code has
already been assembled into the .text section, the section program counter re-
sumes its previous value in the section.
Note that the assembler assumes that .text is the default section. Therefore,
at the beginning of an assembly, the assembler assembles code into the .text
section unless you specify one of the other initialized-section directives (.data,
.sect, or .asect).
For more information about COFF sections, see Chapter 2.
Example This example assembles code into the .text and .data sections. The .text sec-
tion contains bytes 1, 2, 3, and 4, and the .data section contains bytes 5, 6, 7,
and 8.
1 xxxxxxxxx *kkkkkk
2 ** text section (default) **
3

4 00000000 00000001 byte 1
500000001 00000002 .byte 2,3
00000002 00000003

6

7 ** switch to .data *x

8
9 00000000

.data

10 00000000 00000007 .byte 7,8
00000001 00000008

11 *

Fkk Fkk Fkk Kk

12 ** Resume assembling into .text **

13 *
14 00000003

* *

text

15 00000003 00000004 byte 4

16

4-69

Syntax

Description

Example

title " string’

The .title directive supplies a title that is printed in the heading on each listing
page. The source statement itself is not printed, but the line counter is incre-
mented. The string is a quote-enclosed title of up to 50 characters. If you sup-
ply more than 50 characters, the assembler truncates the string and issues a
warning.

The assembler prints the title on the page that follows the directive, and on sub-
sequent pages until another .title directive is processed. If you want a title on
the first page of a listing, then the first source statement must be a .title direc-
tive.

This example prints the title **** Floating Point Routines **** in the page head-
ings of the source listing.

Source file:

title "% Floating Point Routines ****”

Listing file:

TMS320C3x/4x COFF Assembler Version x.xx Wed Feb 1 11:09:27 1997
Copyright (c) 1987-1997 Texas Instruments Incorporated

**** Eloating Point Routines **** PAGE 1

4-70

Syntax

Description

Example

symbol .usect " section name”’, size in words [, word alignment flag]

The .usect directive reserves space for variables in an uninitialized, named
section. This directive is similar to the .bss directive; both simply reserve space
for data and have no contents. However, .usect defines additional sections
that can be placed anywhere in memory, independently of the .bss section.

[The symbol points to the first location reserved by this invocation of the
.usect directive. The symbol corresponds to the name of the variable that
you're reserving space for.

1 Onlythe first 8 characters of the section name are significant. The section
name may be enclosed in quotes. This parameter names the uninitialized
section.

[The sizeis an expression that defines the number of words that will be re-
served in section name.

Other sections directives (.text, .data, .sect, and .asect) end the current sec-
tion and tell the assembler to begin assembling into another section. The
.usect and the .bss directives, however, do not affect the current section. The
assembler assembles the .usect and the .bss directives and then resumes as-
sembling into the current section.

You can repeat the .usect directive to define more than one variable in the
specified section. Variables that can be located contiguously in memory can
be defined in the same section by using multiple .usect directives with the
same section name.

For more information about COFF sections, see Chapter 2.

This example uses the .usect directive to define two uninitialized, named sec-
tions, varland var2. The symbol ptr points to the firstword reserved inthe varl
section. The symbol array points to the first word in a block of 100 words re-
served in varl, and dflag points to the first word in a block of 50 words in varl.
The symbol vec points to the first word reserved in the var2 section.

Figure 4-3 on page 4-72 shows how this example reserves space in two
uninitialized sections, varl and var2.

4-71

Example 4-8. Defining Two Uninitialized, Named Sections

1 *kkkk * *kkkk

2 * Assemble into .text *

3 *%k% *%k%

4 00000000 text

5 00000000 08010000 LDl RO,R1

6 *kk *kkkkkk *kk

7 * Reserve 1 word in varl *

8 *kkkkkkkkk *

9 00000000 ptr .usect "varl”, 1

10 * * * ok

11 * Reserve 100 more words invarl *
12 * * * * *

13 00000001 array .usect "varl”, 100

14 00000001 08020001 LDl R1,R2 ; Stillin .text
15

16 * Reserve 50 more words in varl *
17 Rkkk Akkk Hkkk Akkk *

18 00000065 dflag .usect "varl”, 50

19 00000002 08030002 LDl R2,R3 ; Stillin .text
20 * * * * *

21 * Reserve 100 words in var2 *
22 kool Rk koookkookokoook

23 00000000 vec .usect "var2”, 100
24 00000003 08200000— LDI @vec,RO; Still in .text

25 * Hoxk roxx Hoxx Hoxx
26 * Declare an external .usect symbol *
27 * Hoxk Hoxx Hoxk Hoxk

28 .global array

29

Figure 4-3. The .usect Directive

section varl section var2
ptr ———» »
1 word vec
array —p
100 words
100 words
100 words reserved in var2

dflag —p

50 words

151 words reserved in varl

4-72

Syntax

Description

Example

.version generation number

The .version directive tells the assembler which generation processor this
code is for. Valid generation numbers are 30, 31, 32, 40 and 44. The default
is 30.The version directive must appear before an instruction or directive, or
else an error will occur. The version directive can be used instead of the —v
command line option.

In this example, the code will always be assembled and linked for the 'C40 pro-
cessor unless overridden by a —v command line option:

.version 40 ; target is TMS320C40
ADDI 5, *+AR0(5), RO

4-73

Chapter 5

Instruction Set

The TMS320C3x/C4x assembler supports a base set of general-purpose
instructions as well as arithmetic instructions that are particularly suited for
digital signal processing and other numeric-intensive applications.

This chapter does not cover topics such as opcodes or instruction timing; the
TMS320C3x User’s Guide and TMS320C4x User’s Guide discuss the
instruction set in detail. Those user’s guides also contain an alphabetical pre-
sentation, which is similar to the directives reference in Chapter 4 of this book.

This chapter provides a general summary of the TMS320C3x and
TMS320C4x instruction sets:

[Section 5.1 lists information that will help you use the instruction set,
including addressing modes, optional syntaxes, condition codes and
flags, and abbreviations and symbols.

[Section 5.2 describes the instructions according to function.

[Section 5.3 contains the instruction set summary table, which provides
each instruction’s syntax, operation, and description.

Topic Page
5.1 Using the Instruction Set Summary ..., 5-
5.2 Functional Summary of the Instruction Set 5-8|:|
5.3 Instruction Set Summary Table 5-

Using the Instruction Set Summary

5.1 Using the Instruction Set Summary

This section summarizes addressing modes, optional syntaxes, condition
codes and flags, and symbols and abbreviations used in the summary table.

5.1.1 Addressing Modes

5-2

The TMS320C3xand TMS320C4x User’s Guides discuss addressing modes
in detail. In some cases, the addressing modes are different for the
TMS320C30 and TMS320C40:

[General addressing modes

Register mode: The operand is a CPU register. For floating-point
operations, use an extended register, (R0O—R7) (R0O—R11 on the C40). For
integer operations, use any register.

Direct mode: . The operand is the contents of a 32-bit address, specified
by @addr. The 16 MSBs of the address are specified by the DP register;
the 16 LSBs are specified by the instruction word. On the C30, addresses
are limited to 24 bits.

Indirect mode: An auxiliary register contains the address of the operand.
Table 5-1 lists the various forms that indirect operands may take. The
displacement may be specified as a value from 0-255 or as one of the
index registers (IR0 or IR1).

It is not necessary to specify the displacement if it is 1, because the
assembler assumes a default displacement of 1. For example, *++ARn is
equivalent to *++ARn(1).

Shortimmediate mode: The operand is a 16-bitimmediate value. Short
immediate operands may be signed integers, unsigned integers, or
floating-point values, depending on the instruction.

(1 Three-operand addressing modes
All three-operand instructions are written OP3 src2, srcl, dest
OoP opcode, 3 is optional
src2, srcl operands (see Table 5-1 for legal combinations)
dest destination register

Register mode: Same as for general addressing modes. Must be RO-R7
for floating-point operations.

Indirect mode with 1-bitdisplacement: ~ Same as for general addressing
modes, except the displacement is limited to O, 1, IRO, or IR1.

Using the Instruction Set Summary

Immediate mode (C40 Only): The operand is a 5-bit signed integer
constant in the range —16 to15. This mode is available for integer opera-
tions only.

Indirect mode with 5-bit displacement (C40 only): *+AR (0 to 31)

Parallel addressing modes

Register mode: The operand is an extended register (RO—R7). In some
cases, only RO/R1 or R2/R3 can be used as an operand.

Indirect mode: Same as for general addressing modes, except that the
displacement is limited to 0, 1, IRO, or IR1.

Conditional-branch addressing modes
Register mode: The contents of the register are loaded into the PC.

PC-relative mode: A signed 16-bit or 24-bit displacement (LSBs of the
instruction word) is added to the PC. The destination address is usually
specified as a label; the assembler calculates the displacement.

Table 5-1. Indirect Addressing

Operand Description

*ARN Indirect with no displacement

*+ARn(disp) Indirect with predisplacement or preindex add

*~ARN(disp) Indirect with predisplacement or preindex subtract

*++ARN(disp) Indirect with predisplacement or preindex add and modification
*——ARn(disp) Indirect with predisplacement or preindex subtract and modification

*ARN++(disp)[%] T
*ARN——(disp)[%] T
*ARn++(IR0)B

Indirect with postdisplacement or postindex add and modification

Indirect with postdisplacement or postindex subtract and modification

Indirect with postindex (IR0) and bit-reversed modification

t Optional circular modification (specified by %)

5.1.2 Optional Syntax

The assembler allows a relaxed syntax form for several instructions. These
optional forms simplify the assembly language so that you can ignore special-
case syntax for some instructions.

Q

If the source and destination register are the same, you need specify the
register only once. Instructions that can use this optional syntax include:
ABSF, ABSI, FIX, FLOAT, NEGB, NEGF, NEGI, NORM, NOT, RND,
RCPF, RSQRF, TOIEEE, FRIEEE, SIGI. For example,

Instruction Set 5-3

Using the Instruction Set Summary

ABSI R0O,R0O can be written as ABSI RO

(1 You can omit the displacement for indirect operands; the assembler will
assume a displacement of 1. Instructions that use general addressing
modes, three-operand addressing modes, or parallel addressing modes
may have indirect address operands. For example,

LDI *ARO++(1),R0 can be written as LDI *ARO++,R0O

[0 Immediate-mode operands can be written with an @ symbol. The branch
and call instructions can use this optional syntax. For example,

BR label can be written as BR @label

(1 All 3-operand instructions can be written without the 3. For example,
ADDI3 RO,R1,R2 can be written as ADDI RO,R1,R2

[d All conditional instructions accept the suffix U to indicate unconditional
operation. Also, the U can be omitted from unconditional short branch
instructions. For example,

BU label can be written as B label

[Labels can be written with or without a trailing colon. For example,

labelO: NOP can be written as label0 NOP

[STIK can be written as STI:
STIK 5, *AR1 can be written as STI 5, *AR1

(1 Anycommutative 3-operand instruction can be written with the operands
in any order. This applies to ADDC, ADDI, MPYI, AND, OR, XOR, ADDF,
MPYF, MPYSHI, MPYUI, TSTB.

ADDI3 10,*AR3++(1),R2 can be written as ADDI *AR3+(1),10,R2

5.1.3 Condition Codes and Flags

The TMS320C3x/C4x assembler provides 20 condition codes (00000-10100
excluding 01011) and seven condition flags for use with the conditional instruc-
tions, such as RETScond or LDFcond.

The conditions include signed and unsigned comparisons, comparisons to
zero, and comparisons based on the status of individual condition flags. Note
that all conditional instructions can accept the suffix U to indicate unconditional
operation.

The seven condition flags supply information about properties of the result of
arithmetic and logical instructions. The condition flags are stored in the status

Using the Instruction Set Summary

register (ST) and are affected by an instruction according to the SET COND
bit of the status register.

Table 5-2 summarizes the condition codes and flags:

Table 5-2. Condition Codes and Flags

Unconditional Compares

Condition Code Description Flag
U 00000 Unconditional Don'’t care
Unsigned Compares

LO 00001 Lower than C

LS 00010 Lower than or same as CORZ

HI 00011 Higher than [IC AND [z

HS 00100 Higher than or same as [c

EQ 00101 Equal to Z

NE 00110 Not Equal to 74
Signed Compares

L 00111 Less than N

LE 01000 Less than or equal to NOR Z

GT 01001 Greater than [N AND [z

GE 01010 Greater than or equal to N

EQ 00101 Equal to z

NE 00110 Not equal to %4
Compare to Zero

Z 00101 Zero Z

NZ 00110 Not zero (74

P 01001 Positive [N AND [z

N 00111 Negative N

NN 01010 Nonnegative N

Instruction Set

5-5

Using the Instruction Set Summary

Table 5-2 Condition Codes and Flags (Continued)

Compare to Condition Flags

NN 01010 Nonnegative N

N 00111 Negative N

NZ 00110 Nonzero 4

VA 00101 Zero Z

NV 01100 No overflow v

\Y 01101 Overflow \%
NUF 01110 No underflow LUF
UF 01111 Underflow UF
NC 00100 No carry [c

C 00001 Carry C
NLV 10000 No latched overflow (v
Lv 10001 Latched overflow Lv
NLUF 10010 No latched floating-point underflow ~ [LUF
LUF 10011 Latched floating-point underflow LUF
ZUF 10100 Zero or floating-point underflow Z OR UF

Note: The [Omeans logical complement .

5.1.4 Symbols and Abbreviations

Table 5-3lists the symbols and abbreviations used in the individual instruction
descriptions.

Table 5-3. Instruction Symbols

Symbol Meaning

src Source operand

srcl Source operand 1

src2 Source operand 2

src3 Source operand 3

src4 Source operand 4

dst Destination operand

dstl Destination operand 1

dst2 Destination operand 2

disp Displacement

cond Condition

count Shift count

G General addressing modes

T Three-operand addressing modes
P Parallel addressing modes

B Conditional-branch addressing modes

5-6

Using the Instruction Set Summary

Table 5-3 Instruction Symbols (Continued)

Symbol

Meaning

ARN
IRNn
Rn
RC
RE
RS
ST

C

GIE

N

PC

RM

SP

||

X -y

x(man)
x(exp)

Auxiliary register n

Index register n

Register address n

Repeat count register
Repeat end address register
Repeat start address register
Status register

Carry bit

Global interrupt enable bit
Trap vector

Program counter

Repeat mode flag

System stack pointer

Absolute value of x

Assign the value of x to destination y
Mantissa field (sign + fraction) of x
Exponent field of x

Instruction Set 5-7

Functional Summary of the Instruction Set

5.2 Functional Summary of the Instruction Set

The TMS320C3x/C4x instruction set is exceptionally well-suited to digital sig-
nal processing and other numeric-intensive applications. All instructions are
a single machine word long, and most instructions take a single cycle to ex-
ecute.

The instruction set contains 135 instructions organized into the following
functional groups:

Subject Page

Load @Nnd STOTEottt ettt e e e e e e 58
Arthmetic b-10
LOgIC et 5-11
Program Control 5-11
Interlocked Operationso.iiiii b-12
(0] 0177= £=1 (o o b-13
Three Operand i e b-13
Parallel b-14
TMS320C40 ONlY .ot b-18
LDP and LDPK INStructionst b-19

5.2.1 Load-and-Store Instructions

The TMS320C3x and TMS320C4x support 23 load and store instructions,
which are summarized in Table 5-4. These instructions:

[Load a word from memory into a register,
(1 Store a word from a register into memory, or
[0 Manipulate data on the system stack.

Two of these instructions can load data conditionally. This is useful for locating
the maximum or minimum value in a data set. See the TMS320C4x User’s
Guide for more information about the condition codes.

Functional Summary of the Instruction Set

Table 5-4. Summary of Load-and-Store Instructions

Instruction
LBb
LBUb
LDA

LDE

LDF
LDFcond
LDHI

LDI
LDIcond
LDM
LDPE

LDPK
LHW
LHUw
LWLct
LWRct
POPF
PUSH
PUSHF
STF
STI
STIK

Description 'C4x Only
Load byte (signed) v
Load byte (unsigned) v
Load address register v

Load floating-point exponent

Load floating-point value

Load floating-point value conditionally

Load 16-bit unsigned immediate into 16 MSBs v
Load integer

Load integer conditionally

Load floating-point mantissa

Load integer, v
primary register to expansion file register

Load DP register immediate
Load half-word signed

Load half-word unsigned
Load word left-shifted

Load word right-shifted

<L L <

Pop floating-point value from stack
Push integer on stack

Push floating-point value on stack
Store floating-point value

Store integer

Store integer immediate v

Instruction Set 5-9

Functional Summary of the Instruction Set

5.2.2 Arithmetic Instructions

The TMS320C3x and TMS320C4x support a complete set of arithmetic in-
structions. These instructions provide integer operations, floating-point
operations, and multiprecision arithmetic. Table 5-5 summarizes these in-

structions.

Table 5-5. Summary of Arithmetic Instructions

Instruction Description 'C4x Only
ABSF Absolute value of a floating-point number
ABSI Absolute value of an integer
ADDC T Add integers with carry
ADDF T Add floating-point values
ADDI t Add integers
ASH t Arithmetic shift
CMPF t Compare floating-point values
CMPI t Compare integers
FIX Convert floating-point value to integer
FLOAT Convert integer to floating-point value
MPYF Multiply floating-point values
MPYI t Multiply integers
MPYSHI t Multiply signed integers; store 32 MSB product v
MPYUHI Tt Multiply unsigned integers; store 32 MSB product v
NEGB Negate integer with borrow
NEGF Negate floating-point value
NEGI Negate integer
NORM Normalize floating-point value
RCPR Reciprocal of floating point v
RND Round floating-point value
RSQRF Reciprocal of square root, floating point v
SUBB t Subtract integers with borrow
SUBC Subtract integers conditionally
SUBF t Subtract floating-point values
SUBRB Subtract reverse-integer with borrow
SUBRF Subtract reverse floating-point value
SUBRI Subtract reverse integer

T Two- and three-operand versions

5-10

Functional Summary of the Instruction Set

5.2.3 Logic Instructions

The TMS320C3x and TMS320C4x support a complete set of logical instruc-
tions, which are summarized in Table 5-6.

Table 5-6. Summary of Logical Instructions

Instruction Description 'C4x Only
AND f Bitwise logical AND

ANDN T Bitwise logical AND with complement
LSH t Logical shift

NOT Bitwise logical complement

OR f Bitwise logical OR

ROL Rotate left

ROLC Rotate left through carry

ROR Rotate right

RORC Rotate right through carry

TSTB t Test bit fields

XOR t Bitwise exclusive OR

T Two- and three-operand versions

5.2.4 Program-Control Instructions

The program-control instruction group consists of all of those instructions (23)
that affect program flow. The repeat mode allows repetition of a block of code
(RPTB) or of a single line of code (RPTS). Both standard and delayed
(single-cycle) branching are supported. Several of the program control instruc-
tions are capable of conditional operations. Table 5-7 lists the program control
instructions.

Table 5—-7. Summary of Program-Control Instructions

Instruction Description 'C4x Only
Bcond Branch conditionally (standard)

BcondAF Branch conditionally delayed and annul if false v
BcondAT Branch conditionally delayed and annul if true v
BcondD Branch conditionally, delayed

BR Branch unconditionally, standard

BRD Branch unconditionally, delayed

CALL Call subroutine

CALLcond Call subroutine conditionally

DBcond Decrement and branch conditionally, standard

Instruction Set 5-11

Functional Summary of the Instruction Set

Table 5-7 Summary of Program-Control Instructions(Continued)

5.2.5

Instruction
DBcond[D]
IDLE

IDLE2

LAJ
LAJcond
LATcond
LOPOWER
MAXSPEED
NOP
RETIcond
RETIcondD
RETScond
RPTB
RPTBD
RPTS

SWi
TRAPcond

Description

Decrement and branch conditionally, delayed
Idle until interrupt

Low—power idle

Link and jump

Link and jump conditional

Link and trap conditional

Divide clock by 16 ('C31 only)

Restore clock to regular speed ('C31 only)
No operation

Return from interrupt conditionally

Return from trap or interrupt, delayed
Return from subroutine conditionally
Repeat block of instructions

Repeat block, delayed

Repeat single instruction

Software interrupt

Trap conditionally

'C4x Only

Interlocked-Operation Instructions

The interlocked-operations instructions support
communication and the use of external signals to allow for powerful
synchronization mechanisms. They also guarantee the integrity of the
communication and result in a high-speed operation. Table 5-8 lists the inter-

locked-operation instructions.

Table 5-8. Summary of Interlocked-Operation Instructions

5-12

multiprocessor

Instruction

Description

'C4x Only

LDFI
LDl
SIGI
STFI
STI

Load floating-point value, interlocked
Load integer, interlocked

Signal, interlocked

Store floating-point value, interlocked

Store integer, interlocked

Functional Summary of the Instruction Set

5.2.6 Conversion Instructions

The TMS320C40 supports two floating-point format conversion instructions:

Table 5-9. Summary of Conversion Instructions

Instruction Description 'C4x Only

FRIEEE Convert IEEE floating-point format to v
2s-complement floating-point format

TOIEEE Convert 2s-complement format to v
IEEE floating-point format

5.2.7 Three-Operand Instructions

Most instructions have only two operands; however, several arithmetic and
logical instructions have three-operand versions. Three-operand instructions
allow the TMS320C3x/C4x to read two operands from memory or the register
file in a single cycle. The following differentiates the two- and three-operand
instructions:

(O Two-operand instructions have a single source operand (or shift count)
and a destination operand.

[Three-operand instructions may have two source operands (or one
source operand and a count operand) and a destination operand. A
source operand may be a memory word or a register. The destination of
a three-operand instruction is always a register.

Table 5-10 lists the instructions that have three-operand versions. Note that
the 3 in the mnemonic can be omitted from three-operand instructions.

Instruction Set 5-13

Functional Summary of the Instruction Set

Table 5-10. Summary of Three-Operand Instructions

Instruction Description 'C4x Only
ADDC3 Add with carry

ADDF3 Add floating-point values

ADDI3 Add integers

AND3 Bitwise logical AND

ANDN3 Bitwise logical AND with complement

ASH3 Arithmetic shift

CMPF3 Compare floating-point values

CMPI3 Compare integers

LSH3 Logical shift

MPYF3 Multiply floating-point values

MPYI13 Multiply integers

MPYSHI3 Multiply signed integer; store 32-MSB product v

MPYUHI3 Multiply unsigned integer; store 32-MSB product v
OR3 Bitwise logical OR

SUBB3 Subtract integers with borrow
SUBF3 Subtract floating-point values
SUBI3 Subtract integers

TSTB3 Test bit fields

XOR3 Bitwise exclusive-OR

5.2.8 Parallel Instructions

5-14

Some of the TMS320 instructions can occur in pairs that will be executed in
parallel. Table 5-11 lists the valid instruction pairs. These parallel
instructions allow:

(O Parallel loading of register,

(1 Parallel arithmetic operations, and

[d Arithmetic or logical instructions that can be used in parallel with a store
instruction.

Each instruction in a pair is entered as a separate source statement; the sec-
ond instruction must be preceded by two vertical bars (||). This example
shows the syntax for parallel instructions:

label: ADDI3 RO,*ARO,R1 ; Part 1 (label is
; optional)
|| STI R4 *+AR11. s Part 2

Note that the first instruction in the pair may have a label, but the second in-
struction cannot have a label.

Functional Summary of the Instruction Set

The assembler allows several relaxed syntax forms for parallel instructions:

a

The vertical bars can be placed in column 1 or anywhere between column
1 and the mnemonic. Here is another example of valid syntax for parallel
instructions:

label: MPYI3 RO,*AR1,RO

|| ADDI3 *AR2,R1,R2
The instructions in a parallel instruction pair may be specified in either or-
der. For instance, the preceding example could also be specified as:

label: ADDI3 *AR2,R1,R2

|| MPYI3 RO,*AR1,RO
Alternate forms of the parallel/load and store/store instructions allow you
to explicitly specify the execution order. These have the same syntax as
the normal forms but the mnemonics are suffixed with “1” and “2”. For ex-
ample, this is the normal form:

STI RO,*AR4 :; executes second
|| STI R1,*AR4 ; executes first

can be written as

STI1 RO,*AR4 ; executes first
|| STI2 R1,*AR4 ; executes second
If one of the instructions in a pair uses a three-operand instruction, you can
omit the 3 for that instruction.

MPYI3 RO,*AR1,RO can be MPYl RO,*AR1,RO
|| ADDI3 *AR2,R1,R2 written as || ADDI *AR2,R1,R2

All commutative operations can be written in either order. For example,

ADDI *ARO,R1,R2 can be written as ADDI R1,*ARO,R2

The third operand of a three-operand instruction specifies a destination
register. You can omitthe third operand if itis the same as the second oper-
and. This allows you to use three-operand instructions that look like two-
operand instructions. For example,

ADDI3 *ARO,R2,R2 can be ADDI *ARO,R2
MPYI3 *AR1,RO,RO written as MPYl *AR1,RO
Instructions that can use the preceding two syntaxes include:

ADDC3 AND3 LSH3 OR3 SUBI3
ADDF3 ANDN3 MPYF3 SUBB3 XOR3
ADDI3 ASH3 MPYI3

Note that all registers are read at the beginning of the execution cycle and
loaded at the end of the execution cycle. If an instruction in a pair reads a regis-
ter and another instruction writes to the same register, then the former instruc-
tion uses the contents of the register before it is modified by the latter instruc-
tion.

Instruction Set 5-15

Functional Summary of the Instruction Set

Table 5-11. Summary of Parallel Instructions

5-16

Parallel Arithmetic With Store Instructions

Mnemonic Description 'C4x Only

ABSF || STF Absolute value of a floating-point number
and store floating-point value

ABSI || STI Absolute value of an integer and store integer

ADDF3 || STF Add floating-point values and store floating-point
value

ADDI3 || STI Add integers and store integer

AND3 || STI Bitwise logical-AND and store integer

ASH3 || STI Arithmetic shift and store integer

FIX || STI Convert floating-point to integer and store integer

FLOAT || STF Convert integer to floating-point value
and store floating-point value

FRIEEE || STF Convert IEEE floating point format and store v

LDF || STF Load floating-point value and store floating-point
value

LDl || STI Load integer and store integer

LSH3 || STI Logical shift and store integer

MPYF3 || STF Multiply floating-point values and store floating-
point value

MPYI3 || STI Multiply integer and store integer

NEGF || STF Negate floating-point value and store floating-point
value

NEGI || STI Negate integer and store integer

NOT3 || STI Complement value and store integer

OR3 || STI Bitwise logical-OR value and store integer

STF || STF Store floating-point values

STI || STI Store integers

SUBF3 || STF Subtract floating-point value and store floating-
point value

TOIEEE || STF Convert to IEEE format and store v

SUB3 || STI Subtract integer and store integer

XOR3 || STI Bitwise exclusive-OR values and store integer

Functional Summary of the Instruction Set

Table 5-11. Summary of Parallel Instructions (Continued)

Parallel Load Instructions

Mnemonic Description 'C4x Only
LDF || LDF Load floating-point
LDI || LDI Load integer

Parallel Multiply and Add/Subtract Instructions

Mnemonic Description 'C4x Only

MPYF3 || ADDF3 Multiply and add floating-point
MPYF3 || SUBF3 Multiply and subtract floating-point
MPYI3 || ADDI3 Multiply and add integer

MPYI3 || SUBI3 Multiply and subtract integer

Instruction Set 5-17

Functional Summary of the Instruction Set

5.2.9 TMS320C4x-Only Instructions

Some of the instructions work only on the TMS320C4x. Table 5-12 lists these
instructions.

Table 5-12. Summary of TMS320C4x-Only Instructions

Instruction Description

BcondAF Branch conditionally delayed and annul if false

BcondAT Branch conditionally delayed and annul if true

FRIEEE Convert from IEEE format

FRIEEE||STF Parallel FRIEEE and STF

LAJ Link and Jump (Single-cycle subroutine call)

LAJcond Link and jump conditionally (Single-cycle subroutine call)
LATcond Link and trap conditional delayed (delayed conditional trap)
LBb Load sign-extended byte

LBUb Load unsigned byte

LDA Load address register (faster than LDI for select registers)
LDEP Load integer from expansion register file to primary register file
LDHI Load 16 MSBs with 16-bit immediate

LDPE Load integer from primary register file to expansion register file
LDPK Load data-page pointer immediate

LHw Load sign-extended half-word

LHUw Load unsigned half-word

LWLct Load word left-shifted (ct = no. of bytes to shift left, 1, 2, or 3)
LWRct Load word right-shifted (ct = no. of bytes to shift right, 1, 2, or 3)
MBct Merge byte left-shifted (ct = no. of bytes to shift left, 1, 2, or 3)
MHct Merge half-word left-shifted (ct = no. of bytes to shift left)
MPYSHI Multiply signed integer and produce 32 MSBs

MPYSHI3 Multiply signed integer and produce 32 MSBs (3 operand)
MPYUHI Multiply unsigned integer and produce 32 MSBs

MPYUHI3 Multiply unsigned integer and produce 32 MSBs (3 operand)

5-18

Functional Summary of the Instruction Set

Table 5-12. Summary of TMS320C4x-Only Instructions (Continued)

Instruction Description

RCPF Reciprocal of floating-point value

RETIcondD Return from interrupt conditionally or trap conditionally delayed
RPTBD Repeat block delayed

RSQRF Reciprocal of the square root of a floating-point value

STIK Store integer immediate value

TOIEEE Convert to IEEE format

TOIEEE||STF Parallel TOIEEE and STF

5.2.10 LDP and LDPK Instructions

The LDP (load data page pointer) and LDPK (load data page pointer, immedi-
ate) instructions are special forms of the LDI (load integer) instruction.

LDP enables youto load aregister (usually the DP register) with the page num-
ber of arelocatable address. A page number is represented by the eight MSBs
of a 24-bit address. The page number is combined with the 16 LSBs of an in-
struction word to form a direct address.

LDP is a pseudo-op on the C4x only. If the destination register is the DP (de-
fault value), this instruction actually generates an LDPK instruction. Other-
wise, it generates an LDIU instruction. Since the 'C30 does not have an LDPK
instruction, LDP always generates an LDIU instruction.

LDPK allows you to load a 16-bit unsigned immediate value into the DP regis-
ter. The value is loaded and ready for the next instruction for immediate ad-
dressing.

Instruction Set 5-19

Instruction Set Summary Table

5.3

Instruction Set Summary Table

Syntax

Description

'C4x
Only

ABSF src,dst

Absolute Value of a Floating-Point Number

[ABSF dst] _
Operation: |src| - dst
Load the absolute value of the source operand into the destination register.
The operands are floating-point numbers.

ABSI src,dst Absolute Value of an Integer

[ABSI dst]

Operation: |src| - dst

Load the absolute value of the source operand into the destination register.
The operands are signed integers.

ADDC src,dst

Add Integers With Carry
Operation: src +dst+ C - dst

Add the contents of the source operand, the destination register, and the carry
bit together, and store the sum in the destination register. The operands are
signed integers.

ADDCS3 src2,srcl,dst
[ADDC src2,srcl,dst]

Add Integers With Carry (3-Operand)
Operation: srcl +src2 + C - dst

Add source 1, source 2, and the carry bit together, and store the sum in the
destination register. The operands are signed integers.

ADDF src,dst

Add Floating-Point Values
Operation: src + dst - dst

Add the contents of the source operand to the contents of destination register
and store the result in the destination register. The operands are floating-point
numbers.

ADDF3 src2,srcl,dst Add Floating-Point Values (3-Operand)
[ADDF src2,srcl,dst])
Operation: srcl + src2 - dst
Add source 1 and source 2 together and store the sum in the destination regis-
ter. The operands are floating-point numbers.
ADDI src,dst Add Integers
Operation: src + dst - dst
Add the source operand to the contents of the destination register and store
the sum in the destination register. The operands are signed integers.
ADDI3 src2,srcl,dst Add Integers (3-Operand)
[ADDI src2,srcl,dst]

Operation: srcl + src2 - dst

Add source 1 and source 2 together and store the sum in the destination regis-
ter. The operands are signed integers.

5-20

Instruction Set Summary Table

Description 'C4x
Syntax
y Only
AND src,dst Bitwise Logical AND
[AND src,dst] .
Operation: dst AND src - dst
Perform a bitwise logical AND of the source operand and the destination
register and store the result in the destination register. The operands are un-
signed integers.
AND3 src2,srcl,dst Bitwise Logical AND (3-Operand)
[AND src2,srcl,dst] .
Operation: srcl AND src2 - dst
Perform a bitwise logical AND of source 1 and source 2 and store the result
in the destination register. All the operands are signed integers.
ANDN src, dst Bitwise Logical AND With Complement
Operation: dst AND ~ src - dst
Perform a bitwise logical AND of the destination register and the bitwise log-
ical complement (~) of the source operand, and store the result into the desti-
nation register. Both operands are unsigned integers.
ANDN3 src2,srcl,dst Bitwise Logical ANDN (3-Operand)
[ANDN src2,srcl,dst] .
Operation: srcl AND ~ src2 - dst
Perform a hitwise logical AND of source operand 1 and the bitwise logical
complement (~) of the source operand 2, and store the result into the destina-
tion register. All the operands are signed integers.
ASH count,dst Arithmetic Shift
Operation: If count>0
dst << count -, dst
Else
dst >> |count| - dst
The seven LSBs of count are used to generate the 2s-complement shift count
(up to 32 bits).
If count >0, left-shift the contents of the destination register by count. Low-ord-
er bits are filled with 0s, and high-order bits are shifted out through the carry
bit.
If count < 0, right-shift the contents of the destination register by the absolute
value of count. High-order bits are sign-extended as they are right-shifted, and
low-order bits are shifted out through the carry bit.
If count = 0, no shift is performed and the carry bit is set to 0.
Both operands are signed integers.
Instruction Set 5-21

Instruction Set Summary Table

Description 'C4x
Syntax
Yy Only
ASH3 count,src,dst Arithmetic Shift (3-Operand)
[ASH count,src,dst] .
Operation: If count>0
src << count - dst
Else
src >> |count| - dst
The seven LSBs of count are used to generate the 2s-complement shift count
(up to 32 bits).
If count > 0, left-shift the source operand by count. Low-order bits will be filled
with 0s, and high-order bits are shifted out through the carry bit.
If count < 0, right-shift the contents of the destination register by the absolute
value of count. High-order bits are sign-extended as they are right-shifted, and
low-order bits are shifted out through the carry bit.
If count = 0, no shift is performed and the carry bit is set to 0.
Bcond src Branch Conditionally (Standard)
[Bcond @src])
Operation: If cond = true
If src is a register, src -~ PC
If src is in PC-relative mode, displacement+ PC +1 - PC
Else, continue
Performs a branch if the condition is true.
If the source operand is a register, its contents are loaded into the PC. If the
source operand is expressed in PC-relative mode, the assembler generates
adisplacement: displacement = label — (PC of branch instruction +1). The dis-
placement is stored as a 16-bit signed integer in the 16 least significant bits
of the branch instruction word. This displacement is added to the PC of the
branch instruction + 1 to generate the new PC.
The TMS320C40 provides 20 condition codes for use with this instruction.
See the TMS320C4x User’s Guide for more information.
Bcond AF src Branch Conditionally Delayed and Annul if False v

Operation: If cond = true
If src is a register, src -~ PC
If src is in PC-relative mode, src + PC of branch + 3 . PC
Else
If cond is false
annul execute phase results of next three instructions
and continue

If the condition is true, the instruction performs a branch and the next three
instructions. If the condition is false, the instruction annuls the effect of the ex-
ecute phase of the next three instructions and continues.

If the source operand is a register, its contents are loaded into the PC. If the
source operand is an immediate value, then the sum of the PC (of the branch
instruction) + 3 and the src are loaded into the PC.

The three instructions following the BcondAF instruction may not modify the
program flow.

5-22

Instruction Set Summary Table

Syntax

Description

'C4x
Only

Bcond AT src

Branch Conditionally Delayed and Annul if True

Operation: If cond = true
If src is a reqister, src - PC
annul execute phase results of next three instructions
If src is in PC-relative mode, src + PC of branch + 3 - PC
annul execute phase results of next three instructions
Else, continue

If the condition is true, the instruction performs a branch and annuls the effect
of the execute phase of the next three instructions.

If the source operand is a register, its contents are loaded into the PC. If the
source operand is an immediate value, then the sum of the PC (of the branch
instruction) + 3 and the src are loaded into the PC.

The three instructions following the BcondAT instruction may not modify the
program flow.

Bcond D src
[Bcond D @src]

Branch Conditionally (Delayed)

Operation: If cond = true
If src is a register, src -~ PC
If src is in PC-relative mode, displacement + PC +3 -, PC
Else, continue

Performs a delayed branch that allows the three instructions after the delayed
branch to be fetched before the condition is true if the condition is true.

If the source operand is expressed as a register, its contents are loaded into
the PC. If the source operand is expressed in PC-relative mode, the assem-
bler generates a displacement: displacement = label — (PC of branch instruc-
tion +1). The displacement is stored as a 16-bit signed integer in the 16 least
significant bits of the branch instruction word.

The three instructions following the BcondD instruction may not modify the
program flow.

BR
[BR

src
@src]

Branch Unconditionally

Operation: src - PC C3x
PC+1+src - PC C4x

Performs an unconditional branch. The source operand is a 24-bit signed inte-
ger for the 'C4x only (in the PC-concatenation addressing mode). The source
operand is a 24-bit unsigned address for the 'C3x.

BRD
[BRD

Src

@src]

Branch Unconditionally Delayed

Operation: src - PC C3x
PC +3+src -~ PC C4ax

Perform an unconditional branch. The source operand is a 24-bit signed inte-
ger for the 'C4x only (in the PC-concatenation addressing mode). The source
operand is a 24-bit unsigned address for the 'C3x.

Instruction Set

5-23

Instruction Set Summary Table

Description 'C4x
Syntax Only
CALL src Call Subroutine
[Call @src)

Operation: Next PC - *(++SP)
PC+1+src - PC C4x
src - PC C3x

Calls a subroutine. The next PC value is pushed onto the system stack. The
source operand + 1 + PC (of the call) is loaded into the PC. The source oper-
and is a 24-bit signed immediate value for the 'C4x only. The source operand
is a 24-bit unsigned address for the 'C3x.

CALLcond src
[Callcond @src]

Call Subroutine Conditionally

Operation: If cond = true
Next PC - *++SP
If src is a register, src -~ PC
If src is in PC-relative mode, displacement+ PC +1 - PC
Else, continue

Call a subroutine if the condition is true.

If the source operand is expressed as a register, its contents are loaded into
the PC. If the source operand is expressed in PC-relative mode, the assem-
bler generates a displacement: displacement = label — (PC of branch instruc-
tion +1). The displacement is stored as a 16-bit signed integer in the 16 LSBs
of the branch instruction word. The displacement is added to the PC of the call
instruction + 1 to generate the new PC.

The TMS320C40 provides 20 condition codes for use with this instruction.
See the TMS320C4x User’s Guide for more information.

CMPF src,dst

Compare Floating-Point Values
Operation: dst —src

Compare the source and destination operands by subtracting the source from
the destination. The result of the subtraction is not stored; this is a nondestruc-
tive compare. Both operands are floating-point numbers.

CMPF3 src2,srcl
[CMPF src2,srcl]

Compare Floating-Point Values (3-Operand)
Operation: srcl —src2

Compare the source operands by subtracting source 2 from source 1. The re-
sult of the subtraction is not stored,; this is a nondestructive compare. Both op-
erands are floating-point numbers.

CMPI src,dst

Compare Integers
Operation: dst —src

Compare the source and destination operands by subtracting the source from
the destination. The result of the subtraction is not stored; this is a nondestruc-
tive compare. Both operands are integers.

5-24

Instruction Set Summary Table

Syntax

Description

'C4x
Only

CMPI3 src2,srcl
[CMPI src2,srci)

Compare Integers (3-Operand)
Operation: srcl —src2

Compare the two source operands by subtracting source 2 from source 1. The
result of the subtraction is not stored; this is a hondestructive compare. Both
operands are integers.

DBcond ARn,src
[DBcond ARn,@src]

Decrement and Branch Conditionally (Standard)

Operation: ARn—1 - ARn
If cond = true and ARn =0
If src is a register, src -~ PC
If src is in PC-relative mode, displacement+ PC +1 - PC
Else, continue

Decrement the specified auxiliary register and branch if the condition is true
and the specified auxiliary register is not zero. (Executes in four cycles.) The
auxiliary register is treated as a 24-bit signed integer (32 for 'C4x).

If the source operand is expressed as a register, its contents are loaded into
the PC. If the source operand is expressed in PC-relative mode, the assem-
bler generates a displacement: displacement = label — (PC of branch instruc-
tion + 1). The displacement is stored as a 16-bit signed integer in the 16 least
significant bits of the branch instruction word. The displacement is added to
the PC of the call instruction + 1 to generate the new PC.

DBcond D ARn,src
[DBcond ARn,@src]

Decrement and Branch Conditionally (Delayed)

Operation: ARn—1 - ARn
If cond = true and ARn =0
If src is a register, src -~ PC
If src is in PC-relative mode, displacement + PC + 3 - PC
Else, continue

Decrement the specified auxiliary register and branch if the condition is true
and the specified auxiliary register is not zero. The auxiliary register is treated
as a 24-bit signed integer (32 for 'C4x).

If the source operand is expressed as a register, its contents are loaded into
the PC. If the source operand is expressed in PC-relative mode, the assem-
bler generates a displacement: displacement = label — (PC of branch instruc-
tion + 3). The displacement is stored as a 16-bit signed integer in the 16 least
significant bits of the branch instruction word. The displacement is added to
the PC of the call instruction + 3 to generate the new PC.

The three instructions following the DBcondD instruction may not modify the
program flow.

FIX src,dst
[FIX dst]

Convert Floating-Point Value to Integer
Operation: fix(src) - dst

Convert a floating-point operand to the nearest integer that is less than or
equal to its absolute value and load the result into the destination register.

Instruction Set

5-25

Instruction Set Summary Table

Description 'C4x
Syntax
Yy Only
FLOAT src,dst Convert Integer to Floating-Point Value
[FLOAT dst])

Operation: float(src) - dst

Convert an integer into a floating-point value and load the result into the desti-

nation register.
FRIEEE src,dst Convert From IEEE Format v

Operation: convert src from IEEE - dst

Convert the source operand from a IEEE floating-point format to the 2s-com-
plement floating-point format, and store the result into the destination (exten-
ded-precision) register. The source operand comes from memory. The con-
verted result is stored as a single-precision floating-point number.

IACK src Interrupt Acknowledge
Operation: Perform a dummy read operation with IACK = 0.
At end of dummy read, set IACK = 1.
Perform a dummy read operation with IACK = 0. IACK is set to 1 at the end
of the dummy read. This instruction can be used to generate an external inter-
rupt acknowledge.
If the specified address is off-chip, the processor reads the data at that
address. Then, the IACK signal and the address can be used to signal an inter-
rupt acknowledge to external devices. The data read by the processor is not
used.
IDLE Idle Until Interrupt
Operation: 1 - ST(GIE)
Next PC - PC
Idle until interrupt
Load the next PC value into the PC, and the CPU idles until an interrupt is re-
ceived. When an interrupt is received, the contents of the PC are pushed onto
the system stack.
IDLE2 Low—power Idle ('C31, 'C40, 'C44 only)

Operation: 1 - ST(GIE)
Next PC - PC
Idle until interrupt

Performs the same function as IDLE, except that it removes the functional
clock input from the internal device. This allows for extremely low power
mode. The PC is incremented once, and the device remains in an idle state
until one of the external interrupts (INTO-3) is asserted.

5-26

Instruction Set Summary Table

Description 'C4x
Syntax
y Only
LAJ src Link and Jump v
Operation: PC of LAJ + 4 _, R31 (extended-precision register R11)
src[+ 3+ PCof LAJ] - PC
Performs a single-cycle subroutine call. The three instructions following the
LAJ instruction are performed. The return address (address of LAJ instruction
+ 4) is placed in extended-precision register R11. The source operand is a
24-bit signed integer (in the PC-concatenation addressing mode).
The three instructions following the DBcondD instruction may not modify the
program flow.
LAJ cond src Link and Jump Conditionally v
Operation: If cond = true
If src is a register
PC of LAJcond + 4 - extended-precision register R11
src - PC
If src is in PC-relative mode
PC of LAJcond + 4 - extended-precision register R11
src + PCof LAJ+3 - PC
Else, continue
Performs a conditional single-cycle subroutine call. The three instructions fol-
lowing the LAJcond instruction are performed. The return address (address
of LAJ instruction + 4) is placed in extended-precision register R11.
The three instructions following the LAJcond instruction may not modify the
program flow.
LAT cond N Link and Trap Conditionally v
Operation: If cond = true
[ST(GIE) - ST (PGIE)
ST(CF) - ST(PCF)]
0 - ST(GIE)
1 - ST(CF)
PC of LATcond + 4 - R31 (extend-precision register R11)
trap vector N - PC
Else, continue
Performs a delayed conditional trap. If you nest the traps, you may have to
save the status register before executing LATcond.
If the condition is true:
GIE and CF are saved in PGIE and PCF in the status register,
all interrupts are disabled,
the cache is frozen,
the contents of the PC (of LATcond + 4) are placed in R31, and
the PC is loaded with the contents of the specified trap vector (N).
If the condition is not true, then normal execution continues.
The three instructions following LATcond are fetched and executed. None of
these three instructions may modify the program flow.
Instruction Set 5-27

Instruction Set Summary Table

Syntax

Description

'C4x
Only

LBb (0,1,2,3) src,dst

Load Byte, Signed
Operation: sign-extended byte (0,1,2,3) of src - dst

Sign-extend and right-shift the specified byte of the source operand, and then
load it into the 8 LSBs of the destination register. The source operand is
signed.

LBUb (0,1,2,3) src,dst

Load Byte, Unsigned
Operation: byte (0,1,2,3) of src - dst

Right-shift the specified byte of the source operand and load itinto the 8 LSBs
of the destination register. The source operand is unsigned.

LDA src,dst

Load Address Register
Operation: src - dst

Load the source operand into the destination register. The destination register
may be any of these address registers: ARO-AR?7, IR0, IR1, DP, BK, or SP.
The load is finished by the end of the read phase of the pipeline; therefore,
LDA is one cycle faster than LDI for loading these registers. All the operands
are treated as signed integers.

LDE src,dst

Load Floating-Point Exponent
Operation: src(exponent) - dst(exponent)

Load the exponent portion of a word into the exponent field of an extended-
precision register. The operands are floating-point values.

LDEP src,dst

Load Integer From Expansion-Register File to Primary-Register File
Operation: src - dst

Load the source operand (from expansion-register file) into the destination
register (from the primary-register file). The destination register is an integer.

LDF src,dst

Load Floating-Point
Operation: src - dst

Load the source operand into the destination operand. Both operands are as-
sumed to be floating-point numbers.

LDFcond src,dst

Load Floating-Point, Conditionally

Operation: If cond = true
src - dst
Else, dst is not changed

If the specified condition is true, load the source operand into the destination
operand. If the condition is false, the value is not loaded. Both operands are
assumed to be floating-point numbers.

5-28

Instruction Set Summary Table

Description 'C4x
Syntax
y Only
LDFI src,dst Load Floating-Point Value, Interlocked
Operation: Signal interlocked operation
src - dst
Load the source operand into the destination register. An interlocked opera-
tion is signaled over the LOCK and LLOCK pins. Only direct and indirect
modes are allowed. The operands are floating-point values.
LDHI src,dst Load 16 MSBs With 16-Bit Immediate v
Operation: src - 16 MSBs of dst
0 - 16 LSBs of dst
Load the 16-bit unsigned immediate value into the 16 MSBs of the destination
register. Load 0 into the 16 LSBs of the destination register. The destination
register is an integer.
LDI src,dst Load Integer
Operation: src - dst
Load the contents of the source operand into the destination register. The op-
erands are signed integers.
LDlcond src,dst Load Integer Conditionally
Operation: If cond = true
src - dst
Else, dst is not changed
If the specified condition is true, load the contents of the source operand into
the destination register. If the condition is false, the source operand is not
loaded. The operands are signed integers.
The TMS320C40 provides 20 condition codes for use with this instruction.
See the TMS320C4x User’s Guide for more information.
LDII src,dst Load Integer, Interlocked
Operation: Signal interlocked operation
src - dst
The source operand is loaded into the destination register, and an interlocked
operation is signaled over the LOCK and LLOCK pins. Only direct and indirect
modes are allowed. The operands are signed integers.
LDM src,dst Load Floating-Point Mantissa
Operation: src(mantissa) - dst(mantissa)
Load the mantissa field of the source operand into the mantissa field of an the
destination register. The source and destination operands are floating-point
numbers.
Instruction Set 5-29

Instruction Set Summary Table

Description 'C4x
Syntax Only
LDP src,dst Load Data Page Pointer
Operation: src - DP
LDP is an alternate form of LDI, except that LDP is always in the immediate
addressing mode. The source operand field contains the 16 MSBs of the ab-
solute value 32-bit source address. These 16 bits are loaded into the 16 LSBs
of the data page pointer.
LDPE src,dst Load Integer From Primary-Register File to Expansion-Register File v
Operation: src - dst
Load the source operand (from the primary-register file) into the destination
(from the expansion-register file). The destination register is an integer.
LDPK src,dst Load Data Page Pointer Immediate v
Operation: src - DP
Load the 16-bit unsigned immediate into the DP register. This operation is
completed by the end of the read phase of the pipeline; thus, the value loaded
is ready for the next instruction for direct addressing.
LHw (0,1) src,dst Load Half-Word v
Operation: sign-extended half-word (0,1) of src - dst
The specified half-word of the source operand is sign-extended and right-
shifted into the 16 LSBs of the destination register. The half-word is signed.
LHUw(0,1) src,dst Load Half-Word Unsigned v

Operation: unsigned half-word (0,1) of src - dst

The specified half-word of the source operand (unsigned) is right-shifted into
the 16 LSBs of the destination register. The half-word is unsigned.

LOPOWER

Divide Clock by 16 ('C31 only)
Operation: H1/16 - H1

The device continues to execute instructions, but at the reduced rate of the
CLKIN frequency divided by 16. This allows for low—power operations. See
also MAXSPEED.

5-30

Instruction Set Summary Table

Syntax

Description

'C4x
Only

LSH count,dst

Logical Shift

Operation: If count >0
dst << count - dst
Else,
dst >> |count| - dst

The seven LSBs of count are used to generate the 2s-complement shift count
(up to 32 bits).

If count is greater than zero, left-shift the contents of the destination register
by count. Low-order bits are filled with Os, and high-order bits are shifted out
through the carry bit.

If count is less than zero, right-shift the contents of the destination register by
the absolute value of count. High-order bits are filled with 0s, and low-order
bits are shifted out through the carry bit.

If count is equal to zero, no shift is performed and the carry bit is set to 0.

The count operand is a signed integer; dst is an unsigned integer.

LSH3 count,src,dst
[LSH count,src,dst]

Logical Shift (3-Operand)

Operation: If count >0
src << count - dst
Else,
src >> [count| - dst

The seven LSBs of count are used to generate the 2s-complement shift count
(up to 32 bits).

If count is greater than zero, left-shift the source operand by count. Low-order
bits are filled with 0s, and high-order bits are shifted out through the carry bit.
The result is stored in the destination register.

If count is less than zero, right-shift the source operand by the absolute value
of count. High-order bits are filled with 0s, and low-order bits are shifted out
through the carry bit.

If count is equal to zero, no shift is performed and the carry bit is set to 0.

The count operand is a signed integer; the source operand is an unsigned
integer. The result is stored in the destination register.

LWLct (0,1,2,3) src,dst

Load Word Left-Shifted
Operation: src << (0,1,2,3) and merged with dst - dst

The source operand is left-shifted the specified number of bytes and merged
with the bytes of the destination register that are below the left-shifted LSBs
of the source register.

LWRct (0,1,2,3) src,dst

Load Word Right-Shifted
Operation: src >>(0,1,2,3) and merged with dst - dst

The source operand is right-shifted the specified number of bytes and merged
with the bytes of the destination register that are below the right-shifted LSBs
of the source register.

Instruction Set

5-31

Instruction Set Summary Table

Syntax

Description

'C4x
Only

MAXSPEED

Restore Clock to Regular Speed ('C31 only)
Operation: H1 - H1

Exits LOPOWER power—down mode. The 'LC31 resumes full-speed opera-
tion during the read phase of this instruction. See also LOPOWER.

MBct(0,1,2,3) src,dst

Merge Byte
Operation: 8 LSBs of src << (0,1,2,3) bytes merged with dst - dst

The 8 LSBs of source operand are left-shifted the specified number of bytes
and merged with the destination register.

MHct(0,1) src,dst

Merge Half-Word
Operation: 16 LSBs of src << (0,1) half-words merged with dst - dst

The 16 LSBs of source operand are left-shifted the specified number of half-
words and merged with the destination register.

MPYF src,dst

Multiply Floating-Point Values
Operation: src x dst - dst

Multiply the source operand by the contents of the destination operand and
store the result in the destination register. The source operand is a single-pre-
cision floating-point number, and the destination is an extended-precision
floating-point number.

MPYF3 src2,srcl,dst Multiply Floating-Point Values (3-Operand)

[MPYF src2,srcl,dst] .
Operation: srcl x src2 - dst
Multiply source 1 by source 2 and store the result in the destination register.
All the operands are extended-precision floating-point numbers.

MPYI src,dst Multiply Integers
Operation: src x dst - dst
Multiply the source operand by the contents of the destination operand and
store the result in the destination register. The source and destination oper-
ands are 32-bit signed integers for the 'C4x and 24-bit signed integers for the
'C3x. Theresultis a 64-bit integer. The output to the destination register is the
32 LSBs of the product.

MPYI3 src2,srcl,dst Multiply Integers (3-Operand)

[MPYI src2,srcl,dst]

Operation: srcl x src2 - dst

Multiply source 1 by source 2 and store the result in the destination register.
The source operands are 32-bit signed integers for the 'C4x, 24-bit signed in-
tegers for the 'C3x. The result is a 64-bit integer. The output to the destination
register is the 32 LSBs of the product.

5-32

Instruction Set Summary Table

Description 'C4x
Syntax
y Only
MPYSHI src,dst Multiply Signed Integers and Produce 32 MSBs v
Operation: dst x src - dst
Multiply the source operand by the destination operand and store the 32
MSBs of the result in the destination register. Both operands are 32-bit signed
integers. The result is a 64-bit integer. The output to the destination register
is the 32 MSBs of the product.
MPYISHI3 src2,src1,dst Multiply Signed Integers and Produce 32 MSBs (3 Operand) v
Operation: srcl x src2 - dst
Multiply source 1 by source 2 and store the 32 MSBs of the result in the desti-
nation register. The source operands are 32-bit signed integers. The resultis
a 64-bit signed integer. The output to the destination register is the 32 MSBs
of the product.
MPYUHI src,dst Multiply Unsigned Integers and Produce 32 MSBs N
Operation: dst x src - dst
Multiply the source operand by the destination operand and store the 32
MSBs of the result in the destination register. Both operands are 32-bit un-
signed integers. The resultis a 64-bit unsigned integer. The output to the desti-
nation register is the 32 MSBs of the product.
MPYUHI3 srcl, src2, dst [Multiply Unsigned Integers and Produce 32 MSBs, 3 Operand v
Operation: srcl x src2 - dst
Multiply source 1 by source 2 and store the 32 MSBs of the result in the desti-
nation register. The source operands are 32-bit unsigned integers. The result
is a 64-bit unsigned integer. The output to the destination register is the 32
MSBs of the product.
NEGB src,dst Negate Integer With Borrow
[NEGB dst] .
Operation: 0—-src—C - dst
Subtract the source operand from zero, subtract the carry bit from that result,
and load the final result into the destination register. The operands are signed
integers.
NEGF src,dst Negate Floating-Point Value
[NEGF dst] .
Operation: 0 —src - dst
Load the difference between 0 and the source operand into the extended-pre-
cision register. The operands are floating-point numbers.
NEGI src,dst Negate Integer
[NEGI dst] .
Operation: 0 —src - dst
Load the difference between 0 and the source operand into the destination
register. The operands are signed integers.
Instruction Set 5-33

Instruction Set Summary Table

Description 'C4x
Syntax Only
NOP No Operation
[NOP src]

Operation: No ALU or multiplier operations.
ARn is modified if src is specified in indirect mode.

If the source operand is specified in the indirect mode, the specified address-
ing operation is performed and a dummy memory read occurs. If the source
operand is omitted, no operation is performed.

NORM src,dst

Normalize Floating-Point Value

[NORM dst] . .
Operation: normalize(src) - dst
Normalize a floating-point number and load the result into an extended-preci-
sion register.

NOT src,dst Bitwise Logical Complement

[NOT dst] i
Operation: ~src - dst
Load the bitwise logical complement (~) of the source operand into the desti-
nation register. The operands are unsigned integers.

OR srce,dst Bitwise Logical OR

Operation: dst OR src - dst

Load the bhitwise logical OR between the source and the destination into the
destination register. The operands are unsigned integers.

OR3 src2,srcl,dst
[OR src2,srcl,dst]

Bitwise Logical OR (3-Operand)
Operation: srcl OR src2 - dst

Load the bitwise logical OR between source 1 and source 2 into the destina-
tion register. The operands are unsigned integers.

POP dst

Pop Integer From Stack
Operation: *SP-- - dst

Pop the contents of the top of the system stack into the destination register.
The top of the stack is an integer.

POPF dst

Pop Floating-Point Value From Stack
Operation: *SP-- _ dst

Pop the contents of the top of the system stack into the destination register.
The top of the stack is a floating-point number.

PUSH src

Push Integer Onto Stack
Operation: src - *++SP

Push the contents of the source register onto the top of the system stack. The
value pushed on the stack is a signed integer.

5-34

Instruction Set Summary Table

Syntax

Description

'C4x
Only

PUSHF src

Push Floating-Point Value on Stack
Operation: src - *++SP

Push the contents of an extended-precision register onto the top of the system
stack. The value pushed on the stack is a floating-point number.

RCPF src,dst

Reciprocal Floating-Point Value
Operation: 16-bit reciprocal of src - dst

Load the 16-bit approximation of the reciprocal of the source operand into the
destination register. Both operands are floating-point numbers.

RETIcond

Return From Interrupt Conditionally or Trap Conditionally

Operation: If cond = true
*(SP--) - PC
ST(PGIE) - ST(GIE)
ST(PCF) - ST(CF)
Else, continue

Performs a return from an interrupt or a trap. If the condition is true, pop the
top of the stack to the PC, copy GIE to PGIE, and copy CF to PCF. If the condi-
tion is false, continue normal operation.

RETIcond D

Return From Interrupt Conditionally or Trap Conditionally Delayed

Operation: If cond = true
*(SP--) - PC
ST(PGIE) - ST(GIE)
ST(PCF) - ST(CF)
Else, continue

Performs a delayed return from an interrupt or a trap. If the condition is true,
pop the top of the stack to the PC, copy GIE to PGIE, and copy CF to PCF.
Because this is a delayed return, the three instructions following RETIcondD
are fetched and executed. If the condition is false, continue normal operation.

The three instructions following the RETIcondD instruction may not modify
the program flow.

RETScond
[RETS]

Return From Subroutine Conditionally

Operation: If cond = true
*SP-- -, PC
Else, continue

Perform a conditional return. If the condition is true, pop the top of the system
stack into the PC.

The TMS320C40 provides 20 condition codes for use with this instruction.
See the TMS320C4x User’s Guide for more information.

RND src,dst
[RND dst]

Round Floating-Point Value
Operation: round(src) - dst

Round the source operand to the nearest single-precision floating-point num-
ber and load it into an extended-precision destination register.

Instruction Set

5-35

Instruction Set Summary Table

Description 'C4x

Syntax

y Only

ROL dst Rotate Left
Operation: dst is left-rotated 1 bit - dst
Rotate the contents of the destination register left one bit and store the result
back into the destination register. The carry bit is set to the original value of
the MSB.

ROLC dst Rotate Left Through Carry
Operation: dst is left-rotated 1 bit through carry - dst
Rotate the contents of the destination register left one bit through the carry bit
and store the result back into the destination register. The carry bit is set to
the original value of the MSB, and the new LSB value is set to the original value
of the carry bit.

ROR dst Rotate Right
Operation: dst is right-rotated 1 bit through carry bit - dst
Rotate the contents of the destination register right one bit and store the result
back into the destination register. The carry bit is set to the original value of
the LSB.

RORC dst Rotate Right Through Carry
Operation: dst is right-rotated 1 bit through carry - dst
Rotate the contents of the destination register right one bit through the carry
bit and store the result back into the destination register. The carry bit is set
to the original value of the LSB, and the new MSB value is set to the original
value of the carry bit.

RPTB src Repeat Block of Instructions

Operation: If src is an immediate value
src+PC+1 - RE
Else if src is a register
src - RE
1 - ST(RM)
next PC - RS

Repeats a block of instructions a number of times without penalty for looping.
Activates the block-repeat mode for updating the PC. The source operand can
be a 24-bit immediate value or a 32-bit register that is loaded into the repeat
end address (RE) register. The RM (repeat mode) status bit is set to 1, and
the address of the next instruction is loaded into the repeat start address (RS)
register.

5-36

Instruction Set Summary Table

Description 'C4x
Syntax
Yy Only
RPTBD src Repeat Block of Instructions Delayed v
Operation: if src is an immediate value
src+PC+1 - RE
else if src is a register
src » RE
1 - ST(RM)
PC of RPTBD +4 - RS
Repeats a block of instructions a number of times without penalty for looping.
Activates the block-repeat mode for updating the PC. The source operand can
be a 24-bit immediate value or a 32-bit register that is loaded into the repeat
end address (RE) register. The RM (repeat mode) status bit is set to 1, and
the address of the next instruction + 3 is loaded into the repeat start address
(RS) register.
The three instructions following the RPTBD instruction may not modify the
program flow, nor may the instructions be part of the block that is repeated and
cannot modify RC, RS, or RE.
RPTS src Repeat Single Instruction
Operation: src — RC
1 - ST(RM)
next PC -~ RS
next PC - RE
Repeat a single instruction by the number in the RC (repeat counter) register.
The source operand is loaded into the RC (repeat counter) register. A one is
written into the repeat mode bit (RM) of the status register (ST) A one is also
written into the repeat single bit (S). This indicates that the program fetches
are to be performed only from the instruction register. The next PC is loaded
into the repeat start address (RS) and repeat end address (RE) registers.
RSQRF src,dst Reciprocal of Square Root Floating-Point v
Operation: 16-bit reciprocal of the square root of src - dst
Load the 16-bit approximation of the reciprocal of the square root of the source
operand into the destination register. The source operand is positive; the oper-
ation for negative inputs is undefined. Both operands are floating-point num-
bers.
SIGI src,dst 'C4x | Signal and Read Integer Interlocked
SIGI 'C3x . -
Operation: LOCK (or LLOCK) pin brought low
src - dst
LOCK (or LLOCK) pin brought high
An interlocked operation is signaled using the appropriate bus-lock signal
(LOCK or LLOCK) if and only if external memory access is performed. After
the read, the bus-lock signal is deasserted. If an internal memory access is
performed, SIGI will perform the read but will not assert a bus-lock signal. The
source and destination operands are signed integers. Operation differs for
'C3x. Refer to TMS320C3x User’s Guide.
Instruction Set 5-37

Instruction Set Summary Table

Syntax

Description

'C4x
Only

STF src,dst

Store Floating-Point Value
Operation: src - dst

Store the contents of the source register into the destination memory location.
The operands are floating-point values.

STFI src,dst

Store Floating-Point Value, Interlocked

Operation: src - dst
Signal end of interlocked operation

Store the contents of the source register into the destination memory location.
An interlocked operation is signaled over LOCK and LLOCK. The operands
are floating-point values.

STI src,dst

Store Integer
Operation: src - dst

Store the contents of the source register into the destination memory location.
The operands are signed integers.

STII src,dst

Store Integer, Interlocked

Operation: src - dst
Signal end of interlocked operation

The contents of the source operand are stored at the destination. An inter-
locked operation is signaled over LOCK and LLOCK. The operands are
signed integers.

STIK src,dst

Store Integer Immediate Value
Operation: src - dst

Store the 5-bit signed integer (in the source register field) into the destination
memory location. The operands are signed integers.

SUBB src,dst

Subtract Integers With Borrow
Operation: dst—src—C - dst

Subtract the source operand from the destination register, subtract the carry
bit from the result, and load the final result into the destination register. The
operands are signed integers.

SUBB3 src2,srcl,dst
[SUBB src2,srcl,dst]

Subtract Integers With Borrow (3-Operand)
Operation: srcl —src2 — C - dst

Subtract source operand 2 from source operand 1, subtract the carry bit from
the result, and load the final result into the destination register. The operands
are signed integers.

5-38

Instruction Set Summary Table

Syntax

Description

'C4x
Only

SUBC src,dst

Subtract Integers Conditionally

Operation: If dst—src >0
(dst—src << 1) OR 1 - dst
Else
dst <<1 - dst

If the difference between the destination and the source operands is greater
than or equal to O, then shift the difference left 1 bit, setthe LSB to 1, and store
the result in the destination register.

If the difference between the destination and source is less than zero, left-shift
the contents of the destination register by 1 bit.

The operands are signed integers.

SUBF src,dst

Subtract Floating-Point Values
Operation: dst —src - dst

Subtract the source operand from the contents of the destination operand and
store the result in the destination register. Both operands are floating-point
numbers.

SUBF3
[SUBF

src2,srcl,dst
src2,srcl,dst]

Subtract Floating-Point Values (3-Operand)
Operation: srcl —src2- dst

Subtract source 2 from source 1 and store the resultin the destination register.
All the operands are floating-point numbers.

SUBI src,dst

Subtract Integers
Operation: dst —src - dst

Subtract the source operand from the contents of the destination register and
store the resultin the destination register. Both operands are signed integers.

SUBI3
[SUBI

src2,srcl,dst
src2,srcl,dst]

Subtract Integers (3-Operand)
Operation: srcl —src2 - dst

Subtract source 2 from source 1 and store the resultin the destination register.
All the operands are signed integers.

SUBRB src,dst

Subtract Reverse Integer With Borrow
Operation: src —dst—C - dst

Subtract the destination register from the source register, subtract the carry
bit from the result, and load the final result into the destination register. Both
operands are signed integers.

SUBRF src,dst

Subtract Reverse Floating-Point Value
Operation: src —dst - dst

Subtract the contents of the destination register from the source operand and
store the result into the destination register. Both operands are floating-point
numbers.

Instruction Set

5-39

Instruction Set Summary Table

Description 'C4x
Syntax
y Only
SUBRI src,dst Subtract Reverse Integer

Operation: src —dst - dst

Subtract the contents of the destination register from the source operand and

store the result into the destination register. Both operands are signed inte-

gers.
SWI Software Interrupt

Operation: Perform emulator interrupt sequence.

Performs an emulator interrupt. This is a reserved instruction and should not

be used in normal programming.
TOIEEE src,dst Convert To IEEE Format \/

Operation: convert src to IEEE - dst

Convert the source operand (single-precision floating-point) from 2s-comple-
ment floating-point format to IEEE floating-point format, and store the result
into the 32 MSBs of the destination register. You can use STF to store the re-
sult in memory.

TRAPcond N
[TRAP N]

Trap Conditionally

Operation: if condis true

[ST(GIE) - ST (PGIE)
ST(CF) - ST(PCF)]
0 - ST(GIE)
1 - ST(CF)
next PC - *(++SP)
trap vector N - PC

Else, continue

Performs a conditional trap. If you nest the traps, you may have to save the
status register before executing TRAPcond N.

If the condition is true:
GIE and CF are saved in PGIE and PCF in the status register,
all interrupts are disabled,
the cache is frozen,
the contents of the PC are pushed on the system stack, and
PC is loaded with the contents of the specified trap vector (N).
If the condition is false, then continue normal operation.

TSTB src,dst

Test Bit Fields
Operation: dst AND src

Perform a bitwise logical AND of the source and destination and set the appro-
priate flags on the result. This is a nondestructive compare; the results of the
compare are not stored. The operands are unsigned integers.

5-40

Instruction Set Summary Table

Syntax

Description

'C4x
Only

TSTB3 srcl,src2
[TSTB srci,src2)

Test Bit Fields (3-Operand)
Operation: srcl AND src2

Perform a bitwise logical AND of source 1 and source 2 and set the appropri-
ate flags on the result. This is a nondestructive compare; the results of the
compare are not stored. The source operands are signed integers.

XOR src,dst

Bitwise Exclusive OR
Operation: dst XOR src - dst

Perform a bitwise exclusive OR of the source and destination operands and
store the resultin the destination register. The operand are unsigned integers.

XOR3 src2,srcl,dst
[XOR src2,srcl,dst]

Bitwise Exclusive OR (3-Operand)
Operation: srcl XOR src2 - dst

Perform a bitwise exclusive OR of source 1 and source 2 and store the result
in the destination register. The source operands are signed integers.

Instruction Set

5-41

Chapter 6

Macro Language

The TMS320C3x/C4x assembler supports a macro language that enables you
to create your own “instructions”. This is especially useful when a program
executes a particular task several times. The macro language enables you to
do the following:

oo dod

Define your own macros and redefine existing macros,
Simplify long or complicated assembly code,

Access macro libraries created with the archiver,

Define conditional and repeatable blocks within a macro,
Manipulate strings within a macro, and

Control expansion listing.

This chapter discusses the following topics:

Topic Page
6.1 USING MACIOSttt et e e e g-2 |
6.2 Defining Macrost 6
6.3 Macro Parameters/Substitution Symbols , 6-

B4 WMEEE UIEIES cocooccscoocssccccssooscscoccacaoossscoosssaood 6
6.5 Using Conditional Assembly in Macros — 6-14__|
6.6 Using Labels in MaCrosSouiueneieaninaaanen.. 6
6.7 Producing Messages in Macros —oiiiiiiiiaiiaan. 6-17 |
6.8 Formatting the Output Listing t 6.—@
6.9 Using Recursive and Nested Macros ... 6-

6.10 Macro Directives Summary — i 6

6-1

Using Macros

6.1 Using Macros

Programs often contain routines that are executed several times. Instead of
repeating the source statements for a routine, you can define the routine as
a macro, then call the macro in the places where you would normally repeat
the routine. This simplifies and shortens your source program.

If you want to call a macro several times, but with different data each time, you
can assign parameters to a macro. This enables you to pass different informa-
tion to the macro each time you call it. The macro language supports a special
symbol called a substitution symbol , which is used for macro parameters.
In this chapter, we use the terms macro parameters and substitution symbols
interchangeably.

Using a macro is a three-step process.

Step 1: Definethemacro. You mustdefine macros before you canusethem
in your program. There are two methods for defining macros:

[Macros can be defined at the beginning of a source file or in an
.include/.copy file. Refer to Section 6.2 for more information.

[J Macros can also be defined in a macro library. A macro library
is a collection of files in archive format, created by the archiver.
Each member of the archive file (macro library) may contain one
macro definition corresponding to the member name. You can
access a macro library by using the .mlib directive. Macro li-
braries are discussed in Section 6.4 on page 6-13.

Step 2: Call the macro. After you have defined a macro, you can call it by
using the macro name as an opcode in the source program. This is
referred to as a macro call.

Step 3: Expand the macro. The assembler expands your macros when the
source program calls them. During expansion, the assembler
passes arguments by variable to the macro parameters, replaces
the macro call statement with the macro definition, then assembles
the source code. By default, the macro expansions are printed in the
listing file. You can turn off expansion listing by using the .mnolist
directive. For more information, refer to Section 6.8 on page 6-19.

When the assembler encounters a macro definition, it places the macro name
inthe opcode table. This redefines any previously defined macro, library entry,
directive, or instruction mnemonic that has the same name as the encountered
macro. This allows you to expand the functions of directives and instructions,
as well as add new instructions.

Defining Macros

6.2 Defining Macros

You can define a macro anywhere in your program, but you must define the
macro before you can use it. Macros can be defined at the beginning of a
source file or in an .include/.copy file; they can also be defined in a macro
library. For more information about macro libraries, refer to Section 6.4 on
page 6-13.

The contents of a macro definition must be contained in the same file. Macro
definitions can be nested, and they can call other macros. Nested macros are
discussed in Section 6.9 on page 6-20.

macname .macro [parameter;] [, ..., parameter,)
model statements or macro directives
[.mexit]

.endm

macname names the macro. You must place the name in the
source statement’s label field. Only the first 32
characters of a macro name are significant. The
assembler places the macro name in the internal
opcode table, replacing any instruction or previous
macro definition with the same name.

.macro is a directive that identifies the source statement as
the first line of a macro definition. You must place
.macro in the opcode field.

[parameters] are optional substitution symbols that appear as
operands for the .macro directive. Parameters are
discussed in Section 6.3, page 6-5.

model statements are instructions or assembler directives that are
executed each time the macro is called.

macro directives are used to control macro expansion.

[-mexit] functions as a “goto .endm”. The .mexit directive is
useful when error testing confirms that macro ex-
pansion will fail.

.endm terminates the macro definition.

Macro Language 6-3

Defining Macros

The following example shows the definition, call, and expansion of a macro.

Example 6—-1. Macro Definition, Call, and Expansion

Macro Definition: The following code defines a macro, add4, with 4 parame-

ters:

6 ADD4 .MACRO pl, p2, p3, p4 ; macro definition
7

8 I add4 pil, p2, p3, p4
9 ' p4d=pl+p2+p3+ps
10 I requires RO

11 !

12

13 LDI p4, RO

14 ADDI pl1, RO

15 ADDI p2, RO

16 ADDI p3, RO

17 STI RO, p4

18

19 .ENDM

Macro Call: The following code calls the ADD4 macro with 4 arguments:
22 00000000 ADD4 @I1,@12,@I3,@14 ; macro invocation

Macro Expansion: The following code shows the substitution of the macro
definition for the macro call. The assembler passes the arguments (supplied
in the macro call) by variable to the parameters (substitution symbols).

00000000 08200003— LDI @l14,R0
00000001 02200000— ADDI @I1,R0
00000002 02200001— ADDI @I2,R0
00000003 02200002— ADDI @I3,R0
00000004 15200003— STI RO, @14

RPRRRRRERRPR

If you want to include comments with your macro definition but don’t want
those comments to appear in the macro expansion, use an exclamation point
to precede your comments. If you do want your comments to appear in the
macro expansion, use an asterisk or semicolon. For more information about
macro comments, refer to Section 6.7 on page 6-17.

Macro Parameters/Substitution Symbols

6.3 Macro Parameters/Substitution Symbols

If you want to call a macro several times, but with different data each time, you
can assign parameters to the macro. The macro language supports a special
symbol, called a substitution symbol , which is used for macro parameters.

6.3.1 Substitution Symbols

Macro parameters are substitution symbols. Substitution symbols are sym-
bols that represent a character string. Besides being used as macro
parameters, these symbols can also be manipulated by .asg or .eval, outside
of macros, to equate a character string to a symbol name.

Valid substitution symbols may be 32 characters long and must begin with a
letter. The remainder of the symbol can be a combination of alphanumeric
characters, underscores, and dollar signs.

Substitution symbols used as macro parameters are local to the macro they
are defined in. You can define up to 32 local substitution symbols (including
substitution symbols defined with the .var directive) per macro. For more
information about the .var directive, refer to page 6-12.

During macro expansion, the assembler passes arguments by variable to the
macro parameters. The character-string equivalent of each argument is
assigned to the corresponding parameter. Parameters without corresponding
arguments are set to the null string. If the number of arguments exceeds the
number of parameters, the last parameter is assigned the character-string
equivalent of all remaining arguments.

If you pass a list of arguments to one parameter, or if you pass a comma or
semicolon to a parameter, you must surround the arguments with quotation
marks.

At assembly time, the assembiler first replaces the substitution symbol with its
corresponding character string, then translates the source code into object
code.

Macro Language 6-5

Macro Parameters/Substitution Symbols

Example 6—2 shows the expansion of a macro with varying numbers of argu-
ments.

Example 6-2. Calling a Macro With Varying Numbers of Arguments

Macro Definition

Parms .macroa,b,c

; a=:a:

: b =:b:

; c=:Q:
.endm

Calling the Macro, Parms

Parms 100,label Parms 100,label,x,y

; a=100 ;a=100

; b = label ;b =label

; c="" ;7 C=XY
Parms 100, , x Parms "100,200,300",x,y

; a=100 :a= 100,200,300

: b="" . b=x

; c=X ; C=Yy
Parms "string™” X,y

: a = "string”

: b=x

; c=y

6.3.2 Directives That Define Substitution Symbols
You can manipulate substitution symbols with the .asg and .eval directives.

[0 The .asg directive assigns a character string to a substitution symbol.

The syntax of the .asg directive is:

.asg ["]character string["], substitution symbol

The quotation marks are optional. If there are no quotation marks, the
assembler reads characters up to the first comma and removes leading
and trailing blanks. In either case, a character string is read and assigned
to the substitution symbol.

Macro Parameters/Substitution Symbols

Example 6—3 shows character strings being assigned to substitution symbols.

Example 6-3. Using the .asg Directive

.asg R1, RETURN ; return register
.asg IR0, INDEXO ; index register
.asg "Version 4.0"”, version

.asg "pl, p2, p3”, list

[The .eval directive performs arithmetic on numeric substitution symbols.

The syntax of the .eval directive is:

.eval well-defined expression, substitution symbol

The .eval directive evaluates the expression and assigns the string value
ofthe result to the substitution symbol. If the expression is not well defined,
the assembler generates an error and assigns the null string to the symbol.

Example 6—4 shows arithmetic being performed on substitution symbols.

Example 6—4. Using the .eval Directive

.asg 1,counter

loop 100

.word counter

.eval counter + 1,counter
.endloop

In Example 6—4, the .asg directive could be replaced with the .eval directive
(.eval 1, counter) without changing the output. In simple cases like this,
you can use .eval and .asg interchangeably. However, if you want to calculate
a value from an expression, you must use the .eval directive.

The .asg directive only assigns a character string to a substitution symbol,
while the .eval directive evaluates an expression and then assigns the charac-
ter string equivalent to a substitution symbol.

6.3.3 Built-In Substitution Functions

The following built-in substitution symbol functions enable you to make deci-
sions based on the string value of substitution symbols. These functions al-
ways return a value, and they can be used in expressions. Built-in substitution
symbol functions are especially useful in conditional assembly expressions.
Parameters to these functions are substitution symbols or character-string
constants.

Macro Language 6-7

Macro Parameters/Substitution Symbols

In Table 6-1, a and b are parameters that represent substitution symbols or
character string constants. The term string, used below, refers to the string
value of the parameter.

Table 6—1. Function Definitions

Function Return Value

$symlen (a) length of string a
< Oifa< b Oifa=»b

$symemp (a,b) > 0ifa> b

$firstch (a,ch) index of the first occurrence of character constant ch
in string a

$lastch (a,ch) index of the last occurrence of character constant ch
in string a

$isdefed (a) 1 if string a is defined in the symbol table

0 if string a is not defined in the symbol table

$ismember (a,b) top member of list b is assigned to string a
0if bis a null string

$iscons (a) 1 if string a is a binary constant
2 if string a is an octal constant
3if string a is a hexadecimal constant
4 if string a is a character constant
5 if string a is a decimal constant

$isname (a) 1 if string a is a valid symbol name
0 if string a is not a valid symbol name

$isreg (a) 1 if string ais a valid predefined register name
0 if string a is not a valid predefined register name

Example 6-5 shows built-in substitution symbol functions.

Example 6-5. Using Built-In Substitution Symbol Functions to Redefine an Instruction

PUSHX .MACRO list

!

I Push more than one item

I $ismember removes the first item in the list

var item

Joop

break ($ismember (item, list) = 0)
PUSH item

.endloop

.ENDM

Macro Parameters/Substitution Symbols

6.3.4 Recursive Substitution Symbols

When the assembler encounters a substitution symbol, it attempts to
substitute the corresponding character string. If that string is also a substitution
symbol, the assembler performs substitution again. The assembler continues
doing this until it encounters a token that is not a substitution symbol or until
it encounters a substitution symbol that it has already encountered during this
evaluation.

In Example 6—6, the x is substituted for z; z is substituted for y; and y is
substituted for x. The assembler recognizes this as infinite recursion and
ceases substitution.

Example 6—6. Recursive Substitution

.asg X",z ;declare z and assign z = "x"
.asg "z"y ;declareyandassigny ="z"
.asg "y",x ;declare x and assign x ="y”
add X ; recursive expansion

6.3.5 Forced Substitution

In some cases, substitution symbols are not recognizable to the assembler.
The forced substitution operator, which is a set of colons, enables you to force
the substitution of a symbol’s character string. Simply surround a symbol with
colons to force the substitution. Do not include any spaces between the colons
and the symbol.

The syntax for the forced substitution operator is:

:symbol:

The assembler expands substitution symbols surrounded by colons before it
expands any other substitution symbols.

You can use the forced substitution operator only inside macros, and you
cannot nest a forced substitution operator within another forced substitution
operator.

Macro Language 6-9

Macro Parameters/Substitution Symbols

Example 6—7. Using the Forced Substitution Operator

force .macrox

.asg 0,x
loop 8 ;.loop/.endloop are discussed
;on page 6-14
AUX:x:.set X
.eval x+1,x
.endloop
.endm

The force macro would generate the following source code:

AUXO set O
AUX1 set 1

AUX7 .set 7

6.3.6 Accessing Individual Characters of Subscripted Substitution Symbols

6-10

In a macro, you can access the individual characters (substrings) of a
substitution symbol with subscripted substitution symbols. You must use the
forced substitution operator for clarity. You can access substrings in two ways.

[:symbol (well-defined expression):

This method of subscripting evaluates to a character string with one char-
acter.

[:symbol (well-defined expression;y, well-defined expressiony):

In this method, expressionq represents the substring’s starting position,
and expressiony represents the substring’s length. You can specify
exactly where to begin subscripting and the exact length of the resulting
character string. The index of substring characters begins with 1, not 0.

Example 6-8 and Example 6—9 show built-in substitution symbol functions
used with subscripted substitution symbols.

Macro Parameters/Substitution Symbols

Example 6-8. Using Subscripted Substitution Symbols

MODE .MACROin, out
|
! Parse addressing mode
Jif ($symemp(™:in(1):”, "*") = 0)
.asg "IND", out
.elseif ($symecmp(”:in(1):", "@”") = 0)
.asg "DIR”, out
.elseif $isreg(in)
.asg "REG”, out
.elseif $isname(in)
.asg "DIR”, out
.endif

.ENDM
Invocation of MODE:

.asg "NONE”, type
MODE *+ar7,type

In Example 6-8, subscripted substitution symbols are used to determine the
addressing mode of a macro parameter.

Example 6-9. Using Subscripted Substitution Symbols to Find Substrings

substr .macro start,strgl,strg2,pos
var lenl,len2,i,tmp
Af $symlen(start) = 0
.eval start,1
.endif
.eval 0,pos
.eval 1,
.eval $symlen(strgl),lenl
.eval $symlen(strg2),len2
Joop
.break i=(len2 —lenl + 1)
.asg ":strg2(i,lenl):”,tmp
Af $symemp(strgl,tmp) = 0
.eval i,pos
.break
.else
.eval i+ 1,
.endif
.endloop
.endm
.asg 0,pos
.asg "arl ar2 ar3 ar4”,regs
substr 1,”ar2”,regs,pos
.word pos ; pos has value 5

Macro Language 6-11

Macro Parameters/Substitution Symbols

In Example 6-9, the subscripted substitution symbol is used to find a substring
strg1 beginning at position startin the string strg2. The position of the substring
strg1 is assigned to the substitution symbol pos.

6.3.7 Substitution Symbols as Local Variables in Macros

If you want to use substitution symbols as local variables within a macro, you
can use the .var directive to define up to 32 local macro substitution symbols
(including parameters) per macro. The .var directive creates temporary sub-
stitution symbols with the initial value of the null string. These symbols are not
passed in as parameters, and, after expansion, these symbols are lost.

| .var symy [,symo] ... [,sympn]

var - symy [,symo] ... [[symy,]

The .var directive is used in Example 6-9.

6-12

Macro Libraries

6.4 Macro Libraries

One of the ways you can define macros is in a macro library. A macro library
is a collection of files that contain macro definitions. You must use the archiver
to collect these files, or members, into a single file (called an archive). Each
member of a macro library contains one macro definition. The files in a macro
library must be unassembled source files. The macro name and the member
name must be the same, and the macro filename’s extension must be .asm.

For example,

Macro Name Filename in Macro Library
simple simple.asm

mode mode.asm

You can access the macro library by using the .mlib assembler directive.
.mlib macro library filename

When the assembler encounters an .mlib directive, it opens the library and
creates a table of its contents. The assembler enters the names of the
individual members within the library into the opcode tables as library entries;
this redefines any existing opcodes or macros that have the same name. If one
of these macros is called, the assembler extracts the entry from the library and
loads it into the macro table. The assembler expands the library entry in the
same manner as other macros. You can control the listing of library entry ex-
pansions with the .mlist directive. For more information about the .mlist
directive, refer to Section 6.8 on page 6-19. Only macros that are actually
called from the library are extracted, and they are extracted only once. For
more information about the .mlib directive, refer to page 4-53.

You can create a macro library with the archiver by simply including the desired
filesinan archive. A macro library is no different from any other archive, except
that the assembler expects the macro library to contain macro definitions. The
assembler expects only macro definitions in a macro library; putting object
code or miscellaneous source files into the library may produce undesirable
effects.

Macro Language 6-13

Using Conditional Assembly in Macros

6.5 Using Conditional Assembly in Macros

The conditional assembly directives are .if/.elseif/.else/.endif and
loop/.break/.endloop . They can be nested within each other up to 32 levels
deep. The format of a conditional block is

if well-defined expression
code block to execute when the .if expression is true (honzero)
[.elseif well-defined expression]

code block to execute when the if expression is false and the .elseif
expression is true (nonzero)

[.else]

code block to execute when the .if expression and the .elseif
expression are false (zero)

.endif

The .elseif and .else directives are optional, and they can be used more than
once within a conditional assembly code block. When they are omitted, and
when the .if expression is false (zero), the assembler continues to the code
following the .endif directive.

The .loop/.break/.endloop directives enable you to assemble a code block
repeatedly. The format of a repeatable block is

loop [well-defined expression]
code block to repeatedly assemble
[.break [well-defined expression])

continue to repeatedly assemble when the .break expression is false
(zero)

.endloop

code block to execute when the .break expression is true (nonzero)
or when the .break expression is omitted and the loop count equals
expression.

The .loop directive’s optional expression evaluates to the loop count. If the
expression is omitted, the loop count defaults to 1024, unless the assembler
encounters a .break directive.

The .break directive and its expression are optional. If the expression evalu-
ates to false, the loop continues. The assembler breaks the loop when the
.break expression evaluates to true or when the .break expression is omitted
and the loop count equals expression. When the loop is broken, the assembler
continues with the code after the .endloop directive.

6-14

Using Conditional Assembly in Macros

The following examples show the .loop/.break/.endloop directives, properly
nested conditional assembly directives, and built-in substitution symbol func-
tions used in a conditional assembly code block.

Example 6-10. Using the .loop/.break/.endloop Directives

.asg 1x
loop o Vinfinite”
.break (x ==10) ; if x==10, quit loop/break with

expression

.eval x+1,x
.endloop

Example 6-11. Nested Conditional Assembly Directives

.asg 1,x
loop : infinite”

f (x==10); if x==10 quit loop
.break ;. force break
.endif

.eval x+1,x
.endloop

Example 6-12. Using the .if, .else, and .endif Directives

ADDK3 .MACROK, src, dst
|

i dst = dst + src +k
.if .tms320C30

LDlsrc, dst

ADDI k, dst
.else

ADDI Kk, src, dst
.endif

.ENDM

For more information about conditional assembly directives, refer to
Section 6.5 on page 6-14.

Macro Language 6-15

Using Labels in Macros

6.6 Using Labels in Macros

All labels in an assembly language program must be unique. This includes
labels in macros. If a macro is expanded more than once, its labels are defined
more than once. Defining a label more than once is illegal. The macro
language provides a method of defining labels in macros so that the labels are
unigue. Simply follow the label with a question mark, and the assembler will
replace the question mark with a unique number. When the macro is expand-
ed, you will not see the unique number in the listing file. Your label will appear
with the question mark like it did in the macro definition. The syntax for a unique
label is:

label?

The following figure shows unique label generation in a macro.

Example 6—-13. Unique Labels in a Macro

6-16

MIN.MACRO src, dst
|

I dst = minimum(src, dst)

CMPI src, dst

BHS L?
LDI src, dst
L? ; unique label
.ENDM
MINRO, R1

Producing Messages in Macros

6.7 Producing Messages in Macros

The macro language supports three directives that enable you to define your
own assembly-time error and warning messages. These directives are espe-
cially useful when you want to create messages specific to your needs. The
last line of the listing file shows the error and warning counts. These counts
alert you to problems in your code and are especially useful during debugging.

.emsg sends error messages to the listing file. The .emsg directive gen-
erates errors in the same manner as the assembler does, incre-
menting the error count and preventing the assembler from pro-
ducing an object file.

.wmsg sends warning messages to the listing file. The .wmsg directive
functions in the same manner as the .emsg directive but also in-
crements the warning count.

.mmsg sends warnings or assembly-time messages to the listing file.
The .mmsg directive functions in the same manner as the .emsg
directive but does not set the error count.

Macro comments are comments that appear in the definition of the macro but
do not show up in the expansion of the macro. An exclamation pointin column
1 identifies a macro comment. If you want your comments to appear in the
macro expansion, precede your comment with an asterisk or semicolon.

Macro Language 6-17

Producing Messages in Macros

Example 6—14 shows user messages in macros and macro comments that will
not appear in the macro expansion.

Example 6—-14. Producing Messages in a Macro

TEST .MACRO X,y

|
I This macro checks for the correct number of parameters.
I The macro generates an error message

I if xand y are not present.

!

if ($symlen(x) == 0|$symlen(y) == 0) ; Test for
; proper input
.emsg "ERROR — missing parameter in call to TEST”
.mexit
.else

endif
if

endif
.endm

1 error, no warnings

6-18

Formatting the Output Listing

6.8 Formatting the Output Listing

Macros, substitution symbols, and conditional assembly directives may hide
information. You may need to see this hidden information, so the macro lan-
guage supports an expanded listing capability.

By default, the assembler shows macro expansions and false conditional
blocks in the list output file. You may want to turn this listing off or on within your
listing file. The assembler provides three sets of directives that enable you to
control the listing of this information.

[Macro and Loop Expansion Listing

.mlist

.mnolist

expands macros and .loop/.endloop blocks. The .mlist
directive prints to the listing all code encountered in those
blocks. By default, the assembler behaves as if you had used
.mlist.

suppresses the listing expansion of macros and .loop/
.endloop blocks.

(1 False Conditional Block Listing

fclist

fcnolist

causes the assembler to print to the listing file all false condi-
tional blocks that do not generate code. Conditional blocks
appear in the listing exactly as they appear in the source
code. By default, the assembler behaves as if you had used
fclist.

suppresses the listing of false conditional blocks. Only the
code in conditional blocks that actually assembles appears in
the listing. The .if, .elsif, .else, and .endif directives do not
appear in the listing.

[Substitution Symbol Expansion Listing

.Sslist

.ssnolist

expands substitution symbols in the listing. This is useful for
debugging the expansion of substitution symbols. The
expanded line appears below the actual source line.

turns off substitution symbol expansion in the listing. By
default, the assembler behaves as if you had used .ssnolist.

Macro Language 6-19

Using Recursive and Nested Macros

6.9 Using Recursive and Nested Macros

The macro language supports recursive and nested macro calls. This means
that you can call other macros from inside a macro definition. When you use
nested macros, you can call different macros from your macro definition. You
can nest macros up to 32 levels deep. When you use recursive macros, you
call a macro from its own definition (the macro calls itself).

When you create recursive or nested macros, you should pay close attention
to the arguments that you pass to macro parameters because the assembler
uses dynamic scoping for parameters. This means that the called macro uses
the environment of the macro from which it was called.

In the following example of nested macros, notice that the y in the in_block
macro hides the y in the out_block macro. However, the x and z from the
out_block macro are accessible to the in_block macro.

Example 6-15. Using Nested Macros

6-20

in_block .macroy,a
; visible parameters are y,a and

. ; x,z from the calling macro
.endm

out_block .macro x,y,z
; visible parameters are x,y,z

in_block x,y ; macro call with x and y as

; arguments

.endm
out_block : macro call

In the following example of recursive macros, the fact macro produces assem-
bly code necessary to calculate the factorial of n where n is an immediate
value. The fact macro stores that value at data memory address /oc. The fact
macro accomplishes this by calling fact1, which calls itself recursively.

Using Recursive and Nested Macros

Example 6—-16. Using Recursive Macros

FACT .MACRON, reg
|

I Compute factorial
I'n =integer constant
! reg = dst register

if n<2
LDI 1, reg
.else

LDl n, reg
.eval n-1,n
FACT1

.endif

.ENDM

FACT1 .MACRO
1

! Use calling environment of FACT macro

if n>1

MPYI n, reg

.eval n-1,n

FACT1 ; RECURSIVE CALL
.endif

.ENDM
Invocation of FACT:

FACT 7, RO

Macro Language 6-21

Macro Directives Summary

6.10 Macro Directives Summary

Table 6-2. Creating Macros

Mnemonic and Syntax

Description

macname .macro [parameter;]...[,parameter;]
.mlib filename
.mexit

.endm

Define macro
Identify library containing macro definitions
Go to .endm

End macro definition

Table 6—-3. Manipulating Substitution Symbols

Mnemonic and Syntax

Description

.asg [“|character string[”], substitution symbol
.eval well-defined expression, substitution symbol

.var substitution symbol(z ...,substitution symbol,]

Assign character string to substitution symbol
Perform arithmetic on numeric substitution symbols

Define local macro symbols

Table 6—4. Conditional Assembly

Mnemonic and Syntax

Description

.if well-defined expression

.elseif well-defined expression

.else

.endif
.loop [well-defined expression]

.break [well-defined expression]

.endloop

Assemble code block if the condition is true

Assemble code block if the .if condition is false and the
.elseif condition is true. The .elseif construct is optional.

Assemble code block if the .if condition is false. The
.else construct is optional.

End .if code block
Begin repeatable assembly of a code block

End .loop assembly if condition is true. The .break
construct is optional.

End .loop code block

6-22

Macro Directives Summary

Table 6-5. Producing Assembly-Time Messages

Mnemonic and Syntax

Description

.emsg
.Wmsg

.mmsg

Send error message to standard output
Send warning message to standard output

Send assembly-time message to standard output

Table 6-6. Formatting the Listing

Mnemonic and Syntax

Description

fclist
fenolist
.mlist
.mnolist
.sslist

.ssnolist

Allow false conditional code block listing (default)
Inhibit false conditional code block listing

Allow macro listings (default)

Inhibit macro listings

Allow expanded substitution symbol listing

Inhibit expanded substitution symbol listing (default)

Macro Language 6-23

Chapter 7

Archiver Description

The TMS320C3x/C4x archiver lets you combine several individual files into a
single file called an archive or a library . Each file within the archive is called
amember. Once you have created an archive, you can use the archiver to add
more files to the library, delete or replace existing members, or extract mem-
bers.

You can build libraries out of any type of files. Both the assembler and the linker
accept archive libraries as input; the assembler can use libraries that contain
individual source files, and the linker can use libraries that contain individual
object files.

One of the most useful applications of the archiver is to build a library of object
modules. For example, you could write several arithmetic routines, assemble
them, and then use the archiver to collect the object files into a single, logical
group. You can then specify an object library as linker input. The linker will
search through the library and include any members that resolve external ref-
erences.

You can also use the archiver to build macro libraries. You can create several
separate source files, each of which contains a single macro, and then use the
archiver to collect these macros into a single, functional group. The .mlib
assembler directive lets you specify the name of a macro library to the
assembler; during the assembly process, the assembler will search the speci-
fied library for the macros that you call. Chapter 6 discusses macros and macro
libraries in detail.

These are the topics covered in this chapter:

Topic Page
7.1 Archiver Development Flow -
7.2 Invoking the Archiver 7-E|
78 AEIVEF BEMUES oocooscoooo00000a000000000000000000000000000 7

7-1

Archiver Development Flow

7.1 Archiver Development Flow

Figure 7—1 shows the archiver’s role in the assembly language development
process. Both the assembler and the linker accept libraries as input.

Figure 7-1. Archiver Development Flow

C
Source
Files

eo o000
oo sco e

C Compiler

i

Assembler
Source

o0 0000
o0 0000

|
|
|
|
| D
l . L]
.+ Macro | ‘
| ¢ Library ¢ | Assembler
| |
I |
I |
| ! Library Build
| | Utility
|
i :
s : . Runtime
l . leLa}ryof: | * Support °
| . ?:”J:gt . I ’ Linker . Library «
. . _|_’ J J
' |
L L

+ Executable
* COFF

. File
Hex Conversion
Utility

EPROM
Programmer

se 0000

TMS320C3x
TMS320C4x

i

Debugging
Tools

7-2

7.2

Invoking the Archiver

Invoking the Archiver

The archiver can be invoked with command line options:

ar30 [-]Jcommand [option] libname [filename; ... filenamep]

or with a command file:

ar30 @command_file

ar30
libname

filename

command

is the command that invokes the archiver.

names an archive library. If you don’t specify an extension for
libname, the archiver uses the default extension .lib.

names individual member files that are associated with the
library. If you don’t specify an extension for a filename, the
archiver uses the default extension .obj.

tells the archiver how to manipulate the library members. A
command can be preceded by an optional hyphen. You must
use one of the following commands when you invoke the
archiver, but you can use only one command per invocation.

—a

adds the specified files to the library. Note that this
command does not replace an existing member that
has the same name as an added file; it simply ap-
pends new members to the end of the archive. It is
possible to have several members with the same
name in an archive. If you want to replace existing
members, use the r command.

deletes the specified members from the library.

replaces the specified members in the library. If you
don't specify any filenames, the archiver replaces the
library members with files of the same name in the
current directory. If the specified file is not found in the
library, the archiver adds it instead of replacing it.

prints a table of contents of the library. If you specify
filenames, only those files are listed. If you don't spec-
ify any filenames, the archiver lists all library mem-
bers.

Archiver Description 7-3

Invoking the Archiver

7-4

—u only replaces the specified members in the library if
the replacements are newer (have a more recent
modification date). This command should be used in
conjunction with the r command.

—X extracts the specified files. If you don’t specify mem-
ber names, the archiver extracts all library members.
When the archiver extracts a member, it simply copies
the member into the current directory; it doesn't re-
move it from the library.

In addition to one of the commands, you can specify the following options:

—e tells the archiver not to use the default extension .obj
for member names.

—q (quiet) suppresses the banner and status messages.

-s prints alist of the global symbols that are defined in the
library. (This option is valid only with the —a, —r, and —d
commands.)

-V (verbose) provides a file-by-file description of the

creation of a new library from an old library and its
constituent members.

When invoking the archiver with a command file, the @ character must be spe-
cified before the command file name. The command file can specify archiver
commands, options, library names, and file names. Comments can only ap-
pear in the command file on a separate line beginning with a semicolon (;). The
command file should be of the form:

; comments

[command|[option][...]
libname

filename;

filename,

Note: Naming Library Members

Itis possible (but not desirable) for a library to contain several members with
the same name. If you attempt to delete, replace, or extract a member, and
the library contains more than one member with the specified name, then the
archiver deletes, replaces, or extracts the first member with that name.

Archiver Examples

7.3 Archiver Examples
Here are some examples of using the archiver.

O Examplel
This example creates a library called function.lib that contains the files
sine.obj, cos.obj, and flt.obj.

ar30 —a function sine cos flt

TMS320C3x/4x Archiver Version x.xx

Copyright (c) 1987-1997 Texas Instruments Incorporated
==> new archive ‘function.lib’
==> building archive ’function.lib’

Because these examples use the default extensions (.lib for the library and
.obj for the members), it is not necessary to specify them.
1 Example 2

You can print a table of contents of function.lib with the —t option:
ar30 —t function

TMS320C3x/4x Archiver Version x.xx
Copyright (c) 1987-1997 Texas Instruments Incorporated
FILE NAME SIZE DATE
sine.obj 248 Mon Nov 19 01:25:44 1997
cos.obj 248 Mon Nov 19 01:25:44 1997
flt.obj 248 Mon Nov 19 01:25:44 1997
] Example 3

You can explicitly specify extensions if you don’t want the archiver to use
the default extensions; for example:

ar30 —av function.fn sine.asm cos.asm flt.asm
TMS320C3x/4x Archiver Version x.xx
Copyright (c) 1987-1997 Texas Instruments Incorporated
==> add 'sine.asm’
==> add 'cos.asm’
==> add 'flt.asm’
==> building archive ’function.fn’

This creates a library called function.fn that contains the files sine.asm,
cos.asm, and flt.asm. (—v is the verbose option.)

1 Example 4

If you want to add new members to the library, specify

ar30 —as function tan.obj arctan.obj area.obj
TMS320C3x/4x Archiver Version x.xx
Copyright (c) 1987-1997 Texas Instruments Incorporated
==> symbol defined: 'K2’
=> symbol defined: 'Rossignol’
==> building archive ’function.lib’

Archiver Description 7-5

Archiver Examples

7-6

Because this example doesn't specify an extension for the libname, the
archiver adds the files to the library called function.lib. If function.lib didn’t
exist, the archiver would create it. (The —s option tells the archiver to list the
global symbols that are defined in the library.)

Example 5

If you want to modify a member in a library, you can extract it, edit it, and
replace it. In this example, assume there’s a library named macros.lib that
contains the members push.asm, pop.asm, and swap.asm.

ar30 —x macros push.asm

The archiver makes a copy of push.asm and places it in the current direc-
tory; itdoesn’tremove push.asm from the library, though. Now you can edit
the extracted file. To replace the copy of push.asm that’s in the library with
the edited copy, enter

ar30 —r macros push.asm

Chapter 8

Linker Description

The TMS320C3x/C4x linker creates executable modules by combining COFF
object files. As the linker combines object files, it performs the following tasks:

[It allocates sections into the target system’s configured memory.
1 Itrelocates symbols and sections to assign them to final addresses.
1 Itresolves undefined external references between input files.

The linker supports a command language that controls memory configuration,
output section definition, and address binding. The language supports
expression assignment and evaluation and provides two powerful directives,
MEMORY and SECTIONS, that allow you to:

g Define a memory model that conforms to target system memory,

[0 Combine object file sections,

[Allocate sections into specific areas of memory, and

1 Define or redefine global symbols at link time.

Topic Page
8.1 Linker Development Flow i 842
8.2 Invokingthe Linker BE
8.3 Linker Options oot 86
8.4 Linker Command Files 8118
8.5 ObjectLibraries 8121 |
8.6 The MEMORY Dif€CtIVEc.c''''eeeeniinnnnnnnns. 4-23]
8.7 The SECTIONS DIreCtivec..uuuiiiiiiiinniniiiiennnnn. §-27 |
8.8 Specifying a Section’s Runtime Address ~ 8:35 |
8.9 Using UNION and GROUP Statements 8139 |
8.10 OVEray PAgESo'eeee et e §-42]
8.11 Default Allocation i 8[a7]
8.12 Special Section Types (DSECT, COPY, and NOLOAD) 8
8.13 Assigning Symbols at Link Time i 8-50 |
8.14 Creating and Filling Holes —ooviuiiuiiaan... 854 |
8.15 Partial (Incremental) Linking — i 8-58 |
8.16 LinkingC Code i 8-60 |
8.17 Linker Example (64 |

Linker Development Flow

8.1 Linker Development Flow

8-2

Figure 8-1 illustrates the linker’s role in the assembly language development
process. The linker accepts several types of files as input, including object
files, command files, libraries, and partially linked files. The linker creates an
executable COFF object module that can be downloaded to one of several de-
velopment tools or executed by a TMS320C3x/C4x device.

Input files generated by TMS320C3x/C4x tools can be created on any sup-
ported host machine and then linked by the TMS320C3x/C4x linker on a
different machine. For example, an input file assembled by the
TMS320C3x/C4x assembler on a PC can be linked by the TMS320C3x/C4x
linker on a SPARCstation. If a TMS320C3x/C4x tool was not used to create
an input file, the file must have the appropriate byte—swapping done before it
can be linked on a different machine.

Linker Development Flow

Figure 8-1. Linker Development Flow

. c .
¢ Source 3
. Files .
« Macro [
. Source
: Files 3
| C Compiler
v r—— S —
. | . . |
Archiver | + Assembler « |
| : Source ; |
| |
¢ Macro o | :
+ Library ? [Assembler :
|
|
|
Archiver : LierJatl_?{ Build
ility
| %
; ; I
* Library of ¢ | . guntlme .
e Object - : upport .
« Files . .

- Executable
* COFF

|
|
|
_ | File
Hex Conversion |
Utility ._____ﬂ____J

EPROM TMS320C3x
Programmer TMS320C4x

*

Debugging
Tools

Linker Description 8-3

Invoking the Linker

8.2 Invoking the Linker

The general syntax for invoking the linker is:

| Ink30 [—options] filenamey ... filenamey, |

Ink30 is the command that invokes the linker.

options can appear anywhere on the command line or in a linker
command file. (Options are discussed in Section 8.3.)

filenames can be object files, linker command files, or archive libraries.
The default extension for all input files is .o0bj; any other exten-
sion must be explicitly specified. The linker can determine
whether the input file is an object file or an ASCI! file that con-
tains linker commands. The default output filename is a.out.

There are three methods for invoking the linker:

(O Specify options and filenames on the command line. This example links
two files, filel.obj and file2.0bj, and uses the —o option to create an output
module named link.out.

Ink30 filel1.obj file2.0bj —o link.out

[0 EntertheInk30 command with no filenames and no options; the linker will
prompt for them:
Command files :
Obiject files [.obj] :
Output files [] :
Options :
For command files, enter one or more command file names.

For objectfiles, enter one or more object file names. The default extension
is .obj. Separate the filenames with spaces or commas; if the last
character is a comma, the linker will prompt for an additional line of object
file names.

The output file is the name of the linker output module. This overrides any
—0 options entered with any of the other prompts. If there are no —o options
and you do not answer this prompt, the linker will create an object file with
the default filename of a.out.

The options prompt is for additional options, although you can also enter
options in a command file. Enter them with hyphens, just as you would on
the command line.

(1 Putfilenames and options in a linker command file. For example, assume
the file linker.cmd contains the following lines:
-0 link.out

filel.obj
file2.0bj

Invoking the Linker

Now you can invoke the linker from the command line; specify the com-
mand file name as an input file:

Ink30 linker.cmd

When you use a command file, you can also specify other options and files
on the command line. For example, you could enter:

Ink30 —m link.map linker.cmd file3.0bj

The linker reads and processes a command file as soon as it encounters it
onthe command line, soitlinks thefilesin this order: file1.0bj, file2.obj, and
file3.0bj. This example creates an output file called link.out and a map file
called link.map.

Note: Version Number Not Required for Linker

The linker does not have a version option to specify the target CPU. The
target CPU type is encoded in the object files and the linker automatically
links for the correct processor. The linker will issue an error message if you
attempt to link object files assembled for different processors.

Linker Description 8-5

Linker Options

8.3 Linker Options

Linker options control linking operations. They can be placed on the command
line or in a command file. All linker options must be preceded by a hyphen (-).
The order in which options are specified is unimportant, except for the —I and
—i options. Options are separated from arguments (if they have them) by an
optional space. Table 8—1 summarizes the linker options.

Table 8-1. Linker Options Summary

8-6

Option Description

—-a Produce an absolute, executable module. This is the default; if neither
—a nor —r is specified, the linker acts as if —a is specified.

—-ar Produce a relocatable, executable object module.

—b The linker will not merge any duplicate symbol table entries that may ex-
ist from multiple files. This has the effect of making the linker run faster
at the expense of a larger COFF output file.

—C Use linking conventions defined by the ROM autoinitialization model of
the C compiler.

—cr Use linking conventions defined by the RAM autoinitialization model of
the C compiler.

—e Defines a global symbolthat specifies the primary entry point for the out-
put module.

—f fill value Set the default fill value for holes within output sections; fill value is a
4-byte constant.

—g symbol Maintain the specified symbol as a global symbol, regardless of the use
of the —h option.

-h Make all global symbols static.

—heap size Set heap size (for the C memory pool command malloc()) to size words
and define the global symbol _SYSMEM_SIZE to specify heap size.
Default = 1K words

—heap8 size Set the size for the 'C32’s 8—bit memory heap, and define the global

—heapl6 size

symbol _SYSMEMS8_SIZE to that value. The size and the symbol are
used by the 8—bit memory routines. Defaults to 0 words and an unde-
fined symbol if the 8—bit memory routines are not used.

Set the size for the 'C32’s 16—bit memory heap, and define the global
symbol _SYSMEM16_SIZE to that value. The size and the symbols are
used by the 16—bit memory routines. Defaults to 0 words and an unde-
fined symbol if the 16—bit memory routines are not used.

—i dir Alter the library-search algorithm to look in dir before looking in the
default location. This option must appear before the —I option.
—| filename 1 Name an archive library file as linker input; filenameis an archive library

—m filename T

—o filename t

name.

Produce a map or listing of the input and output sections, including
holes, and place the listing in filename.

Name the executable output module. The default filename is a.out.

Linker Options

—q Request a quiet run (suppress the banner). Must be the first argument
on the command line.

- Retain relocation entries in the output module.

-S Strip symbol table information and line number entries from the output
modules.

—stack size Sets C system stack size to size words and defines a global symbolthat
specifies the stack size. Default = 1K words

—u symbol Place an unresolved external symbol into the output module’s symbol
table.

-vn Generate version n COFF format, where nis 0, 1, or 2. The default is
2.

—-w Generate a warning when an output section that is not specified with the

SECTIONS directive is created.

—X Forces rereading of libraries. Resolves “back” references.

T The filename must follow operating system conventions

8.3.1 Relocation Capability (—a and —r Options)

One of the tasks the linker performs is relocation. Relocation is the process of
adjusting all references to a symbol when the symbol’s address changes. The
linker supports two options (—a and —r) that allow you to choose whether you
will produce an absolute or a relocatable output module. Default is —a.

[Producing an Absolute Output Module (—a Option)

When you use the —a option without the —r option, the linker produces an
executable, absolute output module. Absolute files contain no relocation
entries. Executable files contain the following:

B special symbols defined by the linker (subsection 8.13.4 on page 8-53
describes these symbols),

B an optional header that describes information such as the program
entry point, and

B no unresolved references.

This example links filel.obj and file2.0bj and creates an absolute output
module called a.out:

Ink30 —a filel.obj file2.0bj
Producing a Relocatable Output Module (—r Option)

When you use the —r option without the —a option, the linker retains reloca-
tion entries in the output module. If the output module will be relocated (at
loadtime) or relinked (by another linker execution), use —r to retain the relo-
cation entries.

The linker produces an unexecutable file when you use the —r option with-
out—a. Afile that is not executable does not contain special linker symbols

Linker Description 8-7

Linker Options

or an optional header. The file may contain unresolved references, but
these references do not prevent creation of an output module.

This example links file1.obj and file2.0bj and creates a relocatable output
module called a.out:

Ink30 —r filel.obj file2.0bj

The output file a.out can be relinked with other object files or relocated at
loadtime. (Linking a file that will be relinked with other files is called partial
linking. For more information, see Section 8.15 on page 8-58.)

Producing an Executable Relocatable Output Module (—ar)

If you invoke the linker with both the —a and —r options, the linker produces
an executable, relocatable object module. The output file contains the
special linker symbols and an optional header. All symbol references are
resolved (this is normal for a relocatable file); however, the relocation
information is retained.

This example links filel.obj and file2.obj and creates an executable,
relocatable output module called xr.out:

Ink30 —ar filel.obj file2.0bj —0 xr.out

Note that you can string the options together (Ink30 —ar) or you can enter
them separately (Ink30 —a —r).

Relocating or Relinking an Absolute Output Module

The linker issues a warning message (but continues executing) when it
encounters a file that contains no relocation or symbol table information.
Relinking an absolute file can be successful only if each input file contains
no information that needs to be relocated (that is, each file has no
unresolved references and is bound to the same virtual address that it was
bound to when the linker created it).

Linker Options

8.3.2 Disable Merge of Symbolic Debugging Information (b Option)

By default, the linker eliminates duplicate entries of symbolic debugging
information. Such duplicate information is commonly generated when a C pro-
gram is compiled for debugging. For example:

—[header.h] -
typedef struct

<define some structure members>
} XYZ;

—[fle]-
#include “header.h”

—-[f2.c]-
#include “header.h”

When these files are compiled for debugging, both f1.obj and f2.o0bj will have
symbolic debugging entries to describe type XYZ. For the final output file, only
one set of these entries is necessary. The linker will eliminate the duplicate en-
tries automatically.

Using the —b option causes the linker to keep such duplicate entries. Keeping
these entries allows the linker to run faster and use less machine memory at
the expense of producing a larger COFF output file.

8.3.3 C Language Options (—c and —cr Options)

The —c and —cr options cause the linker to use linking conventions that are
required by the TMS320C3x/C4x C compiler.

[The —c option tells the linker to use the ROM autoinitialization model.
[The —cr option tells the linker to use the RAM autoinitialization model.

For more information about linking C code, see Section 8.16 on page 8-60.

8.3.4 Define an Entry Point (—e global symbol Option)

The memory address that a program begins executing fromis called the entry
point. When a loader loads a program into target memory, the program
counter must be initialized to the entry point; the PC then points to the begin-
ning of the program.

The linker can assign one of four possible values to the entry point. These val-
ues are listed below in the order in which the linker tries to use them. If you use

Linker Description 8-9

Linker Options

one of the first three values, it must be an external symbol in the symbol table.
Possible entry point values include:

(1 Thevalue specified by the —e option. The syntaxis—e global symbolwhere
global symboldefines the entry point and must appear as an external sym-
bol in one of the input files to be linked.

(1 The value of symbol _c_int00 (if present). c_intO0 must be the entry
point if you are linking code produced by the C compiler.

(4 The value of symbol _main (if present).
[Zero (default value).

This example links filel.obj and file2.0bj and sets the entry point to the value
of the symbol begin. This symbol must be defined as external in filel or file2.

Ink30 —e begin filel.obj file2.0bj

8.3.5 Set Default Fill Value (—f cc Option)

The —f option fills the holes formed within output sections or initializes uninitial-
ized sections when they are combined with initialized sections. This allows you
to initialize memory areas during link time without reassembling a source file.
The argument cc is a 4-byte constant (up to eight hexadecimal digits). If you
do not use —f, the linker uses 0 as the default fill value.

This example fills holes with the hexadecimal value AABBCCDDh:
Ink30 —f OAABBCCDDh filel.obj file2.obj

For more information about holes, see Section 8.14 on page 8-54.

8.3.6 Make All Global Symbols Static (—h Option)

8-10

The —h option makes output global symbols static. This is useful when you are
using partial linking to link related object files into self-contained modules, then
relinking the modules into a final system. If there are global symbols in one
module that have the same name as global symbols in other modules, but you
want to treat them as separate symbols, use the —h option when building the
modules. The global symbols in the modules, which would normally be visible
to the other modules and cause possible redefinition problems in the final link,
are made static so that they are not visible to the other modules.

For example, assume b1l.obj, b2.0bj, and b3.obj are related and reference a
global variable GLOB. Also assume that d1.obj, d2.obj, and d3.obj are related
and also reference a separate global variable GLOB. You can link the related
files with the following commands:

Linker Options

Ink30 —h —r b1.0obj b2.0bj b3.0bj —o bpart.out
Ink30 —h —r d1.obj d2.0bj d3.0bj —o dpart.out

The —h option guarantees that bpart.out and dpart.out will not have global
symbols and therefore two distinct versions of GLOB exist. The —r option is
used to allow bpart.out and dpart.out to retain their relocation entries. These
two partially linked files can then be safely linked with the following command:

Ink30 bpart.out dpart.out —o system.out

For more information about partial linking, see Section 8.15 on page 8-58.

8.3.7 Keep a Global Symbol (-g symbol Option)

The —g option allows you to keep the named symbol as a non—static global
symbol, despite the use of the —h option. This allows the sharing of specific
symbols across multiple object files with variables of the same name. Any sym-
bols of the specified name will be visible to all modules, and an error will result
if the symbol has a definition in more than one file.

8.3.8 Define Heap Size (—heap size, —heap8 size, and —heapl6 size Options)

The TMS320C3x/C4x C compiler uses an uninitialized section called .sysmem
for the C runtime memory pool used by malloc(). You can set the size of this
memory pool at link time by using the —heap option. Specify the size in words
as a four byte constant immediately after the option:

Ink30 —heap 0x4000 /* defines a 256K byte heap (.sysmem section)*/

The linker creates the .sysmem section only if there is a .sysmem section in
an input file.

The linker also creates a global symbol __ SYSMEM_SIZE and assigns it a
value equal to the size of the heap. The default size is 1K words.

To support the TMS320C32, the *C3x runtime support library adds 8-bit and
16-bit versions of the dynamic memory management functions. These func-
tions are analogous to the 32-bit versions described in Chapter 5, Runtime
Support Functions, of the TMS320C3x/C4x Optimizing C Compiler User’s
Guide. The only difference is that the 8-bit and 16-bit versions allocate space
from the .sysm8 and .sysm16 uninitialized sections rather than the .sysmem
section.

Linker Description 8-11

Linker Options

void *calloc8(size_t _num, size_t _size);
void free8(void *_ptr);

void *malloc8(size_t _size);

void *bmalloc8(size_t _size);

void minit8(void);

void *realloc8(void *_ptr, size_t _size);
void *callocl6(size_t _num, size_t _size);
void freel6(void *_ptr);

void *mallocl6(size_t _size);

void *bmallocl6(size_t _size);

void minitl6(void);

void *reallocl6(void *_ptr, size_t _size);

The sizes of the .sysm8 and .sysm16 sections can be set by using the —heap8
and —heap16 linker options, respectively. If the memory management func-
tions are used but the —heap8 and —heapl16 options are not used, the default
size of each heap is 1K words. If the memory management functions are not
used, the linker will not allocate the .sysm8 and .sysm16 sections. If the
sections are created, the linker sets the constant heap size values in the
_SYSMEMS8_SIZE and _SYSMEM16_SIZE symbols, respectively. The
stdlib.h header file should be included in any file that uses these new functions.

For more information about linking C code, see Section 8.16 on page 8-60.

8.3.9 Alter the Library Search Algorithm (i dir & —I filename /C_DIR)

8-12

Usually when you want to specify a library input, you simply enter the library
name as you would any other input filename; the linker looks for the library in
the current directory. For example, suppose the current directory contains the
library object.lib. Assume that this library defines symbols that are referenced
in the file filel.obj. This is how you link the files:

Ink30 filel.obj object.lib

If you want to use a library that is not in the current directory, use the —I (lower-
case “L") linker option. The syntax for this option is —I filename. The filename
is the name of an archive library; the space between —I and the filename is op-
tional.

You can augment the linker’s directory search algorithm by using the —i linker
option or the environment variable. The linker searches for any file specified
with —I in the following order:

1) It searches directories named with the —i linker option.

2) It searches directories named with the environment variable C_DIR.

3) IfC_DIRis notset, it searches directories named with the assembler’s en-
vironment variable, A_DIR.

4) It searches the current directory.

Linker Options

8.3.10 —i Linker Option

The —i option names an alternate directory that contains object libraries. The
syntax for this option is —i dir. dirnames a directory that contains object librar-
ies; the space between —i and the directory name is optional. When the linker
is searching for object libraries named with the —| option, it searches through
directories named with —i first. Each —i option specifies only one directory, but
you can use several —i options per invocation. When you use the —i option to
name an alternate directory, it must precede the —| option on the command line
or in a command file.

As an example, assume that there are two archive libraries called r.lib and
lib2.lib. The table below shows the directories that r.lib and lib2.lib reside in,
how to set environment variable, and how to use both libraries during a link.
Select the row for your operating system:

Sample Pathname Invocation Command
DOS \c30 and\c302 Ink30 f1.0bj f2.0bj —i\c30 —i\c302 —I r.lib —I lib2.lib
UNIX /c30 and /c302 Ink30 f1.0bj f2.0bj —i/c30 —i/c302 —I r.lib —I lib2.lib

8.3.11 Environment Variable (C_DIR or A_DIR)

An environment variable is a system symbol that you define and assign a string
to. The linker uses an environment variable named C_DIR to name alternate
directories that contain object libraries. The command for assigning the envi-
ronment variable is:

Sample Pathname Invocation Command
DOS \dsp and \dsp2 set C_DIR=\dsp;\dsp2
Ink30 f1.0bj f2.0bj I r.lib —I lib2.lib
UNIX /dsp and /dsp2 setenv C_DIR /dsp:/dsp2

Ink30 f1.0bj f2.0bj I r.lib —I lib2.lib

The pathnames are directories that contain object libraries. Use the —| option
on the command line or in a command file to tell the linker which libraries to
search for.

The assembler uses an environment variable named A_DIR to name alternate
directories that contain copy/include files or macro libraries. If C_DIR is not set,
the linker will search for object libraries in the directories named with A_DIR.
Section 8.5 (page 8-21) contains more information about object libraries.

Linker Description 8-13

Linker Options

8.3.12 Create a Map File (—m filename Option)

The —m option creates a link map listing and puts it in filename. This map de-
scribes:

[Memory configuration
(1 Input and output section allocation
[0 The addresses of external symbols after they have been relocated

The map file contains the name of the output module and the entry point; it may
also contain up to three tables:

(O A table showing the memory configuration, if any nondefault memory is
specified.

[Atable showing the linked addresses of each output section and the input
sections that make up the output sections.

[Atable showing each external symbol and its address. This table has two
columns: the left column contains the symbols sorted by name, and the
right column contains the symbols sorted by address.

This example links filel.obj and file2.obj and creates a map file called map.out.
Ink30 filel.obj file2.0bj —m map.out

Section 8.17 (page 8-64) shows an example of a map file.

8.3.13 Name an Output Module (-o filename Option)

The linker creates an executable output module. If you do not specify a file-
name for the output module, the linker gives it the default name a.out. If you
want to the output module to have another name, use the —o option. The file-
name is the new output module name.

This example links file1.obj and file2.obj and creates an output module named
run.out.

Ink30 —o run.out filel.obj file2.0bj
8.3.14 Specify a Quiet Run (—q Option)
The —q option suppresses the linker’s banner when —q is the first option on the

command line or in a command file. This option is useful for batch operation.

8.3.15 Strip Symbolic Information (—s Option)

The —s option creates a smaller output module by omitting symbol table infor-
mation and line number entries. The —s option is useful for production applica-
tions when you must create the smallest possible output module.

8-14

Linker Options

This example links file1.obj and file2.0bj and places them in an output module,
stripped of line numbers and symbol table information, named nolink.out.

Ink30 —o0 nolink.out —s filel.obj file2.0bj

Note that using the —s option limits later use of a symbolic debugger and may
prevent a file from being relinked.

8.3.16 Define Stack Size (—stack size Option)

The TMS320C3x/C4x C compiler uses an uninitialized section, .stack, to
allocate space for the runtime stack. You can set the size of the .stack section
at link time with the —stack option. Specify the size in words as a constant
immediately after the option:

Ink30 —stack 0x1000 /* defines a 4K stack (.stack section) */

If you specified a different stack size in an input section, the input section stack
size isignored. Any symbols defined in the input section remain valid; only the
stack size will be different.

When the linker defines the .stack section, it also defines a global symbol,
__STACK_SIZE, and assigns it a value equal to the size of the section. The
default stack size is 1K words.

8.3.17 Introduce an Unresolved Symbol (-u symbol Option)

The —u option introduces an unresolved symbol into the linker’s symbol table.
This forces the linker to search through a library and include the module that
defines the symbol. Note that the linker must encounter the —u option before
it links in the member that defines the symbol.

For example, suppose a library named sym./ib contains a member that defines
the symbol symtab; none of the object files you are linking reference to symtab.
However, suppose you plan to relink the output module, and you would like to
include the library member that defines symtab in this link. Using the —u option
as shown below forces the linker to search sym.lib for the member that defines
symtab and to link in the member.

Ink30 —usymtab filel.obj file2.0bj sym.lib

If you do not use —u, this member would not be included because there is no
explicit reference to it from file1.obj or file2.0bj.

Linker Description 8-15

Linker Options

8.3.18 COFF Format Version (-v n Option)

The —v option allows you to specify the version of COFF used in the created
executable. ncan be 0, 1, or 2, with 2 as the default. Previous versions of the
tools supported only COFF version 0. This option is available for backward
compatibility and may be removed in a future release. For a description of
COFF, see Appendix A.

The COFF version used to create the executable must also be supported by
any debugger or simulator used. Note that the current simulators only support
COFF version 0. The following debuggers support COFF versions 1 and 2:

Debugger Version
C3x XDS510 5.20
C3x EVM 5.20
C4x XDS510 2.50

If you are not using using one of these debuggers, you must use the —v0 option
when creating your final executable. To attain a debugger or simulator, see the
Microprocessor Development Systems Customer Support Guide provided
with this product.

8.3.19 Warning Switch (—w Option)

The —w option generates a warning message if an output section is created
that is not explicitly specified with the SECTIONS directive. For example:

—[flLasm] -

.sect “xsect”
.word 0

—[link.cmd] —

SECTIONS
{

<no output section specifications reference xsect>
}
The linker creates an output section called xsect that consists of the input sec-
tion xsect from other object files; the linker then uses the default allocation
rules to allocate this output section into memory. If you used the —w switch
when linking, the preceding example would generate the message:

>> warning: creating output section xsect without SECTIONS specification

8-16

Linker Options

8.3.20 Exhaustively Read Libraries (—x option)

The linker normally reads inputfiles, archive libraries included, only once when
they are encountered on the command line or in the command file. When an
archive is read, any members that resolve references to undefined symbols
are included in the link. If an input file later references a symbol defined in a
previously read archive library (this is called a back reference), the reference
will not be resolved.

You can force the linker to repeatedly reread all libraries with the —x option. The
linker will continue to reread libraries until no more references can be resolved.
For example, if a.lib contains a reference to a symbol defined in b.lib, and b.lib
contains a reference to a symbol defined in a.lib, you can resolve the mutual
dependencies by listing one of the libraries twice, as in:

Ink30 —la.lib —Ib.lib —la.lib

or you can force the linker to do it for you:

Ink30 —x —la.lib —Ib.lib

Linker Description 8-17

Linker Command Files

8.4 Linker Command Files

Linker command files allow you to put linking information in a file; this is useful
when you often invoke the linker with the same information. Linker command
files are also useful because they allow you to use the MEMORY and
SECTIONS directives to customize your application. You must use these di-
rectives in a command file; you cannot use them on the command line.
Command files are ASCII files that contain one or more of the following:

(1 Inputfilenames, which specify object files, archive libraries, or other com-
mand files. (If a command file calls another command file as input, this
statement must be the /ast statement in the calling command file. The
linker does not return from called command files.)

[Linkeroptions, which can be used in the command file in the same manner
that they are used on the command line.

[The MEMORY and SECTIONS linker directives. The MEMORY directive
allows you to specify the target memory configuration. The SECTIONS di-
rective controls how sections are built and allocated.

[Assignment statements, which define and assign values to global
symbols.

To invoke the linker with a command file, enter the Ink30 command and follow
it with the name of the command file:

Ink30 command file name

The linker processes input files in the order that it encounters them. If the linker
recognizes a file as an object file, it links the file. Otherwise, it assumes that
a file is a command file and begins reading and processing commands from
it. Note that command filenames are upper/lower-case sensitive, regardless
of the system used.

Example 8-1 shows a sample linker command file called /link.cmd.
(Subsection 2.4.2 on page 2-15 contains another example of a linker com-
mand file.)

Example 8—1. An Example of a Linker Command File

8-18

I* Sample Linker Command File */
[FHRRRRRR Fhkkkk kR ko koo |

a.obj [* First input filename */

b.obj [* Second input filename */

—0 prog.out [* Option to specify output file */

—m prog.map /* Option to specify map file */

Linker Command Files

Example 8—1 contains only filenames and options. (Note that you can place
comments in a command file by delimiting them with /* and */.) To invoke the
linker with this command file, enter:

Ink30 link.cmd

You can also place other parameters on the command line when you use a
command file:

Ink30 —r link.cmd c.obj d.obj

The linker processes the command file as soon as it encounters it, so a.obj and
b.obj are linked into the output module before c.obj and d.obj.

You can also specify multiple command files. If, for example, you have a file
called names.Ist that contains filenames and another file called dir.cmd that
contains linker directives, you can enter:

Ink30 names.lIst dir.cmd

A command file can call another command file; this type of nesting is limited
to 16 levels. If acommand file names another command file as input, this state-
ment must be the /ast statement in the calling command file.

Blanks and blank lines that appear in a command file are insignificant except
as delimiters. This also applies to the format of linker directives in a command
file. Example 8-2 shows a sample command file that contains linker direc-
tives. (Linker directive formats are discussed in later sections.)

Example 8-2. A Command File With Linker Directives

[FFFRKK ST IRk dkkkkkkdkkkokkok dokokok * * xxxxxxnxnx/

/* Sample Linker Command File with Directives */
[rrrkik Rk kb ke |
a.obj b.obj c.obj /* Input filenames */
—0 prog.out —m prog.map /* Options */
MEMORY /* MEMORY directive */
RAM: o0 =100h 1 =0100h
ROM: o0 =01000h 1 =0100h
}
SECTIONS [* SECTIONS directive */
{
text: > ROM
.data: > ROM
.bss: > RAM
}

Linker Description 8-19

Linker Command Files

8-20

Note: Command Files Are Always Case Sensitive

Within a command file, all filenames are case sensitive, even on systems
where case sensitivity does not apply to filenames (DOS,VMS.) If an input
file appears more than once in a command file, its case must be the same
in all instances.

The following names are reserved as key words for linker directives. Do not
use them as symbol or section names in a command file.

Reserved Keywords

align GROUP origin
attr | (lowercase “L") ORIGIN
ATTR len page
ALIGN length PAGE
block LENGTH run
BLOCK load RUN
COPY LOAD SECTIONS
DSECT MEMORY type

f NOLOAD TYPE
fill 0 UNION
FILL org

Object Libraries

8.5 Object Libraries

An object library is a partitioned archive file that contains complete object files
as members. Usually, a group of related modules are grouped together into
a library. When you specify an object library as linker input, the linker includes
any members of the library that define existing unresolved symbol references.
You can use the TMS320C3x/C4x archiver to build and maintain archive
libraries; Chapter 7 contains more information about the archiver.

Using object libraries can reduce linking time and can reduce the size of the
executable module. If a normal object file is specified at link time, it is linked
whether it is used or not; however, if that same file is placed in an archive
library, it is included only if it is referenced.

The order in which libraries are specified is important because the linker
includes only those members that resolve symbols that are undefined when
the library is searched. The same library can be specified as often as neces-
sary; it is searched each time it is included. An alternative is to use the —x
option, which continually searches all libraries until all references are resolved.
A library has a table that lists all external symbols defined in the library; the
linker searches through the table until it determines that it cannot use the
library to resolve any more references.

The following example links several object files and libraries; assume the fol-
lowing:

[Input files f1.0bj and f2.0bj both reference an external function named
cirscr.

Input file f1.obj references the symbol origin.

Input file f2.0bj references the symbol fillclr.

Library libc.lib, member 0, contains a definition of origin.

Library liba.lib, member 3, contains a definition of fillclr.

Member 1 of both libraries defines clrscr.

oo

If you enter
Ink30 f1.0bj liba.lib f2.0bj libc.lib

then:

1 Member 1 of liba.lib satisfies both references to clrscr, because the library
is searched and clrscris defined before f2.0bj references it.

1 Member 0 of libc.lib satisfies the reference to origin.

J Member 3 of liba.lib satisfies the reference to fillclr.

Linker Description 8-21

Object Libraries

8-22

If, however, you enter:
Ink30 f1.0bj f2.0bj libc.lib liba.lib

then the references to clrscr are satisfied by member 1 of libc.lib.

If none of the linked files reference symbols defined in a library, you can use
the —u option to force the linker to include a library member. The next example
creates an undefined symbol rout1 in the linker’s global symbol table:

Ink30 —u routl libc.lib

If any members of libc.lib define routl, then the linker includes those members.
Note that it is not possible to control the allocation of individual library mem-
bers; members are allocated according to the SECTIONS directive default al-
location algorithm.

Subsection 8.3.9 (page 8-12) describes methods for specifying directories that
contain object libraries.

The MEMORY Directive

8.6 The MEMORY Directive

The linker determines where output sections should be allocated into memory;
the linker must have a model of target memory to accomplish this task. The
MEMORY directive allows you to specify a model of target memory, so you can
define the types of memory your system contains and the address ranges they
occupy. The linker maintains the model as it allocates output sections, and
uses the model to determine which memory locations in the target system can
be used for object code.

The memory configurations of TMS320 systems differ from application to ap-
plication. The MEMORY directive allows you to specify a variety of configura-
tions to meet all applications. After you use the MEMORY directive to define
a memory model, you can use the SECTIONS directive to allocate output sec-
tions into defined memory.

8.6.1 Default Memory Model

If you do not use the MEMORY directive, the linker uses a default memory
model that is based on the TMS320C3x/C4x architecture. This model as-
sumes thatthe full 32-bitaddress space (232 locations) is present in the system
and available for use.

8.6.2 MEMORY Directive Syntax

The MEMORY directive identifies ranges of memory that are physically pre-
sent in the target system and can be used by a program. Each memory range
has a name, a starting address, and a length.

When you use the MEMORY directive, be sure to identify all the memory
ranges that are available to load object code into. Memory that is defined by
the MEMORY directive is configured memory, any memory that you do not ex-
plicitly account for with the MEMORY directive is unconfigured memory. The
linker does not place any part of a program into unconfigured memory. You can
represent nonexistent memory spaces by simply not including an address
range in a MEMORY directive statement.

The MEMORY directive is specified in a command file by the word MEMORY
(uppercase), followed by a list of memory range specifications enclosed in
braces. The MEMORY directive in Example 8-3 defines a system that has 4K
words of ROM at address 0 and 8K of RAM at address OEOOOh.

Linker Description 8-23

The MEMORY Directive

Example 8-3. The MEMORY Directive

*

/
/* Sample comm

* ot/

and file with MEMORY directive */
[FRkkkkkckkekckok Fkkkkkokkekokokkook |
filel.obj file2.0bj /¥ Input files */
—0 prog.out /¥ Options */
MEMORY
directive | MEMORY

}

ROM: origin = 00000h

RAM: origin = 0EO0Oh

, — length = 1000h -

, —| length = 2000h -

lengths —

origins

Now you could use the SECTIONS directive to tell the linker where to link the
sections. For example, you could allocate the .text and .data sections into the
area named ROM and allocate the .bss section into the area named RAM.

The general syntax for the MEMORY directive is:

MEMORY
{
PAGE 0 :
PAGE n :

name 1 [(attr)] :origin = constant, length = constant

name n [(attr)] :origin = constant, length = constant

PAGE

name

8-24

identifies a memory space. You can specify up to 255
pages, depending on your configuration; usually, PAGE
0 specifies program memory, and PAGE 1 specifies data
memory. If you do not specify a PAGE, the linker acts as
if you specified PAGE 0. Each PAGE represents a com-
pletely independent address space. Configured memory
on PAGE 0 can overlap configured memory on PAGE 1.

Names a memory range. A memory name may be 1 to
8 characters; valid characters include A-Z, a-z, $, ., and
_. The names have no special significance to the linker;
they simply identify memory ranges. Memory range
names are internal to the linker and are not retained in
the output file or in the symbol table. Memory ranges on
separate pages can have the same name; within a page,
however, all memory ranges must have uniqgue names
and must not overlap.

attr

origin

length

fill

The MEMORY Directive

Specifies one to four attributes associated with the
named range. Attributes are optional; when used, they
must be enclosed in parentheses. Attributes can restrict
the allocation of output sections into certain memory
ranges. If you do not use any attributes, you can allocate
any output section into any range with no restrictions.
Any memory for which no attributes are specified (includ-
ing all memory in the default model) has all four attrib-
utes. Valid attributes include:

R specifies that the memory can be read

W specifies that the memory can be written to

X specifies that the memory can contain executable
code

I specifies that the memory can be initialized

If you do not specify any attributes for a memory
range, then the range has all four attributes. All mem-
ory in the default model has all four attributes. The fol-
lowing example defines a memory range that is read-
able and executable:

MEMORY

{ ROM (RX):0=0,1=01000h }

Specifies the starting address of a memory range; enter
as origin, org, or o. The value, specified in bytes, is a
16-bit constant and may be decimal, octal, or hexadeci-
mal.

Specifies the length of a memory range; enter as length,
len, or I. The value, specified in bytes, is a 16 bit constant
and may be decimal, octal, or hexadecimal.

Specifies a fill character for the memory range; enter as
fill or f. Fills are optional. The value is a two-byte integer
constant and may be decimal, octal, or hexadecimal.
The fill value will be used to fill areas of the memory range
that are not allocated to a section.

Linker Description 8-25

The MEMORY Directive

Figure 8-2 illustrates the memory map defined by Example 8-3.

Figure 8-2. Memory Map Defined in Example 8-3

Memory
Oh
1000h
unconfigured
OEO00Oh
10000h
Unconfigured
OFFFFFFh

8-26

The SECTIONS Directive

8.7 The SECTIONS Directive

The SECTIONS directive tells the linker how to combine sections from input
files into sections in the output module and where to place the output sections
in memory. In summary, the SECTIONS directive:

(1 Describes how input sections are combined into output sections,
(1 Defines output sections in the executable program,

[Specifies where output sections are placed in memory (in relation to each
other and to the entire memory space), and

(1 Permits renaming of output sections.

8.7.1 Default Sections Configuration

If you do not specify a SECTIONS directive, the linker uses a default algorithm
for combining and allocating the sections. Section 8.11 (page 8-47) describes
this algorithm in detail.

8.7.2 SECTIONS Directive Syntax

Note: Compatibility With Previous Versions

In previous versions of the linker, many of these constructs were specified
differently. The linker accepts any of the older forms.

The SECTIONS directive is specified in a command file by the word
SECTIONS (uppercase), followed by a list of output section specifications en-
closed in braces.

The general syntax for the SECTIONS directive is:

SECTIONS

{
name : [property, property, property, ... |
name : [property, property, property, ... |
name : [property, property, property, ...]

Each section specification, beginning with name, defines an output section.
(An output section is a section in the output file.) After the section name is a
list of properties that define the sections contents and how it is allocated. The

Linker Description 8-27

The SECTIONS Directive

properties may be separated by optional commas. Possible properties for a
section are:

LOAD ALLOCATION Defines where in memory the section is to be loaded.
Syntax: load = allocation or

allocation or

> allocation

RUN ALLOCATION defines where in memory the section is to be run.
Syntax: run = allocation or
run > allocation

INPUT SECTIONS defines the input sections comprising the section.
Syntax: {input_sections }

SECTION TYPE defines flags for special section types.
Syntax: type = COPY or
type = DSECT or

type = NOLOAD
For more information on section types, see Section 8.12.
FILL VALUE defines the value used to fill uninitialized "holes”
Syntax: fill = value or
name: ... { ... } = value
For more information on creating and filling holes, see Section 8.14.

Example 8-4 shows a SECTIONS directive in a sample linker command file.
Figure 8-3 shows how these sections are allocated in memory.

Example 8—4. The SECTIONS Directive

[rHE * *% K% K% *% K% K% KKk /

[* Sample command file with SECTIONS directive */

[FrKKkk * * * n/

filel.obj file2.0bj /* Input files */
—0 prog.out [* Options */
SECTIONS
directive — 1 SECTIONS
{
[.text: load = ROM
" const: load = ROM, run = 0809800h
| .bss: load = RAM, block = 010000h
| vectors: load = 0Oh
section
specifications t1.obj(.intvecl)
t2.0bj(.intvec2)
endvec = .;

}
.data: align = 32

8-28

The SECTIONS Directive

Figure 8-3 shows the five output sections defined by the sections directive in
Example 8—4; .vectors, .text, .const, .bss, and .data.

Figure 8-3. Section Allocation Defined by Example 8—4

ROM bound at 0 The .vectors section is composed of the .intvecl
00h] | .vectors —bounda section from t1.obj and the .intvec2 section from
t2.0bj.

_allocated in ROM The .text section combines the .text sections from
filel.obj and file2.0bj. The linker combines all sec-
tions named .text into this section.

text

.const —allocated inROM The .const section combines the .const sections

from filel.obj and file2.0bj. The application must
relocate the section to run at 0809800h.
7/
Y
RAM
bss _ allocated in RAM The .bss section combines the .bss sections from
filel.obj and file2.0bj. The .bss section is blocked
into a space in RAM that is 10000h words long.

data — aligned on

%/

8.7.3 Specifying the Address of Output Sections (Allocation)

The .data section combines the .data sections from
filel.obj and file2.0bj. The linker will place it any-
where there is space for it (in RAM in this illustration)
and align it to a 32-bit boundary.

The linker assigns each output section two locations in target memory: the lo-
cation where the section will be loaded and the location where it will be run.
Usually, these are the same and you can think of each section as having only
a single address. In any case, the process of locating the output section in the
target's memory and assigning its address(es) is called allocation. For more
information about using separate load and run allocation, see Section 8.8 on
page 8-35.

If you do not tell the linker how a section is to be allocated, it uses a default
algorithm to allocate the section. Generally, the linker puts sections wherever
they fit into configured memory. You can override this default allocation for a
section by defining it within a SECTIONS directive and providing instructions
on how to allocate it.

Linker Description 8-29

The SECTIONS Directive

Binding

8-30

You control allocation by specifying one or more allocation parameters. Each
parameter consists of a keyword, an optional equals sign or greater-than sign,
and a value optionally enclosed in parentheses. If load and run allocation is
separate, all parameters following the keyword LOAD apply to load allocation,
and those following RUN apply to run allocation. Possible allocation parame-
ters are:

BINDING allocates a section at a specific address
.text: load = 0x1000
MEMORY allocates the section into a range defined in the MEMORY di-

rective with the specified name or attributes
.text: load > ROM

ALIGNMENT specifies that the section should start on an address bound-
ary
.text: align = 0x100

BLOCKING provides another method of section alignment
.text: block(0x10000)

PAGE specifies the memory page to be used (see Section 8.10 on
page 8-42)
.text: PAGE 0

For the load (usually the only) allocation, you may simply use a greater-than
sign and omit the LOAD keyword:

text: > ROM text: {...} > ROM
.text: > 0x1000

If more than one parameter is used, you can string them together as follows:
.text: > ROM align 16 page 2
Or if you prefer, use parentheses for readability:

.text: load = (ROM align(16) page (2))

You can supply a specific starting address for an output section by following
the section name with an address:

.text: 0x1000

This example specifies that the .text section must begin at location 1000h. The
binding address must be a 32-bit constant.

Output sections can be bound anywhere in configured memory (assuming
there is enough space), but they cannot overlap. If there is not enough space
to bind a section to a specified address, the linker issues an error message.

Memory

The SECTIONS Directive

Note: Binding and Alignment or Named Memory Are Incompatible

You cannot bind a section to an address if you use alignment or named mem-
ory. If you try to do this, the linker issues an error message.

You can allocate a section into a memory range that is defined by the
MEMORY directive. This example names ranges and links sections into them:

MEMORY

ROM (RIX) : origin = Oh, length = 1000h
RAM (RWIX): origin = 3000h, length = 1000h

}

SECTIONS

{
text > ROM
.data ALIGN(64) : > RAM
.bss > RAM

}

In this example, the linker places .text into the area called ROM. The .data and
.bss output sections are allocated into RAM. You can align a section within a
named memory range; the .data section is aligned on a 64-word boundary
within the RAM range.

Similarly, you can link a section into an area of memory that has particular
attributes. To do this, specify a set of attributes (enclosed in parentheses) in-
stead of amemory name. Using the same MEMORY directive declaration, you
can specify:

SECTIONS
text: > (X) [* text —> executable memory */
.data: > (RI) /* .data —> read or init memory */
.bss: >(RW) [*.bss —>read or write memory */

}

In this example, the .text output section can be linked into either the ROM or
RAM area because both areas have the X attribute. The .data section can also
go into either ROM or RAM because both areas have the R and | attributes.
The .bss output section, however, must go into the RAM area because only
RAM is declared with the W attribute.

You cannot control where in a named memory range a section is allocated, al-
though the linker uses lower memory addresses first and avoids fragmentation

Linker Description 8-31

The SECTIONS Directive

when possible. In the preceding examples, assuming no other sections had
been bound to addresses that would interfere with this allocation process, the
.text section would start at address 0. If a section must start on a specific ad-
dress, use binding instead of named memory.

Alignment and Blocking
You can tell the linker to place an output section at an address that falls on an
n-word boundary, where n is a power of 2. For example,
.text: load = align(32)
allocates .text so that it falls on a cache boundary.

Blocking is a weaker form of alignment. As with alignment, n must be a power
of 2. For example,

bss: load = block(0x10000)

tells the linker to

[Make sure that the output section does not cross a 0x10000 page if it is
smaller than 0x10000 in length, or

(1 Make sure that it is aligned to start at the beginning of a 0x10000 page if
it is larger than 0x10000 in length.

The block keyword does not tell the linker to make sure that the output section
is not longer than 0x10000.

You can use alignment or blocking alone or in conjunction with a memory area,
but alignment and blocking cannot be used together.

8.7.4 Specifying Input Sections

An input section specification identifies the sections from input files that are
combined to form an output section. The linker combines input sections by
concatenating them in the order in which they are specified. The size of an out-
put section is the sum of the sizes of the input sections that make up the output
section.

Example 8-5 shows the most common type of section specification; note that
no input sections are listed.

Example 8-5. The Most Common Method of Specifying Section Contents

SECTIONS

{
text:
.data:
.bss:

}

8-32

The SECTIONS Directive

In Example 8-5, the linker takes all the .text sections from the input files and
combines them into the .text output section. The linker concatenates the .text
input sections in the order that it encounters them in the input files. The linker
performs similar operations with the .data and .bss sections. You can use this
type of specification for any output section.

You can explicitly specify the input sections that form an output section. Each
input section is identified by its filename and section name:

SECTIONS

{

text: /* Build .text output section */

{
f1.0bj(.text) [* Link .text section from f1.obj */
f2.0bj(secl) /* Link secl section from f2.0bj */
f3.0bj /* Link ALL sections from f3.0bj */

f4.0bj(.text,sec2) /* Link .text and sec2 from f4.obj */

}

}

Note that it is not necessary for input sections to have the same name as each
other or as the output section they become part of. If afile is listed with no sec-
tions, all of its sections are included in the output section. If any additional input
sections have the same name as an output section but are not explicitly speci-
fied by the SECTIONS directive, they are automatically linked in at the end of
the output section. For example, if the linker found more .text sections in the
preceding example, and these .text sections were not specified anywhere in

the SECTIONS directive, then the linker would concatenate these extra sec-
tions after f4.obj(sec?2).

The specifications in Example 8-5 are actually a shorthand method for the fol-
lowing:

SECTIONS

{
text: { *(.text) }
.data: { *(.data) }
.bss: {*(.bss) }

The *(.text) means the unallocated .text sections from all the input files.
This format is useful when:

[Youwantthe output section to contain all input sections that have a certain
name, but the output section name is different from the input sections’
name.

1 Youwantthe linker to allocate the input sections before it processes addi-
tional input sections or commands within the braces.

Linker Description 8-33

The SECTIONS Directive

8-34

Here’s an example that uses this method:

SECTIONS
{
dext @ {
abc.obj(xqt)
*(.text)
}
data : {
*(.data)
fil.obj(table)
}
}

In this example, the .text output section contains a named section xqt from file
abc.obj, which is followed by allthe .text input sections. The .data section con-
tains all the .data input sections, followed by a named section table from the
file fil.obj. Note that this method includes all the unallocated sections. For ex-
ample, if one of the .text input sections was already included in another output
section when the linker encountered *(.text) , the linker could not include
that first .text input section in the second output section.

Specifying a Section’s Runtime Address

8.8 Specifying a Section’s Runtime Address

It may be necessary or desirable at times to load code into one area of memory
and run it in another. For example, you may have performance-critical code
in a ROM-based system. The code must be loaded into ROM but would run
much faster if it were in RAM.

The linker provides a simple way to specify this. In the SECTIONS directive,
you can optionally direct the linker to allocate a section twice: once to set its
load address and again to set its run address. For example:

fir: load = ROM, run = RAM

Use the load keyword for the load address and the runkeyword for the run ad-
dress.

8.8.1 Specifying Two Addresses

The load address determines where a loader will place the raw data for the
section. Any references to the section (such as labels in it) refer to its run ad-
dress. The application must copy the section from its load address to its run
address; this does not happen automatically just by specifying a separate run
address.

If you provide only one allocation (either load or run) for a section, the section
is allocated only once and will load and run at the same address. If you provide
both allocations, the section is actually allocated as if it were two different sec-
tions of the same size. This means that both allocations occupy space in the
memory map and cannot overlay each other or other sections. (The UNION
directive provides a way to overlay sections; see subsection 8.9.1.)

If either the load or run address has additional parameters, such as alignment
or blocking, list them after the appropriate keyword. Everything having to do
with allocation after the keyword load affects the load address until the key-
word runis seen, after which everything affects the run address. The load and
run allocations are completely independent, so any qualification of one (such
as alignment) has no effect on the other. You may also specify run first, then
load. Use parentheses to improve readability. Examples:

.data: load = ROM, align = 32, run = RAM
(align applies only to load)

.data: load = (ROM align 32), run = RAM
(identical to previous example)

.data: run = RAM, align 32,
load = align 16

(align 32 in RAM for run, align 16 anywhere for load)

Linker Description 8-35

Specifying a Section’s Runtime Address

8.8.2 Uninitialized Sections

Uninitialized sections (such as .bss) are notloaded, so the only address of sig-
nificance is the run address. The linker allocates uninitialized sections only
once: if you specify both run and load addresses, the linker warns you and ig-
nores the load address. Otherwise, if you specify only one address, the linker
treats it as a run address, regardless of whether you call it load or run. Exam-
ples:

.bss: load = 0x1000, run = RAM

A warning is issued, load is ignored, space is allocated in RAM. All of the fol-
lowing examples have the same effect. The .bss section is allocated in RAM.

.bss: load = RAM
.bss: run = RAM
.bss: > RAM

8.8.3 Referring to a Load Address by Using the .label Directive

8-36

Any reference to a normal symbol in a section refers to its runtime address.
However, it may be necessary at runtime to refer to a load-time address. In
particular, the code that copies a section from its load address to its run ad-
dress must know where it was loaded. The .label directive in the assembler
defines a special type of symbol that refers to the load address of the section.
Thus, whereas normal symbols are relocated with respect to the run address,
.label symbols are relocated with respect to the load address. For more infor-
mation on the .label directive, see page 4-46.

Note: The .asect Directive Is Obsolete

Allowing separate allocation of run addresses in the linker makes the .asect
directive obsolete. Any .asect section can be written as a normal section
(with .sect) and given an absolute run address at link time. However, the
.asect directive continues to work exactly as before and can still be used.
Also, the .label directive in an asect works exactly as it did before: it defines
a relocatable symbol. Now, however, .label can ALSO be used in ANY sec-
tion to define a (relocatable) symbol that refers to the load address.

Specifying a Section’s Runtime Address

Example 8—6. Copying a Section From ROM to RAM

define a section to be copied from ROM to RAM

.sect "fir
Jlabel fir_src ; load address of section

fir: ; run address of section
<code here> ; code for the section
Jabel fir_end : load address of section end

; copy .fir section into on—chip RAM

’

text
src .word fir_src ; src = load address
dest .word fir ; run address
LDI @src,ARO ; fetch load address
LDI @dest,AR1 ; fetch run address
LDI *ARO++,R0 ; block copy

RPTS fir_end —fir_src -1
LDI *ARO++,R0O
Il STI RO,AR1++

; jump to section, now on—chip

CALL fir ; jump to (runtime) address

Linker Command File

Ixxxxxxxxxxxxxxxx/

/* PARTIAL LINKER COMMAND FILE FOR FIR EXAMPLE *

[FHFxRkkxkkkkkkkkkkokk xxxxx/

MEMORY

ROM: origin = 01000h, length = OFO00h
RAM: origin = 0809800h, length = 0400h

}
SECTIONS

.text: load = ROM

fir: load = ROM, run = RAM
}

Figure 8—4 illustrates the runtime execution of this example.

Linker Description 8-37

Specifying a Section’s Runtime Address

Figure 8—4. Runtime Execution of Example 8—6

8-38

fir_src:

fir_end:

ROM
text

fir (loads here) [}

2

fir:

: fir (relocated to
) run here)

7

Application copies
section at runtime

Using UNION and GROUP Statements

8.9 Using UNION and GROUP Statements

Two SECTIONS statements allow you to conserve memory by GROUPIng or
UNIONIing output sections together. Unioning sections causes the linker to al-
locate the same run address to the sections. Grouping sections causes the
linker to allocate them contiguously in memory.

8.9.1 Overlaying Sections With the UNION Directive

For some applications, you may wish to allocate more than one section to run
at the same address; for example, you may have several routines you want
in on-chip RAM at various stages of the program’s execution. Or you may want
several data objects that you know will not be active at the same time to share
a block of memory. The UNION statement within the SECTIONS directive pro-
vides a way to allocate several sections at the same run address.

Example 8—7. lllustrates the Form of the UNION Statement
SECTIONS

.text: load = ROM
UNION: run = RAM

{
.bss1: { filel.obj(.bss) }

.bss2: { file2.0bj(.bss) }

}
.bss3: run = RAM { globals.obj(.bss) }

}

In Example 8-7, the .bss sections from filel.obj and file2.obj are allocated at
the same address in RAM. The union occupies as much space in the memory
map as its largest component. The components of a union remain indepen-
dent sections; they are simply allocated together as a unit.

Allocation of a section as part of a union affects only its run address. Under
no circumstances can sections be overlaid for loading . If an initialized
section is a union member (an initialized section has raw data, such as .text),
its load allocation must be separately specified. For example:

Example 8-8. lllustrates Separate Load Addresses for UNION Sections

UNION run = RAM

.textl: load = ROM, { filel.obj(.text) }
.text2: load = ROM, { file2.0bj(.text) }

}

Linker Description 8-39

Using UNION and GROUP Statements

Figure 8-5. Memory Allocation for Example 8—7 and Example 8-8

8-40

Illustration of Example 8—7 Illustration of Example 8—-8
ROM ROM
text .text 1 (load) -

Sections cannot
load as a union.

<

text2 (load) 4

%

copies/at runtime

N

RAM
EEST o RAM
: <
L bssl This is runtime text 2 (run)
allocation only. textl(run) lg
.bss3

%

Since the .text sections contain data, they cannot load as a union, although
they can be run as a union. Therefore, they each require their own load ad-
dress. If you fail to provide a load allocation for an initialized section within a
UNION, the linker issues a warning and allocates load space anywhere it fits
in configured memory.

Q
\

Uninitialized sections do not require load addresses. Uninitialized sections are
not loaded.

The UNION statement applies only to allocation of run addresses, so it is re-
dundant to specify a load address for the union itself. For purposes of alloca-
tion, the union is treated as an uninitialized section: any one allocation speci-
fied is considered a run address, and if both are specified, the linker issues a
warning and ignores the load address.

Note: Unions and Overlay Pages Are Not the Same

The UNION capability and the overlay page capability (Section 8.10) may
sound similar, since they both deal with “overlays”. They are, in fact, quite
different. UNION allows multiple sections to be overlaid within the same
memory space. Overlay pages, on the other hand, define multiple memory
spaces. It is possible to use the page facility to approximate the function of
UNION, but this is cumbersome.

Using UNION and GROUP Statements

8.9.2 Grouping Output Sections Together

The SECTIONS directive has a GROUP option that forces several output sec-
tions to be allocated contiguously. For example, assume that a section named
term_rec contains a termination record for a table in the .data section. You can
force the linker to allocate .data and term_rec together:

Example 8-9. Using the GROUP Directive

SECTIONS
{
text /* Normal output section */
.bss /* Normal output section */
GROUP 1000h : [* Specify a group of sections
*/
{ _ o
.data /* First section in the group *
term_rec [* Allocated immediately after .data */
}
}

You can use binding, alignment, or named memory to allocate a GROUP in the
same manner as a single output section, as shown in Figure 8—6.

Figure 8—6. Section Allocation Defined by Example 8—9

00h
text
1000h| | .data The .data section is bound to address 1000h and
__________ term_rec follows it in memory.
term_rec
.bss

Note: You Cannot Specify Addresses for Sections Within a GROUP

When you use the GROUP option, binding, alignment, or allocation into
named memory can be specified for the group only. You cannot use binding,
named memory, or alignment for sections within a group.

Linker Description 8-41

Overlay Pages

8.10 Overlay Pages

Some target systems use an overlay memory configuration in which all or part
of the memory space is overlaid by shadow memory. This allows the system
to map different banks of physical memory in and out of a single address range
in response to hardware selection signals. In this situation, multiple areas of
physical memory overlay each other at one address. You may want the linker
to load various output sections into each of these areas or into areas that are
not mapped at loadtime.

The linker supports this feature by providing overlay pages. Overlay pages
allow you to define a memory model that has multiple address spaces. To the
linker, each possible overlay configuration represents a separate address
space. Each address range is treated as a separate page and must be confi-
gured separately with the MEMORY directive. You can then use the
SECTIONS directive to specify which sections will be mapped into various
pages.

8.10.1 Using the MEMORY Directive to Define Overlay Pages

8-42

Each separately configured address space is called a page. To the linker, each
page represents a completely separate memory that has the full 32-bit range
of addressable locations. This allows you to link two or more sections at the
same (or overlapping) addresses if they are on different pages.

Pages are numbered sequentially, beginning with 0. Page 0O represents the
normal address space of the TMS320C3x/C4x. The default memory model re-
sides entirely on page 0. If amemory range is specified without a page number,
the linker assumes it is in page 0. This allows you to ignore the page feature
for most cases; usually, all sections can be linked in page 0 with no overlays.

For example, assume that your system can select among three 4K-word long
banks of physical memory to map into the address space from 1000h to 2000h.
Although only one bank can be selected at a time, you can initialize each bank
with different data. Assume you have three output sections called sectO0, sect1,
and sect2 that must be linked into the three banks of memory. This is how you
would use the MEMORY directive to obtain this configuration:

Overlay Pages

Example 8—10. Overlay Pages

/ /
[* Example of MEMORY directive with overlay pages */

/* * * *hkkkkkkkkkkk * a/

MEMORY

PAGEO: ROM : origin = Oh, length=" 1000h
RAM :origin = 100000h, length=" OF0000
Oh
OVR_MEM : origin = 1000h, length= 1000h
PAGE1: OVR_MEM : origin = 1000h, length= 1000h
PAGE 2: OVR_MEM : origin =1000h, length= 1000h

This example defines three separate address spaces. Page 0 is the normal
address space of the TMS320C3x/C4x. It contains the memory ranges ROM
and RAM; suppose they represent all the memory in the normal address
space. Page 0 also contains the first bank of overlay memory (OVR_MEM).
The other two address spaces contain only the additional banks of overlay
memory, both labeled OVR_MEM. Note that allthree OVR_MEM ranges cover
the same address range. This is possible because each range is on a different
page and therefore represents a different memory space.

Figure 8—7. Overlay Pages Defined by Example 8—10

PAGE 0 PAGE 1 PAGE 2
T T | T T T | [7

0000h I ROM : I I I :
OFFFh | (text) ot 1] | |
1000h | Overlay 0 || E/seerc&g) | Overla%/ 2 |
1FFFh | (sect0) | | (sect2) |

| [|| |

100000h | | | |
| [|| |

| RAM | | |

'l (data, bss) | | | || |

| [| | |

| [|| |
OFFFFFOh | | | |
L | L 4 |

Linker Description 8-43

Overlay Pages

8.10.2 Using Overlay Pages With the SECTIONS Directive

The SECTIONS directive allows you to tell the linker which page an output sec-
tion should be linked into. Each output section of the program is assigned a
page as well as an address. You can assign an output section to an overlay
page by following the section specification with the PAGE option and a page
number. Assume the use of the MEMORY directive from Example 8-10, the
SECTIONS definition would be:

Example 8—11. SECTIONS Directive Definition for Figure 8—7

SECTIONS

text: load = ROM
.data: load = RAM
.bss : load = RAM

sect0: load = OVR_MEM, page =0 /* Link sectO into bank 0 */
sectl: load = OVR_MEM, page =1 /* Link sectl into bank 1 */
sect2: load = OVR_MEM, page =2 /* Link sect2 into bank 2 *}

/* Link .text in ROM on page 0 */
[* Link .data in RAM on page 0 */
/* Link .bss in RAM on page 0 */

8-44

If you don't specify a page number for an output section, the linker assumes
page 0. In this example, .text, .data, and .bss are all linked into the named
memory areas on page 0. (The PAGE 0 could have been omitted from the
sect0 definition as well.)

The PAGE specifications for sect0, sectl, and sect?2 tell the linker to link these
output sections into the corresponding overlay pages. As a result, they all are
linked to address 1000h, but in different memory spaces. When the program
is loaded, a loader can configure hardware in such a way that each of these
sections is loaded into the appropriate bank of memory.

Within a page, you can bind output sections or use named memory areas in
the usual way. In the preceding example, notice how sectl is allocated into the
memory range OVR_MEM. This allows you to define the allocation of sections
within a page, just as you can in a single memory space.

Overlay Pages

For example, the following statement:
sectl : load = 1200h, page =1

links sectl at address 1200h in page 1. You can also use page as a “qualifier”
on the address. For example:

sectl : load = (1200 PAGE 1)

If you do not specify any binding or named memory range for the section, the
linker allocates the section into the page wherever it can (just as it normally
does with a single memory space). For example, sect2 could also be specified
as:

sect2 : PAGE 2

Because OVR_MEM is the only memory on page 2, it is not necessary (but
acceptable) to specify = OVR_MEM for the section.

8.10.3 Page Definition Syntax

As illustrated in the preceding examples, overlay pages are specified in the
MEMORY directive by using the following syntax:

MEMORY

{
PAGE O0: memory range

memory range

PAGE n: memory range
memory range

}

Each page is introduced by the keyword PAGE and a page number, followed
by a colon and a list of memory ranges the page contains. Memory ranges are
specified in the normal way. You can define up to 255 overlay pages. Because
each page represents a completely independent address space, memory
ranges on different pages can have the same name. Configured memory on
any page can overlap configured memory on any other page. Within a single
page, however, all memory ranges must have unique names and must not
overlap.

Linker Description 8-45

Overlay Pages

8-46

Any memory ranges listed outside the scope of a PAGE specification default
to page 0. Consider the following example:

MEMORY
{
ROM »oorg = Oh len = 1000h
EPROM : org = 1000h len = 1000h
RAM : org = 2000h len =0EOO00Oh
PAGE1: XROM : org = Oh len = 1000h
XRAM : org = 2000h len =0EO00h
}

The memory ranges ROM, EPROM, and RAM are all on page 0 (because no
page is specified). XROMand XRAM are on page 1. Note that XROM on page
1 overlays ROM on page 0, and XRAM on page 1 overlays RAM on page 0.

In the output link map (obtained with the —m linker option), the listing of the
memory model is keyed by pages. This provides you with an easy method of
verifying that you specified the memory model correctly. Also, the listing of out-
put sections has a PAGE column that identifies the memory space into which
each section will be loaded.

Default Allocation

8.11 Default Allocation

The MEMORY and SECTIONS directives provide flexible methods for build-
ing, combining, and allocating sections. However, any memory locations or
sections that you choose not to specify must still be handled by the linker.
Within the specifications you supply, the linker uses default algorithms to build
and allocate sections. Subsections 8.11.1 and 8.11.2 describe default alloca-
tion algorithms.

8.11.1 Allocation Algorithm

If you do not use the MEMORY directive the linker assumes that the full 32-bit
address space is configured and allocates output sections into memory, begin-
ning at address 0.

If you do not use the SECTIONS directive, the linker allocates the output sec-
tions as though the following SECTIONS directive was specified:

SECTIONS

{
text
.data :
.bss

}

All .text input sections are concatenated to form a .text output section in the
executable outputfile. All .data input sections are combined to form a .data out-
put section, and all .bss sections are combined to form a .bss output section.
Each output section is then allocated into configured memaory.

If the input files contain named sections, the linker links them in after the .bss
section. Input sections that have the same name are combined into a single
output section with this name.

Note: Using the SECTIONS Directive Affects Allocation

When you use the SECTIONS directive, the linker performs no part of the
default allocation. Allocation is performed according to the rules specified by
the SECTIONS directive and the rules discussed in subsection 8.11.2.

Linker Description 8-47

Default Allocation

8.11.2 General Rules for Output Sections

8-48

An output section can be formed in one of two ways:
Rule 1 As the result of a SECTIONS directive definition.

Rule 2 By combining input sections with the same names into output sec-
tions that are not defined in a SECTIONS directive.

If an output section is formed as a result of a SECTIONS directive (rule 1), this
definition completely determines its contents. (See Section 8.7, page 8-27, for
examples of how to specify the contents of output sections.)

An output section can also be formed when input sections are encountered
that are not specified by any SECTIONS directive (rule 2). In this case, the
linker combines all such input sections that have the same name into an output
section with this name. For example, suppose that the files f1.obj and f2.0bj
both contain named sections called Vectors and that the SECTIONS directive
does not define an output section to contain them. The linker will combine the
two Vectors sections from the input files into a single output section named
Vectors, allocate it into memory, and include it in the output file.

After the linker determines the composition of all the output sections, it must
allocate them into configured memory. The MEMORY directive specifies
which portions of memory are configured, or if there is no MEMORY directive,
the linker uses the default configuration.

The linker’s allocation algorithm attempts to minimize memory fragmentation.
This allows memory to be used more efficiently and increases the probability
that your program will fit into memory. This is the algorithm:

1) Any output section for which you have listed a specific binding address is
placed in memory at that address.

2) Any output section that is included in a specific named memory range or
that has memaory attribute restrictions is allocated. Each output section is
placed into the first available space within the named area, considering
alignment where necessary.

3) Any remaining sections are allocated in the order in which they were de-
fined. Sections not defined in a SECTIONS directive are allocated in the
order in which they were encountered. Each output section is placed into
the firstavailable memory space, considering alignment or blocking where
necessary.

Special Section Types (DSECT, COPY, and NOLOAD)

8.12 Special Section Types (DSECT, COPY, and NOLOAD)

You can assign three special types to output sections: DSECT, COPY, and
NOLOAD. These types affect the way that the section is treated when it is
linked and loaded. You can assign atype to a section by using the type property
in the section definition. For example:

SECTIONS

{
secl: load = 200000h, type = DSECT {f1.0bj}

sec2: load = 400000h, type = COPY {f2.0obj}
sec3: load = 600000h, type = NOLOAD {f3.0bj}

}
[The DSECT type creates a dummy section with the following qualities:

W Itisnotincluded inthe output section memory allocation. It takes up no
memory and is not included in the memory map listing.

B Itcanoverlay other output sections, other DSECTSs, and unconfigured
memory.

B Global symbols defined in a dummy section are relocated normally.
They appear in the output module’s symbol table with the same value
they would have if the DSECT had actually been loaded. These sym-
bols can be referenced by other input sections.

B Undefined external symbols found in a DSECT cause specified
archive libraries to be searched.

B The section’s contents, relocation information, and line number infor-
mation are not placed in the output module.

In the preceding example, none of the sections from f1.obj are allocated,
but all the symbols are relocated as though the sections were linked at ad-
dress 200000h. The other sections can refer to any of the global symbols
in secl.

1 ACOPY sectionissimilarto a DSECT section, except that its contents and
associated information are written to the output module. The .cinit section
that contains initialization tables for the C compiler has this attribute under
the RAM model.

J ANOLOAD section differs from a normal output sectionin one respect: the
section’s contents, relocation information, and line number information
are not placed in the output module. The linker allocates space for the sec-
tion, the section is listed in the memory map listing, etc.

Linker Description 8-49

Assigning Symbols at Link Time

8.13 Assigning Symbols at Link Time

Linker assignment statements allow you to define external (global) symbols
and assign values to them at link time. You can use this feature to assign an
allocation-dependent value to a variable or a pointer.

8.13.1 Syntax of Assignment Statements

The syntax of assignment statements in the linker is similar to that of C assign-
ment statements:

symbol = expression; Assigns the value of expression to symbol
symbol += expression; Adds the value of expression to symbol
symbol —= expression; Subtracts the value of expression from symbol
symbol *= expression; Multiplies symbol by expression

symbol |= expression; Divides symbol by expression

The symbol should be defined externally in the program. If it is not, the linker
defines a new symbol and enters it into the symbol table. The expression must
follow the rules defined in subsection 8.13.3. Assignment statements must be
terminated with a semicolon.

The linker processes assignment statements after it allocates all the output
sections. Thus, if an expression contains a symbol, the address used for that
symbol reflects the symbol’s address in the executable output file.

For example, suppose a program reads data from one of two tables identified
by two external symbols, Tablel and Table2. The program uses the symbol
cur_tabas the address of the current table; cur_tab must point to either Table1
or Table2. You could accomplish this in the assembly code, but you would need
to reassemble the program in order to change tables. Instead, you can use a
linker assignment statement to assign cur_tab at link time:

prog.obj [* Input file */
cur_tab = Tablel; /* Assign cur_tab to one of the tables */

8.13.2 Assigning the SPC to a Symbol

8-50

A special symbol, denoted by a dot (.), represents the current value of the SPC
during allocation. The linker’s dot (.) symbol is analogous to the assembler’s
dollar sign ($) symbol. The dot (.) symbol can be used only in assignment

Assigning Symbols at Link Time

statements within a SECTIONS directive, because dot (.) is meaningful only
during allocation, and the SECTIONS directive controls the allocation process.

For example, suppose a program needs to know the address of the beginning
of the .data section. You can create an external undefined variable called
Dstartin the program by using the .global directive. Then, assign the value of
“.” to Dstart:

SECTIONS
{

text:
.data: { Dstart = ; } /* Dstart = current SPC value */
.bss:

}

This defines Dstart to be the ultimate linked address of the .data section. The
linker will relocate all references to Dstart. If the section has separate load and
run addresses, “.” refers to the run address.

“won

A special type of assignment assigns a value to the “.” symbol. This adjusts
the location counter within an output section and creates a hole between two

input sections. Any value assigned to “.” to create a hole is relative to the begin-

ning of the section, not to the address actually represented by “.”. Assignments
to “.” and holes are described in Section 8.14.

8.13.3 Assignment Expressions
These rules apply to linker expressions:

[Expressions can contain global symbols, constants, and the C language
operators listed in Table 8-2.

1 All numbers are treated as long (32-bit) integers.

1 Constants are identified in the same manner as they are by the assembler.
That is, numbers are recognized as decimals unless they have a suffix (H
or h for hexadecimal and Q or g for octal). C language prefixes are also
recognized (0 for octal and Ox for hex). Hexadecimal constants must begin
with a digit. No binary constants are allowed.

[Symbols within an expression have only the value of the symbol’s
address. No type checking is performed.

[Linker expressions can be absolute or relocatable. If an expression con-
tains any relocatable symbols (and zero or more constants or absolute
symbols), itis relocatable. Otherwise, the expression is absolute. If a sym-
bol is assigned the value of a relocatable expression, the symbol is

Linker Description 8-51

Assigning Symbols at Link Time

relocatable; if assigned the value of an absolute expression, the symbol
is absolute.

The linker supports the C language operators listed in Table 8-2 in order of
precedence. Operators in the same group have the same precedence.

Besides the operators listed in Table 8-2, the linker also has an align operator
that allows a symbol to be aligned on an n-word boundary within an output sec-
tion (nis a power of 2). For example, the expression:

. = align(16);

aligns the SPC within the current section on the next 16-word boundary. Be-
cause the align operator is a function of the current SPC, it can be used only
in the same context as “.” — that is, within a SECTIONS directive.

Table 8-2. Operators in Assignment Expressions

8-52

Group 1 (Highest Precedence) Group 6
! Logical not & Bitwise AND
~ Bitwise not
- Negative
Group 2 Group 7
* Multiplication Bitwise OR
/ Division
% Mod
Group 3 Group 8
+ Addition && Logical AND
- Minus
Group 4 Group 9
>> Arithmetic right shift Il Logical OR
<< Arithmetic left shift
Group 5 Group 10 (Lowest Precedence)
== Equal to = Assignment
1= Not equal to += A+=B -~ A=A+B
> Greater than -= A-=B - A=A-B
< Less than * = A*=B - A=A*B
<= Less than or equal to /= A/l=B - A=A/B
>= Greater than or equal to

Assigning Symbols at Link Time

8.13.4 Symbols Defined by the Linker

The linker automatically defines six symbols that a program can use at runtime
to determine where a section is linked. These symbols are external, so they
appear inthe link map. They can be accessed in any assembly language mod-
ule if they are declared with a .global directive.

Values are assigned to these symbols as follows:

text is assigned the first address following the .text output section. (It
marks the beginning of executable code.)

etext is assigned the first address following the .text output section. (It
marks the end of executable code.)

.data is assigned the first address following the .data output section. (It
marks the beginning of initialized data tables.)

edata is assigned the first address following the .data output section. (It
marks the end of initialized data tables.)

.bss is assigned the first address of the .bss output section. (It marks the
beginning of uninitialized data.)

end is assigned the first address following the .bss output section. (It
marks the end of uninitialized data.)

Symbols Defined Only for C Support (—c or —cr option)

cinit is assigned the first address of the .cinit section (-l for
—cr).

__STACK_SIZE s assigned the size of the .stack section.
__SYSMEM_SIZE s assigned the size of the .sysmem section.
_SYSMEMBS8_SIZE s assigned the size of the .sysm8 section ('C32 only).
_SYSMEM16_SIZE is assigned the size of the .sysm16 section ('C32 only).

Linker Description 8-53

Creating and Filling Holes

8.14 Creating and Filling Holes

The linker provides you with the ability to create areas within output sections
that have nothing linked into them. These areas are called holes . In special
cases, uninitialized sections can also be treated as holes. This section de-
scribes how the linker handles such holes and how you can fill holes (and
uninitialized sections) with a value.

8.14.1 Initialized and Uninitialized Sections

There are two rules to remember about the contents of an output section. An
output section contains either:

(1 An output section contains raw data for the entire section, or
(1 An output section contains no raw data.

A section that has raw data is referred to as initialized. This means that the
objectfile contains the actual memory image contents of the section. When the
section is loaded, this image is loaded into memory at the section’s specified
starting address. The .textand .data sections always have raw data if anything
was assembled into them. Named sections defined with the .sect or .asect as-
sembler directives also have raw data.

By default, the .bss section and .usect sections have no raw data (they are
uninitialized). They occupy space in the memory map but have no actual con-
tents. Uninitialized sections typically reserve space in RAM for variables. In the
object file, an uninitialized section has a normal section header and may have
symbols defined in it; however, no memory image is stored in the section.

8.14.2 Creating Holes

8-54

You can create a hole in an initialized output section. A hole is created when
you force the linker to leave extra space between input sections when building
an output section. When such a hole is created, the linker must follow the first
guideline and supply raw data for the hole.

Holes can be created only within output sections. There can also be space be-
tween output sections, but such spaces are not holes. There is no way to fill
or initialize the space between output sections.

To create a hole in an output section, you must use a special type of linker as-
signment statement within an output section definition. The assignment state-
ment modifies the SPC (denoted by “.”) by adding to it, assigning a greater
value to it, or aligning it on an address boundary. The operators, expressions,
and syntax of assignment statements are described in Section 8.13 (page
8-50).

Creating and Filling Holes

The following example shows how holes can be created in output sections
using assignment statements:

SECTIONS
{

outsect:

filel.obj(.text)

. +=100h; /* Create a hole with size 100h */
file2.obj(.text)

. = align(16); /* Create a hole to align the SPC */
file3.0bj

}
The output section outsect is built as follows:

The .text section from filel.obj is linked in.

The linker creates a 256-word hole.

The .text section from file2.0bj is linked in after the hole.

The linker creates another hole by aligning the SPC on a 16-word bound-
ary.

Finally, the .text section from file3.0bj is linked in.

U oo

All values assigned to the “.” symbol within a section refer to the relative
address within the section. The linker handles assignments to the “.” symbol
as if the section started at address 0 (even if you specify a binding address).
Consider the statement . = align(16) in the preceding example. This statement
effectively aligns file3.0bj .text to start on a 16-word boundary within outsect.
If outsect is ultimately allocated to start on an address that is not aligned, then
file3.text will not be aligned either.

wn

Expressions that decrement “.” are illegal. For example, it is invalid to use the
—= operator in an assignment to “.”. The most common operators used in

assignments to “.” are += and align.

If an output section contains all input sections of a certain type (such as .text),
you can use the following statements to create a hole at the beginning or end
of the output section:

text: { .+=100h; } /* Hole at the beginning */
.data: {
*(.data)
.+=100h; } /* Hole at the end */

Linker Description 8-55

Creating and Filling Holes

8.14.3 Filling Holes

8-56

Another way to create a hole in an output section is to combine an uninitialized
section with initialized sections to form a single output section. In this case, the
linker treats the uninitialized section as a hole and supplies data for it. An ex-
ample of creating a hole in this way is:

SECTIONS
{

outsect:

filel.obj(.text)
filel.obj(.bss) [* This becomes a hole */

}

Because the .text section has raw data, all of outsect must also contain raw
data (first guideline). Therefore, the uninitialized .bss section becomes a hole.

Note that uninitialized sections become holes only when they are combined
with initialized sections. If multiple uninitialized sections are linked together,
the resulting output section is also uninitialized.

Whenever there is a hole in an initialized output section, the linker must supply
raw data to fill it. The linker fills holes with a 4-byte fill value that is replicated
through memory until it fills the hole. The linker determines the fill value as fol-
lows:

1) Ifthe holeisformed by combining an uninitialized section with an initialized
section, you can specify a fill value for that specific initialized section. Fol-
low the section name with an = symbol and a 4-byte constant:

SECTIONS
{

outsect:

filel.obj(.text)
file2.0bj(.bss) = OFFh * Fill this hole */
} /* with 000000FFh */

}
2) You can also specify afill value for all the holes in an output section by us-
ing the fill keyword. For example,

SECTIONS
{
outsect: fill = OFFOOh [* fills holes with OFFOOh */
. +=10h; /* This creates a hole */
filel.obj(.text)
filel.obj(.bss) /* This creates another hole */
}
}

Creating and Filling Holes

3) Ifyoudo not specify an initialization value for a hole, the linker fills the hole
with the value specified with —f. For example, suppose the command file
link.cmd contains the following SECTIONS directive:

SECTIONS

text: { .= 100; } /* Create a 100 - word hole*/
}

Now invoke the linker with the —f option:
Ink30 —f OFFFFFFFFh link.cmd
This fills the hole with OFFFFFFFFh.

4) If you do not invoke the linker with —f, the linker fills holes with Os.

Whenever a hole is created and filled in an initialized output section, the hole
is identified in the link map along with the value the linker uses to fill it.

8.14.4 Explicit Initialization of Uninitialized Sections

Anuninitialized section becomes a hole only when itis combined with an initial-
ized section. When uninitialized sections are combined with each other, the
resulting output section remains uninitialized and has no raw data in the output
file.

However, you can force the linker to initialize an uninitialized section simply by
specifying an explicit fill value for it in the SECTIONS directive. This causes
the entire section to have raw data (the fill value). For example,

SECTIONS
{

bss: fill = 11223344h I* Fills .bss with 11223344h */
}

Note: Filling Sections

Because filling a section (even with 0s) causes raw data to be generated for
the entire section in the output file, your output file will be very large if you
specify fill values for large sections or holes.

Linker Description 8-57

Partial (Incremental) Linking

8.15 Partial (Incremental) Linking

8-58

An output file that has been linked can be linked again with additional modules.
This is known as partial linking or incremental linking. Partial linking allows
you to partition large applications, link each part separately, and then link all
the parts together to create the final executable program.

Follow these guidelines for producing a file that you will relink:

4

a

Intermediate files must have relocation information. Use the —r option
when you link the file the first time.

Intermediate files must have symbolic information. By default, the linker
retains symbolic information in its output. Do not use the —s option if you
plan to relink a file, because —s strips symbolic information from the output
module.

Intermediate link steps should be concerned only with the formation of out-
put sections and not with allocation. All allocation, binding, and MEMORY
directives should be performed in the final link.

If the intermediate files have global symbols that have the same name as
global symbols in other files and you wish them to be treated as static (vis-
ible only within the intermediate file), you must link the files with the —h op-
tion (See subsection 8.3.6 on page 8-10.)

If you are linking C code, don't use —c or —cr until the final link step. Every
time you invoke the linker with the —c or —cr option the linker will attempt
to create an entry point.

The following example shows how you can use partial linking:

Step 1: Link the file file1l.com, use the —r option to retain relocation informa-

tion in the output file tempoutl.out.

Ink30 —r —o tempoutl filel.com
filel.com contains:

SECTIONS
{
ssl: |

f1.0bj
£2.0bj
fn.obj
}

}

Partial (Incremental) Linking

Step 2: Link the file file2.com; use the —r option to retain relocation informa-
tion in the output file tempout2.out.

Ink30 —r —o tempout2 file2.com

file2.com contains:

SECTIONS
{
ss2: |

gl.obj
g2.0bj
gn.obj
}

}

Step 3: Link tempoutl.out and tempout2.out.

Ink30 —m final.map —o final.out tempoutl.out tempout2.out

Linker Description 8-59

Linking C Code

8.16 Linking C Code

The TMS320C3x/C4x C compiler produces assembly language source code
that can be assembled and linked. For example, a C program consisting of
modules prog1, prog2, etc., can be assembled and then linked to produce an
executable file called prog.out.

Ink30 —c —0 prog.out progl.obj prog2.obj ... rts.lib

The —c option tells the linker to use special conventions that are defined by the
C environment. The archive library rts.lib contains C runtime support func-
tions.

For more information about C, including the runtime environment and runtime
support functions, see the TMS320C3x/C4x Optimizing C Compiler User’s
Guide.

8.16.1 Runtime Initialization

All C programs must be linked with an object module called boot.obj, which
contains code and data for initializing the runtime environment.

When a program begins running, this code is executed first and performs the

following actions:

[Sets up the system stack

[Processes the runtime initialization table and autoinitializes global vari-
ables (in the ROM model).

[Disables interrupts and calls _main

The runtime support source library, rts.src, contains boot.obj. You can:

[0 Use the archiver to extract boot.obj from the library and then link it in di-
rectly, or

[Include a library created from rts.src (such as rts30.lib or rts40.lib) as an
input file, and the linker will extract boot.obj when you use the —c or —cr
option.

8.16.2 Object Libraries and Runtime Support

8-60

The TMS320C3x/C4x Optimizing C Compiler User’s Guide describes addi-
tional runtime support functions that are included in rts.src. If your program
uses any of these functions, you must link a library created from rts.src with
your object files.

You can also create your own object libraries and link them. The linker will in-
clude and link only those modules in a library that resolve undefined
references.

Linking C Code

8.16.3 Setting the Size of the Stack and Heap Sections

For 32-bit memory widths, C uses the uninitialized section called .sysmem
for the memory pool used by malloc().

For the 'C32’s 8-bit and 16-bit memory widths, the uninitialized sections
.sysm8 and .sysm16 are used for the memory pool used by malloc8() and
malloc16(), respectively.

In any memory width, the uninitialized section called .stack is used for the
memory pool used by the runtime stack.

You can set the size of these sections by using the —heap, —heap8, —heap16,
or —stack option and specifying the size of the section as a four byte constant
immediately after the option. The default size for the .stack and .heap sections
is 1K words.

The .sysm8 and .sysm16 sections are not created unless the 8—bit or 16-bit
memory allocation functions are used in the executable. In this case, the
sections default to 1K 8—bit words or 1K 16—bit words, respectively. Specifying
the —heap8 or —heap16 option when the memory functions are not used has
no effect.

If the —w option has been specified, a warning will be issued when one of these
sections is created with its default size.

8.16.4 Autoinitialization (ROM and RAM Models)

The C compiler produces tables of data that are used to autoinitialize global
variables. These are contained in a special section called .cinit. The initializa-
tion tables can be used for autoinitialization in either of two ways.

1 RAM Model (—cr option)

Variables are initialized at Joadtime. This can enhance performance by re-
ducing boot time and can save memory used by the initialization tables.
(Note that you must use a smart loader to take advantage of the RAM
model of autoinitialization.)

When you use —cr, the linker marks the .cinit section with a special attrib-
ute. This attribute tells the linker not to load the .cinit section into memaory.
The linker also sets the cinit symbol to —1; this informs the C boot routine
that initialization tables are not present in memory. Thus, no runtime in-
itialization is performed at boot time.

When the program is loaded, the loader must be able to:

B Detect the presence of the .cinit section in the object file.

Linker Description 8-61

Linking C Code

B Detect the presence of the attribute that tells it not to copy the .cinit
section.

B Understand the format of the initialization tables (this is described in
the TMS320C3x/C4x Optimizing C Compiler User’s Guide).

The loader then uses the initialization tables directly from the object file to
initialize variables in .bss.

Figure 8-8 illustrates the RAM autoinitialization model.

Figure 8-8. RAM Model of Autoinitialization

Object File Memory

\ 4

cinit loader

.bss

(1 ROM Model (—c option)

Variables are initialized at runtime. The .cinit section is loaded into mem-
ory along with all the other sections. The linker defines a special symbol
called cinitthat points to the beginning of the tables in memory. When the
program begins running, the C boot routine copies data from the tables
into the specified variables in the .bss section. This allows initialization
datato be stored in ROM and then copied to RAM each time the programis
started.

Figure 8-9 illustrates the ROM autoinitialization model.

8-62

Linking C Code

Figure 8-9. ROM Model of Autoinitialization

Object File Memory
initialization
.cinit »| loader » tables
(possibly ROM)

boot
routine

.bss ‘—‘

8.16.5 The —c and —cr Linker Options

The following list outlines what happens when you invoke the linker with the
—C or —cr option.

a

a

a

The symbol _c_int00 is defined as the program entry point. _c_int00 is the
start of the C boot routine in boot.obj; referencing _c_int00 ensures that
boot.obj will automatically be linked in from the runtime support library.

The .cinit output section is padded with a termination record so that the
boot routine (ROM model) or the loader (RAM model) knows when to stop
reading the initialization tables.

In the ROM model (—c option), the linker defines the symbol cinit as the
starting address of the .cinit section. The C boot routine uses this symbol
as the starting point for autoinitialization.

In the RAM model (—cr option):

W The linker sets the symbol cinit to —1. This indicates that the initializa-
tion tables are not in memory, so no initialization is performed at boot
time.

B The STYP_COPY flag (010h) is set in the .cinit section header.
STYP_COPY is the special attribute that tells the loader to perform
autoinitialization directly and not to load the .cinit section into memory.
The linker does not allocate space in memory for the .cinit section.

Linker Description 8-63

Linker Example

8.17 Linker Example

8-64

This example links three object files named demo.obj, fft.obj, and tables.obj
and creates a program called demo.out. The symbol SETUP is the program
entry point.

Assume that target memory has the following configuration:

Address Range: Contents:

000000h to 000FFFh 4K on-chip ROM
809800h to 809BFFh Internal RAM block BO
809CO00h to 809FFFh Internal RAM block B1

80A000h to 10087FFh External RAM
The output sections are constructed from the following input sections:

[A set of interrupt vectors from section int_vecs in the file tables.obj must
be linked at address 0 in ROM.

(1 Executable code, contained in the .text sections of demo.obj and fft.obj,
must also be linked into ROM.

(O Two tables of coefficients, which are in the .data sections of the files
tables.obj and fft.obj, must be linked into RAM block BO. The remainder
of block BO must be initialized to the value OFFCC1122h.

[The .bss section from fft.obj, which contains variables, must be linked into
block B1 of data RAM. The unused part of this RAM must be initialized to
OFFFFFFFFh.

(1 The .bss section from demo.obj, which contains buffers and variables,
must be linked into external RAM.

Figure 8-10 shows the linker command file for this example; Figure 8-11
shows the map file.

Figure 8-10. Linker Command File, demo.cmd

Linker Example

!

[FrHx

Specify Linker Options

/

—e SETUP
—0 demo.out
—m demo.map

/*

/* Define the entry point
Name the output file
/* Create a load map

!

Fkk |

*
*

FHkk [

*kkk /

Fkkk |

*
*
*
*
*
*
*

*/

[rxix Specify the Input Files
/
demo.obj
fft.obj
tables.obj
/
Pl Specify the Memory Configuration
/
MEMORY
{
ROM: origin = 0000000h length = 01000h
RAM_BO: origin = 0809800h length = 0400h
RAM_B1: origin = 0809C00h length = 0400h
RAM origin = 080A000h length = 07FE800h
}
/
[rxix Specify the Output Section
/
SECTIONS
{
text: load = ROM /* Link all .text sections into ROM
int_vecs: load = Oh /* Link interrupts at 0
.data: load = RAM_BO [* Link the .data sections into BO
tables.obj(.data) /* .data input section
fft.obj(.data) /* .data input section
. = 400h; /* Create a hole to end of block
}, fill = OFFCC1122h /* and fill with OFFCC1122h
fftvars: load = RAM_B1 /* Create a new fftvars section
fft.obj(.bss)
}, fill = OFFFFFFFFh /* link into B1 and fill wW/OFFFFFFFFh */
.bss: load = RAM /* Link all remaining .bss sections */
/
[rxix End of Command File

Fkkk |

Invoke the linker with the following command:

Ink30 demo.cmd

This creates the map file shown in Figure 8-11 and an output file called

demo.out that can be run on the TMS320C3x.

Linker Description 8-65

Linker Example

Figure 8—11. Output Map File, demo.map

TMS320C3x/4x COFF Linker Version X.Xx

OUTPUT FILE NAME: <demo.out>
ENTRY POINT SYMBOL: "SETUP” address: 00000028

MEMORY CONFIGURATION

name origin length attributes fill

RWIX
RWIX
RWIX

RWIX

ROM
RAM_BO
RAM_B1
RAM

00000000 000001000
00809800 000000400
00809c00 000000400

0080a000 0007fe800

SECTION ALLOCATION MAP

attributes/

output
length input sections

section page origin

0 00000000 00000000 UNINITIALIZED

int_vecs 0 00000000 00000028

text

address name
0080a000 .bss
00809800 .data
00000028 .text
00000028 SETUP
00809864 coeff
00809c00 data_in
00809c00 edata
0080a020 end
00000127 etext
00000116 fft
00000047 main
000000ec sub
00809800 tables
0080a000 vars

[14 symbols]

00000000 00000028 tables.obj (int_vecs)
.data 0 00809800 00000400
00809800 00000064 tables.obj (.data)
00809864 00000014 fft.obj (.data)
00809878 00000388 —HOLE— [fill = ffcc1122]
fftvars 0 00809cO0 00000080
00809c00 00000080 fft.obj (.bss) [fill = ffffffff]
.bss 0 0080a000 00000020 UNINITIALIZED
0080a000 00000020 demo.obj (.bss)
text 0 00000028 000000ff
00000028 000000ee demo.obj (.text)
00000116 00000011 fft.obj (.text)
GLOBAL SYMBOLS

address name

00000028 .text
00000028 SETUP
00000047 main
000000ec sub
00000116 fft
00000127 etext
00809800 tables
00809800 .data
00809864 coeff
00809c00 edata
00809c00 data_in
0080a000 vars
0080a000 .bss
0080a020 end

8-66

Chapter 9

Absolute Lister Description

The absolute lister is a debugging tool that accepts linked object files as input
and creates .abs files as output. These .abs files can be assembled to produce
a listing that shows the absolute addresses of object code. Manually, this could
be a tedious process requiring many operations; however, the absolute lister
utility performs these operations automatically.

Topic Page
9.1 Producing an Absolute LiSting — oo 9-
9.2 Invoking the Absolute Lister — i 9-
9.3 Absolute Lister Example Q-El

9-1

Producing an Absolute Listing

9.1 Producing an Absolute Listing

Figure 9-1 illustrates the steps required to produce an absolute listing.

Figure 9-1. Absolute Lister Development Flow

Step 1:

Assembler
source file

Assembler

—— file
Step 2: l

Linker

Linked object
file

Step 3:

-'

Absolute
lister

Assembler

Absolute
listing

First, assemble a source file.

Link the resulting object file.

Invoke the absolute lister; use the linked object
file as input. This creates a file with an .abs
extension.

Finally, assemble the .abs file; you must
invoke the assembler with the —a option. This
produces a listing file that contains absolute
addresses.

Invoking the Absolute Lister

9.2 Invoking the Absolute Lister

The syntax for invoking the absolute lister is:

abs30 [—options] input file

abs30 is the command that invokes the absolute lister.

options identifies the absolute lister options that you want to use.
Options are not case sensitive and can appear anywhere on the
command line following the command. Precede each option
with a hyphen (-). The absolute lister options are as follows:

—e enables you to change the default naming conventions
for filename extensions on assembly files, C source files,
and C header files. The three options are listed below.

(1 —eal.Jasmext for assembly files (default is .asm)
1 —ec[.]Jcext for C source files (default is .c)
(1 —eh[.]Jhext for C header files (default is .h)

The “.” in the extensions and the space between the
option and the extension are optional.

—q (quiet) suppresses the banner and all progress infor-
mation.

input file names the linked object file. If you do not supply an extension,
the absolute lister assumes that the input file has the default
extension .out. If you do not supply an input filename when you
invoke the absolute lister, the absolute lister will prompt you for
one.

The absolute lister produces an output file for each file that was linked. These
files are named with the input filenames and an extension of .abs. Header files,
however, do not generate a corresponding .abs file.

Assemble these files with the —a assembler option as follows to create the
absolute listing:

asm30-a filename .abs

The —e options affect both the interpretation of filenames on the command line
and the names of the output files. They should always precede any filename
on the command line.

Absolute Lister Description 9-3

Invoking the Absolute Lister

The —e options are particularly useful when:

(1 the linked object file is created from C files compiled with the debugging
option (—g compiler option) and

[the source files do not use the standard extensions (.c for C source files,
.h for header files, and .asm for assembly files).

The absolute lister uses file extensions to determine how to treat the source
files listed in the linked object file.

For example, suppose the C source file hello.csr is compiled with debugging
set; this generates the assembly file hello.s. hello.csr also includes hello.hsr.
Assuming the executable file created is called hello.out, the following
command will generate the proper .abs file:

abs30 —ea s —ec csr —eh hsr hello.out

With the —e options appropriately specified in this example, the absolute lister
will:

(O recognize hello.hsr as a header file and therefore not create an .abs file
for it

[J create hello.abs for the hello.csr file

(1 use the .copy directive within the hello.abs file to include assembly file
hello.s, rather than hello.asm

Note that you need to use the —k compiler option when compiling the original
source file so that you retain the assembly files for inclusion when you re-
assemble the .abs files.

Absolute Lister Example

9.3 Absolute Lister Example

This example uses three source files. modulel.asm and module2.asm both
include the file globals.def.

modulel.asm

text

.bss array,100
.bss dflag, 2
.copy globals.def
Idp offset, DP
Idi @offset, R1
ldp dflag, DP
ldi @dflag, R1

module2.asm

.bss offset, 2
.copy globals.def
Idp offset, DP
Idi @offset, R1
Idp array, DP
Idi @array, R1

globals.def

.global dflag
.global array
.global offset

The following steps create absolute listings for the files modulel.asm and
module2.asm:

Step 1: First, assemble modulel.asm and module2.asm:

asm30 modulel
asm30 module2

This creates two object files called modulel.obj and module2.obj.

Absolute Lister Description 9-5

Absolute Lister Example

Step 2: Next, link modulel.obj and module2.0bj. using the following linker
command file, called bttest.cmd:

Ixxxxxxxxxxxxxxxxxxxxxxxxx/

/* File bttest.cmd — COFF linker command file */
[* for linking TMS320C3x modules */

—0 bttest.out /* Name the output file */

—m bttest.map /* Create an output map */

/**/
I* Specify the Input Files */
modulel.obj

module2.0bj

Ixxxxxxxxxxxxxxxxxxx/

I* Specify the Memory Configurations */

/**/

MEMORY

RAMO: org=0x809800 len=0x400 /* RAM BLOCK 0*/
RAM1: org=0x809c00 len=0x400 /* RAM BLOCK 1*/

}
/ * /
I* Specify the Output Sections */
SECTIONS
{
.data: > RAMO [* Initialize Data */
text: > RAMO /* Variables */
.bss: > RAM1 /* Code */
}

Invoke the linker:
Ink30 bttest.cmd

This creates an executable object file called bttest.out; use this new
file as input for the absolute lister.

Step 3:

Absolute Lister Example

Now, invoke the absolute lister:

abs30 bttest.out
This creates two files called modulel.abs and module2.abs:

modulel.abs:

.nolist
array .setsym 000809800h
dflag .setsym 000809864h
offset .setsym 000809866h
.data .setsym 000809800h
edata .setsym 000809800h
.bss .setsym 000809800h
end .setsym 000809868h
text .setsym 0008098c00h
etext .setsym 0008098c08h
.setsect ".text”,0008098c00h
.Setsect ".data”,000809800h
.setsect ".bss”,000809800h
list
text
.copy "modulel.asm”

module2.abs:

.nolist
array .setsym 000809800h
dflag .setsym 000809864h
offset .setsym 000809866h
.data .setsym 000809800h
edata .setsym 000809800h
.bss .setsym 000809800h
end .setsym 000809868h
text .setsym 0008098c00h
etext .setsym 0008098c08h
.setsect ".text”,0008098c04h
.setsect ".data”,000809800h
.setsect ".bss”,000809866h
Jist
text
.copy "module2.asm”

Absolute Lister Description 9-7

Absolute Lister Example

These files contain the following information that the assembler
needs when you invoke it in step 4:

(1 They contain .setsym directives, which equate values to global
symbols. Both files contain global equates for the symbol dflag.
The symbol dflag was defined in the file globals.def, which was
included in modulel.asm and module2.asm.

(1 They contain .setsect directives, which define the absolute
addresses for sections.

[They contain .copy directives, which tell the assembler which
assembly language source file to include.

The .setsym and .setsect directives are not useful in normal assem-
bly; they are useful only for creating absolute listings.

Absolute Lister Example

Step 4: Finally, assemble the .abs files created by the absolute lister
(remember that you must use the —a option when you invoke the
assembler):
asm30 —a modulel.abs
asm30 —a module2.abs
This creates two listing files called modulel.lst and module2.Ist; no
object code is produced. These listing files are similar to normal list-
ing files; however, the addresses shown are absolute addresses.

The absolute listing files created are modulel.Ist (see Figure 9-2)
and module2.Ist (see Figure 9-3).

Figure 9—2. modulel.lst

TMS320C3x/C4x COFF Assembler Version x.xx Wed Oct 16 12:00:05 1997
Copyright (¢) 1987-1997 Texas Instruments Incorporated

modulel.abs

15 00809c00
16
1 00809c00
2 00809800
3 00809864
4
1
2
3
4

>>r>>OO0EOI>>>>

.copy "modulel.asm”

.copy globals.def
.global dflag
.global array
.global offset

500809c00 08700080! Idp offset, DP
6 00809c01 08219866! Idi @offset, R1
7 00809c02 08700080— Idp dflag, DP
8 00809c03 08219864— Idi @dflag, R1

No Errors, No Warnings

PAGE 1
text
text

.bss array, 100
.bss dflag, 2

Absolute Lister Description 9-9

Absolute Lister Example

Figure 9-3. moduleZ2.lst

module2.abs

15 00809c04
16

1 00809866

2

1

2

3

4

>>>>0WIwW> >

TMS320C3x/C4x COFF Assembler
Copyright (c) 1987-1997 Texas Instruments Incorporated

text

.copy "module2.asm”

.bss offset, 2

.copy globals.def
.global dflag
.global array
.global offset

300809c04 08700080— Idp offset, DP
4 00809c05 08219866— Idi @offset, R1
5 00809c06 08700080! Idp array, DP

6 00809c07 08219800 Idi @array, R1

No Errors, No Warnings

Version x.xx Wed Oct 16 12:00:17 1997

PAGE 1

9-10

Chapter 10

Hex Conversion Utility Description

The TMS320C3x/C4x assembler and linker create object files that are in
common obiject file format (COFF), a binary object file format that encourages
modular programming and provides flexible methods for managing code
segments.

Most EPROM programmers do not accept COFF object files as input. The hex
conversion utility translates a COFF object file into one of several standard
ASCII hexadecimal formats, suitable for loading into an EPROM programmer.
The utility is also useful in other applications that require a hexadecimal
translation of a COFF object file (for example, debuggers and loaders). This
utility also supports the on-chip boot loader built into the 'C3x or 'C4x,
automating the code creation process for the 'C3x and 'C4x.

The hex conversion utility can produce these output file formats:

1 ASCII-Hex, supporting 16-bit addresses

[Extended Tektronix Hexadecimal (Tektronix), supporting 32-bit addresses

1 Intel MCS-86 Hexadecimal (Intel) supporting 32-bit addresses

[Motorola Exorciser (Motorola-S), supporting 16-bit, 24-bit, and 32-bit

addresses

1 Texas Instruments SDSMAC (TI-Tagged), supporting 16-bit addresses

Topic Page
10.1 Hex Conversion Utility Development Flow — 102
10.2 Invoking the Hex Conversion Utility — 1043
10.3 Using Command Files i 1D-6
10.4 Creating a Compatible File Format 10-7
10.5 Using the ROMS Directive to Specify Memory

Configuration 1D-16
10.6 Using the SECTIONS Directive to Convert COFF File
SECHONS .. 10-22

10.7 Output Filenames ... 10-24
10.8 Image Mode and the —fill Option 10-26
10.9 Building a Boot Table From an On-Chip Boot Loader 10-p8
10.10 Controlling the ROM Device Address ... 10139
10.11 Description of the Object Formats ~ 10443
10.12 Hex Conversion Utility Error Messages — 10149

10-1

Hex Conversion Utility Development Flow

10.1 Hex Conversion Utility Development Flow

Figure 10-1 highlights the role of the hex conversion utility in the assembly
language development process.

Figure 10-1. Hex Conversion Utility Development Flow

. c -
. Source

< Macro =« [] < Files s

. Source

: Files ¢

C Compiler

Archiver + Assembler « ;
: Source . .
%J . : « Assembler «
: : . Source
« Macro . - .
¢ Library 2
. ° Assembler
" . Library-Build
+ COFF . Utility
Archiver . .
° .
+ Runtime- -«
— - + Support
e Library of : Library 3
. . 04 * =
o Object > Link
s Files e

r
I .
| : Exg%ﬁble De_k;uglging
I 5 i ools
s File

| Hex Conversion 0
| Utility
I ________ —— —
| |
[

EPROM
[Programmer | TMS320C3x
[| TMS320C4x
[

__ﬂ_J x

10-2

Invoking the Hex Conversion Utility

10.2 Invoking the Hex Conversion Utility

Invoking the Hex Conversion Utility From the Command Line

To invoke the hex conversion utility, enter:

hex30 [-options] filename

hex30 is the command that invokes the hex conversion utility.

—options supply additional information that controls the hex conversion
process. You can use options on the command line or in a com-
mand file.

[All options are preceded by a dash and are not case-
sensitive.

[1 Several options have an additional parameter that must be
separated from the option by at least one space.

[1 Options with multicharacter names must be spelled exactly
as shown in this document; no abbreviations are allowed.

[Options are not affected by the order in which they are
used. The exception to this rule is the —q option, which must
be used before any other options.

filename names a COFF object file or a command file (for more infor-
mation on command files, see Section 10.3, page 10-6).

Table 10-1 lists basic options and also bootloader options for the 'C3x and
'C4x on-chip bootloaders. The bootloader is discussed in more detail on page
10-28.

Hex Conversion Utility Description 10-3

Invoking the Hex Conversion Utility

Table 10-1. Basic Options

General Option Description Page
Options
Control overall —map filename Generate a map file 10-21
operation —o filename Specify an output filename 10-24
—q Run quietly (when used, it 10-6
must appear before other
options)
Image Options Option Description Page
Allow you to —byte Number bytes sequentially 10-41
create a continu-
ous image of a ill value Fill holes with value (default ~ 10-26
range of target value =0)
memory.
—image Specify image mode 10-26
—zero Reset the address origin to 10-40
zero
Memory Option Description Page
Options
Allow you to con- —datawidth value Define the logical data word ~ 10-8
figure the width (default = 32 bits)
memory widths
for output files.
—memwidth Define the system memory 10-9
value word width (default 32)
—order {LS | MS} Specify the memory 10-14
word ordering
—romwidth value Specify the ROM 10-12
device width (default de-
pends on format used)
Format Options Option Description Page
Allow you to -a ASCII-Hex format 10-44
specify the out- Intel format 10-45
put format.
-ml Motorola-S1 format 10-46
—m2 or -m Motorola-S2 format 10-46
-m3 Motorola-S3 format 10-46
—t TI-Tagged format 10-47
—X Tektronix format 10-48

Invoking the Hex Conversion Utility

Table 10-1. Basic Options (Continued)

Bootloader Option Description Page
Options

Allow you to —boot Convert all sections into boot- 10-29
control the 'C3x able form (use instead of a

and 'C4x on-chip SECTIONS directive)

bootloaders

—bootorg value Specify the source address of 10-31
the boot loader table

—bootpage value Specify the target page num- 10-30
ber of the boot loader table

—cg value Set the primary bus global 10-32
control register ('C31 only)

—cg value Set the global memory config- 10-37
uration register ('C4x only)

—cl value Set the local memory configu- 10-37
ration register ('C4x only)

—e value Specify the PC value after 10-31
loading

—iack value Specify the IACK memory 10-37
location ('C4x only)

—ivtp value Set the interrupt vector table 10-37
pointer ('C4x only)

—tvtp value Set the trap vector table point- 10-37
er ('C4x only)

—iostrb value Set the IOSTRB control regis- 10-34
ter (C32 only)

—strb0 value Set the STRBO control regis- 10-34
ter ('C32 only)

—strbl value Set the STRBL1 control regis- 10-34

ter (C32 only)

Hex Conversion Utility Description 10-5

Using Command Files

10.3 Using Command Files

10-6

Using a command file is useful if you plan to invoke the utility more than once
with the same input files and options. It is also useful if you want to use the
ROMS and SECTIONS hex conversion utility directives to customize the con-
version process.

Command files are ASCII files that contain one or more of the following:

(1 Options and filenames. These are specified in a command file in exactly
the same manner as on the command line.

[0 ROMSddirectives. The ROMS directive defines the physical memory con-
figuration of your system as a list of address-range parameters.

[0 SECTIONS directives. The SECTIONS directive specifies which sec-
tions from the COFF obiject file should be selected. You can also use this
directive to identify specific sections that will be initialized by an on-chip
boot loader. For more information about the ROMS or SECTIONS direc-
tives, see Section 10.5 or 10.6, respectively. For more information on the
on-chip boot loader, see Section 10.9, page 10-28.

(1 Comments. You can add comments to your command file by using the /*
and */ delimiters. For example: /* this is a comment */

To invoke the utility and use the options you defined in a command file, enter:

hex30 commandfilename

You can also specify other options and files on the command line. You could

invoke the utility using both a command file and command line options:

hex30 firmware.cmd —map firmware.mxp

The order in which these options and file names appear is not important. The

utility reads all input from the command line and all information from the

command file before starting the conversion process. However, if you are us-

ing the —q option, it must appear as the first option on the command line or in
a command file.

The —q option suppresses the utility’'s normal banner and progress
information.

hex30 —t firmware —o firm.Ilsb —o firm.msb

Creating a Compatible File Format

10.4 Creating a Compatible File Format

The hex conversion utility means full flexibility for different memory
architectures. In order to use the hex conversion utility, you must understand
how the utility treats word widths . [A word width is the number of bits in a
word.] Four widths are important in the conversion process: target width, data
width, memory width, and ROM width. When we refer to these terms, we refer
to a word of such a width.

Figure 10-2 illustrates the three separate and distinct phases of the hex
conversion utility’s process flow.

Figure 10-2. Hex Conversion Utility Process Flow

Raw data in COFF files is
represented in target-width-

. __ sized words. For 'C3x and
(COFF Input File) 'Céx, this is 32 bits. The
target width is fixed and
cannot be changed.

The utility truncates the raw data
Phase | in the COFF file to the size specified
by the datawidth option —datawidth

The
datawidth-sized internal representation
is divided into words
according to the the size specified by —memwidth
the —memwidth option.

Phase I

The memwidth-
sized words are broken up according
to the size specified by the romwidth
Phase I option and are written to a file(s)
according to the format
specified (Intel, Tektronix hex, etc.).

—romwidth

y

(Output File(s))

Hex Conversion Utility Description 10-7

Creating a Compatible File Format

[TargetWidth. Targetwidth is the unit size (in bits) of raw data fields in the
COFFfile. This corresponds to the size of an opcode on the target proces-
sor. The width is fixed for each target and cannot be changed. The 'C3x
and 'C4x are 32 bits wide.

(1 Data Width. Data width is the logical width (in bits) of the data words
stored in a particular section of a COFF file.

O MemoryWidth. Memory widthis the physical width (in bits) of the memory
system.

[0 ROM width. The ROM width specifies the physical width (in bits) of each
ROM device and corresponding output file (usually one byte or eight bits).

10.4.1 Defining Input Data in the 'C32

10-8

Usually, the data width is the same as the target width. In the 'C32, however,
data words can be narrower than the width of the processor.

Do not change the data width unless you are using the 'C32 processor.

The 'C32 processor can access values narrower than the processor
target width. The 'C32 device can access data that is 8, 16, or 32 bits wide.
The hex conversion utility can extract the appropriate number of bits from the
COFFfile for each data word and store only those bits, even though the COFF
file uses 32 bits to store each data word. The hex conversion utility simply trun-
cates the COFF word to the specified length, preserving only the least signifi-
cant bits of the COFF word.

You can change the data width by:

[d Using the —datawidth option. This changes the size of data words inside
all sections in a COFF file. For example, —datawidth 8 changes the size
of the data words to 8 bits.

[Setting the data width parameter of the SECTIONS directive. This
changes the size of data words for the specific section and overrides the

—datawidth option for that section. Refer to Section 10.6 for details.

Figure 10-3 shows how the data width is related to the target width.

Creating a Compatible File Format

Figure 10-3. Target and Data Widths

Data After
Phase |
of hex30

Source File .word OAABBCCDDh
.word 011223344h

Target Width = 32 (fixed) . .
OAABBCCDDH } row data in COFF file

011223344h
Data Widths (variable)
—datawidth 32 (default) —datawidth 16 —datawidth 8
AABBCCDID CCDD DD
11223344 3344 44

10.4.2 Specifying the Width

Usually, the memory system is physically the same width as the target
processor width: a 32-bit processor has a 32-bit memory architecture.
However, some applications, such as boot loaders, require target words to be
broken up into multiple, consecutive, narrower memory words.

Moreover, with certain processors like the 'C32, the memory width can be nar-
rower than the target width. In that case, the hex conversion utility defaults
memory width to the target width (in this case, 32 bits).

You can change the memory width by:

(1 Using the —-memwidth option. This changes the memory width value for
the entire file, or

[Setting the memwidth parameter of the ROMS directive. This changes
the memory width for the address range specified in the ROMS directive
and overrides the —memwidth option for that range. See Section 10.5,
page 10-16.

Hex Conversion Utility Description 10-9

Creating a Compatible File Format

10-10

The value used must be a power of two greater than or equal to eight.

You should change the memory width default value of 32 only in exceptional
situations:

Single target words broken into consecutive, narrower memory words.
Situations in which memory words are narrower than target words are most
common when you use on-chip boot loaders—several of which support boot-
ing from narrower memory. For example, a 32-bit TMS320C31 can be booted
from 8-bit memory, with each 32-bit value occupying four memory locations
(this would be specified as —-memwidth 8).

Figure 10—-4 demonstrates how the memory width is related to the target width.

Creating a Compatible File Format

Figure 10—-4. Target, Data, and Memory Widths

Source File
.word OAABBCCDDh
.word 011223344h
Data Widths (variable)
—datawidth 32 (default) —datawidth 16 —datawidth 8
Data After
Phase | AABBCCDDh CCDDh DDh
ofhex30 11223344h 3344h 44h
Memory Widths (variable)
Data Width = 32
—memwidth 32 (default) —memwidth 16 —memwidth 8
AABBCCDD
11223344 AABB
Data After 3344 -BB
Phase Il L.
of hex30 1122
Memory Widths (variable)
Data Width = 16
—memwidth 32 (default) —memwidth 16 —memwidth 8
Data After CCDD3344
of hex30 3344

Hex Conversion Utility Description 10-11

Creating a Compatible File Format

10.4.3 Partitioning Data Into Output Files

10-12

The ROM width determines how the hex conversion utility partitions the data
into output files. After the target words are mapped to the memory words, the
memory words are broken into one or more output files. The number of output
files is determined by the following formula:

number of files = memory width —— ROM width

where memory width > ROM width

For example, for a memory width of 32, you could specify a ROM width value
of 32 and get a single output file containing 32-bit words. Or you can use a
ROM width value of 16 to get two files, each containing 16 bits of each word.

The default ROM width that the hex conversion utility uses depends on the out-
put format:

(1 All hex formats except TI-Tagged are oriented as lists of 8-bit bytes; the
default ROM width for these formats is 8 bits.

[TI'sformatis 16-bit; the default ROM width for TI-Tagged format is 16 bits.

Note: The Tl Format is 16 Bits Wide

You cannot change the ROM width of the TI-Tagged format. The TI-Tagged
format supports a 16-bit ROM width only.

You can change the ROM width by:

(1 Using the —romwidth option. This changes the ROM width value for the
entire COFF file

[Setting the romwidth parameter of the ROMS directive. Setting this
parameter changes the ROM width value for a specific ROM address
range and overrides the —romwidth option for that range. See Section
10.5, page 10-16.

For both, use a value that is a multiple of eight and power of two.

Ifyou selecta ROM width that is wider than the natural size of the output format
(16 bits for TI-Tagged or 8 bits for all others), the utility simply writes multibyte
fields into the file.

Figure 10-5 illustrates how the target, memory, and ROM widths are related
to one another.

Creating a Compatible File Format

Figure 10-5. Target, Memory, and ROM Widths

Source File
.word OAABBCCDDh
.word 011223344h
Data Width = 32
Data After 0AABBCCDDH
ase |
of hex30 011223344h
. -
MemoLyXVEttE (Xariable) // \\ // \
- —memwidth 32>~ //—memwidth 16 \ +memwidth 8 |
/ \
. [AABBCCDD | | ccod | ! [op \
N 11223344 | 7/ l\ AABB /l | e |
Data After S p—— |
Phase Il <\\ \ SR / (BB ,l
of hex30 N \\ 1122 /\/ | AA |
N\ S—— 0\ \ 44
\ S \ /
\ \ N EE
i Ny N[22 /
| \ \\ 11|
| \\ N /\‘
Output Files // | \
—romwidth 8 / \l \
—o file.b0 DD 44 | . . . | l \\
—ofile.bl ccs33]| // II I|
—ofile.b2 BB22 | | // |
—o file.b3 AA1L | ... // /
/ /
Data After —romwidth 16 / / /
Phaselll o fllehard [CCDDAABB33441122 /. . . /
of hex30 7 /
/ /
—romwidth 8 v ya
—o file.bO |[DDBB4422 | ... /
/
—o file.b1 [CCAA3311 | ... e
e
~
—romwidth 8 _
—o file.byt | DDCCBBAA44332211). . .

Hex Conversion Utility Description

10-13

Creating a Compatible File Format

10.4.4 A Memory Configuration Example

Figure 10-6 shows a typical memory configuration example. This memory
system consists of two 128K x 16-bit ROM devices.

Figure 10-6. 'C3x/'C4x Memory Configuration Example

Data Width = 32 Bits

_ Lower 16 Bits (data)
AABBCCDDh{ Upper 16 Bits (data)
CPU
'C3x/'C4x AABBh CCDDh
128K x 16 128K x 16
ROMO ROM1
i‘ ——————— 9
| , _
| Source File | Roll\él %N'dth ROll(\s/I E‘;’_"dth
l word AABBCCDDH | Its Its
L |

System Memory Width 32 Bits

10.4.5 Specifying Word Order for Output Files

When memory words are narrower than target words (memory width < 32) tar-
get words are split into multiple consecutive memory words. There are two
ways to split a wide word into consecutive memory locations in the same hex
conversion utility output file:

[-order MS specifies big-endian ordering, in which the most significant
part of the wide word occupies the first of the consecutive locations

(1 -order LS specifies little-endian ordering, in which the the least
significant part occupies the first location

10-14

Creating a Compatible File Format

By default, the utility uses little-endian format, because the 'C3x/'C4x boot
loaders expect the data in this order. Unless you are using your own boot load-
er program, avoid using —order MS.

Note: When the —order Option Applies

[This option applies only when you use a memory width with a value less
than 32. Otherwise, the —order is ignored.

[The option does not affect the way memory words are split into output
files. Think of the files as a set: the set contains a least significant file and
amost significant file. When you list filenames for a set of files, you always
list the least significant first, regardless of the —order option.

Figure 10-7 demonstrates how —order LS and —order MS affect the conver-
sion process. (This figure, and Figure 10-5, explain the condition of the data
in the hex conversion utility output files.)

Figure 10-7. Varying the Word Order

Source File
.word OAABBCCDDh
.word 011223344h
Target Width = 32 (fixed)
OAABBCCDDH
011223344h
Memory Widths (variable)
—memwidth 16 —memwidth 16 ~ —memwidth 8 —memwidth 8
—order LS (default) —order MS —order LS (default) —order MS
CCDD AABB DD AA
AABB CCDD CcC BB
3344 1122 BB €@
1122 3344 AA DD
A e 44 11
33 22
22 33
11 44

Hex Conversion Utility Description 10-15

Using the ROMS Directive to Specify Memory Configuration

10.5 Using the ROMS Directive to Specify Memory Configuration

The ROMS directive specifies the physical memory configuration of your
system as a list of address-range parameters.

Each address range will produce one set of files containing the hex conversion
utility output data corresponding to that address range. Each file will then be
used to program a single ROM device.

The ROMS directive is similar to the MEMORY directive of the TMS320 linker:
both define the memory map of the target address space. Each line entry in
the ROMS directive defines a specific address range. The general syntax is:

ROMS
{
[PAGE n:]
romname: [origin =value,] [length =value,] [romwidth =value,]
[memwidth =value,] [fill =value,]
[files ={filenamel, filename2, ...}]

romname: [origin =value,] [length =value,] [romwidth =value,]
[memwidth =value|] [fill =value,]
[files ={filenamel, filename2, ...}]

}
ROMS begins the directive definition.
PAGE identifies a memory space for processors that use multiple

address spaces or memory overlay pages. Each memory
range you define after the PAGE command belongs to that
page until you specify another page. If you don'tinclude PAGE,
allranges belong to page 0. Note that the 'C3x/’C4x processors
do not offer multiple address spaces.

romname identifies a memory range. The name of the memory range
may be one to eight characters in length. The name has no
significance to the program; it simply identifies the range. (Du-
plicate memory range names are allowed.)

origin specifies the starting address of a memory range. It may be
typed as origin, org, or 0. The associated value must be a
decimal, octal, or hexadecimal constant. If you omit the origin
value, the origin defaults to 0.

10-16

Using the ROMS Directive to Specify Memory Configuration

The following table summarizes the notation you can use to specify a decimal,
octal, or hexadecimal constant:

length

romwidth

memwidth

fill

files

Constant Notation Example
Hexadecimal Ox prefix or h suffix 0x77 or 077h
Octal 0 prefix 077

Decimal No prefix or suffix 7

specifies the length of a memory range as a physical length of
the ROM device. It may be entered as length, len, or I. The val-
ue must be a decimal, octal, or hexadecimal constant. If you
omit the length value, it defaults to fill the rest of the address
space.

specifies the physical ROM width of this range in bits (see page
10-12). Any value you specify here overrides the —romwidth op-
tion. The value must be a decimal, octal, or hexadecimal
constant that is a power of two greater than or equal to eight.

specifies the memory width of this range in bits (see page
10-9). Any value you specify here overrides the —memwidth
option. The value must be a decimal, octal, or hexadecimal
constant that is a power of two greater than or equal to eight.
When using —memwidth, you must also specify the paddr pa-
rameter for each section in the SECTIONS directive.

specifies a fill value to use for this range. In image mode, the
hex conversion utility uses this value to fill any holes between
sections in a range. The value must be a decimal, octal, or
hexadecimal constant with a width equal to the target width.
Any value you specify here overrides the —fill option. [You must
also use the —image option when using fill.] See page 10-26.

identify the names of the output files that correspond to this
range. Enclose the list of names in curly braces and order them
from least significant to most significant output file.

The number of file names should equal the number of output
files that the range will generate. The utility warns you if you list
too many or too few filenames.

Unless you are using the —image option, all of the parameters defining a range
are optional. A range with no origin or length defines the entire address space.
In image mode, an origin and length are required for all ranges. The commas
and equals signs are also optional.

Ranges on the same page must not overlap and must be listed in order of
ascending address.

Hex Conversion Utility Description 10-17

Using the ROMS Directive to Specify Memory Configuration

10.5.1 When to Use the ROMS Directive

10-18

If you don't use a ROMS directive, the utility defines a single default range that
includes the entire program address space (PAGE 0). This is equivalent to a
ROMS directive with a single range without origin or length.

Use the ROMS Directive when you want to:

[0 Programlarge amounts of datainto fixed-size ROMs . Whenyou speci-
fy memory ranges corresponding to the length of your ROMs, the utility au-
tomatically breaks the output into blocks that fit into the ROMs.

(1 Restrictoutputto certain segments . You can also use the ROMS direc-
tive to restrict the conversion to a certain segment or segments of the tar-
get address space. The utility does not convert the data that falls outside
of the ranges defined by the ROMS directive. Sections can span range
boundaries; the utility splits them at the boundary into multiple ranges. If
a section falls completely outside any of the ranges you define, the utility
does not convert that section and issues no messages or warnings. In this
way, you can exclude sections without listing them by name with the
SECTIONS directive. However, if a section falls partially in a range and
partially in unconfigured memory, the utility issues a warning and converts
only the part within the range.

[0 Usethe —image option. When you use this option, you must use a ROMS
directive. Each range is filled completely so that each output file in a range
contains data for the whole range. Gaps before, between or after sections
are filled with the fill value from the ROMS directive, with the value speci-
fied with the —fill option, or with the default value of zero.

Using the ROMS Directive to Specify Memory Configuration

10.5.2 An Example of the ROMS Directive

The ROMS directive in Example 10—1 shows how 16K words of 32-bit memory
could be partitioned for eight 8K x 8-bit EPROMSs.

Example 10-1. A ROMS Directive Example

[* *% *% *% *% *kkkkhkkkkkhkkkkhhhkkkkk /

/* Sample command file with ROMS directive */
/***/
infile.out

—image

—memwidth 32

ROMS

EPROML1: org = 04000h, len = 02000h, romwidth = 8
files = { rom4000.b0, rom4000.b1,
rom4000.b2, rom4000.b3 }

EPROM2: org = 06000h, len = 02000h, romwidth = 8,
fill = OFFh,
files = { rom6000.b0, rom6000.b1,
rom6000.b2, rom6000.b3 }

In this example, EPROM1 defines the address range from 4000h through
5FFFh. The range contains the following sections:

This section Has this range
text 4000h through 487Fh
.data 5B80H through 5FFFh

The rest of the range is filled with Oh (the default fill value). The data from this
range is converted into four output files:

[rom4000.b0 contains bits 0 through 7
[J rom4000.b1 contains bits 8 through 15
[J rom4000.b2 contains bits 16 through 23
[rom4000.b3 contains bits 24 through 31

EPROMZ2 defines the address range from 6000h through 7FFFh. The range
contains the following section:

This section Has this range
.data 6000h through 633Fh
.table 6700h through 7C7Fh

Hex Conversion Utility Description 10-19

Using the ROMS Directive to Specify Memory Configuration

The rest of the range is filled with OFFh (from the specified fill value). The data
from this range is converted into four output files:

[rom6000.b0 contains bits 0 through 7
[rom6000.b1 contains bits 8 through 15
[rom6000.b2 contains bits 16 through 23
[rom6000.b0 contains bits 24 through 31

Figure 10-8 shows how the ROMS directive partitions the infile.out file into
eight output files.

Figure 10-8. The infile.out File from Example 10-1 Partitioned Into Eight Output Files

COFF FILE: OUTPUT FILES:
infile.out EPROM1
rom4000.b0 rom4000.b1 rom4000.b2 rom4000.b3

04000h 04000h
(org)
text text text text
0487Fh
04880h
05B80h 0Oh Oh Oh Oh
05B80h
.data .data .data .data
0633Fh O5FFFh
06700h S———
width = 8 bits len = 2000h (8K)
EPROM2
rom6000.b0 rom6000.b1 rom6000.b2 rom6000.b3
06000h d dat dat
07C7F .data .data .data .data
06340h [~ on oh oh EEh
- / 06700h
memwidth = 32 bits
.table .table .table .table
07C80h
07FFFh Oh Oh Oh FFEh

10-20

Using the ROMS Directive to Specify Memory Configuration

10.5.3 Creating Map Files and the —map option

The map file (specified with the —map option) is very useful when you use the
ROMS directive with multiple ranges. The map file shows each range, its
parameters, names of associated output files, and a list of contents (section
names and fill values) broken down by address. Here’s a segment of the map
file resulting from the example in Example 10-1.

Example 10—2. Map File Output from Example 10—1 Showing Memory Ranges

00004000..00005fff Page=0 Width=8 "EPROM1”"

OUTPUT FILES: rom4000.b0 [b0..b7]
rom4000.b1 [b8..b15]
rom4000.b2 [b16..b23]
rom4000.b3 [b24..b31]

CONTENTS: 00004000..0000487f .text
00004880..00005b7f FILL = 00000000
00005b80..00005fff .data

00006000..00007fff Page=0 Width=8 "EPROM2”

OUTPUT FILES: rom6000.b0 [b0..b7]
rom6000.b1 [b8..b15]
rom6000.b2 [b16..b23]
rom6000.b3 [b24..b31]

CONTENTS: 00006000..0000633f .data
00006340..000066ff FILL = 000000ff
00006700..00007c7f .table
00007c80..00007fff FILL = 000000ff

Hex Conversion Utility Description 10-21

Using the SECTIONS Directive to Convert COFF File Sections

10.6 Using the SECTIONS Directive to Convert COFF File Sections

You may convert specific sections of the COFF file by name with the
SECTIONS directive. You can also specify those sections you want the utility
to configure for loading from an on-chip boot loader, and those sections that
you wish to locate in ROM at a different address than the load address speci-
fied in the linker command file.

If you:

[Use a SECTIONS directive, the utility converts only the sections that you
list in the directive; the utility ignores any other sections in the COFF file
that you don't specify in the directive.

(1 Don'tuse a SECTIONS directive, the utility converts any initialized section
that falls within the configured memory. TMS320C3x/C4x compiler-
generated initialized sections include: .text, .const, and .cinit.

Note: Sections Generated by the C Compiler

Uninitialized sections are never converted, whether or not you specify them
in a SECTIONS directive. TMS320C3x/C4x compiler uninitialized sections
include: .bss, .stack, and .sysmem.

Use the SECTIONS directive in a command file. (For more information about
using a command file, see Section 10.3, page 10-6.) The general syntax for
the SECTIONS directive is:

SECTIONS

{
sname: [paddr =value] [datawidth=value],
sname: [paddr=boot]
sname [= boot |,

}
SECTIONS begins the directive definition.
sname identifies a section in the COFF input file. If you specify a

section that doesn’t exist, the utility issues a warning and
ignores the name.

datawidth =value specifies the logical width of the data in the section (see
page 10-8).

10-22

Using the SECTIONS Directive to Convert COFF File Sections

paddr =value specifies the physical ROM address at which this section
should be located. This value overrides the section load ad-
dress given by the linker. (Refer to Section 10.10).This val-
ue must be adecimal, octal, or hexadecimal constant; it can
also be the word boot to indicate a boot table section for use
with the on-chip boot loader. [Boot sections have a physical
address determined both by the target processor type and
by the various boot-loader-specific command line options.]
If your file contains multiple sections, and if one section
uses a —paddr option, then all sections must use a —paddr
option.

= boot configures a section for loading by the on-chip boot loader.
This is equivalent to using paddr=boot.

The commas are optional. For more similarity with the linker's SECTIONS
directive, you can use colons after the section names and in place of the equals
sign on the boot keyboard. For example,

SECTIONS { .text: .data: boot }
SECTIONS { .text, .data = boot }

are equivalent.

For example, suppose a COFF file contains six initialized sections: .text, .data,
.const, .vectors, .coeff, and .tables. If you want only .text and .data to be con-
verted, use a SECTIONS directive to specify this:

SECTIONS { .text, .data }
To configure both of these sections for boot loading, add the boot keyword:

SECTIONS { .text = boot, .data = boot }

Note: Using the —boot Option and the SECTIONS Directive

When you use the SECTIONS directive with the on-chip boot loader, note
that the —boot option is ignored. You must explicitly specify any boot sections
in the SECTIONS directive. For more information about —boot and other
command line options associated with the on-chip boot loader, see
Table 10-2, Boot Loader Utility Options, page 10-29.

Hex Conversion Utility Description 10-23

Output Filenames

10.7 Output Filenames

When the hex conversion utility translates your COFF object file into a data for-
mat, it partitions the data into one or more output files. When multiple files are
formed by splitting data into byte-wide or word-wide files, filenames are always
assigned in order from least to most significant. This is true regardless of target
or COFF endian ordering, or of any —order option.

Assigning Output Filenames

The hex conversion utility follows this sequence when assigning output file-
names:

1) Itlooks for the ROMS directive. If the file is associated with a range in
the ROMS directive, and you have included a list of files (files ={. . .}) on
that range, the utility takes the filename from the list.

For example, assume that the target data is 32-bit words being converted
tofourfiles, eight bits wide. To name the output files using the ROMS direc-
tive, you could use specify:

ROMS

{
RANGEL: romwidth=8, files={ xyz.b0 xyz.b1 xyz.b2 xyz.b3}
}

The utility creates the output files by writing the least significant bits (LSBS)
to xyz.b0 and the most significant bits (MSBs) to xyz.b3.

2) It looks for the —o options. The hex conversion utility often splits the
target data from the COFF object file on byte, word, or half-word bound-
aries. It also partitions the data into files of fixed length according to the
configuration you specify. This results in multiple output files. You can
specify names for the output files by using the —o option. The following line
has the same effect as the example above using the ROMS directive:

—0 Xyz.b0 —0 xyz.b1 —0 xyz.b2 —0 xyz.b3
Note that if both the ROMS directive and —o options are used together, the
ROMS directive overrides the —o options.

3) lItassignsadefaultfilename. If you specify no file names or fewer names
than output files, the utility assigns a default filename.

10-24

Output Filenames

A default filename consists of the base name from the COFF input file plus a
2- to 3-character extension. The extension has three parts:

1 A format character, based on the output format:

a for ASCII-Hex
for Intel

for TI-Tagged
for Motorola-S
for Tektronix

X g~ =

[Therange number in the ROMS directive. Ranges are numbered starting
with 0. If there is no ROMS directive, or only one range, the utility omits
this character.

[The file number in the set of files for the range, starting with O for the least
significant file.

For example, assume coff.out is for a 32-bit target processor and you are
creating Intel-format output. With no output file names specified, the utility pro-
duces four output files named coff.i0, coff.i1, coff.i2, and coff.i3:

If you include the following ROMS directive when you invoke the hex
conversion utility, you would have eight output files:

ROMS

{
rangel: o = 1000h 1 = 1000h
range2: o = 2000h 1 = 1000h

}
These Output Files Contain this data
coff.i00, coff.i01, coff.i02, and coff.i03 1000h through 1FFFh
coff.i10, coff.ill, coff.il2, and coff.il3 2000h through 2FFFh

Hex Conversion Utility Description 10-25

Image Mode and the —fill Option

10.8 Image Mode and the —fill Option

This section explains the advantages of operating in image mode, and details
the method of producing output files with a precise, continuous image of a
target memory range.

10.8.1 The —image Option

10-26

With the —image option, the utility generates a memory image by completely
filling all of the mapped ranges specified in the ROMS directive.

A COFF file consists of blocks of memory (sections) with assigned memory
locations. Typically, all sections are not adjacent: there are gaps between
sections in the address space for which there is no data. When such a file is
converted without the use of image mode, the hex conversion utility bridges
these gaps by using the address records in the output file to skip ahead to the
start of the next section. In other words, there may be discontinuities in the out-
put file addresses. Some EPROM programmers do not support address dis-
continuities.

In image mode, there are no discontinuities. Each output file contains a
continuous stream of data that corresponds exactly to an address range in tar-
get memory. Any gaps before, between, or after sections are filled with a fill
value that you supply.

An output file converted by using image mode still has address records
because many of the hex formats require an address on each line. However,
in image mode, these addresses will always be contiguous.

Note: Defining the Ranges of Target Memory

If you use image mode, you must also use a ROMS directive. Inimage mode,
each output file corresponds directly to a range of target memory. You must
define the ranges. If you don’t supply the ranges of target memory, the utility
tries to build a memory image of the entire target processor address
space—potentially a huge amount of output data. To prevent this situation,
the utility requires you to explicitly restrict the address space with the ROMS
directive.

Image Mode and the —fill Option

10.8.2 Specifying a Fill Value

The —fill option specifies a value for filling the holes between sections. The fill
value must be specified as an integer constant following the —fill option. The
width of the constant is assumed to be that of a word on the target processor.
For example, on the 'C3x, specifying —fill OFFFFh results in a fill pattern of
0000FFFFh. The constant value is not sign-extended.

Note: If You Do Not Specify A Value With The Fill Option

The hex conversion utility uses a default fill value of 0 if you don’t specify a
value with the fill option. The —fill option is valid only when you use —image;
otherwise it is ignored.

10.8.3 Steps to Follow in Image Mode

Step 1: Define the ranges of target memory with a ROMS directive (see
Section 10.5).

Step 2: Invoke the hex conversion utility with the —image option. You can op-
tionally use the —byte option to number the bytes sequentially and
the —zero option to reset the address origin to zero for each output
file. If you don’t specify a fill value with the ROMS directive and you
want a value other than the default, use the —fill option.

Hex Conversion Utility Description 10-27

Building a Boot-Table From an On-Chip Boot Loader

10.9 Building a Boot-Table From an On-Chip Boot Loader

Some DSP devices such as the 'C31, 'C32, and 'C4x have a built-in boot
loader that initializes memory with one or more blocks of code or data. The
boot loader uses a special table (a boot table) stored in memory (such as
EPROM) or loaded from a device peripheral (such as a serial or communica-
tions port) to initialize the code or data. The hex conversion utility supports the
boot loader by automatically building the boot table.

10.9.1 Description of the Boot Table

The input for a boot loader is called the boot table (also known as a source
program). The boot table contains records that instruct the on-chip loader to
copy blocks of data contained in the table to specified destination addresses.
Some boot tables also contain values for initializing various processor control
registers. The boot table can be stored in memory or read in through a device
peripheral.

The hex conversion utility automatically builds the boot table for the boot load-
er. Using the utility, you specify the COFF sections you want the boot loader
toinitialize, the table location, and the values for any control registers. The hex
conversion utility identifies the target device type from the COFF file, builds a
complete image of the table according to the format required by that device,
and converts it into hexadecimal in the output files. Then, you can burn the
table into ROM or load it by other means.

Boot loaders support loading from memory that is narrower than the normal
width of memory. For example, you can boot a 32-bit TMS320C31,
TMS320C32, or TMS320C40 from a single eight-bit EPROM by using the
—memwidth option to configure the width of the boot table. The hex conversion
utility automatically adjusts the table’s format and length.

10.9.2 The Boot Table Format

10-28

The boot table format includes a header record containing the width of the
table and possibly some values for various control registers. Each subsequent
block has a header containing the size and destination address of the block
followed by data for the block. Multiple blocks can be entered; a termination
block follows the last block. Finally, the table can have a footer containing more
control register values. Refer to the boot-loader section in the specific device
user’s guide for more information.

Building a Boot-Table From an On-Chip Boot Loader

10.9.3 How to Build the Boot Table

Table 10-2 summarizes the hex conversion utility options available for the
boot loader. You can choose from these options in addition to the options listed
in Table 10-1, page 10-4.

Table 10-2. Boot-Loader Utility Options

Option Description

—boot Convert all sections into bootable form (use instead of a
SECTIONS directive)

—bootorg value Specify the source address of the boot loader table

—bootpage value Specify the target page number of the boot loader table

—cg value Set the primary bus global control register ('C31 only)
—cg value Set the global memory configuration register ('C4x only)
—cl value Set the local memory configuration register ('C4x only)
—e value Specify the PC value after loading

—iack value Specify the IACK memory location ('C4x only)

—ivtp value Set the interrupt vector table pointer ('C4x only)

—tvtp value Set the trap vector table pointer ('C4x only)

—iostrb value Set the IOSTRB control register ('C32 only)

—strb0 value Set the STRBO control register ('C32 only)

—strbl value Set the STRBL1 control register ('C32 only)

To build the boot table, follow these steps below:

Step 1:

Step 2:

Link the file . Each block of the boot table data corresponds to an
initialized section in the COFF file. Uninitialized sections are not con-
verted by the hex conversion utility, see Section 10.6, page 10-22.

When you select a section for placement in a boot-loader table, the
hex conversion utility places its load address in the destination
address field for the block in the boot table. The section content is
then treated as raw data for that block.

Identify the bootable sections . You can use the —boot option to tell
the hex conversion utility to configure all sections for boot loading.
Oryou can use a SECTIONS directive with the utility to select specif-
ic sections to be configured. Refer to Section 10.6. Note that if you
use a SECTIONS directive, the —boot option is ignored.

Hex Conversion Utility Description 10-29

Building a Boot-Table From an On-Chip Boot Loader

10-30

Step 3:

Step 4:

Step 5:

Set the ROM address of the boot table . Use the —bootorg option
to set the source address of the complete table. For example, if you
are using the 'C4x and booting from memory location 40000000h,
specify —bootorg 40000000h. The address field in the the hex
conversion utility output file will then start at 4000000h.

If you use —bootorg SERIAL or —bootorg COMM, or if you do not use
the —bootorg option at all, the utility places the table at the origin of
the first memory range in a ROMS directive. If you do not use a
ROMS directive, the table will start at the first section load address.
There is also a —bootpage option for starting the table somewhere
other than page 0.

Set boot-loader-specific options , such as entry point, memory
control registers, as needed.

Describe your system memory configuration . Refer to Section
10.4, page 10-7, and Section 10.5, page 10-16 for details.

The complete boot table is similar to a single section containing all of the head-
er records and data for the boot loader. The address of this “section” is the boot
table origin. As part of the normal conversion process, the hex conversion util-
ity converts the boot table to hexadecimal format and maps it into the output
files like any other section.

Be sure to leave room in the memory map for the boot table, especially when
you are using the ROMS directive. The boot table cannot overlap other non-
boot sections or unconfigured memory. Usually, this is not a problem; typically,
a portion of memory in your system is reserved for the boot table. Simply con-
figure this memory as one or more ranges in the ROMS directive, and use the
—bootorg option to specify the starting address.

Building a Boot-Table From an On-Chip Boot Loader

10.9.4 Booting From a Device Peripheral

You can choose to boot from a serial or other port by using the SERIAL or
COMM keyword with the —bootorg option. Your selection of a keyword de-
pends on the target device and the channel you want to use. For example, to
boot a 'C31 or 'C32 from its serial port, specify —bootorg SERIAL on the
command line orin a command file. To boot a TMS320C4x from one of its com-
munication ports, specify —bootorg COMM .

Notes:

g Possible Memory Conflicts When you boot from a device peripheral,
the boot table is not actually in memory; it is being received through the
device peripheral. However, as explained in Step Three, page 10-30, a
memory address is assigned.

g Why the System Might Require an EPROM Format for a Peripheral
Boot Loader Address In a typical system, a parent processor boots a
a child processor through that child’s peripheral. The boot loader table
itself may occupy space in the memory map of the child processor. The
EPROM format and ROMS directive address used correspond to the
one used by the parent processor, not the one that is used by the child.

10.9.5 Setting the Entry Point for the Boot Table

After completing the boot load process, program execution starts at the
address of the first block loaded (default entry point). By using the —e option
with the hex conversion utility, you can set the entry point to a different address.

For example, if you want your program to start running at address 0123456h
after loading, specify —e 0123456h on the command line or in a command file.
The value must be a constant; the hex conversion utility cannot evaluate
symbolic expressions, like c¢_int00 (default entry point assigned by the

C compiler). You can determine the —e address by looking at the map file

that the linker generates.

When you use the —e option, the utility builds a dummy block of length 1 and
data value 0 that loads at the specified address. Your blocks follow this dummy
block. Since the dummy block is boot-loaded first, the dummy value of 0 is
overwritten by the subsequent blocks. Then, the boot loader jumps to its ad-
dress after the boot load is completed.

10.9.6 Setting Control Registers

In addition to loading data into memory, some boot loaders can also initialize
processor control registers from values in the boot table. The hex conversion
utility provides special options that you can use to set the values for these reg-
isters. Table 10-3 lists the control register options. Each of these options
requires a constant value as its argument.

Hex Conversion Utility Description 10-31

Building a Boot-Table From an On-Chip Boot Loader

Table 10-3. Control Register Options

Option Register

—cg value Primary bus global control register (C31 and 'C32 only)
—cg value Global memory configuration register ('C4x only)

—cl value Local memory configuration register ('C4x only)

—iack value IACK memory location ('C4x only)

—ivtp value Interrupt vector table pointer ('C4x only)

—tvtp value Trap vector table pointer ('C4x only)

—iostrb value IOSTRB control register ('C32 only)

—strb0 value STRBO control register ('C32 only)

—strbl value STRB1 control register ('C32 only)

10.9.7 Creating a Boot Loader Table for the 'C31

The 'C31 boot loader has two modes: external memory and serial port.
External memory can be 8, 16, or 32 bits wide. The serial port assumes 32-bit
burst mode. The 'C31 can boot multiple blocks, so you can specify more than
one section to boot. (For detailed information on the 'C31 boot loader, refer to
the TMS320C3x User’s Guide.) Furthermore, you can use the —e option to set
the entry point where execution begins after loading ends.

Booting From External Memory

10-32

If you are booting from external memory, the boot table has a two-word header:

(1 Thefirst word defines the width of the memory, which the utility sets to the
memory width selected. (Refer to Section 10.4, page 10-7.)

(1 The second word is the primary memory configuration register value,
which you can set with the —cg option. Because the memory configuration
register controls how external memory is being accessed, a —cg with an
incorrect value may cause problems in the boot load process.

Following the header are blocks of data, each preceded with a size and des-
tination address. A size field of 0 terminates the list. If the memory width is less
than 32, the data must be ordered from least to most significant. The
conversion utility automatically builds the table in the correct format.

To configure one or more sections to boot from external memory, link each sec-
tion with a load address equal to its destination address. Refer to page 10-29
for details on the basic steps to follow to build a boot-loader table.

Building a Boot-Table From an On-Chip Boot Loader

Booting From a Serial Port

Booting from the serial port is similar to booting from external memory. Here,
however, you specify —bootorg SERIAL. In serial mode, the two-word boot
table header is omitted and the table immediately starts with the size of the first
block. Refer to page 10-31.

An Example: Booting the 'C31 From Memory

Suppose you want to boot the 'C31 from a 16-bit memory system at location
1000h with the following conditions:

(1 The 16-bit memory system consists of two side-by-side 8K x 8-bit
EPROMSs, specified in the ROMS directive.

[You have three sections to load: .text, .cinit, and .const, specified in the
SECTIONS directive.

1 You wantthe program to start running at address 0809802h after loading
(use —e 0809802h).

1 You want to set the primary bus control register to zero wait-states, no
bank switching and external ready.

Example 10-3 uses the ROMS directive to define the EPROMs as memory
ranges and the —image option to fill all 8K locations of each output file.

Example 10-3. Using the TMS320C31 Boot Loader

/ * * * Kkkkkkkkkkkkkkkkkk * * * * n/

/* Sample command file for C31 EPROM Boot */
abc.out [* input file */
—i /* Intel format */
—memwidth 16 /* 16-bit memory system */
—bootorg 1000h /* location of the external boot memory */

—cg Oh [*primary bus configuration */
ROMS

EPROM: org = 01000h, len = 02000h, romwidth = 8,/* 8K x8 */
files = { abc.Isb, abc.msb }

}
SECTIONS { .text: BOOT, .cinit: BOOT, .const: BOOT }

This example produces two output files, one for each EPROM, each contain-
ing 8-bit wide data. If you want a single output file with all 16 bits (one single
8K x 16-bit ROM device used), use ROMwidth=16 instead of ROMwidth = 8.

Hex Conversion Utility Description 10-33

Building a Boot-Table From an On-Chip Boot Loader

10.9.8 TMS320C32 Boot Loader Table Generation

The 'C32 boot loader has two modes: external memory and serial port. Exter-
nal memory can be 8, 16, or 32 bits wide. The serial port assumes 32-bit burst
mode. The 'C32 can boot multiple blocks, so you can specify more than one
section to boot. Furthermore, you can use the —e option to set the entry point
where execution begins after loading ends. For more detailed information on
the 'C32 boot loader, refer to the TMS320C3x User’s Guide and the 'C32
User’s Guide.

Booting From External Memory

10-34

If you are booting from external memory, the boot table has a four-word

header:

(O The first word defines the width of the memory system, which the utility
sets to the memory width selected, as explained in Section 10.4, page
10-7.

[0 The second word is the configuration value for the IOSTRB control
register, which you can set with the —iostrb option.

[0 The third word is the configuration value for the STRBO control register,
which you can set with the —strb0O option.

[0 The fourth word is the configuration value for the STRB1 control register,
which you can set with the —strb1 option.

Following the header are blocks of data, each block preceded with a header
that defines a size, a destination address, and a strobe-control register value.
A size field of zero terminates the list. If the memory width is less than 32, the
data is ordered from least to most significant. If the data width is less than 32
for any section in the boot table, only the least significant datawidth bits are
stored in the output files. The conversion utility automatically builds the table
in the correct format.

To configure one or more sections to boot from external memory, link each sec-
tion with a load address equal to its destination address. Refer to page 10-29
for the steps required in boot-loader table generation.

If there are multiple data widths in the boot table, you can use the data width
parameter of the SECTIONS directive to specify data width, or the —datawidth
option to specify the global data width. The data width for any section con-
taining code or address values must always be set to 32. Otherwise, the

boot loading process may fail.

Building a Boot-Table From an On-Chip Boot Loader

Booting From a Serial Port

Booting from the serial port is similar. Specify —bootorg SERIAL. In serial
mode, the first word of the boot table header is omitted and the table
immediately starts with the configuration value for the IOSTRB control register.

Booting the 'C32 from Memory

Suppose you want to boot the 'C32 from 16-bit memory at location 1000h with
the following conditions:

[The 16-bitmemory consists of two side-by-side 8K x 8 EPROMs, specified
in the ROMS directive.

] You have four sections to load:

Section Data width
text 32

.cinit 32

.const 32
.userdata 8

(1 The program will start running at 0809802h after loading (use -e
0809802h).

J You want to set the IOSTRB global control register to 0 wait state

J Youwantto set STRBO to 0 wait state, no bank switching, external ready,
and 32-bit data width in 32-bit wide memory

J Youwantto set STRB1 to 0 wait state, no bank switching, external ready
and 8-bit data in 8-bit wide memory.

Example 10-4 shows a command file that uses the ROMS directive to define
the EPROMSs as a memory range and the —image option to fill all 8K locations
of each output file.

Hex Conversion Utility Description 10-35

Building a Boot-Table From an On-Chip Boot Loader

Example 10—4. Using the TMS320C32 Boot Loader

[FrRkF Ak dkkkkkk *% *% nnnnnnnnnnnm\nm\nn/

/* Sample command file for C32 EPROM Boot */
/*~k~k***/

abc.out [* input file */

—i /* Intel format */
—memwidth 16 [* 16-bit memory */
—bootorg 1000h [* external memory boot */
—iostrb Oh /* I0STRB configuration */
—strbO OFO000h /* STRBO configuration */
—strb1 050000h /* STRB1 configuration *
ROMS

EPROM: org = 01000h, len = 02000h, romwidth = 8,/* 8K x 8 */
files = { abc.Isb, abc.msb }

}

SECTIONS {
text: BOOT
.cinit: BOOT
.const: BOOT
.userdata; BOOT
datawidth = 8

}

This example produces two output files, one for each EPROM, each contain-
ing 8-bit wide data. If you want a single output file with all 16 bits, use
ROMwidth = 16 instead of ROMwidth = 8.

10-36

Building a Boot-Table From an On-Chip Boot Loader

10.9.9 TMS320C4x Boot Loader Table Generation

The 'C4x boot loader can boot through either external memory or one of the
communication ports. External memory can be 8, 16, or 32 bits wide. The com-
munication ports are 8-bit channels that use internal buffering to effect 32-bit
transfers. The 'C4x can boot multiple blocks, so you can specify more than one
section to boot. Furthermore, you can use the —e option to set the entry point
where execution begins after loading ends. Refer to the TMS320C4x User’s
Guide for details on boot loader operation.

Booting From External Memory
The boot table has a three-word header:

[The first word defines the width of the memory, which the utility sets to the
memory width value. See Section 10.4.

[The second and third words are the configuration values for global and
local memory, which you can set with the —cg and —cl options, respectively.

Following the header are blocks of data, each preceded with a size and des-
tination address. A size field of 0 terminates the list. Following the table are
three more configuration values for the IVTP register, TVTP register, and IACK
memory location. You can set these with the —ivtp, —tvtp, and —iack options.
If the memory width is less than 32, the partial words are ordered from least
to most significant. The hex conversion utility automatically builds the table in
the correct format.

To configure one or more sections to boot from external memory, link each
section with a load address equal to its destination address. Refer to page
10-29 for the basic steps to follow when building a boot loader table. For in-
formation on how to describe your external memory system, refer to Section
10.7, page 10-24.

Booting From a Communications Port

Booting from a communications port is similar to booting from external
memory. Simply specify —bootorg COMM. In comm port mode, the first word
of the boot table header (the memory width) is omitted. Refer to page 10-31
for more information.

Hex Conversion Utility Description 10-37

Building a Boot-Table From an On-Chip Boot Loader

An Example: Booting a 'C4x From a Communications Port

Suppose you want to boot a 'C4x child processor from a communications port
connected to a parent C4x processor. The following conditions apply:

a

a

You want to set the child global memory control register to a 1D78C9FO0h
value.

You want to set the child local memory control register to a 1D739250h
value.

You want to set the location of the interrupt vector table and the trap vector
table of the child processor in location 2ff800h.

You want all of the initialized sections to boot automatically (use —boot).

You want the program to start running in the child processor at 40000000h
after loading (use —e 40000000h).

The parent processor will have the child boot loader table information
stored in its own memory at address 0x300000 (one single eight-bit ROM
device)

The command file is shown in Example 10-5.

Example 10-5. Using the 'C4x Boot Loader

[FrFFFF I I T KKKk KKK

*%

*

*

*kkdkkkkhkkkkk *% * *kkkkkkkkkk xx/

}

/* Sample command file for C40 COMM Boot */
/ /

abc.out /* input file (child processor executable) */

—0 abc.i /* output file (parent processor ROM) */

—i [* Intel format (parent processor) */
—memwidth 8 /* parent processor memory system width */
—romwidth 8 /* physical width of each ROM device */
—boot [* boot all initialized sections of the child processor */

—bootorg COMM /* boot from comm port (child processor) */
—cg 01D7BC9FOh [* global memory config (child processor) */

—cl 01D739250h /* local memory config (child processor) */

—ivtp 02FF800h /* IVTP initializer (child processor) */

—tvtp 02FF800h /* TVTP initializer (child processor) */
—iack 0300000h /* IACK memory location (child processor) */
ROMS

{
EPROM: org= 0300000h, len = 2000h

[* parent memory */

10-38

This example produces a single file, called abc.i, to be burned in the parent
processor EPROM, with a list of bytes; four per word. If you want the file to con-
tain 32-bit words instead, use —memwidth 32 and —romwidth 32.

Controlling the ROM Device Address

10.10 Controlling the ROM Device Address

The hex conversion utility output address field corresponds to the ROM device
address. The EPROM programmer burns the data in the location specified by
the hex conversion utility output file address field. The hex conversion utility
offers some mechanisms to control the starting address in ROM of each sec-
tion and/or control the address index used to increment the address field. How-
ever many EPROM programmers offer direct control of the location in ROM
in which the data is burned.

10.10.1 Controlling the Starting Address

Depending on the condition of the boot loader, the the hex conversion utility
output file controlling mechanisms are different.

(J Non Boot-loader mode

The address field of the hex conversion utility output file is controlled by the
following mechanisms listed from low to high priority:

1. The linker command file:

By default, the address field of a the hex conversion utility output file
is a function of the load address (as given in the linker command file)
and the hex conversion utility parameter values. The relationship is
summarized as follows:

out_file_addrT = load_addr x (data_width = mem_width) |

out_file_addr The address of the output file.
load_addr The linker-assigned load address

data_width Data width can be specified by the —datawidth
command or the datawidth option inside the
SECTIONS directive. See Section 10.4.

mem_width The memory width of the memory system. You
can specify the memory width by the —memwidth
command or the memwidth option inside the
ROMS directive. See Section 10.4.

T 1f paddr is not specified

Consider the value of data width divided by memory width a
correction factor for address generation. If data width is larger than
memory width, then the correction factor expands the address
space.

Hex Conversion Utility Description 10-39

Controlling the ROM Device Address

For example, if the load address is 0x1 and datawidth divided by
memory width is 4, the output file address field would be 0x4. The
data is split into four consecutive locations of size memory width.

When data width is less than memory width, then the correction fac-
tor compresses the address space.

For example, assume that a section in the COFF input file contains
four words of 8-bit data width with linker-assigned load addresses of
0x0, 0x1, 0x2, and 0x3, respectively. If memory width is equal to 32,
then data width divided by memory width is equal to 1/4. Therefore,
the four 8-bit data words will be packed into one single 32-bit memory
word with an address of 0x0. (Notice that the address is truncated
to an integer.)

2. The —paddr option inside the SECTIONS directive:

When —paddr is specified for a section, the hex conversion utility by-
passes the section load address and places the section in the
address specified by —paddr. The relation between the hex conver-
sion utility output file address field and —paddr can be summarized
as follows:

out_file_addr’ = paddr_val + (load_addr — sect_beg_load_addr) x (data_width - mem_width)

10-40

out file_addr The address of the output file

paddr_val The value supplied with the —paddr option inside
the SECTIONS directive

sec_beg_load Section beginning load address assigned by
_addr linker

Tif paddr is specified

The value of data width divided by memory width is a correction fac-
tor for address generation. The load address — section beginning
load address factor is an offset from the beginning of the section.

3. The zero option

When you use the —zero option, the utility resets the address origin
to zero for each output file. Since each file starts at zero and counts
upward, any address records represent offsets from the beginning
of the file (the address within the ROM) rather than actual target ad-
dresses of the data.

You must use this option in conjunction with the —image option to
force the starting address in each output file to be zero. If you specify
the —zero option without the —image option, the utility issues a warn-
ing and ignores the option.

Controlling the ROM Device Address

[J Boot-Loader Mode

In the boot-loader case, the hex conversion utility places the different
COFF sections inside the boot loader table in consecutive memory loca-
tions. Each COFF section becomes a boot loader table block whose des-
tination address is equal to the section linker-assigned load address.

The address field of the the hex conversion utility output file is not related to
the section load addresses assigned by the linker. The address fields are
simply offsets to the beginning of the table, multiplied by the correction fac-
tor (data width divided by memory width, as previously explained.)

The beginning of the boot loader table defaults to the linked load address
of the first bootable section in the COFF input file, unless you use one of
the following mechanisms, listed here from low- to high-priority. Higher
priority mechanisms override the values set by low priority options in the
overlapping range.

1. The ROM origin specified in the ROMS directive:

The hex conversion utility places the boot loader table at the origin
of the first memory range in a ROMS directive.

2. The —bootorg option:

The hex conversion utility places the boot loader table at the address
specified by the —bootorg option if you select boot loading from
memory. Neither —bootorg COMM nor —bootorg SERIAL affect the
address field.

10.10.2 Controlling the Address Increment Index

By default, the hex conversion utility increments the output file address field

based on memory width value. If the memory width equals 16 bits, the address

willincrement based on how many 16-bit words are present in each line of the

output file.

[0 The —byte option
Some EPROM programmers may require the address field of the hex con-
version utility output file increments in a byte basis. If you use the —byte
option, the output file address is incremented once for each byte. In an ex-
ample in which the starting address is Oh and the first line contains eight
words, with —byte, the second line would start at address 32 (020h). The
data is the the same; —byte affects only the calculation of the output file
address field, not the actual target processor address of the converted
data.

The —byte option causes the address records in an output file to refer to
byte locations within the file, whether the target processor is byte-
addressable or not.

Hex Conversion Utility Description 10-41

Controlling the ROM Device Address

10.10.3 Dealing With Address Holes

When memory width is different from data width, the automatic multiplication
of the load address by the correction factor might create holes at the beginning
of a section or between sections.

For example, assume you wanted to load a COFF section (.secl) at address
0x0100 of an 8-bit EPROM. If you specify the load address in the linker com-
mand file at location 0x100, the hex conversion utility will multiply the address
by four (data width divided by memory width = 32/8 = 4), giving the output file
a starting address of 0x400. Unless you control the starting address of the
EPROM with your EPROM programmer, you could create holes within the
EPROM. The EPROM will burn the data starting at location 0x400 instead of
0x100. You can solve this by:

[Using the paddr command parameter of the SECTIONS directive.

This forces a section to start at the provided value. Example 10-6 shows a
hex command file that can be used to avoid the hole at the beginning of
.secl.

Example 10—6. Hex Command File For Hole Avoidance

—i
a.out
—map a.map

ROMS

}
SECTIONS

secl: pa

ROM : org = 0x0100, length = 0x200, romwidth = 8, memwidth = 8,

ddr = 0x100

Note: Conditions for Using the paddr Parameter

If one section uses a paddr parameter, then all sections must use the paddr
parameter.

(1 Using the bootorg command line, or using the ROMS origin option

10-42

As described on page 10-42, the EPROM address of the entire boot-load-
er table can be controlled by the —bootorg option or by the ROMs directive.

Description of the Object Formats

10.11 Description of the Object Formats

The hex conversion utility converts a COFF object file into one of five object
formats that most EPROM programmers accept as input: ASCII-Hex, Intel
MCS-86, Motorola-S, Extended Tektronix, and TI-Tagged. This section de-
scribes each object format.

You can use one of the options in Table 10-4 to specify the hex format you
want to use for the output files.

1 If you use more than one of these options, the last one you list overrides
the others.

[The default output format is Tektronix (—x option).

Table 10-4. Options for Specifying Hex Conversion Formats

Address Default
Option Format Bits Width
-a ASCII-Hex 16 8
—i Intel 32 8
-ml Motorola-S1 16 8
—-m2or—-m Motorola-S2 24 8
-m3 Motorola-S3 32 8
-t TI-Tagged 16 16
—X Tektronix 32 8

Address bits determine how many bits of the address information the format
supports. The formats with 16-bit addresses only support addresses up to
64K. The utility truncates target addresses to fit in the number of bits available.

The default width determines the default output width of the format. You can
change the default width by using the —romwidth option or by specifying the
—romwidth option in the ROMS directive. You cannot change the default width
of the TI-Tagged format. The TI-Tagged format supports a 16-bit width only.

Note: Using the Intel Format

The Intel format has been extended to support 32-bhit addresses. Special lin-
ear address records (record type = 04h) are used to represent the upper 16
bits of any address requiring more than 16 bits.

Hex Conversion Utility Description 10-43

Description of the Object Formats

10.11.1 ASCII-Hex Object Format (—a Option)

The ASCII-Hex object format supports 16-bit addresses. The format consists
of a byte stream with bytes separated by spaces. Figure 10-9 illustrates the
ASCII-Hex format.

Figure 10-9. ASCII-Hex Object Format

Nonprintable

Nonprintable Address End Code
Start Codej_‘
B $AXXXX, J‘\

XX)8(XX XX XX XX XX XX XX XX, . .rMC

Data Byte

The file begins with an ASCII STX character (ctrl-B, 02h) and ends with an
ASCIlI ETX character (ctrl-C, 03h). Address records are indicated with
FAXXXX, where XXXX is a four-digit (16-bit) hexadecimal address. The ad-
dress records are present only in the following situations:

[When discontinuities occur
[When the byte stream does not begin at address 0

You can avoid all discontinuities and any address records by using the —image
and —zero options. This creates output that is simply a list of byte values.

10-44

Description of the Object Formats

10.11.2 Intel MCS-86 Object Format (—i Option)

The Intel object format supports 16-bit addresses and 32-bit extended
addresses. Intel format consists of a nine-character (four-field) prefix, which
defines the start of record, byte count, load address, and record type, and a
two-character checksum suffix.

The 9-character prefix represents three record types:

Record Type Description

00 Data record

01 End-of-file record

04 Extended linear address record

Record type 00, the data record, begins with a colon (:) and is followed by the
byte count, the address of the first data byte, the record type (00), and the
checksum. Note that the address is the least significant 16 bits of a 32-bit ad-
dress; this value is concatenated with the value from the most recent 04
(extended linear address) record to create a full 32-bit address. The checksum
is the 2s complement (in binary form) of the preceding bytes in the record, in-
cluding byte count, address, and data bytes.

Record type 01, the end-of-file record, also begins with a colon (:), followed
by the byte count, the address, the record type (01), and the checksum.

Record type 04, the extended linear address record, is used to specify the
upper 16 address bits. It begins with a colon (:), followed by the byte count,
adummy address of Oh, the record type (04), the most significant 16 bits of the
address, and the checksum. The subsequent address fields in the data re-
cords contain the least significant bits of the address.

Figure 10-10 illustrates the Intel hex object format.

Figure 10-10. Intel Hex Object Format

Address Most Significant 16 Bits
Start j [— Checksum

Character M
:02000004FFEEEO Extended Linear
:10334400112233445566778899FFFFFFFFFFFFFFFF Address Record

:10000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFOO
:10001000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFO — D@
:10002000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEQ

10003000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDO

) End-of-File
00000001FF ‘ = Record
Byte —| = Checksum
Count Record
Type

Hex Conversion Utility Description 10-45

Description of the Object Formats

10.11.3 Motorola-S Object Format (—m1, —-m2, —-m3 Options)

The Motorola S1, S2 and S3 formats support 16-bit (S1), 24-bit (S2), and 32-bit
(S3) addresses. The formats consist of a start-of-file (header) record, data re-
cords, and an end-of-file (termination) record. Each record is made up of five
fields: record type, byte count, address, data, and checksum. The record types
are:

Record Type Description

SO Header record

S1 Code/data record for 16-bit addresses (S1 format)
S2 Code/data record for 24-bit addresses (S2 format)
S3 Code/data record for 32-bhit addresses (S3 format)
S7 Termination record for 32-bit addresses (S3 format)
S8 Termination record for 24-bit addresses (S2 format)
S9 Termination record for 16-bit addresses (S1 format)

The byte count is the character pair count in the record, excluding the type and
byte count itself.

The checksum is the least significant byte of the 1s complement of the sum
of the values represented by the pairs of characters making up the byte count,
address, and the code/data fields.

Figure 10-11 illustrates the tag characters in Motorola-S object formats.

Figure 10-11. Motorola-S Format

10-46

Type
S00B00004441544120492FAFF3 T Header
S1130000FFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFFFC, Reco
S1130010FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFED |

S1130020FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDC = Records
S1130030FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCC
S1130040FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBC
S9030000FC 1 Termination

Record
Byte f Lli Checksum

Count

Address

Description of the Object Formats

10.11.4 TI-Tagged Object Format (-t Option)

The TI-Tagged object format supports 16-bit addresses. It consists of a start-
of-file record, data records, and end-of-file record. Each of the data records is
made up of a series of small fields and is signified by a tag character. The sig-
nificant tag characters are:

Tag Character Description

followed by the program identifier
followed by a checksum

followed by a dummy checksum (ignored)
followed by a 16-bit load address
followed by a data word (four characters)

T w © © ~N X

identifies the end of a data record

* followed by a data byte (two characters)

Figure 10-12 illustrates the tag characters in TI-Tagged object format.

Figure 10-12. TI-Tagged Object Format

Program
Identifier Tag Characters

KOOOC FFTO

90000BFFFF FFFFBFFF FFFFBFFFFBFFFFBFFFFBFFFF7F234

90020BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F400F | Data
90040BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F3FFF | Records
90050BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFER7F3FDF

\ [[[[[\ ‘
\
\T‘ Load Data Checksum

End of File Address Words

Record

In the example above, each of the lines begin with a load address. Note that
this is not always the case; a line can begin with a data word (specified by the
B tag).

If any data fields appear before the first address, the first field is assigned ad-
dress 0000h. Address fields may be expressed for any data byte, but none is
required. The checksum field, which is preceded by the tag character 7, is a
2s complement of the sum of the 8-bit ASCII values of characters, beginning
with the first tag character and ending with the checksum tag character (7 or
8). The end-of-file record is a colon (:).

Hex Conversion Utility Description 10-47

Description of the Object Formats

10.11.5 Extended Tektronix Object Format (—x Option)

The Tektronix object format supports 32-bit addresses and has two types of
records:

data record contains the header field, the load address, and the
object code.

termination record signifies the end of a module.

The header field in the data record contains the following information:

Number of
ASCII
ltem Characters Description
% 1 Data type is Extended Tektronix hex format
|B|0Ck 2 Number of characters in the record, minus the %
ength
Block type 1 6 = data record
8 = termination record
Checksum 2 A two-digit hex sum modulo 256 of all values in the

record except the % and the checksum itself.

The load address in the data record specifies where the object code will be
located. The first digit specifies the address length; this is always 8. The re-
maining characters of the data record contain the object code, two characters
per byte.

Figure 10-13 illustrates the Tektronix object format.

Figure 10-13. Extended Tektronix Hex Object Format

Checksum: 21h = 1+5+6+8+1+0+0+0+0+0+0+0+
2+0+2+0+2+0+2+0+2+0+2+0

Block Length
15h =21 Object Code: 6 bytes

Header %1§F218 0000000202020202020
Character Lr
Load Address: 10000000h

Block Type: Length of
6 (data) Load Address

10-48

Hex Conversion Utility Error Messages

10.12 Hex Conversion Utility Error Messages

section mapped to reserved memory message

Description A section or a boot-loader table is mapped into a reserved

Action

memory area as listed in the processor memory map.

Correct section or boot-loader address. For valid memory loca-
tions, refer to the user’s guide for the specific processor .

sections overlapping

Description Two or more COFF section load addresses overlap or a boot

Action

table address overlaps another section.

This problem may be caused by an incorrect translation from
load address to hex output file address that is performed by the
hex conversion utility when memory width is less than data
width. Refer to Section 10.4, page 10-7 and Section 10.10,
page 10-39.

unconfigured memory

Description This error could have one of two causes:

Action

B The COFF file contains a section whose load address falls
outside the memory range defined in the ROMS directive.

B The boot-loader table address is not within the memory
range defined by the ROMS directive.

Correct your ROM range as defined in your ROMS directive to
cover the memory range as needed, or modify the section load
address or boot-loader table address. Remember that if the
ROMS directive is not used, the memory range defaults to the
entire processor address space. For this reason, removing the
ROMS directive could also be a workaround.

Hex Conversion Utility Description 10-49

Appendix A

Common Object File Format

The TMS320C3x/C4x assembler and linker create object files that are in com-
mon object file format (COFF). COFF is an implementation of an object file for-
mat of the same name that was developed by AT&T for use on UNIX-based
systems. This object file format has been chosen because it encourages mod-
ular programming and provides more powerful and flexible methods for man-
aging code segments and target system memory.

One of the basic COFF concepts is sections. Chapter 2, Introduction to Com-
mon Object File Format, discusses COFF sections in detail. If you understand
section operation, you will be able to use the TMS320 assembly language
tools more efficiently.

This appendix contains technical details about COFF object file structure.
Most of this information pertains to the symbolic debugging information that
is produced by the TMS320C3x/C4x C compiler. The main purpose of this ap-
pendix is to provide supplementary information for those of you who are inter-
ested in the internal format of COFF object files.

Topics in this appendix include:

Topic Page
A.l1 How the COFF File Is Structured A
A2 [FlIe REEeEr STUEIT® ooooososoooo000000000000000000000a0000000¢ A
A.3 Optional File Header Format Al6_]
A4 Section Header StrUCIUI®errrreeeinaenaann... A7]
A.5 Structuring Relocation Information L A-

A.6 Line-Number Table Structurecouiuiineeuennnn... Af12 |
A.7 Symbol Table Structure and Content - :

A-1

How the COFF File is Structured

A.1 How the COFF File Is Structured

The elements of a COFF obiject file describe the file’s sections and symbolic
debugging information. These elements include:

A file header

Optional header information

A table of section headers

Raw data for each initialized section

Relocation information for each initialized section
Line number entries for each initialized section

A symbol table

A string table

(I I Y I I Y

The assembler and linker produce object files with the same COFF structure;
however, a program that is linked for the final time will not contain relocation
entries. Figure A-1 illustrates the overall object file structure.

Figure A—-1. COFF File Structure

file header

optional file header

section 1 header

section headers

section n header

section 1

raw data
——————————— S raw data

(executable code
- T " sectionn | and initialized data)

raw data

/\

section 1
relocation information

> relocation

P e e e e information
section n

relocation information

VaN

section 1
line numbers

> line number
___________ entries

section n
line numbers

symbol table

string table

A-2

How the COFF File is Structured

Figure A-2 shows a typical example of a COFF object file that contains the
three default sections, .text, .data, and .bss, and a named section (referred to
as <named>). By default, the tools place sections into the object file in the fol-
lowing order: .text, .data, initialized named sections, .bss, and uninitialized
named sections. Although uninitialized sections have a section headers, they
have no raw data, relocation information, or line number entries. This is be-
cause the .bss and .usect directives simply reserve space for uninitialized
data; uninitialized sections contain no actual code.

Figure A-2. Sample COFF Object File

file header

text
section header

.data

section header)
__________ > section headers
.bss

section header

<named> section
section header

text
raw data

.data
raw data >

<named> section
raw data

text <

relocation information

) .data _ > relocation
relocation information information

<named> section
relocation information <

raw data

text
line numbers

.data > line number
line numbers entries

<named> section
line numbers

symbol table

string table

Common Object File Format A-3

How the COFF File is Structured

All

A-4

Impact of Switching Operating Systems

The TMS320C3x/C4x COFF files are recognized by all operating system ver-
sions of the development tools. When you switch from one operating system
to another, only the file header information in the COFF files needs to be byte
swapped. The raw data in the COFF files does not need any changes.

The development tools can detect the difference in the file headers and auto-
matically compensate for it. This is true if using only TMS320C3x/C4x devel-
opment tools.

To tell the difference between COFF files, you can look at the magic number
in the optional file header. Bytes 0 and 1 contain the magic number. For the
SunOS™ or HP-UX™ operating systems, the magic number is 108h. For the
DOS operating system, the magic number is 801h.

A.2 File Header Structure

File Header Structure

The file header contains 20 (COFF 0) or 22 (COFF 1 and 2) bytes of informa-
tion that describe the general format of an object file. Table A—1 shows the
structure of the file header.

Table A-1. File Header Contents

Byte
Numbers

Type

Description

0-1

8-11

12-15

16-17

18-19

20-21

Unsigned short integer

Unsigned short integer

Long integer

Long integer

Long integer

Unsigned short integer

Unsigned short integer

Unsigned short integer

COFF 0: Contains magic number (093h) to
indicate the file can be executed in a
TMS320C3x/C4x system.

COFF 1 and 2: Contains COFF version
number, either Oclh (COFF1) or Oc2h
(COFF 2)

Number of section headers

Time and date stamp; indicates when the file
was created

File pointer; contains the symbol table’s
starting address

Number of entries in the symbol table

Number of bytes in the optional header. This
field is either O or 28; if it is O, there is no op-
tional file header.

Flags (see Table A-2)

Included for COFF 1 and 2 only. Contains
magic number (093h) to indicate the file
can be executed in a TMS320C3x/C4x
system.

Table A-2 lists the flags that can appear in bytes 18 and 19 of the file header.
Any number and combination of these flags can be set at the same time (for
example, if bytes 18 and 19 are set to 0003h, F_RELFLG and F_EXEC are

both set).

Common Object File Format A-5

File Header Structure/Optional File Header Format

Table A-2. File Header Flags (Bytes 18 and 19)

Mnemonic Flag Description
F_VERSO 0000h TMS320C30/C31 object code

F RELFLG 0001h Relocation information was stripped from the file

F_EXEC 0002h The file is executable (it contains no unresolved external
references)
F_LNNO 0004h Line numbers were stripped from the file

F_LSYMS 0008h Local symbols were stripped from the file
F_VERS1 0010h TMS320C40/C44 object code
F_VERS2 0020h TMS320C32 object code

F_LITTLE 0100h Object data LSB first

A.3 Optional File Header Format

The linker creates the optional file header and uses it to perform relocation at
download time. Partially linked files do not contain optional file headers.
Table A-3 illustrates the optional file header format.

Table A—3. Optional File Header Contents

Byte
Number Type Description

0-1 Short integer Magic number (0108h)

2-3 Short integer Version stamp

4-7 Long integer Size (in words) of executable code
8-11 Long integer Size (in words) of initialized data
12-15 Long integer Size (in bits) of uninitialized data
16-19 Long integer Entry point
20-23 Long integer Beginning address of executable code
24-27 Long integer Beginning address of initialized data

A-6

Section Header Structure

A.4 Section Header Structure

COFF object files contain a table of section headers that specify where each
section begins in the object file. Each section has its own section header. The
COFFO0, COFF1, and COFF2 file types contain different section header infor-
mation. Table A—4 shows the section header contents for COFF0 and COFF1
files. Table A-5 shows the section header contents for COFF2 files.

Table A—4. Section Header Contents for COFF 0 and COFF1 Files

Byte
Number Type Description

0-7 Character 8-character section name, padded with nulls
8-11 Long integer Section’s physical address
12-15 Long integer Section’s virtual address
16-19 Long integer Section size in words
20-23 Long integer File pointer to raw data
24-27 Long integer File pointer to relocation entries
28-31 Long integer File pointer to line number entries
32-33 Unsigned short integer Number of relocation entries
34-35 Unsigned short integer Number