
TMS320C6416
Seamless CVE Model

User’s Guide

Literature Number: SPRU548B
May 2002

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products and services at
any time and to discontinue any product or service without notice. Customers should obtain the
latest relevant information before placing orders and should verify that such information is current
and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the
time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of
sale in accordance with TI’s standard warranty. Testing and other quality control techniques are
used to the extent TI deems necessary to support this warranty. Except where mandated by
government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are
responsible for their products and applications using TI components. To minimize the risks
associated with customer products and applications, customers should provide adequate design
and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any
TI patent right, copyright, mask work right, or other TI intellectual property right relating to any
combination, machine, or process in which TI products or services are used. Information
published by TI regarding third party products or services does not constitute a license from TI
to use such products or services or a warranty or endorsement thereof. Use of such information
may require a license from a third party under the patents or other intellectual property of that third
party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction
is without alteration and is accompanied by all associated warranties, conditions, limitations, and
notices. Reproduction of this information with alteration is an unfair and deceptive business
practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated
by TI for that product or service voids all express and any implied warranties for the associated
TI product or service and is an unfair and deceptive business practice. TI is not responsible or
liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright 2002, Texas Instruments Incorporated

vRead This First

Preface

��������	�
��	�

About This Manual

This document contains the following chapters:

Chapter one describes some of the features of the TMS320C6416 Seamless
CVE model, including features supported, device pins, accuracy and known
limitations.

The second chapter takes you through the tutorials provided with the Seam-
less CVE model.

Notational Conventions

This document uses the following conventions.

� Program listings, program examples, and interactive displays are shown
in a special typeface similar to a typewriter’s. Examples use a bold
version of the special typeface for emphasis; interactive displays use a
bold version of the special typeface to distinguish commands that you
enter from items that the system displays (such as prompts, command
output, error messages, etc.).

Here is a sample program listing:

0011 0005 0001 .field 1, 2
0012 0005 0003 .field 3, 4
0013 0005 0006 .field 6, 3
0014 0006 .even

Here is an example of a system prompt and a command that you might
enter:

C: csr –a /user/ti/simuboard/utilities

� In syntax descriptions, the instruction, command, or directive is in a bold
typeface font and parameters are in an italic typeface. Portions of a syntax
that are in bold should be entered as shown; portions of a syntax that are
in italics describe the type of information that should be entered. Here is
an example of a directive syntax:

.asect ”section name”, address

Notational Conventions

vi

.asect is the directive. This directive has two parameters, indicated by sec-
tion name and address. When you use .asect, the first parameter must be
an actual section name, enclosed in double quotes; the second parameter
must be an address.

� Square brackets ([and]) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets; you
don’t enter the brackets themselves. Here’s an example of an instruction
that has an optional parameter:

LALK 16–bit constant [, shift]

The LALK instruction has two parameters. The first parameter, 16-bit con-
stant, is required. The second parameter, shift, is optional. As this syntax
shows, if you use the optional second parameter, you must precede it with
a comma.

Square brackets are also used as part of the pathname specification for
VMS pathnames; in this case, the brackets are actually part of the path-
name (they are not optional).

� Braces ({ and }) indicate a list. The symbol | (read as or) separates items
within the list. Here’s an example of a list:

{ * | *+ | *– }

This provides three choices: *, *+, or *–.

Unless the list is enclosed in square brackets, you must choose one item
from the list.

� Some directives can have a varying number of parameters. For example,
the .byte directive can have up to 100 parameters. The syntax for this di-
rective is:

.byte value1 [, ... , valuen]

This syntax shows that .byte must have at least one value parameter, but
you have the option of supplying additional value parameters, separated
by commas.

Information About Cautions and Warnings

viiRead This First

Information About Cautions and Warnings

This book may contain cautions and warnings.

This is an example of a caution statement.

A caution statement describes a situation that could potentially
damage your software or equipment.

This is an example of a warning statement.

A warning statement describes a situation that could potentially
cause harm to you.

The information in a caution or a warning is provided for your protection.
Please read each caution and warning carefully.

Trademarks

TI is a trademark of Texas Instruments Incorporated.

Microsoft is a registered trademark of Microsoft Corporation.

Windows and Windows NT are registered trademarks of Microsoft Corporation.

Seamless CVE is a trademark of Mentor Graphics Corporation.

Contents

ix

������	

1 Features of the TMS320C6416 Seamless CVE 1-1.
Describes the processor support package, methods for invoking, supported devices, simula-
tion features, and known limitations of the TMS320C6416 Seamless CVE model.

1.1 Processor Support Package 1-2.
1.1.1 Contents 1-2.
1.1.2 Licensing Information 1-2.
1.1.3 Supported Platforms 1-2.
1.1.4 Versions 1-2.

1.2 How to Invoke 1-4.
1.2.1 Setting Up the Seamless CVE 1-4.
1.2.2 Setting Up the ISS 1-4.
1.2.3 Setting up the BIM 1-4.

1.3 Supported TMS320C6416 Device Pins 1-6.
1.4 Simulation Features 1-9.

1.4.1 BootLoad 1-9.
1.4.2 Reset Sequence 1-9.
1.4.3 Clock Behavior 1-10.

1.5 Seamless Features Supported 1-11.
1.5.1 Seamless Optimization 1-11.
1.5.2 HW Break 1-11.
1.5.3 Loading COFF into External Memory 1-11.

1.6 Simulation Accuracy 1-13.
1.7 Known Limitations 1-14.

2 TMS320C6416 Seamless CVE Model Tutorial 2-1.
Contains tutorials that allow you to explore some of the capabilities of the TMS320C6416
Seamless CVE model.

2.1 Hooking up the Denali SRAM 2-2.
2.1.1 Connecting the TMS320C6416 Device and a Denali SRAM Model 2-2.
2.1.2 Performing Seamless Optimizations 2-2.
2.1.3 Performing COFF Load into External Memory 2-2.

2.2 Using the Serial Port 2-4.
2.2.1 Using the Serial Port for Transmission and Reception 2-4.
2.2.2 Generating Serial Port Events 2-4.

2.3 Simulating External Interrupts 2-6.

Contents

x

2.3.1 Using External Interrupts 2-6.
2.4 Using the HPI 2-7.

2.4.1 Performing HPI Bootload 2-7.
2.4.2 Performing HOST Reads and Writes 2-7.

2.5 Using the Utopia 2-9.
2.5.1 Performing Read and Write of an ATM Cell 2-9.

2.6 Using the Hardware/Software Synchronization Feature 2-10.
2.6.1 How to Use the Synchronization Feature 2-10.
2.6.2 Performing SYNCHRONIZATION_ON/_OFF During EMIF Transactions 2-10. . .
2.6.3 Synchronization Feature on External Interrupt 2-11.

2.7 Using Host Port Interface and Utopia On/Off Switch 2-12.
2.7.1 How to Use the Switching Feature 2-12.

2.8 Using the GPIO 2-13.
2.8.1 Generating EDMA Events and CPU Interrupts Using GPIO 2-13.

2.9 Using the PCI 2-14.
2.9.1 Performing the PCI Bootload 2-14.
2.9.2 lPerforming PCI Slave Reads/Writes 2-14.
2.9.3 Performing PCI Master Reads/Writes 2-15.

1-1

���������	
�����������������������������

This chapter describes the processor support package, methods for invoking,
supported devices, simulation features, simulation accuracy, and known limi-
tations of the TMS320C6416 Seamless CVE model.

Topic Page

1.1 Processor Support Package 1-2.

1.2 How to Invoke 1-4.

1.3 Supported TMS320C6416 Device Pins 1-6.

1.4 Simulation Features 1-9.

1.5 Seamless Features Supported 1-11.

1.6 Simulation Accuracy 1-13.

1.7 Known Limitations 1-14.

Chapter 1

Processor Support Package

 1-2

1.1 Processor Support Package

The TMS320C6416 Seamless model simulates most of the pins of the
TMS320C6416 device accurately. The TMS320C6416 Processor Support
Package contains the Seamless model and all associated files required to run
in a Mentor Seamless CVE environment.

Code Composer Studio IDE, the debugger interface for the TMS320C6416
ISS, is not shipped as part of this package. Please contact Texas Instruments
to obtain a copy.

1.1.1 Contents

The package contains the following

� TMS320C6416 Seamless Model

� TMS320C6416 Seamless CVE Model User’s Guide

� Code Composer Studio GEL files that implement some of the standard
ISS commands to Seamless

� Binaries and Library files needed by the TMS320C6416 Seamless model
for execution

� Examples that help in using the various features of the TMS320C6416
Seamless model

1.1.2 Licensing Information

The TMS320C6416 Seamless model is a licensed product. Licenses need to
be obtained for two different entities of the product

� TMS320C6416 Seamless CVE model

� Code Composer Studio IDE on Solaris

Licenses for the model can be obtained by contacting Mentor Graphics Sup-
port. Please contact Texas Instruments to obtain licenses for Code Composer
Studio IDE.

1.1.3 Supported Platforms

The model is supported only on the UNIX–Solaris platform.

1.1.4 Versions

The following Solaris versions are supported:

Processor Support Package

1-3Features of the TMS320C6416 Seamless CVE

� SUNOS 5.5.1 (SOLARIS 2.5.1)

� SUNOS 5.6 (SOLARIS 2.6)

The model supports Seamless CVE version 4.1.

The model supports ModelSim version 5.4c.

The model works with Code Composer Studio IDE V1.1 and V2.0 on the UNIX
platform.

How to Invoke

 1-4

1.2 How to Invoke

This section details the steps to be performed to invoke the TMS320C6416
Seamless model. Please invoke the Seamless CVE executable only after the
ISS and BIM have been successfully set up, as seen in sections 1.2.2 and
NO TAG of this document.

1.2.1 Setting Up the Seamless CVE

Please refer the Mentor Graphics Seamless CVE User Guide for details as to
how to setup the Seamless CVE application.

The TMS320C6416 Seamless model is released as part of the Mentor Graph-
ics Seamless release tree.

1.2.2 Setting Up the ISS

1) Set the environment variable TI_PSP_DIR to the installation directory

2) Ensure that the location of cc_app (Code Composer Studio IDE) is in your
path.

3) Invoke cc_setup, select the tisimC64xx board and add to the system. For
more help, refer to the Code Composer Studio help.

4) Edit the board properties to select the simulator config file
simc6416seamless.cfg from the directory:
TI_PSP_DIR/isms/TMS320C6416/.

1.2.3 Setting up the BIM

1) Set the environment variable TI_PSP_DIR to the installation directory.

2) Set the environment variables CVE_HOME and MODELSIM.

3) Go to TI_PSP_DIR/isms/TMS320C6416/ and source the script
setup_tms320c6416

Sourcing this script will override the TI_PSP_DIR settings and point it to
CVE_HOME. If you do not source the script, you need to do the following set-
tings yourself:

� LD_LIBRARY_PATH settings

You need to set the LD_LIBRARY_PATH environment variable to include

� TI_PSP_DIR/isms/TMS320C6416,

How to Invoke

1-5Features of the TMS320C6416 Seamless CVE

� TI_PSP_DIR/lib/TMS320C6416, and

� TI_PSP_DIR/lib/TMS320C6416/VIP_MODEL/
VIP_END_USER_40/SunOS5/lib.

� VIPENV_VHD settings

You need to set the VIPENV_VHD environment variable to

� TI_PSP_DIR/lib/TMS320C6416/VIP_MODEL

� PATH settings.

 You need to set the path to include the directories

� $(CVE_HOME}/bin, ${VIPENV_VHD}/SunOS5/bin

� ${VIPENV_VHD}/jre/SunOS5/bin

� VHDL GENERIC settings.

You need to set the VHDL generic ENDIAN_MODE. By default it is set to 1.

� 1 – little endian

� 0 – big endian

Supported TMS320C6416 Device Pins

 1-6

1.3 Supported TMS320C6416 Device Pins

The following table summarizes the pins simulated by the TMS320C6416
Seamless Model.

Table 1–1. Pins Simulated by the TMS320C6416 Seamless Model

Pin Name Direction Width Supported Peripherals
CLKIN IN 1 X CLOCKING/PLL
CLKMODE IN 2–0 – CLOCKING/PLL
PLLV OUT 1 – CLOCKING/PLL
RESET IN 1 X SYSTEM CONTROL
PCI_EN IN 1 X SYSTEM CONTROL
MCBSP2_EN IN 1 X SYSTEM CONTROL
TINP IN 2–0 – TIMER
BARDY IN 1 X EMIFB (16 BIT EXTERNAL MEMORY INT)
BHOLD IN 1 – EMIFB (16 BIT EXTERNAL MEMORY INT)
BECLKIN IN 1 X EMIFB (16 BIT EXTERNAL MEMORY INT)
AARDY IN 1 X EMIFA (64 BIT EXTERNAL MEMORY INT)
AHOLD IN 1 – EMIFA (64 BIT EXTERNAL MEMORY INT)
AECLKIN IN 1 – EMIFA (64 BIT EXTERNAL MEMORY INT)
TCLK IN 1 – EMULATION CONTROL
TDI IN 1 – EMULATION CONTROL
TMS IN 1 – EMULATION CONTROL
TRST IN 1 – EMULATION CONTROL
UXCLK IN 1 X UTOPIA
URSOC IN 1 X UTOPIA
URENB IN 1 X UTOPIA
URDATA IN 7–0 X UTOPIA
CLKS0 IN 1 – MCBSP0
CLKS2_GP8 INOUT 1 X MCBSP2
DR0 IN 1 X MCBSP2
GP0 INOUT 1 X GPIO
GP1_CLKOUT4 INOUT 1 X SYSTEM CONTROL
GP2_CLKOUT6 INOUT 1 X SYSTEM CONTROL
NMI IN 1 X SYSTEM CONTROL
GP3 INOUT 1 X SYSTEM CONTROL
GP4_EINT4 INOUT 1 X SYSTEM CONTROL
GP5_EINT5 INOUT 1 X SYSTEM CONTROL
GP6_EINT6 INOUT 1 X SYSTEM CONTROL
GP7_EINT7 INOUT 1 X SYSTEM CONTROL
XSP_CS OUT 1 – PCI SERIAL EEPROM INTERFACE
TOUT OUT 2–0 – TIMER
BED INOUT 15–0 X EMIFB 16 BIT MEMORY INTERFACE
BEA INOUT 8–1 X EMIFB 16 BIT MEMORY INTERFACE
BEA09 INOUT 1 X EMIFB 16 BIT MEMORY INTERFACE
BEA10 INOUT 1 X EMIFB 16 BIT MEMORY INTERFACE

Supported TMS320C6416 Device Pins

1-7Features of the TMS320C6416 Seamless CVE

Table 1–1. Pins Simulated by the TMS320C6416 Seamless Model (Continued)

Pin Name Direction Width Supported Peripherals
BEA11_UTOPIAEN INOUT 1 X EMIFB 16 BIT MEMORY INTERFACE
BEA20_LENDIAN INOUT 1 X EMIFB 16 BIT MEMORY INTERFACE
BEA13_PCIEEAI INOUT 1 X EMIFB 16 BIT MEMORY INTERFACE
BEA14_BECLKINSEL0 INOUT 1 X EMIFB 16 BIT MEMORY INTERFACE
BEA15_BECLKINSEL1 INOUT 1 X EMIFB 16 BIT MEMORY INTERFACE
BEA12 INOUT 1 X EMIFB 16 BIT MEMORY INTERFACE
BEA17_AECLKINSEL1 INOUT 1 X EMIFB 16 BIT MEMORY INTERFACE
BEA18_BOOTMODE0 INOUT 1 X EMIFB 16 BIT MEMORY INTERFACE
BEA19_BOOTMODE1 INOUT 1 X EMIFB 16 BIT MEMORY INTERFACE
BEA16_AECLKINSEL0 INOUT 1 X EMIFB 16 BIT MEMORY INTERFACE
AEDH INOUT 31–0 X EMIFA 64 BIT MEMORY INTERFACE
AEDL INOUT 31–0 X EMIFA 64 BIT MEMORY INTERFACE
EMU INOUT 9–0 – EMULATION CONTROL
EMUCLK INOUT 1–0 – EMULATION CONTROL
UXCLAV OUT 1 X UTOPIA
UXENB IN 1 X UTOPIA
UXADDR0 IN 1 X UTOPIA
URCLAV OUT 1 X UTOPIA
URCLK IN 1 X UTOPIA
DX1_UXADDR4 INOUT 1 X MCBSP1/UTOPIA
FSX1_UXADDR3 INOUT 1 X MCBSP1/UTOPIA
FSR1_UXADDR2 INOUT 1 X MCBSP1/UTOPIA
DR1_UXADDR1 IN 1 X MCBSP1/UTOPIA
CLKX1_UXADDR4 INOUT 1 X MCBSP1/UTOPIA
CLKS1_UXADDR3 IN 1 X MCBSP1/UTOPIA
CLKR1_UXADDR2 INOUT 1 X MCBSP1/UTOPIA
URADDR IN 1–0 X UTOPIA
CLKX0 INOUT 1 X MCBSP0
CLKX2_XSPCLK INOUT 1 X MCBSP2/PCI
CLKR0 INOUT 1 X MCBSP0
CLKR2 INOUT 1 X MCBSP2
FSX0 INOUT 1 X MCBSP0
FSX2 INOUT 1 X MCBSP2
FSR0 INOUT 1 X MCBSP0
DR2_XSPDI IN 1 X MCBSP2/PCI
FSR2 INOUT 1 X MCBSP2
PCBE0 INOUT 1 – PCI
HDS2_PCBE1 INOUT 1 X HPI/PCI
HRW_PCBE2 INOUT 1 X HPI/PCI
GP9_PIDSEL INOUT 1 X GPIO/PCI
GP10_PCBE3 INOUT 1 X GPIO/PCI
GP11_PREQ INOUT 1 X GPIO/PCI
GP12_PGNT INOUT 1 X GPIO/PCI
GP13_PINTA INOUT 1 X GPIO/PCI

Supported TMS320C6416 Device Pins

 1-8

Table 1–1. Pins Simulated by the TMS320C6416 Seamless Model (Continued)

Pin Name Direction Width Supported Peripherals
GP14_PCLK INOUT 1 X GPIO/PCI
GP15_PRST INOUT 1 X GPIO/PCI
HINT_PFRAME INOUT 1 X HPI/PCI
HCNTRL0_PSTOP INOUT 1 X HPI/PCI
HCNTRL1_PDEVSEL INOUT 1 X HPI/PCI
HHWIL_PTRDY INOUT 1 X HPI/PCI
HAS_PPAR INOUT 1 X HPI/PCI
HCS_PPERR INOUT 1 X HPI/PCI
HDS1_PSERR INOUT 1 X HPI/PCI
HRDY_PIRDY INOUT 1 X HPI/PCI
HD_AD INOUT 31–0 X HPI/PCI
BCE OUT 3–0 X EMIFB 16 BIT MEMORY INTERFACE
BBE OUT 1–0 X EMIFB 16 BIT MEMORY INTERFACE
BSDCAS OUT 1 X EMIFB 16 BIT MEMORY INTERFACE
BSDRAS OUT 1 X EMIFB 16 BIT MEMORY INTERFACE
BSOE3 OUT 1 – EMIFB 16 BIT MEMORY INTERFACE
BSDWE OUT 1 X EMIFB 16 BIT MEMORY INTERFACE
BHOLDA OUT 1 – EMIFB 16 BIT MEMORY INTERFACE
BBUSREQ OUT 1 – EMIFB 16 BIT MEMORY INTERFACE
BPDT OUT 1 – EMIFB 16 BIT MEMORY INTERFACE
BECLKOUT1 OUT 1 X EMIFB 16 BIT MEMORY INTERFACE
BECLKOUT2 OUT 1 – EMIFB 16 BIT MEMORY INTERFACE
AEA OUT 19–0 X EMIFA 64 BIT MEMORY INTERFACE
ACE OUT 3–0 X EMIFA 64 BIT MEMORY INTERFACE
ABE OUT 7–0 X EMIFA 64 BIT MEMORY INTERFACE
ASDCAS OUT 1 X EMIFA 64 BIT MEMORY INTERFACE
ASDRAS OUT 1 X EMIFA 64 BIT MEMORY INTERFACE
ASOE3 OUT 1 – EMIFA 64 BIT MEMORY INTERFACE
ASDWE OUT 1 X EMIFA 64 BIT MEMORY INTERFACE
ASCKE OUT 1 – EMIFA 64 BIT MEMORY INTERFACE
AHOLDA OUT 1 – EMIFA 64 BIT MEMORY INTERFACE
ABUSREQ OUT 1 – EMIFA 64 BIT MEMORY INTERFACE
APDT OUT 1 – EMIFA 64 BIT MEMORY INTERFACE
AECLKOUT1 OUT 1 X EMIFA 64 BIT MEMORY INTERFACE
AECLKOUT2 OUT 1 – EMIFA 64 BIT MEMORY INTERFACE
TDO OUT 1 – EMULATION CONTROL
UXSOC OUT 1 X UTOPIA
UXDATA OUT 7–0 X UTOPIA
DX0 OUT 1 X MCBSP0
DX2_XSPDO OUT 1 X MCBSP2/PCI

Simulation Features

1-9Features of the TMS320C6416 Seamless CVE

1.4 Simulation Features

1.4.1 BootLoad

The TMS320C6416 Seamless model supports device BOOTLOAD through
the EMIF pins.

At reset the model samples the pins BEA(19:18). The bootload operation hap-
pens depending on these pin values:

0 No Boot load. The model begins execution from the memory located at
address 0.

1 Boot load through HPI/PCI. The boot load is done through the Host Port
Interface (HPI) or the Peripheral Component Interconnect (PCI) port. The CPU
will wait till an external host initializes the CPU’s memory space as necessary
through the parallel port. Once this is done, the CPU begins execution from
address 0. Boot load happens through PCI if PCI is enabled, otherwise Boot-
load happens through HPI.

 2 Boot load from EMIF B CE1 space start address (0x64000000). (ROM
boot process) The EDMA copies 1K bytes from the beginning of CE1 to ad-
dress 0, using default ROM timings. After the transfer the CPU begins execut-
ing from address 0.

3 Quick Boot Load. This feature is supported by the model and not the actual
device. In this mode, the bootload will be performed through debug reads of
1K bytes from memory address 0x90000000. Once this is complete, the CPU
begins execution from address 0.

1.4.2 Reset Sequence

The TMS320C6416 Seamless model performs reset by sampling the RESET
pin. The reset pulse width should be a minimum of 10 CPU clock cycles. The
RESET pin is not sampled after the first reset.

The device reset uses active low signal RESET. While the RESET is low the
model is held in its reset state. The control will be with the Hardware simulator.
Most output pins go to their default state. The rising edge on the RESET starts
the model run with the prescribed boot configuration. The following pins are
sampled at reset:

� BEA20_LENDIAN : The model will sample this pin to ensure that the In-
struction Set Simulator (ISS) and the Bus Interface Model (BIM) are oper-
ating in the same endian. A ’1’ on this pin will mean that the model should

Simulation Features

 1-10

be operating in the little endian mode, whereas a ’0’ on this will mean that
the model should be operating in the big endian. The model will check to
see if the ISS and BIM are operating in the same endian, and if they are
not it will give an error message and exit.

� Boot load config pins BE18_BOOTMODE0, BE19_BOOTMODE1. The
values on these pins determine the boot load mode as explained in section
1.4.1, on page 1-9.

1.4.3 Clock Behavior

The model operates from the clock supplied by the CLKIN pin. The EMIF oper-
ates at 1/4th this clock frequency, whereas the HPI/PCI and Utopia operate at
1/2 this clock frequency. For the model to work properly, the rising edge of all
the clocks should be in sync when the reset is applied.

The EMIF doesn’t support other clock frequencies or external clock inputs.

Seamless Features Supported

1-11Features of the TMS320C6416 Seamless CVE

1.5 Seamless Features Supported

1.5.1 Seamless Optimization

1.5.1.1 Memory Optimization

To learn more about Memory Optimization, please read the Mentor Graphics
Seamless CVE User’s Guide.

TMS320C6416 PSP supports Memory Optimization. This feature has been
tested with Denali SRAM models. While using the Memory optimization fea-
ture, please register the memory ranges that are to be optimized, with the
Seamless CVE.

1.5.1.2 Time Optimization

To learn more about Time Optimization refer to the Mentor Graphics Seamless
CVE manuals.

The TMS320C6416 Seamless model supports the Time Optimization feature.
This optimization can be enabled at any time of execution of the model. The
model takes care of any unfinished pipelined memory requests that may be
pending at the time of turning on the Time Optimization feature, before switch-
ing into optimized mode of execution.

1.5.1.3 Ratio Time Optimization

To learn more about Ratio Time Optimization please refer to the Mentor Graph-
ics Seamless CVE User’s Guide.

On the same lines of support for Time Optimization, the TMS320C6416 Seam-
less model supports Ratio Time Optimization also.

1.5.2 HW Break

This command is implemented as a Code Composer Studio GEL function. In-
voking this function from Code Composer Studio IDE causes the hardware
simulator to go into an interactive mode. It is possible to simultaneously use
both the hardware simulator and Code Composer Studio IDE interactively.

1.5.3 Loading COFF into External Memory

The TMS320C6416 Seamless model allows loading of a COFF file into exter-
nal memories. The hardware simulator is not advanced while the load is in
progress.

Seamless Features Supported

 1-12

This feature is supported only when the external memories are Seamless me-
mories such as Denali memory models.

The COFF load is performed by loading the file through Code Composer Stu-
dio.

Simulation Accuracy

1-13Features of the TMS320C6416 Seamless CVE

1.6 Simulation Accuracy

The TMS320C6416 Seamless Model simulates the following blocks of the de-
vice:

� CPU

� L1, L2 Cache System

� Enhanced DMA sub–system

� Interrupt Selector

� Timers

� Serial Ports (McBSP)

� TCP, VCP co–processors

� EMIF interface

� Utopia–II

� HPI/PCI

� GPIO

CPU – The CPU core of the device has been modeled accurately both in terms
of functionality and cycles.

L1, L2 Cache System – All of the functionality in the L1, L2 Cache system has
been modeled in the TMS320C6416 Seamless Model. The simulation of the
Cache System is still not 100% cycle accurate though. L1P is not accurate on
the Instruction Read Misses. L1D is very accurate on Data Read misses and
Victim requests to L2, but is about 95% accurate on L1D write miss cycles.

EDMA – The EDMA subsystem is modeled functionally to support complete
programmability of the EDMA configuration registers. The number of cycles
spent in the subsystem is however inaccurate.

Peripherals such as the EMIF, Timer, Serial Ports, Utopia, GPIO, HPI, and PCI
are modeled accurately for functionality and cycles. Coprocessors TCP/VCP
are modeled accurately for functionality and cycles.

Please refer to Section 1.7 on page 1-14 for known limitations in the
TMS320C6416 Seamless model.

Known Limitations

 1-14

1.7 Known Limitations

� Only Asynchronous and SDRAM interfaces of the EMIF are supported. If
EMIF spaces are configured to other interface types the behavior of the
model is undefined.

� The EMIF always runs at 1/4th the CPU clock frequency.

� External EMIF clock inputs are not supported.

� The model samples RESET only once during simulation. Subsequent re-
set events are not communicated to the ISS.

� Debug reads/writes to HPI registers are not supported.

� McBSP CLKS is not supported.

� McBSP external frame sync is supported from Release 1.2.2 onward.

� Debug reads/writes to UTOPIA registers are not supported.

� Debug writes to GPIO registers are not supported.

� Debug reads/writes to PCI are not supported.

� SDRAM refresh mode is not supported.

� SRDAM burst access is not supported.

� Generation of frame sync in McBSP receiver mode is not supported.

� EEPROM and Power Management for PCI is not supported.

2-1

TMS320C6416�Seamless�CVE�Model Tutorial

This chapter contains tutorials that allow you to explore some of the capabili-
ties of the TMS320C6416 Seamless CVE model.

Topic Page

2.1 Hooking up the Denali SRAM 2-2.

2.2 Using the Serial Port 2-4.

2.3 Simulating External Interrupts 2-6.

2.4 Using the HPI 2-7.

2.5 Using the Utopia 2-9.

2.6 Using the Hardware/Software Synchronization Feature 2-10.

2.7 Using Host Port Interface and Utopia On/Off Switch 2-12.

2.8 Using the GPIO 2-13.

2.9 Using the PCI 2-14.

Chapter 2

Hooking up the Denali SRAM

 2-2

2.1 Hooking up the Denali SRAM
To learn about the Denali memory models and their usage, please read the
Mentor Graphics Seamless CVE User’s Guide.

2.1.1 Connecting the TMS320C6416 Device and a Denali SRAM Model

In order to connect the C6416 device to the Denali SRAM module, instantiate
the memory models in the VHDL testbench and connect the address bus, data
bus chip select, etc. When the testbench is loaded in the vsim, these memory
models will be registered with the CVE. Map the memory ranges and their
usage modes. For more information on Memory configuration and usage refer
to the Mentor Graphics Seamless CVE User’s Guide.

Example 1 demonstrates the usage of Denali SRAM memory models. The
VHDL testbench contains an instance of TMS320C6416 processor and an
instance each of 4 Denali SRAMs of different memory widths. An SRAM is con-
nected to each of the processor’s EMIF–A CE spaces. An 8 bit SRAM is con-
nected to the EMIF–A CE0 space, a 16 bit SRAM to the EMIF–A CE1 space,
a 32 bit SRAM to the EMIF–A CE2 space and a 64 bit SRAM to the EMIF–A
CE3 space.

As shown in the CVE configuration file, these instances of the memories are
mapped to the appropriate address ranges with the appropriate data bus size
by overriding the default data bus widths. The example configures the EMIF–A
CE0, CE1, CE2 and CE3 spaces to 8, 16, 32 and 64 bit Asynchronous inter-
faces by writing appropriate control words to the CE space control registers.
Once the configuration of the EMIF is done, the example performs reads &
writes to these memories. You can turn on/off Seamless Optimizations on
these memories and observe the effect.

2.1.2 Performing Seamless Optimizations

The TMS320C6416 Seamless CVE model supports all types of Seamless
CVE optimizations. For information on optimizations and their usage refer to
the Mentor Graphics Seamless CVE User’s Guide.

Example 2 connects four instances of Denali SRAMs of different memory
widths to the TMS320C6416 Seamless model. The example performs read
and write accesses to the external memory ranges. The Modelsim ’.do’ files
contain commands to toggle Seamless Optimizations at different times during
the simulation.

2.1.3 Performing COFF Load into External Memory

A COFF file can be loaded into external memory by loading the file in the Code
Composer Studio IDE. Simulation time is not advanced while performing the
COFF load.

Hooking up the Denali SRAM

2-3TMS320C6416 Seamless CVE Model Tutorial

Another way to perform the same activity is by loading a memory image into
the external memory.

Example 8 illustrates this with a COFF file that loads into and executes from
external memory. A load command from Code Composer Studio IDE results
in the Denali memories attached to the TMS320C6416 model being written
with values without advancing the simulation time.

Using the Serial Port

 2-4

2.2 Using the Serial Port

2.2.1 Using the Serial Port for Transmission and Reception

Each of the three serial ports of TMS320C6416 can be programmed to trans-
mit and receive the data in serial fashion.

Example 3 demonstrates this capability. It performs transfers from McBSP0
(through the DX0 pin) and the transfer is received in McBSP1 (through the DR1
pin). Similarly, it transmits from McBSP1 (through the DX1 pin) and receives
in McBSP2 (through the DR2 pin). Likewise, it transmits from McBSP2
(through the DX2 pin) and receives it in McBSP0 (through the DR0 pin). The
sample testbench instantiates the TMS320C6416 Seamless model and con-
nects the signals appropriately. It generates the system clock and the reset
also.

To run this example:

1) Go to the example3 directory and run the scriptcompile_example.sh. This
script compiles the TMS320C6416 seamless model and the sample test-
bench into the work directory.

2) Run the script runCve.sh, present in the directory. This will bring up the
Seamless CVE and Modelsim. In the Modelsim command window, give
the command ”run –all”. This will bring up Code Composer Studio IDE.

3) For CCS IDE V1.1: Build the project in the CCS IDE, then load the COFF
“example3.out”. Set breakpoints at “passed” and “failed”. Issue a RUN
command in CCS IDE. When the model stops at the breakpoint, click on
GEL ––> Seamless ––> HW_BREAK. Now you can observe the wave-
form in the Modelsim window.

4) For CCS IDE V2.0: In the UNIX command prompt, assemble the file “ex-
ample3.asm” and then link “example3.obj” to create the COFF “exam-
ple3.out”. Load this COFF in the CCS IDE. Set breakpoints at “passed”
and “failed”. Issue a RUN command in CCS IDE. When the model stops
at the breakpoint, click on GEL ––> Seamless ––> HW_BREAK. Now you
can observe the waveform in the Modelsim window.

2.2.2 Generating Serial Port Events

Each of the three Serial Ports of TMS320C6416 device can be programmed
to send events to XDMA when the serial port is ready for transmission or when
it completes the reception. Upon receiving the events, XDMA can either send
the data for transmission to the serial port or read the received data from the

Using the Serial Port

2-5TMS320C6416 Seamless CVE Model Tutorial

serial port if the XDMA was programmed properly. For details about program-
ming XDMA you can refer to the TMS320C6000 Peripherals Guide
(SPRU190).

Example 4 demonstrates this capability. It programs XDMA to transfer data
from memory to the MCBSP0 register DXR upon receiving the event XEVT0
on one channel. It also programs XDMA to transfer data from the MCBSP1
register DRR to memory upon receiving the event REVT1 in some other chan-
nel.

Example4 then takes out the MCBSP0 (transmitter) and MCBSP1 (Receiver)
from reset. MCBSP0 sends XEVT0 to XDMA, upon which XDMA transfers the
data from the memory to the MCBSP0 register DXR. Then MCBSP0 starts
transmitting the data in serial fashion through the pin DX0. MCBSP1 receives
the data through the pin DR1. At the end of reception, MCBSP1 sends the
event REVT1 to XDMA. Upon receiving the event XDMA transfers the data
from MCBSP1 register DRR to memory.

Example 4 instantiates the TMS320C6416 Seamless model and connects the
signals appropriately. It generates the system clock and the reset as well.

To run this example:

1) Go to the example4 directory and run the script compile_example.sh. This
script compiles the TMS320C6416 seamless model and the sample test-
bench into the work directory.

2) Run the script runCve.sh, present in the directory. This will bring up the
Seamless CVE and Modelsim. In the Modelsim command window, give
the command ”run –all”. This will bring up the Code Composer Studio
(CCS) IDE.

3) For CCS IDE V1.1: In the CCS IDE load the COFF example4.out, and set
break points at ”passed” and ”failed”. Issue a RUN command in the CCS
IDE. When the model stops at the breakpoint, click on GEL ––> Seamless
––> HW_BREAK . Now you can observe the waveform in the Modelsim
window.

4) For CCS IDE V2.0: In the UNIX command prompt, assemble the file “ex-
ample4.asm” and then link “example4.obj” to create the COFF “exam-
ple4.out”. Set break points at ”passed” and ”failed”. Issue a RUN com-
mand in the CCS IDE. When the model stops at the breakpoint, click on
GEL ––> Seamless ––> HW_BREAK . Now you can observe the wave-
form in the Modelsim window.

Simulating External Interrupts

 2-6

2.3 Simulating External Interrupts

2.3.1 Using External Interrupts

External devices can interrupt the CPU of TMS320C6416 by triggering off the
External Interrupt pins EINT4, EINT5, EINT6, EINT7 and NMI.

Example5 demonstrates this capability. The ISR 4 writes 0xABCD in the CPU
register B1 to indicate a pass condition. The sample test bench triggers the ex-
ternal interrupt–4 after 700ns.

When the CPU gets an interrupt, it completes the execution of the current in-
struction and then jumps to the ISR and changes the register B1 from 0 to
0xABCD. Upon return from interrupt, the CPU comes back to the instruction
from where it jumped to the ISR.

To run the example:

1) Go to the example5 directory and run the script compile_example.sh. This
script compiles the TMS320C6416 seamless model and the sample test-
bench into the work directory.

2) Run the script runCve.sh present in the directory. This will bring up the
Seamless CVE, Modelsim and Code Composer Studio(CCS).The Model
sim runs the do file automatically.

3) For CCS IDE V1.1: Build the project and load the COFF file example5.out
in CCS.

4) For CCS IDE V2.0: Assemble external_interrupt.asm and vectors.asm.
Link external_interrupt.obj and vectors.obj using the linker command file
external_interrupt.cmd to create the COFF. Load the COFF in CCS.

5) Set the breakpoints at ”passed” and ”failed”.

6) Now press RUN in the CCS IDE.After running for 700ns, the testbench
triggers the pin EINT4.Now CCS jumps to the ISR 4 upon receiving the in-
terrupt. Then it returns from the ISR 4 and halts in either “passed” or
“failed”.

Using the HPI

2-7TMS320C6416 Seamless CVE Model Tutorial

2.4 Using the HPI

This section describes examples that use the HPI of the TMS320C6416 de-
vice. These examples are packaged as part of the release as Example6 and
Example7.

2.4.1 Performing HPI Bootload

The TMS320C6416 device can be instructed to perform Bootload from HPI by
setting the BEA18_BOOTMODE0 and BEA19_BOOTMODE1 pins to values
0 and 1, respectively. These pins are sampled at reset. The host performs the
bootload operation by writing to specific memory locations in the
TMS320C6416 device. The host indicated completion of the bootload opera-
tion by generating a host interrupt (HINT).

Example6 demonstrates this capability. In this example, a sample testbench
instantiates the TMS320C6416 Seamless model. The testbench generates
the clocks and the reset. The example also comes with a set of Modelsim .do
files that perform the task of the host by driving the appropriate pins.

To run this example:

1) Go to the Example6 directory and run the compile_example.sh script. This
compiles the VHDL testbench and the TMS320C6416 Seamless model.

2) Execute the runCve.sh script present in the Example6 directory. This will
bring up the Seamless CVE, Code Composer Studio IDE, and Modelsim.

3) In the Code Composer Studio IDE, give a Step command through Debug
–> Step. This operation will complete after the bootload is completed and
the first instruction is executed.

4) The example loads a sample code starting from memory location
0x00000000. You can view the contents of memory locations in the Code
Composer Studio IDE after the bootload operation is complete.

5) To execute the sample boot code, continue stepping through the Code
Composer Studio debugger.

2.4.2 Performing HOST Reads and Writes

The program sets up data at the address and then transfers control to the Host
by setting the HINT control register. The Host performs a write transfer and
then interrupts the DSP by setting the DSPINT bit of the HPI control register.
The same process can be repeated for read operation.

Using the HPI

 2-8

To run this example:

1) Go to the Example7 directory and run the compile_example.sh script. This
compiles the VHDL testbench and the TMS320C6416 Seamless model.

2) Execute the runcve.sh script present in the Example6 directory. This will
bring up the Seamless CVE, Code Composer Studio IDE, and Modelsim.

3) For CCS IDE V1.1: In the Code Composer Studio IDE, build the project
and load hpi_rw.out through File–> Load Program.

4) For CCS IDE V2.0: Assemble hpi_rw.asm and link it with the linker com-
mand file hpi_rw.cmd and then load the COFF in the CCS IDE.

5) Select Debug–>Breakpoint. Enter Break locations as ”OK” and
”NOT_OK”.

6) Run the example by pressing F5.

7) When the ”OK” breakpoint is hit, select GEL–>SEAMLESS
CVE–>HW_BREAK from the CCS menu. View the wave form in Modelsim
to see the HPI transaction.

Using the Utopia

2-9TMS320C6416 Seamless CVE Model Tutorial

2.5 Using the Utopia

In this section we describe an example that uses the Utopia of the
TMS320C6416 device. This example is packaged as part of the release as Ex-
ample9.

2.5.1 Performing Read and Write of an ATM Cell

The Utopia on TMS320C6416 is used in the slave mode. It communicates with
Utopia in master mode. The Utopia in master mode is simulated using .do files.

In this example a sample testbench instantiates the TMS320C6416 Seamless
model. The testbench generates the clocks and the reset. The test case pro-
grams the DMA to make 14 words (of a single standard cell) read as well as
write transfer, and interrupt the cpu to signal the completion of the transfer. In
the actual program, the Utopia Configuration Register (UCR) is configured to
read a cell. It then waits for a DMA interrupt to come. In the Interrupt Service
Routine (ISR) of the DMA interrupt, the configuration of the UCR is changed.
The .do file first initiates a read transfer followed by a write transfer using the
appropriate events.

To run this example:

1) Go to the Example9 directory and run the compile_example.sh script. This
compiles the VHDL testbench and the TMS320C6416 Seamless model.

2) Execute the runcve.sh script present in the Example9 directory. This will
bring up the Seamless CVE, Code Composer Studio IDE, and Modelsim.

3) For CCS IDE V1.1: Build the project in CCS IDE to generate the exam-
ple9.out file.

4) For CCS IDE V2.0: Assemble the ut_rtx_sp.asm and vectors.asm and link
them to get the COFF example9.out.

5) In the CCS Command Window, take the “init.cmd” file. This will run the
testcase and log the output in “utopia.log”

6) Once the testcase has run to completion, the control will be with Modelsim.

7) The test case output will now be available in “utopia.log”. The testcase
reads a cell through the UTOPIA and writes it back. The log thus contains
the contents of memory locations 0x3000–0x3037, where the cell has
been read in, and the output of pin “uxdata”, which shows the cell which
has been transferred out.

8) The log generated should be compared with result.log to verify that the
testcase has passed.

Using the Hardware/Software Synchronization Feature

 2-10

2.6 Using the Hardware/Software Synchronization Feature

This section describes the Hardware/Software Synchronization feature in the
TMS320C6416 Seamless model that allows the user to control synchroniza-
tion between the ISS and the BIM. This feature would allow the Hardware to
run free without synchronizing with the the Software on every clock cycle. Syn-
chronization on every clock cycle is necessary only when EMIF/HPI/UTOPIA/
PCI/McBSP/GPIO transactions are happening or when there is an external in-
terrupt to the TMS320C6416 device.

2.6.1 How to Use the Synchronization Feature

Two GEL functions – ”SYNCHRONIZATION_ON” and SYNCHRONIZA-
TION_OFF” – are provided in the TMS320C6416_seamless.gel file.

To use this function, select either

GEL–>SEAMLESS CVE–>SYNCHRONIZATION_ON

or GEL–>SEAMLESS CVE–>SYNCHRONIZATION_OFF

from the Code Composer Studio menu.

2.6.2 Performing SYNCHRONIZATION_ON/_OFF During EMIF Transactions

This example performs the Synchronization On before the EMIF transaction
and Synchronization Off after the EMIF transaction.

To run this example:

1) Go to the Example10 directory and run the compile_example.sh script.
This compiles the VHDL testbench and the TMS320C6416 Seamless
model.

2) Execute the runSynchCve.sh script present in the Example6 directory.
This will bring up the Seamless CVE, Code Composer Studio IDE, and
Modelsim.

3) Once the Code Composer Studio IDE comes up, load the test case Synch-
test.out

4) Select Debug–>Probe Points from the menu. This causes the Break/
Probe/Profile Points dialog box to appear.

5) Select the Probe Points tab.

Using the Hardware/Software Synchronization Feature

2-11TMS320C6416 Seamless CVE Model Tutorial

6) Under Probe type, select Probe at Location if Expression TRUE. Enter the
Location as WRITE_LOOP. This is the point before the EMIF Transaction
starts. In expression enter SYNCHRONIZATION_ON(). Click ADD and
OK.

7) Again Under Probe type, select Probe at Location if Expression TRUE.
Enter the Location as IDLE_LOOP. This is the point before the EMIF trans-
action starts. In the expression put SYNCHRONIZATION_OFF(). Click
ADD and OK.

8) Select Debug–>Break Points from the Menu. This causes the Break/
Probe/Profile Points dialog box to appear. Make sure the Breakpoint tab
is selected. Select Breakpoint type as Break at Location, and enter the
location as END (end of example).

9) Run the test case by pressing F5. When the break point is hit, exit the
Seamless CVE.

2.6.3 Synchronization Feature on External Interrupt

This example describes the SYNCHRONIZATION feature on external inter-
rupt. When an external interrupt occurs, ”SYNCHRONIZATION_ON” is called
in order to synchronize Hardware and Software

To run the example:

1) Run the compile_example.sh script. This compiles the VHDL testbench
and the TMS320C6416 Seamless model.

2) Run the runSynchCveInt.sh script to run the example. This will bring up
the Seamless CVE, Code Composer Studio IDE, and Modelsim.

3) Once the Code Composer Studio IDE comes up, load the test case exter-
nal_interrupt.out

4) Select Debug–>Probe Points from the menu. This causes the Break/
Probe/Profile Points dialog box to appear.

5) Select the Probe Points tab. Under Probe type, select Probe at Location
if Expression TRUE. Enter the Location as Before_int. This is the point
before the Interrupt occurs. In expression put SYNCHRONIZA-
TION_OFF(). Click ADD and OK.

6) Select STEP in the Code Composer Studio IDE. When Before_loop is hit
SYNCHRONIZATION_OFF is called. When Interrupt occurs, SYNCHRO-
NIZATION_ON is called.

Using Host Port Interface and Utopia On/Off Switch

 2-12

2.7 Using Host Port Interface and Utopia On/Off Switch

The TMS320C6416 Seamless model supports a feature to selectively disable
simulation of the HPI/PCI and UTOPIA peripherals during simulation. This fea-
ture can be utilized to enhance model simulation speed by disabling these pe-
ripherals when they are not needed. This can significantly increase the speed
of simulation.

By default, both HPI/PCI and UTOPIA are enabled.

2.7.1 How to Use the Switching Feature

Four GEL functions – UTOPIA_ON ,UTOPIA_OFF, HPI_ON and HPI_OFF –
are provided.

To use this function, select

GEL–>SEAMLESS CVE–>UTOPIA_ON ,

GEL–>SEAMLESS CVE–>UTOPIA_OFF,

GEL–>SEAMLESS CVE–>HPI_ON, or

GEL–>SEAMLESS CVE–>HPI_OFF.

from the Code Composer Studio menu.

Using the GPIO

2-13TMS320C6416 Seamless CVE Model Tutorial

2.8 Using the GPIO

The GPIO in TMS320C6416 is a set of 15 pins, in which each pin can be pro-
grammed as an INPUT or OUTPUT pin. They can be programmed to generate
EDMA events or CPU interrupts.

2.8.1 Generating EDMA Events and CPU Interrupts Using GPIO

Example11 demonstrates the capability of GPIO to generate EDMA events or
CPU interrupts. It programs the EDMA channel 8 (GPIO EVT 0) to transfer one
word of data from 0x600 to 0x604 upon receiving the event GPIO EVT0. It pro-
grams the GPIO registers to configure the GPIO0 pin as INPUT and the GPIO1
pin as OUTPUT. The program waits for the GPINT0 interrupt. After 5�s, the
GPIO pin is triggered to 1 using the do file. Upon this, the GPIO module gener-
ates GPINT0 to the CPU and GPIO EVT0 to the EDMA. The EDMA transfers
the data from 0x600 to 0x604. At this point the program compares the data.
If the data matches, it writes a 1 to the GPIO1 pin. In the testbench, the GPIO1
pin is connected to external interrupt EXTINT4. This triggers External Interrupt
4 to the CPU. The test case branches to the label “passed” if the data matches,
or to “failed” if it does not.

The sample testbench instantiates the TMS320C6416 Seamless model and
connects the signals appropriately. It also generates the system clock and the
reset.

To run this example:

1) Go to the example11 directory and run the script compile_example.sh.
This script compiles the TMS320C6416 Seamless model and the sample
testbench into the work directory.

2) Run the script runCve.sh, present in the directory. This will bring up the
Seamless CVE and Modelsim as well as run the do file gpio.do. This will
bring up the Code Composer Studio IDE.

3) For CCS IDE V1.1: In the CCS environment, build the project and load the
COFF example11.out. Set breakpoints at “passed” and “failed”. Issue a
RUN command in CCS. When the model hits the breakpoint, click on GEL
––> Seamless ––> HW_BREAK. You can now observe the waveform in
the Modelsim window.

4) For CCS IDE V2.0: Assemble and link example11.asm to get the COFF
example11.out. Load the COFF in CCS. Set breakpoints at “passed” and
“failed”. Issue a RUN command in CCS. When the model hits the break-
point, click on GEL ––> Seamless ––> HW_BREAK. You can now observe
the waveform in the Modelsim window.

Using the PCI

 2-14

2.9 Using the PCI

This section describes examples that use the PCI of the TMS320C6416 de-
vice. These examples are packaged as part of the release as example12, ex-
ample13, and example14.

2.9.1 Performing PCI Bootload

The TMS320C6416 device can be instructed to perform Bootload from PCI by
setting the BEA_BOOTMODE0 and BEA_BOOTMODE1 pins to 0 and 1, re-
spectively. These pins are sampled at reset. The host performs the Bootload
operation by writing to specific memory locations in the TMS320C6416 device.
The host indicates completion of the Bootload operation by generating a host
interrupt to the DSP.

Example12 demonstrates this capability. In this example, a sample testbench
instantiates the TMS320C6416 Seamless model. The testbench generates
the clocks and the reset. The example also comes with a set of Modelsim .do
files that perform the task of the host by driving the appropriate pins.

To run this example:

1) Go to the example12 directory and run the compile_example.sh script.
This compiles the VHDL testbench and the TMS320C6416 Seamless
model.

2) Execute the runCve.sh script present in the example12 directory. This will
bring up the Seamless CVE, Code Composer Studio IDE, and Modelsim.

3) In the Code Composer Studio IDE, give a Step command through Debug
–> Step. This operation will complete after the Bootload is completed and
the first instruction is executed.

4) The example bootloads a sample code into memory location starting from
0x00000000. You can view the contents of memory locations in the Code
Composer Studio IDE after the Bootload operations is complete.

5) To execute the sample boot code, continue stepping through the Code
Composer Studio debugger.

2.9.2 Performing PCI Slave Reads/Writes (DSP PCI Port in Slave Mode)

The PCI port on TMS320C6416 can operate in slave mode. This is demon-
strated in example13. The DSP configures its control registers to receive inter-
rupts from the PCI and waits for the interrupt to come. After configuring the PCI
registers, the PCI host does a write of 1 and 3 words, respectively, into DSP

Using the PCI

2-15TMS320C6416 Seamless CVE Model Tutorial

memory, and then reads back the same words by making a read of 1 and 3
words, respectively. After this, the PCI host sends an interrupt to the DSP.

To run this example:

1) Go to the example13 directory and run the compile_example.sh script.
This compiles the VHDL testbench and the TMS320C6416 Seamless
model.

2) Execute the runCve.sh script present in the example13 directory. This will
bring up the Seamless CVE, Code Composer Studio IDE, and Modelsim.

3) For CCS IDE v1.1: In the Code Composer Studio IDE, build the project and
run pci_slv_rw.out through File–>Load Program.

4) For CCS IDE v2.0: Assemble pci_slv_rw.asm and vectors.asm and link it
with the linker command file pci_slv_rw.cmd. Then load the COFF in the
CCS IDE.

5) Select Debug–> Breakpoint. Enter the break location as “END”.

6) Run the example by pressing F5.

7) When the END breakpoint is reached, select GEL–>SEAMLESS CVE
–>HW_BREAK from the CCS menu. View the waveform in Modelsim to
see the PCI transactions.

2.9.3 Performing PCI Master Reads/Writes (DSP PCI Port in Master Mode)

The PCI port on TMS320C6416 can operate in master mode. This is demon-
strated in example14. The DSP configures the PCI control registers appropri-
ately for a single word write. The PCI then fetches the word from the DSP and
transfers the word to the PCI host, which is in slave mode. The DSP polls on
the status register to keep track of the completion of the transaction. The test-
case does three more transactions of three words write, one word read, and
three words read in a similar way.

To run this example:

1) Go to the example14 directory and run the compile_example.sh script.
This compiles the VHDL testbench and the TMS320C6416 Seamless
model.

2) Execute the runCve.sh script present in the example14 directory. This will
bring up the Seamless CVE, Code Composer Studio IDE, and Modelsim.

3) For CCS IDE v1.1: In the Code Composer Studio IDE, build the project and
run pci_mst_rw.out through File–>Load Program.

Using the PCI

 2-16

4) For CCS IDE v2.0: Assemble pci_mst_rw.asm and vectors.asm and link
it with the linker command file pci_mst_rw.cmd. Then load the COFF in the
CCS IDE.

5) Select Debug–> Breakpoint. Enter the break location as “END”.

6) Run the example by pressing F5.

7) When the END breakpoint is reached, select GEL–>SEAMLESS CVE
–>HW_BREAK from the CCS menu. View the waveform in Modelsim to
see the PCI transactions.

Index

Index-1

Index

A
ATM cell, read/write 2-9

B
BIM, setting up 1-4
bootload 1-9

C
clock behavior 1-10
COFF, loading into external memory 1-11
COFF , load into external memory 2-2

D
Denali SRAM

COFF load 2-2
connecting to C6416 2-2
hooking up 2-2
seamless operations 2-2

device pins, supported 1-6

E
external interrupts, simulating 2-6

H
hardware, synchronization 2-10

EMIF transactions 2-10
external interrupt 2-11

HPI
bootload 2-7
HOST reads and writes 2-7

on/off switch 2-12
using 2-7

HW break 1-11

I
ISS, setting up 1-4

L
loading COFF 1-11

M
memory optimization 1-11

P
PCI 2-14

Bootload 2-14
master read/write 2-15
slave read/write 2-14

platforms supported 1-2
processor support

contents 1-2
licensing 1-2
platforms 1-2
versions 1-2

R
ratio time optimization 1-11
reset sequence 1-9

S
Seamless CVE

Index

Index-2

setting up 1-4
setting up BIM 1-4
setting up ISS 1-4

seamless features 1-11
HW break 1-11
loading COFF 1-11
seamless optimization 1-11

seamless optimization 1-11, 2-2
memory optimization 1-11
ratio time optimization 1-11
time optimization 1-11

serial port
generating events 2-4
reception 2-4
transmission 2-4
using 2-4

simulation accuracy 1-13
simulation features

bootload 1-9
clock behavior 1-10
reset sequence 1-9

T
time optimization 1-11

U
Utopia

on/off switch 2-12
read/write, ATM cell 2-9
using 2-9

	IMPORTANT NOTICE
	Read This First
	About This Manual
	Notational Conventions
	Information About Cautions and Warnings
	Trademarks

	Contents
	Features of the TMS320C6416 Seamless CVE
	Processor Support Package
	Contents
	Licensing Information
	Supported Platforms
	Versions

	How to Invoke
	Setting Up the Seamless CVE
	Setting Up the ISS
	Setting up the BIM

	Supported TMS320C6416 Device Pins
	Simulation Features
	BootLoad
	Reset Sequence
	Clock Behavior

	Seamless Features Supported
	Seamless Optimization
	Memory Optimization
	Time Optimization
	Ratio Time Optimization

	HW Break
	Loading COFF into External Memory

	Simulation Accuracy
	Known Limitations

	TMS320C6416 Seamless CVE Model Tutorial
	Hooking up the Denali SRAM
	Connecting the TMS320C6416 Device and a Denali SRAM Model
	Performing Seamless Optimizations
	Performing COFF Load into External Memory

	Using the Serial Port
	Using the Serial Port for Transmission and Reception
	Generating Serial Port Events

	Simulating External Interrupts
	Using External Interrupts

	Using the HPI
	Performing HPI Bootload
	Performing HOST Reads and Writes

	Using the Utopia
	Performing Read and Write of an ATM Cell

	Using the Hardware/Software Synchronization Feature
	How to Use the Synchronization Feature
	Performing SYNCHRONIZATION_ON/_OFF During EMIF Transactions
	Synchronization Feature on External Interrupt

	Using Host Port Interface and Utopia On/Off Switch
	How to Use the Switching Feature

	Using the GPIO
	Generating EDMA Events and CPU Interrupts Using GPIO

	Using the PCI
	Performing PCI Bootload
	Performing PCI Slave Reads/Writes
	Performing PCI Master Reads/Writes

	Index

