Comfort Noise Generator (CNG)
Algorithm
User’s Guide

SPIRITCORP ',

wWww.spiritDSP.com/CST

Literature Number: SPRU633
March 2003

Q’ TEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subjectto TI's terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent Tl
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using Tl components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

Tl does not warrant or represent that any license, either express or implied, is granted under any Tl patentright,
copyright, mask work right, or other Tl intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by Tl regarding third—party products or services
does not constitute a license from Tl to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for
such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by Tl for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Mailing Address:
Texas Instruments

Post Office Box 655303
Dallas, Texas 75265

Copyright 00 2003, Texas Instruments Incorporated

About This Manual

Preface

Read This First

For the purposes of this Guide, the following abbreviations are used:

CNG Comfort noise generator
LPC Linear Predictive Coding (filter)
XDAIS TMS320 DSP Algorithm Standard

CNG algorithm can be used in conjunction with SPIRIT Corp.’s Voice Activity
Detector, which also supports generation of up to 10 LPC coefficients for noise
shaping.

Related Documentation From Texas Instruments

Using the TMS320 DSP Algorithm Standard in a Static DSP System
(SPRAS77)

TMS320 DSP Algorithm Standard Rules and Guidelines (SPRU352)
TMS320 DSP Algorithm Standard API Reference (SPRU360)

Technical Overview of eXpressDSP-Compliant Algorithms for DSP Software
Producers (SPRA579)

The TMS320 DSP Algorithm Standard (SPRA581)

Achieving Zero Overhead with the TMS320 DSP Algorithm Standard IALG In-
terface (SPRA716)

Related Documentation

Trademarks

Software Copyright

Voice Activity Detector User’s Guide, SPIRIT Corp., 2001

TMS320™ is a trademark of Texas Instruments.
SPIRIT CORP™ is a tradmark of Spirit Corp.

All other trademarks are the property of their respective owners.

CST Software Copyright [0 2003, SPIRIT Technologies, Inc.

If You Need Assistance

If You Need Assistance. ..

O World-Wide Web Sites
TI Online http://www.ti.com
Semiconductor Product Information Center (PIC) http://www.ti.com/sc/docs/products/index.htm
DSP Solutions http://www.ti.com/dsp
320 Hotline On-line™ http://www.ti.com/sc/docs/dsps/support.htm
Microcontroller Home Page http://www.ti.com/sc/micro
Networking Home Page http://www.ti.com/sc/docs/network/nbuhomex.htm
Military Memory Products Home Page http://www.ti.com/sc/docs/military/product/memory/mem_1.htm
1 North America, South America, Central America
Product Information Center (PIC) (972) 644-5580
Tl Literature Response Center U.S.A. (800) 477-8924
Software Registration/Upgrades (972) 293-5050 Fax: (972) 293-5967
U.S.A. Factory Repair/Hardware Upgrades (281) 274-2285
U.S. Technical Training Organization (972) 644-5580
Microcontroller Hotline (281) 274-2370 Fax: (281) 274-4203 Email: micro@ti.com
Microcontroller Modem BBS (281) 274-3700 8-N-1
DSP Hotline Email: dsph@ti.com
DSP Internet BBS via anonymous ftp to ftp://ftp.ti.com/pub/tms320bbs
Networking Hotline Fax: (281) 274-4027
Email: TLANHOT@micro.ti.com
O Europe, Middle East, Africa
European Product Information Center (EPIC) Hotlines:
Multi-Language Support +33130701169 Fax: +33130701032
Email: epic@ti.com
Deutsch +49 8161 80 33 11 or +33 1 30 70 11 68
English +33 13070 11 65
Francais +33130701164
Italiano +33 130701167
EPIC Modem BBS +33130701199
European Factory Repair +33 493222540
Europe Customer Training Helpline Fax: +49 81 61 80 40 10
O Asia-Pacific
Literature Response Center +852 2 956 7288 Fax: +852 2 956 2200
Hong Kong DSP Hotline +852 2 956 7268 Fax: +852 2 956 1002
Korea DSP Hotline +82 2551 2804 Fax: +82 2 551 2828
Korea DSP Modem BBS +82 2 551 2914
Singapore DSP Hotline Fax: +65 390 7179
Taiwan DSP Hotline +886 2 377 1450 Fax: +886 2 377 2718
Taiwan DSP Modem BBS +886 2 376 2592
Taiwan DSP Internet BBS via anonymous ftp to ftp://dsp.ee.tit.edu.tw/pub/TI/
O Japan
Product Information Center +0120-81-0026 (in Japan) Fax: +0120-81-0036 (in Japan)
+03-3457-0972 or (INTL) 813-3457-0972 Fax: +03-3457-1259 or (INTL) 813-3457-1259
DSP Hotline +03-3769-8735 or (INTL) 813-3769-8735 Fax: +03-3457-7071 or (INTL) 813-3457-7071
DSP BBS via Nifty-Serve Type “Go TIASP”

If You Need Assistance

(0 Documentation

When making suggestions or reporting errors in documentation, please include the following information that is on the title
page: the full title of the book, the publication date, and the literature number.
Mail: Texas Instruments Incorporated Email: dsph@ti.com Email: micro@ti.com
Technical Documentation Services, MS 702
P.O. Box 1443
Houston, Texas 77251-1443

Note: When calling a Literature Response Center to order documentation, please specify the literature number of the
book.

For product price & availability questions, please contact your local Product
Information Center, or see www.ti.com/sc/support http://www.ti.com/sc/sup-
port for details.

For additional CST technical support, see the TI CST Home Page
(www.ti.com/telephonyclientside) or the Tl Semiconductor KnowledgeBase
Home Page (www.ti.com/sc/knowledgebase).

If you have any problems with the Client Side Telephony software, please, read
first the list of Frequently Asked Questions at http://www.spiritDSP.com/CST.

You can also visit this web site to obtain the latest updates of CST software &
documentation.

Read This First v

1

Contents

Introduction to
Comfort Noise Generator (CNG) Algorithms i e 1-1

This chapter is a brief explanation of Comfort Noise Generator (CNG) and its use with the
TMS320C5400 platform.

1.1 INtrodUCHION . .o e 1-2
1.2 XDAIS BaASICS . .ttt ittt ittt et e e 1-3
1.2.1 Application/Framework 1-3
122 INerface . ..o 1-4
1.2.3 Application Development 1-5
Comfort Noise Generator (CNG) Integration i, 2-1

This chapter provides descriptions, diagrams, and examples explaining the integration of the
CNG with frameworks.

2.1 OVEIVIBW ottt 2-2
2.2 Integration FIOW 2-3
2.3 Exampleofa Call SEQUENCE ot e 2-4

Comfort Noise Generator (CNG)

APl DS IR IONS . .ottt e 3-1
This chapter provides the user with a clear understanding of Comfort Noise Generator (CNG)
algorithms and their implementation with the TMS320 DSP Algorithm Standard interface
(XDAIS).

3.1 Standard Interface StrUCIUIESttt e e e e 3-2
3.1.1 Instance Creation Parametersci i, 3-2
3.1.2 Status SHTUCIUNE . .o i e e et e e e e e 3-2
3.2 Standard Interface FUNCLIONS i e e e e e 3-3
3.2.1 Algorithm Initialization i e 3-3
3.2.2 Algorithm Deletion 3-4
3.2.3 Instance Creationttt e 3-4
3.2.4 Instance Deletion e 3-5
3.3 Vendor-Specific Interface Functions i 3-6
3.3.1 CNG Initialization e e 3-6
3.3.2 NOISE GENEIAtION . .o\ttt e e 3-7
3.3.3 Setting LPC Coefficients 3-7
TSt ENVITONM BNt ottt e e e A-1
A.1 Description Of DIr€CtOry TrEEottt e e A-2

vii

Contents

viii

A1l TestVectors Format e e

A.1.2 Test Project

A-2

1-1 XDAIS System Layers ..ot e e e e e e 1-3
1-2 XDAIS Layers Interaction Diagramt e 1-4
1-3 Module Instance Lifetime 1-6
2-1 CNG Integration Diagramt e e e 2-2
2-2 Typical CNG Integration FIOW e 2-3

3-1 CNG Generator Real-Time Status Parameters 3-2
3-2 CNG Standard Interface FUNCHONSttt e 3-3
3-3 Generator-Specific Interface Functions i 3-6
A-1 Test Fles for CNG e e e e e A-2

Test ENvVironment LOCALIONottt e e e e e e e e e e e A-1

TSt DUIALION . ottt ettt e e e e e e e e e A-3

Contents ix

Chapter 1

Introduction to
Comfort Noise Generator (CNG) Algorithms

This chapter is a brief explanation of the Comfort Noise Generator (CNG) and
its use with the TMS320C5400 Platform.

For the benefit of users who are not familiar with the TMS320 DSP Algorithm
Standard (XDAIS), brief descriptions of typical XDAIS terms are provided.

Topic Page
L1 INtrOdUCHION .ttt et e e e e e

1.2 XDAIS Basics

1-1

Introduction

11

Introduction

This document describes Comfort Noise Generator (CNG) developed by
SPIRIT Corp. for TMS320C54xx platform.

SPIRIT CNG generates noise, distributed either uniformly or shaped accord-
ing to the spectral envelope coefficients, which can be passed to CNG as pa-
rameters (up to 16 LPC coefficients).

It is recommended to use this object in conjunction with SPIRIT Corp.’s Voice
Activity Detector, to provide information not only about silence periods, but
also to relay noise spectral shape via LPC coefficients. For more information
regarding the VAD, please refer to the Voice Activity Detector (VAD) Algorithm
User’s Guide (SPRUG635).

The SPIRIT CNG software is a fully TMS320 DSP Algorithm Standard (XDAIS)
compatible, reentrant code. CNG interface complies with the TMS320 DSP Al-
gorithm Standard and can be used in multitasking environments.

The TMS320 DSP Algorithm Standard (XDAIS) provides the user with object
interface simulating object-oriented principles and asserts a set of program-
ming rules intended to facilitate integration of objects into a framework.

The following documents provide further information regarding the TMS320
DSP Algorithm Standard (XDAIS):

(1 Using the TMS320 DSP Algorithm Standard in a Static DSP System
(SPRA577)

(1 TMS320 DSP Algorithm Standard Rules and Guidelines (SPRU352)

]

TMS320 DSP Algorithm Standard API Reference (SPRU360)

(1 Technical Overview of eXpressDSP-Compliant Algorithms for DSP Soft-
ware Producers (SPRA579)

(1 The TMS320 DSP Algorithm Standard (SPRA581)

[Achieving Zero Overhead with the TMS320 DSP Algorithm Standard
IALG Interface (SPRA716)

XDAIS Basics

1.2 XDAIS Basics

This section instructs the user on how to develop applications/frameworks us-
ing the algorithms developed by vendors. It explains how to call modules
through a fully eXpress DSP-compliant interface.

Figure 1-1 illustrates the three main layers required in an XDAIS system:
(1 Application/Framework layer
1 Interface layer

[Vendor implementation. Refer to appendix A for a detailed illustration of
the interface layer.

Figure 1-1. XDAIS System Layers

Application/framework

Interface

A
\4

Vendor’s implementation

1.2.1 Application/Framework

Users should develop an application in accordance with their own design
specifications. However, instance creation, deletion and memory manage-
ment requires using a framework. It is recommended that the customer use
the XDAIS framework provided by SPIRIT Corp. in ROM.

The framework in its most basic form is defined as a combination of a memory
management service, input/output device drivers, and a scheduler. For a
framework to support/handle XDAIS algorithms, it must provide the framework
functions that XDAIS algorithm interfaces expect to be present. XDAIS frame-
work functions, also known as the ALG Interface, are prefixed with “ALG_". Be-
low is a list of framework functions that are required:

[ALG cr eat e - for memory allocation/algorithm instance creation
[0 ALG del et e - for memory de-allocation/algorithm instance deletion

(1 ALG acti vat e - for algorithm instance activation

Introduction to 1-3

XDAIS Basics

1.2.2

Interface

ALG deacti vat e - for algorithm instance de-activation
ALG i ni t - for algorithm instance initialization

ALG exi t - for algorithm instance exit operations

U U o U

ALG control - for algorithm instance control operations

Figure 1-2 is a block diagram of the different XDAIS layers and how they inter-
act with each other.

Figure 1-2. XDAIS Layers Interaction Diagram

Application/framework
i Calls

A4

Concrete interface
Implements

v

Abstract interface

7

Vendor’s implementation

1.2.2.1 Concrete Interface

A concrete interface is an interface between the algorithm module and the ap-
plication/framework. This interface provides a generic (hon-vendor specific)
interface to the application. For example, the framework can call the function
MODULE_appl y() instead of MODULE VENDOR appl y() . The following
files make up this interface:

[Header file MODULE. h - Contains any required definitions/global vari-
ables for the interface.

[Source File MODULE. ¢ - Contains the source code for the interface func-
tions.

XDAIS Basics

1.2.2.2 Abstract Interface

This interface, also known as the IALG Interface, defines the algorithm imple-
mentation. This interface is defined by the algorithm vendor but must comply
with the XDAIS rules and guidelines. The following files make up this interface:

[Header file i MODULE. h - Contains table of implemented functions, also
known as the IALG function table, and definition of the parameter struc-
tures and module objects.

[J Source Filei MODULE. ¢ - Contains the default parameter structure for the
algorithm.

1.2.2.3 Vendor Implementation

Vendor implementation refers to the set of functions implemented by the algo-
rithm vendor to match the interface. These include the core processing func-
tions required by the algorithm and some control-type functions required. A
table is built with pointers to all of these functions, and this table is known as
the function table. The function table allows the framework to invoke any of the
algorithm functions through a single handle. The algorithm instance object def-
inition is also done here. This instance object is a structure containing the func-
tion table (table of implemented functions) and pointers to instance buffers re-
quired by the algorithm.

1.2.3 Application Development

Figure 1-3 illustrates the steps used to develop an application. This flowchart
illustrates the creation, use, and deletion of an algorithm. The handle to the
instance object (and function table) is obtained through creation of an instance
of the algorithm. It is a pointer to the instance object. Per XDAIS guidelines,
software API allows direct access to the instance data buffers, but algorithms
provided by SPIRIT prohibit access.

Detailed flow charts for each particular algorithm is provided by the vendor.

Introduction to 1-5

XDAIS Basics

Figure 1-3. Module Instance Lifetime

Initialize parameters/
handle

v

MODULE_init()

v

MODULE_create()

v

MODULE_apply()

'y

MODULE_delete()

v

MODULE_exit()

The steps below describe the steps illustrated in Figure 1-3.

1-6

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

XDAIS Basics

Perform all non-XDAIS initializations and definitions. This may in-
clude creation of input and output data buffers by the framework, as
well as device driver initialization.

Define and initialize required parameters, status structures, and
handle declarations.

Invoke the MODULE i ni t () function to initialize the algorithm mod-
ule. This function returns nothing. For most algorithms, this function
does nothing.

Invoke the MODULE_cr eat e() function, with the vendor’s imple-
mentation ID for the algorithm, to create an instance of the algorithm.
The MODULE_cr eat e() function returns a handle to the created
instance. You may create as many instances as the framework can
support.

Invoke the MODULE _appl y() function to process some data when
the framework signals that processing is required. Using this func-
tion is not obligatory and vendor can supply the user with his own set
of functions to obtain necessary processing.

If required, the MODULE_control () function may be invoked to
read or modify the algorithm status information. This function also is
optional. Vendor can provide other methods for status reporting and
control.

When all processing is done, the MODULE_del et e() function is in-
voked to delete the instance from the framework. All instance
memory is freed up for the framework here.

Invoke the MODULE_exi t () function to remove the module from the
framework. For most algorithms, this function does nothing.

The integration flow of specific algorithms can be quite different from the se-
guence described above due to several reasons:

[Specific algorithms can work with data frames of various lengths and for-
mats. Applications can require more robust and effective methods for error
handling and reporting.

1 Instead of using t he MODULE_appl y() function, SPIRIT Corp. algo-
rithms use extended interface for data processing, thereby encapsulating
data buffering within XDAIS object. This provides the user with a more reli-
able method of data exchange.

Introduction to 1-7

Chapter 2

Comfort Noise Generator (CNG) Integration

This chapter provides descriptions, diagrams, and examples explaining the in-
tegration of the Comfort Noise Generator with frameworks.

Topic

2.1 OVEIVIEW ..ottt e e e e e e e e
2.2 Integration FIOWottt

2.3 Example of a Call SEQUENCE

2-1

Overview

2.1 Overview

Figure 2-1 illustrates a typical CNG integration diagram.

Figure 2-1. CNG Integration Diagram

Sampl o
amples Coefficients
from for noise
DAC generator

codec »| CNG generator

The CNG generator produces output signal according to values of LPC
coefficients and Seed.

2-2

Integration Flow

2.2 Integration Flow

In order to integrate the CNG generator into a framework, the user
should:(Figure 2-2):

Step 1. CallCNG cr eat e() to create the instance of a generator with spe-
cified parameters.

Step 2: CallCNG_gaussSet Coef () to choose required noise characteris-
tics by setting LPC filter coefficients. This step can be skipped when
white noise should be generated.

Step 3: Call CNG_gauss() to generate noise.

Step 4: Delete the generator by using CNG_del et e() .

Figure 2-2. Typical CNG Integration Flow

CNG_create()

\4

Select noise
parameters:
CNG_gaussSetCoef()

»
»
.

Fill with noise?

CNG_gauss()

A4

Pass generated
samples to the codec

v

CNG_delete()

Comfort Noise Generator (CNG) Integration 2-3

Example of a Call Sequence

2.3 Example of a Call Sequence

The example below demonstrates a typical call sequence for a CNG genera-
tor. Full sample code is placed in the file Sr c\ FI exExanpl es\ St andal o-
neXDAS\ CNG\ nai n. c.

XDAS Voi d Gener at eNoi se(XDAS_I nt 16* pBuf, XDAS_| nt 16 BUFsi ze,
XDAS I nt 16*pLPC, XDAS Int16 LPCsize, XDAS | nt16 nagnitude)

{
CNG_Handl e CNG nst;
/* creating CNG instance with default parameters */
CNG nst = CNG_creat e(&NG_SPCORP_I CNG, NULL) ;
/* set filter coefficients */
CNG_gaussSet Coef (CNA nst, pLPC, LPCsize, Magnitude);
/* generate noise */
CNG_gauss(CNd nst, pBuf, BUFsize);
/* Deleting CNG instance */
CNG_del et e(CNG nst) ;
}

2-4

Chapter 3

Comfort Noise Generator (CNG)
API Descriptions

This chapter provides the user with a clear understanding of Comfort Noise
Generator (CNG) algorithms and their implementation with the TMS320 DSP
Algorithm Standard interface (XDAIS).

Topic Page
3.1 Standard Interface StrUCIUrESouireeoeee e
3.2 Standard Interface FUNCHIONSt
3.3 Vendor-Specific Interface Functions 3-6

3-1

Standard Interface Structures

3.1 Standard Interface Structures

In this section, parameter structures are described.

3.1.1 Instance Creation Parameters

Description Not used

3.1.2 Status Structure

Description This structure defines the status parameters for the algorithm. Generator sta-
tus structure is used for control purposes. Status can be received by function
CNG get Stat us() .

Structure Definition

Table 3-1. CNG Generator Real-Time Status Parameters
typedef struct |ICNG Status {

Status Type Status Name Description

I nt si ze ignored

} 1 CNG_St at us;

Type | CNG_St at us defined in “i CNG. h”.

3-2

CNG_init

3.2 Standard Interface Functions
The CNG functions in this section are required when using the algorithm CNG.

CNG_appl y() and CNG_cont r ol () are optional, but neither are supported
by Spirit Corp.

Table 3-2 summarizes standard Interface functions of CNG API.

Table 3-2. CNG Standard Interface Functions

Functions Description See Page...
CNG_ini t Calls the framework initialization function (Algorithm initialization)
CNG_exi t Calls the framework exit function (Algorithm deletion) 3-4

CNG create Calls the framework creation function (Instance creation) 3-4
CNG_del ete Calls the framework deletion function (Instance deletion) 3-5

3.2.1 Algorithm Initialization

CNG_init Calls the framework initialization function to initialize an algorithm
Description This function calls the framework initialization function, ALG i nit(), to

initialize the algorithm. For CNG generator, this function does nothing. It can
be skipped and removed from the target code according to Achieving Zero
Overhead With the TMS320 DSP Algorithm Standard IALG Interface
(SPRA716).

Function Prototype void CNG.init()
Arguments none

Return Value none

3-3

CNG_exit

3.2.2 Algorithm Deletion

CNG_exit Calls the framework exit function to remove an algorithm
Description This function calls the framework exit function, ALG exi t (), to remove the

Function Prototype
Arguments

Return Value

algorithm. For CNG generator, this function does nothing. It can be skipped
and removed from the target code according to Achieving Zero Overhead With
the TMS320 DSP Algorithm Standard IALG Interface (SPRA716).

voi d CNG exit()
none

none

3.2.3 Instance Creation

CNG_create Calls the framework creation function to create an algorithm
Description In order to create a new CNG generator object, CNG cr eat e function

Function Prototype

Arguments

Return Value

should be called. This function calls the framework create function,
ALG creat e(), to create the instance object and perform memory allocation
tasks. Global structure CNG _SPCORP_I CNG contains CNG virtual table
supplied by SPIRIT Corp.

CNG Handl e CNG create
(const | CNG _Fxns *fxns,
const CNG Paranms *prns);

| CNG_Fxns * Pointer to vendor’s functions (Implementation ID).
Use reference to CNG_SPCORP_| CNG
virtual table supplied by SPIRIT Corp.

CNG_Par ans * Pointer to Parameter Structure. Use NULL pointer to
load default parameters.

CNG Handl e Defined in file “CNG. h”. This is a pointer to
the created instance.

CNG_delete

3.2.4 Instance Deletion

CNG_delete Calls a framework delete function to delete an instance object
Description This function calls the framework delete function, ALG del et e(), to delete

the instance object and perform memory de-allocation tasks.
Function Prototype voi d CNG del ete (CNG Handl e handl e)
Arguments CNG_Handl e Instance’s handle obtained from CNG cr eat e()

Return Value none

3-5

CNG_gaussinit

3.3 Vendor-Specific Interface Functions

In this section, functions in the SPIRIT’s algorithm implementation and inter-
face (extended IALG methods) are described.

Table 3-3 summarizes SPIRIT’s API functions of CNG generator.

The whole interface is placed in header files i CNG h, CNG. h,
CNG _spcor p. h.

Table 3-3. Generator-Specific Interface Functions

Functions Description See Page...
CNG _gausslnit Initialize CNG with specified parameters. 3-6
CNG_gauss Noise generation 3-7
CNG_gaussSet Coef Setting LPC coefficients 3-7

3.3.1 CNG Initialization

CNG_gaussinit Reinitializes a CNG instance and sets it to its initial state

Description Call this function to reinitialize CNG instance and set it into the initial state. This
function can be called in any time you need.

Function Prototype XDAS Voi d CNG gausslnit
(CNG_Handl e handl e,
XDAS | nt 16 seed)

Arguments handle Pointer to a CNG instance
seed Random number generator seed value.
Any value can be accepted.

Return Value none

Restrictions none

CNG_gaussSetCoef

3.3.2 Noise Generation

CNG_gauss Generates noise samples and stores them in a buffer

Description

Function Prototype

Arguments

Return Value

Restrictions

Generates a number of noise samples and stores it in buffer.

XDAS Voi d CNG _gauss
(1 CNG_Handl e handl e,
XDAS I nt 16 *pCQut,
XDAS I nt16 size)

handle Pointer to CNG instance

*pOut Pointer to buffer to fill with noise
size Size of buffer

none

Maximal length of buffer is 32767.

3.3.3 Setting LPC Coefficients

S\[CH UL IOl Sets the actual LPC coefficients stored in an internal buffer
Coef

Description

Function Prototype

Arguments

Return Value

Restrictions

Invoke this function for setting actual LPC coefficients. Coefficients are stored
in the internal buffer, so host can change or remove them immediately after this
function returns.

XDAS Voi d CNG _gaussSet Coef
(CNG_Handl e handl e,
const XDAS |Int16 *pLPCCoef,
XDAS | nt16 size,
XDAS | nt 16 magni t ude)

handle Pointer to CNG instance
*pLP CCoef Pointer to array with LPC coefficients
size Size of buffer

magnitude Output magnitude (0..32765)

Returns 1 on success and 0 if specified number of LPC coefficients exceeds
maximal allowed value (16).

Number of LPC coefficents should not exceed 16.

3-7

Test Environment

C54CST

Note: Test Environment Location
This chapter describes test environment for the CNG object.

For TMS320C54CST device, test environment for standalone CNG object is
located in the Software Development Kit (SDK) in Src\ Fl exExam
pl es\ St andal oneXDAS\ CNG

Topic Page

A.1 Description of Directory Tree . ..ottt A-2

A-1

Description of Directory Tree

A.1 Description of Directory Tree

The SDK package includes the test project “test.pjt” and corresponding refer-
ence test vectors. The user is free to modify this code as needed, without sub-
missions to SPIRIT Corp.

Table A-1. Test Files for CNG

File Description
main.c Test file
FileC5x.c File input/output functions

.\ROM\CSTRom.s54
Test.cmd

Vectors\output.pcm

ROM entry address
Linker command file

Reference output test vectors

A.1.1 Test Vectors Format

All test vectors are raw PCM files with following parameters:
(1 Bits per sample - 16, Mono
Word format - Intel PCM (LSB goes first)

|
[0 Encoding - uniform
(] Level - -2 dBF

A.1.2 Test Project

Description of Directory Tree

To build and run a project, the following steps must be performed:

Step 1:
Step 2:
Step 3:
Step 4:

Step 5:

Open the project: Pr oj ect \ Open

Build all necessary files: Proj ect\ Rebui | d Al |
Initialize the DSP: Debug\ Reset CPU

Load the output-file: Fi | e\ Load pr ogram

Run the executable: Debug\ Run

Once the program finishes testing, the file Output.pcm will be written in the cur-
rent directory. Compare this file with the reference vector contained in the
directory Vectors.

Note:

Test Duration

Since the standard file I/O for EVM is very slow, testing may take several min-
utes. Test duration does not indicate the real algorithm’s throughput.

Test Environment A-3

ALG, interface,[1-3]
ALG_activate,|1-3
ALG_control,[1-4]
ALG_create,[1-3
ALG_deactivate,|1-4
ALG_delete,[1-3]
ALG_exit,[1-4
ALG_init,[1-4]
Algorithm Deletion,|3-4 |
Algorithm Initialization,
Application Development,[1-5 |
steps to creating an application,
Application/Framework,

CNG, call sequence example,
CNG Initialization,
CNG_apply(),[3-3]
CNG_control(),
CNG_create,
CNG_delete,
CNG_exit,[3-4 |
CNG_gauss,
CNG_gaussInit,
CNG_gaussSetCoef,
CNG_getStatus,

CNG_init,[3-3]
Directory Tree,

Index

Environment, for testing,[A-2 |

Framework,

Functions
standard interface,|3-3
vendor—specific interface,

Header file
for abstract interfaces,|1-5
for concrete interfaces,|1-4

IALG,[1-5 |

Instance Creation,|3-4

Instance Creation Parameters, [3-2 |

Instance Deletion,(3-5 |

Integration
overview,
steps to integrating a CNG generator into a

framework,

Interface,[1-4 |
abstract,
concrete,[1-4 |
vendor implementation,[1-5

Module Instance Lifetime. See Application Develop-
ment

Index-1

Index

Noise Generation,[3-7 |

Test Environment,

Setting LPC Coefficients,|3-7 Vendor-specific Interface, functions,|3-6

Source file
for abstract interfaces,|1-5

for concrete interfaces,

XDAIS
Standard Interface Application Development,[1-5
functions,[3-3 | Application/Framework,[1-3 |
structures, basics,
Interface,|1-4 |
Status Structure,[3-2] related documentaion,[1-2 |
Structures, standard interface,[3-2 | System Layers, illustration of,[1-3 |

Index-2

	IMPORTANT NOTICE
	Read This First
	About This Manual
	Related Documentation From Texas Instruments
	Related Documentation
	Trademarks
	Software Copyright
	If You Need Assistance...

	Contents
	Figures
	Tables
	Notes, Cautions, and Warnings
	Chapter 1: Introduction to Comfort Noise Generator (CNG) Algorithms
	1.1 Introduction
	1.2 XDAIS Basics
	1.2.1 Application/Framework
	1.2.2 Interface
	1.2.2.1 Concrete Interface
	1.2.2.2 Abstract Interface
	1.2.2.3 Vendor Implementation

	1.2.3 Application Development

	Chapter 2: Comfort Noise Generator (CNG) Integration
	2.1 Overview
	2.2 Integration Flow
	2.3 Example of a Call Sequence

	Chapter 3: Comfort Noise Generator (CNG) API Descriptions
	3.1 Standard Interface Structures
	3.1.1 Instance Creation Parameters
	3.1.2 Status Structure

	3.2 Standard Interface Functions
	3.2.1 Algorithm Initialization
	CNG_init

	3.2.2 Algorithm Deletion
	CNG_exit

	3.2.3 Instance Creation
	CNG_create

	3.2.4 Instance Deletion
	CNG_delete

	3.3 Vendor-Specific Interface Functions
	3.3.1 CNG Initialization
	CNG_gaussInit

	3.3.2 Noise Generation
	CNG_gauss

	3.3.3 Setting LPC Coefficients
	CNG_gaussSetCoef

	Appendix A: Test Environment
	A.1 Description of Directory Tree
	A.1.1 Test Vectors Format
	A.1.2 Test Project

	Index

