Echo Canceller (EC) Algorithm
User’s Guide

SPIRIT CORP

Www.spiritDSP.com/CST ’

DSP Software Source

Literature Number: SPRU634
March 2003

Q’ TeEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (T1) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI's terms
and conditions of sale supplied at the time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of sale in accor-
dance with TI's standard warranty. Testing and other quality control techniques are used to the extent Tl deems
necessary to support this warranty. Except where mandated by government requirements, testing of all parame-
ters of each product is not necessarily performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using Tl components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any Tl patent right,
copyright, mask work right, or other Tl intellectual property right relating to any combination, machine, or process
in which Tl products or services are used. Information published by Tl regarding third-party products or services
does not constitute a license from Tl to use such products or services or a warranty or endorsement thereof. Use
of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction is without alter-
ation and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this
information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such
altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by Tl for that
product or service voids all express and any implied warranties for the associated Tl product or service and is an
unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Mailing Address:
Texas Instruments

Post Office Box 655303
Dallas, Texas 75265

Copyright 00 2003, Texas Instruments Incorporated

About This Manual

Preface

Read This First

The following abbreviations are used in this document:

XDAIS TMS320 DSP Algorithm Standard
EC Echo Canceller

DT Double talk detector

NLP Nonlinear processor

STA Short time averaging

LTA Long time averaging

Related Documentation From Texas Instruments

Using the TMS320 DSP Algorithm Standard in a Static DSP System
(SPRA577)

TMS320 DSP Algorithm Standard Rules and Guidelines (SPRU352)
TMS320 DSP Algorithm Standard API Reference (SPRU360)

Technical Overview of eXpressDSP-Compliant Algorithms for DSP Software
Producers (SPRA579)

The TMS320 DSP Algorithm Standard (SPRA581)

Achieving Zero Overhead with the TMS320 DSP Algorithm Standard IALG In-
terface (SPRA716)

Related Documentation

ITU-T Recommendation G.165 (03/93). General characteristics of internation-
al telephone connections and international telephone circuits. Echo Cancel-
lers.

ITU-T Recommendation G.168 (04/97). Digital network echo cancellers

Trademarks

Trademarks

Software Copyright

TMS320™ is a trademark of Texas Instruments.
SPIRIT CORP™ is a tradmark of Spirit Corp.

All other trademarks are the property of their respective owners.

CST Software Copyright [0 2003, SPIRIT Technologies, Inc.

If You Need Assistance

If You Need Assistance. ..

O World-Wide Web Sites
TI Online http://www.ti.com
Semiconductor Product Information Center (PIC) http://www.ti.com/sc/docs/products/index.htm
DSP Solutions http://www.ti.com/dsp
320 Hotline On-line™ http://www.ti.com/sc/docs/dsps/support.htm
Microcontroller Home Page http://www.ti.com/sc/micro
Networking Home Page http://www.ti.com/sc/docs/network/nbuhomex.htm
Military Memory Products Home Page http://www.ti.com/sc/docs/military/product/memory/mem_1.htm
1 North America, South America, Central America
Product Information Center (PIC) (972) 644-5580
Tl Literature Response Center U.S.A. (800) 477-8924
Software Registration/Upgrades (972) 293-5050 Fax: (972) 293-5967
U.S.A. Factory Repair/Hardware Upgrades (281) 274-2285
U.S. Technical Training Organization (972) 644-5580
Microcontroller Hotline (281) 274-2370 Fax: (281) 274-4203 Email: micro@ti.com
Microcontroller Modem BBS (281) 274-3700 8-N-1
DSP Hotline Email: dsph@ti.com
DSP Internet BBS via anonymous ftp to ftp://ftp.ti.com/pub/tms320bbs
Networking Hotline Fax: (281) 274-4027
Email: TLANHOT@micro.ti.com
(O Europe, Middle East, Africa
European Product Information Center (EPIC) Hotlines:
Multi-Language Support +33130701169 Fax: +33130701032
Email: epic@ti.com
Deutsch +49 8161 80 33 11 or +33 1 30 70 11 68
English +33 13070 11 65
Francais +33130701164
Italiano +33 130701167
EPIC Modem BBS +33130701199
European Factory Repair +33 493222540
Europe Customer Training Helpline Fax: +49 81 61 80 40 10
O Asia-Pacific
Literature Response Center +852 2 956 7288 Fax: +852 2 956 2200
Hong Kong DSP Hotline +852 2 956 7268 Fax: +852 2 956 1002
Korea DSP Hotline +82 2 551 2804 Fax: +82 2 551 2828
Korea DSP Modem BBS +82 2 551 2914
Singapore DSP Hotline Fax: +65 390 7179
Taiwan DSP Hotline +886 2 377 1450 Fax: +886 2 377 2718
Taiwan DSP Modem BBS +886 2 376 2592
Taiwan DSP Internet BBS via anonymous ftp to ftp://dsp.ee.tit.edu.tw/pub/TI/
O Japan
Product Information Center +0120-81-0026 (in Japan) Fax: +0120-81-0036 (in Japan)
+03-3457-0972 or (INTL) 813-3457-0972 Fax: +03-3457-1259 or (INTL) 813-3457-1259
DSP Hotline +03-3769-8735 or (INTL) 813-3769-8735 Fax: +03-3457-7071 or (INTL) 813-3457-7071
DSP BBS via Nifty-Serve Type “Go TIASP”

Read This First v

If You Need Assistance

1 Documentation
When making suggestions or reporting errors in documentation, please include the following information that is on the title
page: the full title of the book, the publication date, and the literature number.

Mail:

Texas Instruments Incorporated Email: dsph@ti.com Email: micro@ti.com
Technical Documentation Services, MS 702

P.O. Box 1443

Houston, Texas 77251-1443

Note:

vi

When calling a Literature Response Center to order documentation, please specify the literature number of the

book.

For product price & availability questions, please contact your local Product
Information Center, or see www.ti.com/sc/support http://www.ti.com/sc/sup-
port for details.

For additional CST technical support, see the TI CST Home Page
(www.ti.com/telephonyclientside) or the Tl Semiconductor KnowledgeBase
Home Page (www.ti.com/sc/knowledgebase).

If you have any problems with the Client Side Telephony software, please, read
first the list of Frequently Asked Questions at http://www.spiritDSP.com/CST.

You can also visit this web site to obtain the latest updates of CST software &
documentation.

1

Conten

Introduction to Echo Canceller (EC) Algorithms i ...

This chapter is a brief explanation of Echo Canceller (EC) and its use with the TMS320C5400
platform.

ts

L1 INrOdUCHION . .o e e e e 1-2
1.2 XDAIS BaASICS . .ttt ittt ettt e e 1-3
1.2.1 Application/Frameworkc.co i e 1-3
122 INterface . ..o 1-4
1.2.3 Application Development i 1-5
1.3 LIMItAtIONS . ..ottt 1-8
Echo Canceller Integration i e e e 2-1

This chapter provides input signal requirements, descriptions, diagrams, and examples ex-
plaining the integration of the Echo Canceller with frameworks.

2.1 OVBIVIBW ottt ettt e e e 2-2
2.2 Input Signals ReqUIrEmMENtSttt e 2-3
2.3 Integration FIOW 2-4
2.4 Integration EXample 2-5
Echo Canceller (EC) API DeSCHPLIONS ...ttt et e
This chapter provides the user with a clear understanding of Echo Canceller (EC) algorithms
and their implementation with the TMS320 DSP Algorithm Standard interface (XDAIS).
3.1 Standard Interface StruCtUreS e 3-2
3.1.1 Parameters StrUCIUIot e e 3-2
3.1.2 Status SITUCIUIE . ..o 3-4
3.2 Standard Interface FUNCLIONS 3-5
3.2.1 Instance Creationttt e 3-5
3.2.2 Instance Deletion 3-6
3.2.3 Algorithm Initialization 3-6
3.2.4 Algorithm Deletion 3-6
3.3 Vendor-Specific Interface Functions i 3-7
3.3. 1 StatuS REPOItING . . . oot 3-7
3.3.2 Process Samples 3-8
3.3.3 State Changingo vt 3-8
TeSt ENVIFONMENT . . o e e e A-1
A.1 Description Of DIr€CtOry TrEEttt et et A-2

vii

Contents

viii

A1l TestVectors Format e e

A.1.2 Test Project

A-2

1-1 XDAIS System Layers ..ot e e e e e 1-3
1-2 XDAIS Layers Interaction Diagramt 1-4
1-3 Module Instance Lifetime 1-6
2-1 Echo Canceller Diagram oot e e e 2-2
Tables

1-1 Limitations for Echo Canceller i e 1-8
3-1 Standard Interface Structures SUMMaAryco ottt it 3-2
3-2 Echo Canceller Run-Time Creation Parameters, 3-2
3-3 IEC_Tail Enumerator Definition i i e e 3-3
3-4 Bit Definition in ecState Word i e 3-3
3-5 EC Status StrUuCIUIe e e e e e e e e e 3-4
3-6 Echo Canceller Standard Interface Functions 3-5
3-7 Echo Canceller Vendor-Specific Interface Functions 3-7
3-8 IEC_SetState ENUMEratorttt e e ettt 3-9
A-1 TeSt Files fOr EC . ..o A-2
Notes, Cautions, and Warnings

Echo Signal Delay 2-3
Test ENVironment LOCatioN it e et e e e A-1
TESt DUIALION . . o e e e e A-3
Contents ix

Chapter 1

Introduction to
Echo Canceller (EC) Algorithms

This chapter is a brief explanation of the Echo Canceller (EC) and its use with
the TMS320C5400 platform.

For the benefit of users who are not familiar with the TMS320 DSP Algorithm
Standard (XDAIS), brief descriptions of typical XDAIS terms are provided.

Topic Page
L1 INtrOdUCHION .ttt e et e e e e
1.2 XDAIS BASICS .. oottt e e e
1.3 LiMItationsvv et e

1-1

Introduction

11

Introduction

This document describes implementation of Electric Echo Canceller devel-
oped by SPIRIT Corp. for TMS320C54xx platform, PCM-oriented version, and
intended for integration into digital networks, embedded equipment, etc.

This Echo Canceller is used for cancellation of echo created by telephone hy-
brid, and conforms to G.165 and G.168 ITU recommendations. User can set
the value of maximum echo path equal to 16, 32, or 64 ms. Input/output signal
range should be within standard PCM samples range.

The SPIRIT EC software is a fully TMS320 DSP Algorithm Standard (XDAIS)
compatible, reentrant code. The EC interface complies with the TMS320 DSP
Algorithm Standard and can be used in multitasking environments.

The TMS320 DSP Algorithm Standard (XDAIS) provides the user with object
interface simulating object-oriented principles and asserts a set of program-
ming rules intended to facilitate integration of objects into a framework.

The following documents provide further information regarding the TMS320
DSP Algorithm Standard (XDAIS):

[Using the TMS320 DSP Algorithm Standard in a Static DSP System
(SPRA577)

(1 TMS320 DSP Algorithm Standard Rules and Guidelines (SPRU352)

]

TMS320 DSP Algorithm Standard API Reference (SPRU360)

[Technical Overview of eXpressDSP-Compliant Algorithms for DSP Soft-
ware Producers (SPRA579)

(1 The TMS320 DSP Algorithm Standard (SPRA581)

(1 Achieving Zero Overhead with the TMS320 DSP Algorithm Standard
IALG Interface (SPRA716)

XDAIS Basics

1.2 XDAIS Basics

This section instructs the user on how to develop applications/frameworks us-
ing the algorithms developed by vendors. It explains how to call modules
through a fully eXpress DSP-compliant interface.

Figure 1-1 illustrates the three main layers required in an XDAIS system:
(1 Application/Framework layer
1 Interface layer

[Vendor implementation. Refer to appendix A for a detailed illustration of
the interface layer.

Figure 1-1. XDAIS System Layers

Application/framework

Interface

A
A4

Vendor’s implementation

1.2.1 Application/Framework

Users should develop an application in accordance with their own design
specifications. However, instance creation, deletion and memory manage-
ment requires using a framework. It is recommended that the customer use
the XDAIS framework provided by SPIRIT Corp. in ROM.

The framework in its most basic form is defined as a combination of a memory
management service, input/output device drivers, and a scheduler. For a
framework to support/handle XDAIS algorithms, it must provide the framework
functions that XDAIS algorithm interfaces expect to be present. XDAIS frame-
work functions, also known as the ALG Interface, are prefixed with “ALG_". Be-
low is a list of framework functions that are required:

[ALG cr eat e - for memory allocation/algorithm instance creation
[0 ALG del et e - for memory de-allocation/algorithm instance deletion

(1 ALG acti vat e - for algorithm instance activation

Introduction to 1-3

XDAIS Basics

1.2.2

Interface

ALG deacti vat e - for algorithm instance de-activation
ALG i ni t - for algorithm instance initialization

ALG exi t - for algorithm instance exit operations

U U o U

ALG control - for algorithm instance control operations

Figure 1-2 is a block diagram of the different XDAIS layers and how they inter-
act with each other.

Figure 1-2. XDAIS Layers Interaction Diagram

Application/framework
l Calls

v

Concrete interface
Implements

Y

Abstract interface

7

Vendor’s implementation

1.2.2.1 Concrete Interface

A concrete interface is an interface between the algorithm module and the ap-
plication/framework. This interface provides a generic (hon-vendor specific)
interface to the application. For example, the framework can call the function
MODULE_appl y() instead of MODULE VENDOR appl y() . The following
files make up this interface:

[Header file MODULE. h - Contains any required definitions/global vari-
ables for the interface.

[Source File MODULE. ¢ - Contains the source code for the interface func-
tions.

XDAIS Basics

1.2.2.2 Abstract Interface

This interface, also known as the IALG Interface, defines the algorithm imple-
mentation. This interface is defined by the algorithm vendor but must comply
with the XDAIS rules and guidelines. The following files make up this interface:

[Header file i MODULE. h - Contains table of implemented functions, also
known as the IALG function table, and definition of the parameter struc-
tures and module objects.

[J Source Filei MODULE. ¢ - Contains the default parameter structure for the
algorithm.

1.2.2.3 Vendor Implementation

Vendor implementation refers to the set of functions implemented by the algo-
rithm vendor to match the interface. These include the core processing func-
tions required by the algorithm and some control-type functions required. A
table is built with pointers to all of these functions, and this table is known as
the function table. The function table allows the framework to invoke any of the
algorithm functions through a single handle. The algorithm instance object def-
inition is also done here. This instance object is a structure containing the func-
tion table (table of implemented functions) and pointers to instance buffers re-
quired by the algorithm.

1.2.3 Application Development

Figure 1-3 illustrates the steps used to develop an application. This flowchart
illustrates the creation, use, and deletion of an algorithm. The handle to the
instance object (and function table) is obtained through creation of an instance
of the algorithm. It is a pointer to the instance object. Per XDAIS guidelines,
software API allows direct access to the instance data buffers, but algorithms
provided by SPIRIT prohibit access.

Detailed flow charts for each particular algorithm is provided by the vendor.

Introduction to 1-5

XDAIS Basics

Figure 1-3. Module Instance Lifetime

Initialize parameters/
handle

A4

MODULE_init()

v

MODULE_create()

A4

MODULE_apply()

A

MODULE_delete()

A4

MODULE_exit()

The steps below describe the steps illustrated in Figure 1-3.

1-6

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

XDAIS Basics

Perform all non-XDAIS initializations and definitions. This may in-
clude creation of input and output data buffers by the framework, as
well as device driver initialization.

Define and initialize required parameters, status structures, and
handle declarations.

Invoke the MODULE i ni t () function to initialize the algorithm mod-
ule. This function returns nothing. For most algorithms, this function
does nothing.

Invoke the MODULE_cr eat e() function, with the vendor’s imple-
mentation ID for the algorithm, to create an instance of the algorithm.
The MODULE_cr eat e() function returns a handle to the created
instance. You may create as many instances as the framework can
support.

Invoke the MODULE _appl y() function to process some data when
the framework signals that processing is required. Using this func-
tion is not obligatory and vendor can supply the user with his own set
of functions to obtain necessary processing.

If required, the MODULE_control () function may be invoked to
read or modify the algorithm status information. This function also is
optional. Vendor can provide other methods for status reporting and
control.

When all processing is done, the MODULE_del et e() function is in-
voked to delete the instance from the framework. All instance
memory is freed up for the framework here.

Invoke the MODULE_exi t () function to remove the module from the
framework. For most algorithms, this function does nothing.

The integration flow of specific algorithms can be quite different from the se-
guence described above due to several reasons:

[Specific algorithms can work with data frames of various lengths and for-
mats. Applications can require more robust and effective methods for error
handling and reporting.

1 Instead of using t he MODULE_appl y() function, SPIRIT Corp. algo-
rithms use extended interface for data processing, thereby encapsulating
data buffering within XDAIS object. This provides the user with a more reli-
able method of data exchange.

Introduction to 1-7

Limitations

1.3 Limitations

Table 1-1 lists the limitations for this version of SPIRIT Corp. Echo Canceller.

Table 1-1. Limitations for Echo Canceller

1-8

Feature

Limitation

Supported ITU recommendation

Tone Disabler

Comfort noise generator

Maximum echo path delay

Input/output signal range

G.168 and G.165

Not inside Echo Canceller object. Can be
added as an external object.

Not inside Echo Canceller object. Can be
added as an external object.

16, 32, and 64 ms

PCM range (14-bit)

Chapter 2

Echo Canceller Integration

This chapter provides input signal requirements, descriptions, diagrams, and
examples explaining the integratino of the Echo Canceller (EC) with frame-
works.

Topic Page
2.1 OVEIVIEW . ottt ittt e et e e e e e e e e e 2-2
2.2 Input Signals Requirementsttt 2-3
2.3 INtegration FIOWonine e
2.4 Integration Example 2-5

2-1

Overview

2.1 Overview

Figure 2-1 shows Echo Canceller flowchart.

Figure 2-1. Echo Canceller Diagram

Speech plus
Speech plus echo Adaptive || Non-linear cancelled echo
Ll
Neinput subtractor processor Neoutput
A
Near end
< > Hybrid Echo Canceller Far end
Feinput

Reference signal

Echo Canceller is used for cancellation of echoes created by a telephone hy-
brid. In Fe denotes far end speech (reference signal), Ne jnp,t denotes echo
with near end speech, Ne qpyt denotes near end speech without echo.

2-2

2.2

Input Signals Requirements

Input Signals Requirements

As mentioned in section 2.1, the purpose of Echo Canceller is to cancel echoes
caused by hybrid connections in telephone networks. This can be achieved if
the Echo Canceller’s input signals conform to specific requirements. The User
must follow them, otherwise, strong Echo Canceller performance degradation
may be experienced.

The requirements are as follows:

(1 Echo signal (Ne) must be delayed relatively to reference signal (Fe).

Note: Echo Signal Delay

If it is only possible to obtain an echo signal with additional fixed delays, com-
pensate by delaying reference signals of the same value before performing
echo cancellations.

(1 Maximum echo delay must not exceed currently selected EC maximum
echo path delay defined by | EC _Tai | .

[Input and output samples should be linear PCM samples with absolute
values less than 8159 (this is the maximum value for linear samples after
p-law expansion)

[The average amplitude of a reference signal (Fe) must not increase by
more than 5000.

(1 The average amplitude of an echo signal must not exceed half the average
amplitude of a reference signal (Fe).

(1 A Reference and echo signhal must not have any DC offset.

[The Echo canceller is sensitive to non-linear distortions (clipping, etc.) in
input signals. The presence of more distortions result in further EC perfor-
mance degradation.

[0 Echo canceller is designed to cancel an echo caused by a hybrid connec-
tion in telephone networks that changes slowly, therefore it would not be
able to track rapid large continuous changes in an echo path.

Echo Canceller Integration 2-3

Integration Flow

2.3

Integration Flow

For integration of Echo Canceller into user Framework it is necessary to per-
form the following steps:

Step 1:

Step 2:

Step 3:

Create an Echo Canceller object.

To accomplish this, it is necessary to invoke the EC Handl e
EC create(const |EC Fxns *fxns, const EC Parans
*prns) routine.

The first parameter of this function is a pointer to table of EC virtual
methods &EC_SPCORP_| EC, and the second parameter is a pointer
to structure of EC parameters (this structure is described below).

This routine returns a pointer to the created EC object.

Run the Echo Canceller.

To accomplish this, it is necessary to periodically invoke the EC _pr o-
cess(EC Handle handle, Int *fe, Int *ne, Int
si ze) routine, each si ze/ 8 ms.

The first parameter of this function is a pointer to EC object, the sec-
ond parameter is a pointer to reference (Far end) speech samples, the
third parameter is a pointer to echo with near end speech samples, the
fourth parameter is the number of samples to be processed.

The third parameter ne is also used as a pointer to output near end
speech samples without echo.

Thus, after the call to EC process() routine, the near end speech
input samples with echo are replaced by near speech samples without
echo.

At the end of operation, delete Echo Canceller object.

To accomplish this, it is necessary to invoke the Void EC de-
| et e(EC_Handl e handl e) routine.

The first parameter of this function is a pointer to the object to be de-
leted.

2.4

Integration Example

Integration Example

The following code example demonstrates Echo Canceller integration:

{

extern void OpenFiles(void);

extern void C oseFil es(void);

/* Create a pointer to EC object */
EC Handl e Ecn;

voi d mai n(voi d)

int16 fe[BUFFER LENGTH ;
i nt 16 ne[BUFFER _LENGTH) ;

/[* COpen files ref, echo, res with reference, echo and cl eared speech */

OpenFil es();

/[*Create EC object for nmaxi mum echo path delay 32 nms */
[* (255 Taps of adaptive subtracting flter) */
Ecn=EC creat e(&EC_SPCORP_I| EC, &l EC_PARAMB) ;

whi | e(1)
{
if(fread_(&f e[0], sizeof (intl6), BUFFER _LENGTH, r ef) ! =BUFFER_LENGTH)
br eak;
i f(fread_(&ne[0], sizeof (intl6), BUFFER _LENGTH, echo) ! =BUFFER_LENGTH)
br eak;

/* Process BUFFER_LENGTH sanpl es */
EC process(Ecn, & e[0] , &ne[0] , BUFFER_LENGTH) ;

/*Save result */
fwite_(&ne[0], sizeof (int16), BUFFER LENGTH, res);
}
/* Del ete Ec object */
EC del ete(Ecn);
/* Close all files */

Cl oseFiles();

Echo Canceller Integration

Chapter 3

Echo Canceller (EC) API Descriptions

This chapter provides the user with a clear understanding of Echo Canceller

(EC) algorithms and their implementation with the TMS320 DSP Algorithm
Standard interface (XDAIS).

Topic Page
3.1 Standard Interface Structuresc..iiiiiinnennn.. 3-2
3.2 Standard Interface Functionsciiiiiiiiiiiiin.n. 3-5
3.3 Vendor-Specific Interface Functions 3-7

3-1

Standard Interface Structures

3.1 Standard Interface Structures

The section describes parameters, status structures and standard methods
for the Echo Canceller.

Table 3-1 lists the type and location of the Standard Interface structures.

Table 3-1. Standard Interface Structures Summary

Parameters Located in Table...
Echo Canceller Run-Time Creation Table 3-2
IEC_Tail Enumerator Definition Table 3-3
Bit Definition in ecSt at e Word Table 3-4
EC Status Structure Table 3-5

3.1.1 Parameters Structure

Description This structure is used for creation of Echo Canceller object. A default parame-
ter structure is defined in “i ec. c” file

Structure Definition

Table 3-2. Echo Canceller Run-Time Creation Parameters

typedef struct | EC Parans{

Parameter Type Parameter Name Description Value
I nt ecState Default echo canceller state Described in
| EC Tai l amount O Taps This enumeration (see) determines Described in

amount of taps of adaptive subtractor
(maximum echo path delay)

I nt nl pM n This value determines level of nonlinear From 8159 to 0
suppression

I nt nl pShi ft This value determines sluggishness of From 8 to 15
nonlinear processor

} 1 EC_Par ans

3-2

Table 3-3. IEC_Tail Enumerator Definition

t ypedef enum {

Standard Interface Structures

Value

Description

| EC_TAI L127
| EC_TAI L255

| EC_TAI L511

Maximum echo delay path equals to 16 ms (127 Taps)
Maximum echo delay path equals to 32 ms (255 Taps)

Maximum echo delay path equals to 64 ms (511 Taps)

} 1EC Tail

Table 3-4. Bit Definition in ecSt at e Word

Value

Description

| EC_DTDETECTED

| EC_ECCONVERGED
| EC_NLPENABLE

| EC_DTENABLE

| EC_UPDATEENABLE

Double talk is detected

Echo canceller is converged now
Nlp is enabled

Dt is enabled

Adaptation is enabled

| EC_FEACTI VE Reference(Far) end is active

| EC_NEACTI VE Near end is active

| EC_BI GERR Double talk with low level is detected
Type | EC_PARANS isdefined in “iec.h” file.

Echo Canceller (EC) API Descriptions 3-3

Standard Interface Structures

3.1.2 Status Structure

Description This structure is used for Echo Canceller state control. Call EC_get St at us()
function to obtain this structure.

Structure Definition

Table 3-5. EC Status Structure
typedef struct |EC Status {

Status Type Status Name Description
I nt ecState EC state
I nt f eSTA Far end level for short averaging
I nt neSTA Near end level for short averaging
I nt err STA Residual echo level for short averaging
I nt feLTA Far end level for long averaging
I nt neLTA Near end level for long averaging
I nt errLTA Residual echo level for long averaging
Int * pTaps Pointer to Taps array of adaptive subtractor
} 1 EC_Status;
Type | EC_St at us is defined in “i ec. h” file.

3-4

EC create

3.2 Standard Interface Functions

The EC functions in this section are required when using the algorithm CNG.

EC_appl y() and EC control () are optional, but neither are supported by
Spirit Corp.

Table 3-6 summarizes the standard Interface functions of the Echo Canceller
API.

Table 3-6. Echo Canceller Standard Interface Functions

Functions Description See Page...

EC create Instance creation 3-5

EC del ete Instance deletion

ECinit Algorithm initialization

EC exit Algorithm deletion 3-6
3.2.1 Instance Creation

EC create Calls the framework create function to create an instance object

Description

Function Prototype

Arguments

Return Value

In order to create a new Echo Canceller object, EC cr eat e() function
should be called. This function calls the framework create function,
ALG creat e(), to create the instance object and perform memory allocation
tasks. Also the function ALG create() performs Echo Canceller
initialization in accordance with the parameter structure. Global structure
EC_SPCORP_I EC contains echo canceller virtual table supplied by SPIRIT
Corp.

EC Handl e EC creat e(const | EC Fxns *f xns, const
EC Parans *prns)

| EC Fxns *fxn Pointer to virtual method table of Echo Canceller.
Use reference to EC_SPCORP_| EC virtual table
supplied by SPIRIT Corp.

EC Parans *prns Pointer to the parameter structure. Fields of this
structure are described above. Use NULL pointer to
load default parameters.

This routine returns pointer to Echo Canceller object.

3-5

EC_delete

3.2.2 Instance Deletion

EC delete Calls the framework delete function to delete an instance object
Description This function calls the framework delete function, ALG del et e(), to delete

Function Prototype
Arguments

Return Value

the instance object and perform memory de-allocation tasks.
Voi d EC del et e(EC_Handl e handl e)
EC Handl e handl e Pointerto Echo Canceller object.

none

3.2.3 Algorithm Initialization

Calls the framework initialization function to initialize the algorithm EC
Description This function calls the framework initialization function, ALG i nit (), to

Function Prototype
Arguments

Return Value

initialize the algorithm EC. Usually, this function does nothing. It can be skipped
and removed from the target code according to Achieving Zero Overhead With
the TMS320 DSP Algorithm Standard IALG Interface (SPRA716).

void EC init0O()
none

none

3.2.4 Algorithm Deletion

Calls the framework exit function ALG_exit()

Description

Function Prototype
Arguments

Return Value

3-6

This function calls the framework exit function, ALG exi t (), to remove the
algorithm EC.

Usually, this function does nothing. It can be skipped and removed from the
target code according to Achieving Zero Overhead With the TMS320 DSP Al-
gorithm Standard IALG Interface (SPRA716).

void EC exit ()
none

none

EC getStatus

3.3 Vendor-Specific Interface Functions

In this section, functions in the SPIRIT’s algorithm implementation and inter-
face (extended IALG methods)are described.

Table 3-7 summarizes SPIRIT’s API functions of Echo canceller.

The whole interface is located in header files iec.h, ec. h,
ec_spcor p. h.

Table 3-7. Echo Canceller Vendor-Specific Interface Functions

Functions Description See Page...
EC process () Process samples 3-7
EC get Status() Status reporting 3-8
EC changeSt at e() Status changing 3-8

3.3.1 Status Reporting

EC_getStatus Gets the status structure from an Echo Canceller object

Description

Function Prototype

Arguments

Return Value

Restrictions

The routine EC _get St at us() is used to get status structure from Echo
Canceller object. Fields of this structure are described above in Table 3-5.

XDAS Voi d EC get Status(EC Handl e handle, EC Status
*st at us)

EC Handl e handl e Pointerto Echo Canceller object
EC Status *status Pointerto Echo Canceller status structure

This routine fills the fields of Echo Canceller status structure

none

3-7

EC _process

3.3.2 Process Samples

EC _process Processes samples from far and near end
Description This routine is invoked each si ze/ 8 ms for processing si ze samples from

Function Prototype

Arguments

Return Value

far and near end. The first parameter of this function is a pointer to EC object,
the second parameter is a pointer to reference (Far end) speech samples, the
third parameter is a pointer to echo with near end speech samples, the fourth
parameter is number of samples to be processed. The third parameter ne also
is used as a pointer to output near end speech samples without echo. Thus,
after the call to EC_pr ocess() routine, the near end speech input samples
with echo are replaced by near speech samples without echo. The sampling
frequency for input and output samples is 8000 Hz.

XDAS Void EC process(EC Handl e handle, Int *fe,Int
*ne, I nt size)

EC Handl e handl e Pointerto Echo Canceller object

Int *fe Pointer to reference (Far end) speech samples
Int *ne Pointer to echo with near end speech samples
Int size Amount of samples to be processed

This routine returns near end speech samples without echo. These samples
replace input near end speech samples with echo.

3.3.3 State Changing

SHOMNERCESEICI Changes current Echo Canceller state

Description

Function Prototype

Arguments

The routine EC changeSt at e() is used for changing of current Echo
Canceller state.

XDAS Void EC changeSt at e(
EC Handl e handl e,
Int state,
| EC Set St ate set Reset Fl ag

)

EC Handl e handl e Pointerto Echo Canceller object

Int state Current state of Echo Canceller. Bits of EC state word
are described above

| EC Set St at e

set Reset Fl ag This flag tells whether bits are cleared or set in EC
state word in accordance with bits determined in
second parameter st at e

Table 3-8 determines enumerator | EC_Set St at e.

EC changeState

Table 3-8. IEC_SetState Enumerator
typedef enum | EC_Set St at e{

Value Description

| EC_SETBI TSI NSTATEWORD Set bits equal to 1 in the parameter state, in current Echo Canceller state
word.

| EC_CLEARBI TSI NSTATEWORD Clear bits equal to 1 in parameter state, in current Echo Canceller state
word.

} 1 EC _Set St at e0

Return Value none

Restrictions none

Test Environment

C54CST

Note: Test Environment Location
This chapter describes test environment for the EC object.

For TMS320C54CST device, test environment for standalone EC object is lo-
cated in the Software Development Kit (SDK) in Src\Fl exExam
pl es\ St andal oneXDAS\ G 168.

Topic Page

A.1 Description of Directory Tree . ..ot A-2

A-1

Description of Directory Tree

A.1 Description of Directory Tree

The SDK package includes the test project “test.pjt” and corresponding refer-
ence test vectors. The user is free to modify this code as needed, without sub-
missions to SPIRIT Corp.

Table A-1. Test Files for EC

File Description
main.c Test file
FileC5x.c File input/output functions

.\ROM\CSTRom.s54 ROM entry address
Test.cmd Linker command file

Vectors\output.pcm Reference output test vectors

A.1.1 Test Vectors Format
All test vectors are raw PCM files with following parameters:
(1 Testvector ref _sp. bi nincludes far end (reference) speech samples

[J Test vector echo_sp. bi n includes near end speech samples wioth far
end echo.

[Testvector res. bi nincludes near end speech samples.

A-2

A.1.2 Test Project

Description of Directory Tree

To build and run a project, the following steps must be performed:

Step 1:
Step 2:
Step 3:
Step 4:

Step 5:

Open the project: Pr oj ect \ Open

Build all necessary files: Proj ect\ Rebui | d Al |
Initialize the DSP: Debug\ Reset CPU

Load the output-file: Fi | e\ Load pr ogram

Run the executable: Debug\ Run

Once the program finishes testing, the file Output.pcm will be written in the cur-
rent directory. Compare this file with the reference vector contained in the
directory Vectors.

Note:

Test Duration

Since the standard file I/O for EVM is very slow, testing may take several min-
utes. Test duration does not indicate the real algorithm’s throughput.

Test Environment A-3

ALG, interface |1-3
ALG_activate |1-3
ALG_control |[1-4
ALG_create [1-3
ALG_deactivate |1-4
ALG_delete |[1-3

ALG_exit [1-4
ALG_init

Algorithm Deletion |3-6
Algorithm Initialization |3-6

Application Development
steps to creating an application |1-7

Application/Framework

Directory Tree

Distortions. See Input Signals Requirements

EC_apply()
EC_changeState |[3-8
EC_control()
EC_create |3-5

EC_delete |3-6

EC_exit

EC_getStatus |[3-7

EC_init

EC_process

Echo Canceller, limitations
Environment, for testing

Index

Framework

Functions

standard
vendor-specific

Header file
for abstract interfaces |1-5
for concrete interfaces

IALG

IEC_PARAMS |3-3

IEC_Params |3-2

IEC_SetState Enumerator |[3-9

IEC_Status |3-4

IEC_Tail

Input, signal requirements [2-3

Input Signals Requirements [2-3

Instance Creation

Instance Deletion [3-6

Integration
example o
overview
steps to integrating a EC generator into a

framework

Interface
abstract
concrete
vendor implementation [1-5

Limitations, Echo Canceller |1-8

Index-1

Index

Module Instance Lifetime. See Application
Development

parameters
Bit Definition in ecState Word |3-3

Echo Canceller Run-Time creation
IEC_Tail Enumerator Definition

Process Samples |3-8

Signals, requirements [2-3
Source file

for abstract interfaces
14

for concrete interfaces
State Changing
Status Reporting

Index-2

Structures

parameter#

standard |[3-2

status |3-4
EC |34

Test
files
format
project

Test Environment

XDAIS
Application DevelopmentE
Application/Framework |1-3
basics
Interface

related documentaion
System Layers, illustration of

	IMPORTANT NOTICE
	Read This First
	About This Manual
	Related Documentation From Texas Instruments
	Related Documentation
	Trademarks
	Software Copyright
	If You Need Assistance...

	Contents
	Figures
	Tables
	Notes, Cautions, and Warnings
	Chapter 1: Introduction to Echo Canceller (EC) Algorithms
	1.1 Introduction
	1.2 XDAIS Basics
	1.2.1 Application/Framework
	1.2.2 Interface
	1.2.2.1 Concrete Interface
	1.2.2.2 Abstract Interface
	1.2.2.3 Vendor Implementation

	1.2.3 Application Development

	1.3 Limitations

	Chapter 2: Echo Canceller Integration
	2.1 Overview
	2.2 Input Signals Requirements
	2.3 Integration Flow
	2.4 Integration Example

	Chapter 3: Echo Canceller (EC) API Descriptions
	3.1 Standard Interface Structures
	3.1.1 Parameters Structure
	3.1.2 Status Structure

	3.2 Standard Interface Functions
	3.2.1 Instance Creation
	EC_create

	3.2.2 Instance Deletion
	EC_delete

	3.2.3 Algorithm Initialization
	EC_init

	3.2.4 Algorithm Deletion
	EC_exit

	3.3 Vendor-Specific Interface Functions
	3.3.1 Status Reporting
	EC_getStatus

	3.3.2 Process Samples
	EC_process

	3.3.3 State Changing
	EC_changeState

	Appendix A: Test Environment
	A.1 Description of Directory Tree
	A.1.1 Test Vectors Format
	A.1.2 Test Project

	Index

