Voice Activity Detector (VAD) Algorithm
User’s Guide

SPIRIT CORP

DSP Software Source "
wWww.spiritDSP.com/CST

Literature Number: SPRU635
March 2003

Q’ TeEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (T1) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI's terms
and conditions of sale supplied at the time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of sale in accor-
dance with TI's standard warranty. Testing and other quality control techniques are used to the extent Tl deems
necessary to support this warranty. Except where mandated by government requirements, testing of all parame-
ters of each product is not necessarily performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using Tl components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any Tl patent right,
copyright, mask work right, or other Tl intellectual property right relating to any combination, machine, or process
in which Tl products or services are used. Information published by Tl regarding third-party products or services
does not constitute a license from Tl to use such products or services or a warranty or endorsement thereof. Use
of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction is without alter-
ation and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this
information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such
altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by Tl for that
product or service voids all express and any implied warranties for the associated Tl product or service and is an
unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Mailing Address:
Texas Instruments

Post Office Box 655303
Dallas, Texas 75265

Copyright 00 2003, Texas Instruments Incorporated

About This Manual

Preface

Read This First

The following abbreviations are used in this document:

AGC Automatic Gain Control

CNG Comfort Noise Generator

VAD Voice Activity Detector

XDAIS TMS320 DSP Algorithm Standard

Related Documentation From Texas Instruments

Using the TMS320 DSP Algorithm Standard in a Static DSP System
(SPRA577)

TMS320 DSP Algorithm Standard Rules and Guidelines (SPRU352)
TMS320 DSP Algorithm Standard API Reference (SPRU360)

Technical Overview of eXpressDSP-Compliant Algorithms for DSP Software
Producers (SPRA579)

The TMS320 DSP Algorithm Standard (SPRA581)

Achieving Zero Overhead with the TMS320 DSP Algorithm Standard IALG In-
terface (SPRA716)

Related Documentation

Trademarks

Software Copyright

Automatic Gain Control for Voice Applications, Spirit Corp., 2002
Comfort Noise Generator for VVoice Applications, Spirit Corp., 2002

TMS320™ is a trademark of Texas Instruments.
SPIRIT CORP™ is a tradmark of Spirit Corp.

All other trademarks are the property of their respective owners.

CST Software Copyright [0 2003, SPIRIT Technologies, Inc.

If You Need Assistance

If You Need Assistance. ..

O World-Wide Web Sites
TI Online http://www.ti.com
Semiconductor Product Information Center (PIC) http://www.ti.com/sc/docs/products/index.htm
DSP Solutions http://www.ti.com/dsp
320 Hotline On-line™ http://www.ti.com/sc/docs/dsps/support.htm
Microcontroller Home Page http://www.ti.com/sc/micro
Networking Home Page http://www.ti.com/sc/docs/network/nbuhomex.htm
Military Memory Products Home Page http://www.ti.com/sc/docs/military/product/memory/mem_1.htm
1 North America, South America, Central America
Product Information Center (PIC) (972) 644-5580
Tl Literature Response Center U.S.A. (800) 477-8924
Software Registration/Upgrades (972) 293-5050 Fax: (972) 293-5967
U.S.A. Factory Repair/Hardware Upgrades (281) 274-2285
U.S. Technical Training Organization (972) 644-5580
Microcontroller Hotline (281) 274-2370 Fax: (281) 274-4203 Email: micro@ti.com
Microcontroller Modem BBS (281) 274-3700 8-N-1
DSP Hotline Email: dsph@ti.com
DSP Internet BBS via anonymous ftp to ftp://ftp.ti.com/pub/tms320bbs
Networking Hotline Fax: (281) 274-4027
Email: TLANHOT@micro.ti.com
(O Europe, Middle East, Africa
European Product Information Center (EPIC) Hotlines:
Multi-Language Support +33130701169 Fax: +33130701032
Email: epic@ti.com
Deutsch +49 8161 80 33 11 or +33 1 30 70 11 68
English +33 13070 11 65
Francais +33130701164
Italiano +33 130701167
EPIC Modem BBS +33130701199
European Factory Repair +33 493222540
Europe Customer Training Helpline Fax: +49 81 61 80 40 10
O Asia-Pacific
Literature Response Center +852 2 956 7288 Fax: +852 2 956 2200
Hong Kong DSP Hotline +852 2 956 7268 Fax: +852 2 956 1002
Korea DSP Hotline +82 2 551 2804 Fax: +82 2 551 2828
Korea DSP Modem BBS +82 2 551 2914
Singapore DSP Hotline Fax: +65 390 7179
Taiwan DSP Hotline +886 2 377 1450 Fax: +886 2 377 2718
Taiwan DSP Modem BBS +886 2 376 2592
Taiwan DSP Internet BBS via anonymous ftp to ftp://dsp.ee.tit.edu.tw/pub/TI/
O Japan
Product Information Center +0120-81-0026 (in Japan) Fax: +0120-81-0036 (in Japan)
+03-3457-0972 or (INTL) 813-3457-0972 Fax: +03-3457-1259 or (INTL) 813-3457-1259
DSP Hotline +03-3769-8735 or (INTL) 813-3769-8735 Fax: +03-3457-7071 or (INTL) 813-3457-7071

DSP BBS via Nifty-Serve

Type “Go TIASP”

If You Need Assistance

(0 Documentation

When making suggestions or reporting errors in documentation, please include the following information that is on the title
page: the full title of the book, the publication date, and the literature number.
Mail: Texas Instruments Incorporated Email: dsph@ti.com Email: micro@ti.com
Technical Documentation Services, MS 702
P.O. Box 1443
Houston, Texas 77251-1443

Note: When calling a Literature Response Center to order documentation, please specify the literature number of the
book.

For product price & availability questions, please contact your local Product
Information Center, or see www.ti.com/sc/support http://www.ti.com/sc/sup-
port for details.

For additional CST technical support, see the TI CST Home Page
(www.ti.com/telephonyclientside) or the Tl Semiconductor KnowledgeBase
Home Page (www.ti.com/sc/knowledgebase).

If you have any problems with the Client Side Telephony software, please, read
first the list of Frequently Asked Questions at http://www.spiritDSP.com/CST.

You can also visit this web site to obtain the latest updates of CST software &
documentation.

Read This First v

1

Contents

Introduction to Voice Activity Detector (VAD) Algorithms
This chapter is a brief explanation of the Voice Activity Detector (VAD) and its use with the
TMS320C5400 platform.
L1 INrOdUCION . .ot e e e e
1.2 XDAIS BASICS . .ttt ittt ittt e e e
1.2.1 Application/Frameworkc.co i
122 INerface . ..o
1.2.3 Application Development e
1.3 Related Productsot
Voice Activity Detector (VAD) Integration it

This chapter provides descriptions, diagrams, and examples explaining the integration of the
Voice Activity Detector (VAD) with frameworks.

2.0 OVBIVIBW ittt
2.2 Integration FIOW
2.3 Exampleofa Call SEQUENCEot
Voice Activity Detector (VAD) API DescCriptionso

This chapter provides the user with a clear understanding of Voice Activity Detector (VAD) algo-
rithms and their implementation with the TMS320 DSP Algorithm Standard interface (XDAIS).

2-2

2-4

2-5

3.1 Standard Interface StruCtUrES it e e e e 3-2
3.1.1 Voice ACtiVity SEatUS oo e 3-2
3.1.2 Instance Creation Parametersc it 3-2
3.1.3 Status StrUCUIe e e 3-5
3.2 Standard Interface FUNCLIONS i e e e e 3-7
3.2.1 Algorithm Initialization 3-7
3.2.2 Algorithm Deletion e 3-7
3.2.3 Instance Creationottt e 3-8
3.2.4 Instance Deletion e 3-8
3.3 Vendor-Specific Interface 3-9
3.3.1 Re-initiadlization 3-9
3.3.2 Voice Dctivity Detection 3-10
3.3.3 GetLPCTIor CNG ... i e e e e e 3-10
TeSt ENVITONM BNt . o e e e A-1
A.1 Description Of DIr€CtOry TrEEottt e e e e e A-2

vii

Contents

viii

A1l TestVectors Format e e

A.1.2 Test Project

A-2

1-1 XDAIS System Layers ..ot e e e e e 1-3
1-2 XDAIS Layers Interaction Diagramt 1-4
1-3 Module Instance Lifetime 1-6
2-1 Packet Voice System with Voice Activity Detection (VAD) and Comfort Noise

Generation (CNG) ... ii i e e e 2-2
2-2 Using VAD to Control AGC Adaptation . ..ot 2-2
2-3 Typical VAD Integration FIOW e 2-4
3-1 VAD Result Smoothing 3-4
Tables
3-1 Standard Interface StructuresS SUMMArYttt 3-2
3-2 VOICE ACHIVItY STalES . ..ot 3-2
3-3 Interface Creation Parameterst 3-3
3-4 Flags DesCriptiont 3-5
3-5 VAD Real-Time Status Parameters e 3-5
3-6 Echo Canceller Standard Interface Functions it 3-7
3-7 Detector-Specific Interface Functions i 3-9

A-1 Test Files for VAD [A-2 |
Notes, Cautions, and Warnings

Sampling Rate Of SPEECH oottt e e [2-2]
Test EnvIronment LOCAtIONttt e e e e e A-1
TESt DURALION . .ottt e e e e e e e e A-3
Contents ix

Chapter 1

Introduction to
Voice Activity Detector (VAD) Algorithms

This chapter briefly describes the Voice Activity Detector algorithms and re-
lated products used with the TMS320C5400 platform.

For the benefit of users who are not familiar with the TMS320 DSP Algorithm
Standard (XDAIS), brief descriptions of typical XDAIS terms are provided.

Topic

1.1 Introduction

1.2 XDAIS BASICS .. oottt e e e
1.3 Related Products

1-1

Introduction

11

Introduction

This document describes the implementation of the Voice Activity Detector
(VAD) developed by SPIRIT Corp. for TMS320C5400 platform and intended
for integration into various embedded devices such as:

(] vocoders

answering machines

d

(1 speech recorders
[VolIP systems

d

PBX equipment

SPIRIT VAD detects the presence of speech in the signal. It has special adap-
tive algorithm to automatically adjust to the level of the noise in the signal, in
order to provide robust operation even in the noisy speech. It has many user
configurable parameters, allowing the algorithm to optimally tune itself for a
specific application. VAD also outputs several coefficients (up to 10) that char-
acterize spectral envelope of the noise (when no speech is detected), so that
the regenerated noise would be similar to the original noise.

The SPIRIT VAD software is a fully TMS320 DSP Algorithm Standard (XDAIS)
compatible, reentrant code. The VAD interface complies with the TMS320
DSP Algorithm Standard and can be used in multitasking environments.

The TMS320 DSP Algorithm Standard (XDAIS) provides the user with object
interface simulating object-oriented principles and asserts a set of program-
ming rules intended to facilitate integration of objects into a framework.

The following documents provide further information regarding the TMS320
DSP Algorithm Standard (XDAIS):

(1 Using the TMS320 DSP Algorithm Standard in a Static DSP System
(SPRA577)

[TMS320 DSP Algorithm Standard Rules and Guidelines (SPRU352)

L

TMS320 DSP Algorithm Standard API Reference (SPRU360)

[Technical Overview of eXpressDSP-Compliant Algorithms for DSP Soft-
ware Producers (SPRA579)

[The TMS320 DSP Algorithm Standard (SPRA581)

(1 Achieving Zero Overhead with the TMS320 DSP Algorithm Standard
IALG Interface (SPRA716)

XDAIS Basics

1.2 XDAIS Basics

This section instructs the user on how to develop applications/frameworks us-
ing the algorithms developed by vendors. It explains how to call modules
through a fully eXpress DSP-compliant interface.

Figure 1-1 illustrates the three main layers required in an XDAIS system:
(1 Application/Framework layer
1 Interface layer

[Vendor implementation. Refer to appendix A for a detailed illustration of
the interface layer.

Figure 1-1. XDAIS System Layers

Application/framework

Interface

A
A4

Vendor’s implementation

1.2.1 Application/Framework

Users should develop an application in accordance with their own design
specifications. However, instance creation, deletion and memory manage-
ment requires using a framework. It is recommended that the customer use
the XDAIS framework provided by SPIRIT Corp. in ROM.

The framework in its most basic form is defined as a combination of a memory
management service, input/output device drivers, and a scheduler. For a
framework to support/handle XDAIS algorithms, it must provide the framework
functions that XDAIS algorithm interfaces expect to be present. XDAIS frame-
work functions, also known as the ALG Interface, are prefixed with “ALG_". Be-
low is a list of framework functions that are required:

[ALG cr eat e - for memory allocation/algorithm instance creation
[0 ALG del et e - for memory de-allocation/algorithm instance deletion

(1 ALG acti vat e - for algorithm instance activation

Introduction to 1-3

XDAIS Basics

1.2.2

Interface

ALG deacti vat e - for algorithm instance de-activation
ALG i ni t - for algorithm instance initialization

ALG exi t - for algorithm instance exit operations

U U o U

ALG control - for algorithm instance control operations

Figure 1-2 is a block diagram of the different XDAIS layers and how they inter-
act with each other.

Figure 1-2. XDAIS Layers Interaction Diagram

Application/framework
l Calls

v

Concrete interface
Implements

Y

Abstract interface

7

Vendor’s implementation

1.2.2.1 Concrete Interface

A concrete interface is an interface between the algorithm module and the ap-
plication/framework. This interface provides a generic (hon-vendor specific)
interface to the application. For example, the framework can call the function
MODULE_appl y() instead of MODULE VENDOR appl y() . The following
files make up this interface:

[Header file MODULE. h - Contains any required definitions/global vari-
ables for the interface.

[Source File MODULE. ¢ - Contains the source code for the interface func-
tions.

XDAIS Basics

1.2.2.2 Abstract Interface

This interface, also known as the IALG Interface, defines the algorithm imple-
mentation. This interface is defined by the algorithm vendor but must comply
with the XDAIS rules and guidelines. The following files make up this interface:

[Header file i MODULE. h - Contains table of implemented functions, also
known as the IALG function table, and definition of the parameter struc-
tures and module objects.

[J Source Filei MODULE. ¢ - Contains the default parameter structure for the
algorithm.

1.2.2.3 Vendor Implementation

Vendor implementation refers to the set of functions implemented by the algo-
rithm vendor to match the interface. These include the core processing func-
tions required by the algorithm and some control-type functions required. A
table is built with pointers to all of these functions, and this table is known as
the function table. The function table allows the framework to invoke any of the
algorithm functions through a single handle. The algorithm instance object def-
inition is also done here. This instance object is a structure containing the func-
tion table (table of implemented functions) and pointers to instance buffers re-
quired by the algorithm.

1.2.3 Application Development

Figure 1-3 illustrates the steps used to develop an application. This flowchart
illustrates the creation, use, and deletion of an algorithm. The handle to the
instance object (and function table) is obtained through creation of an instance
of the algorithm. It is a pointer to the instance object. Per XDAIS guidelines,
software API allows direct access to the instance data buffers, but algorithms
provided by SPIRIT prohibit access.

Detailed flow charts for each particular algorithm is provided by the vendor.

Introduction to 1-5

XDAIS Basics

Figure 1-3. Module Instance Lifetime

Initialize parameters/
handle

A4

MODULE_init()

v

MODULE_create()

A4

MODULE_apply()

A

MODULE_delete()

A4

MODULE_exit()

The steps below describe the steps illustrated in Figure 1-3.

1-6

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

XDAIS Basics

Perform all non-XDAIS initializations and definitions. This may in-
clude creation of input and output data buffers by the framework, as
well as device driver initialization.

Define and initialize required parameters, status structures, and
handle declarations.

Invoke the MODULE i ni t () function to initialize the algorithm mod-
ule. This function returns nothing. For most algorithms, this function
does nothing.

Invoke the MODULE_cr eat e() function, with the vendor’s imple-
mentation ID for the algorithm, to create an instance of the algorithm.
The MODULE_cr eat e() function returns a handle to the created
instance. You may create as many instances as the framework can
support.

Invoke the MODULE _appl y() function to process some data when
the framework signals that processing is required. Using this func-
tion is not obligatory and vendor can supply the user with his own set
of functions to obtain necessary processing.

If required, the MODULE_control () function may be invoked to
read or modify the algorithm status information. This function also is
optional. Vendor can provide other methods for status reporting and
control.

When all processing is done, the MODULE_del et e() function is in-
voked to delete the instance from the framework. All instance
memory is freed up for the framework here.

Invoke the MODULE_exi t () function to remove the module from the
framework. For most algorithms, this function does nothing.

The integration flow of specific algorithms can be quite different from the se-
guence described above due to several reasons:

[Specific algorithms can work with data frames of various lengths and for-
mats. Applications can require more robust and effective methods for error
handling and reporting.

1 Instead of using t he MODULE_appl y() function, SPIRIT Corp. algo-
rithms use extended interface for data processing, thereby encapsulating
data buffering within XDAIS object. This provides the user with a more reli-
able method of data exchange.

Introduction to 1-7

Related Products

1.3 Related Products

VAD objects can be efficiently used in conjunction with following products of
Spirit Corp.:

[Automatic Gain Control
(1 Comfort Noise Generator
[Vocoders (G.721.3, G.729, G.726, G.711, proprietary low bit rate)

It is highly recommended to use this object in conjunction with SPIRIT Corp.’s
Comfort Noise Generator (CNG), to regenerate noise with the same spectral
shape, and Automatic Gain Control (AGC), to avoid gain adaptation during si-
lence periods.

Since data format is very common, it can be easily interfaced with other third-
party products.

Chapter 2

Voice Activity Detector (VAD) Integration

This chapter provides descriptions, diagrams, and example explaining the in-
tegration of the Voice Activity Detector (VAD) with frameworks.

Topic

2.1 OVEIVIEW .. et e e e e e e e
2.2 Integration Flow

2.3 Example of a Call SEQUENCEo

2-1

Overview

2.1 Overview

Figure 2-1 illustrates a typical VAD integration diagram.

Figure 2-1. Packet Voice System with Voice Activity Detection (VAD) and Comfort Noise
Generation (CNG)

| A

Input »| Speech > i
speech ”| encoder »| Packetizer Voice
activity
status
> VAD
Speech |4
decoder
Synthesized Delay

speech ¢ ~) equalization

I— CNG

7 N

In brief, voice activity detection is performed over frames of input speech (typi-
cally per 30 msec). The goal of VAD is to determine all packets, which, if sup-
pressed, could be reconstructed accurately by the comfort noise generator at
the far end.

Note: Sampling Rate of Speech

It is assumed that the sampling rate of the speech is 8 kHz.

Figure 2-2. Using VAD to Control AGC Adaptation

> VAD
Adaptation
\d
> AGC >
Voice Amplified voice

VAD, with other parameters, can be used to control AGC adaptation. Disable
the VAD on noise (silence) frames and enable it on voice (speech) frames.

Overview

The voice activity detector uses the following parameters in its decision pro-
cess:

a
a
4
a

4

Peak energy
Minimum energy
Prediction gain

Average normalized squared pitch correlation. The maximum pitch cor-
relation is averaged over a number of frames.

Spectral non-stationarity

As a result, the detector indicates whether or not active speech is presentat
that time.

Voice Activity Detector (VAD) Integration 2-3

Integration Flow

2.2

Integration Flow

In order to integrate the VAD detector into a framework the user must follow

these steps (Figure 2-3):

Step 1:

Step 2:

Step 3:

Step 4:

Create the VAD _Par ans str
ues.

Call VAD cr eat e() to create the instance of a detector. There are
no restrictions on the maximum number of detector instances

created.

Pass a stream with input samples (8 kHz, 16 bits) to VAD det ect ()

routine.

ucture and initialize it with required val-

Delete detector by using VAD _del et e() .

Figure 2-3. Typical VAD Integration Flow

2-4

Select detector
parameters

A,

y

VAD_create()

»
>
.

Input buffer empty?

Get input data buffer|

Call VAD_process()
and verify the voice
activity status

v

VAD_delete()

Example of a Call Sequence

2.3 Example of a Call Sequence

The example below demonstrates a typical call sequence for the VAD detector.
Full sample code is placed in file Src\Fl exExanpl es\ St andal one
XDAS\ VAD\ mai n. c.
#i ncl ude <stdi o. h>
#i ncl ude ”"vad. h”
#i ncl ude ”ivad. h”
#i ncl ude "vad_spcorp. h”
/* file I/O functions */
int freadl6(const XDAS Int16 *pData, size_t size, FILE *pFile);
int fwitel6(const XDAS Intl1l6 *pData, size_t size, FILE *pFile);
voi d main()
{
FILE *inFile, *outFile;
XDAS Int16 pFrame[| NPUT_FRAME]; /* buffer for input sanples */
XDAS | nt16 i;
VAD_Handl e VADI nst ;
| VAD_Result vad,;
| VAD_Noi seLPCPar ans LPpar am
printf("SPIRIT VAD v 2. 0\nprocessing in progress...\n");
/* open input and out files */
inFile = fopen(”VAD_deno. pcnf, "rb");
outFile = fopen(”VAD deno_out. pcn, "wh");
if(linFile || 'outFile)
{
printf(”"file open error!\n”);
return;
}
/* copy WAV header */
fread(pFrame, 1, 44, inFile);
fwite(pFrane, 1, 44, outFile);
/* create VAD instance with default paraneters */
VADI nst = VAD_cr eat e(&/AD_SPCORP_| VAD, NULL);
/* circle VAD processing */
whi | e(freadl6(pFranme, | NPUT_FRAME, inFile) == | NPUT_FRAME)

Voice Activity Detector (VAD) Integration 2-5

Example of a Call Sequence

/* process recieved sanples */

vad = VAD process(VADI nst, pFrame, | NPUT_FRAME);

/* check result */

i f(vad == | VAD_NO SE)

{
/* estimate LPC coefficients for noise generator */
LPparam = VAD_get Noi seLPC(VADI nst) ;

/* run noi se generator */

}

el se

{

/* do sonething if it’s a not noi se segnent */

}

/* do sonething in any case */

/* save processed sanples */
fwritel6(pFrame, | NPUT_FRAME, outFile);
}* while */
/* Deleting VAD i nstance */
VAD_del et e(VADI nst) ;
printf(”\n...Finish\n");
/* closing all opening files */
fclose(inFile);

fclose(outFile);

2-6

Chapter 3

Voice Activity Detector (VAD) API Descriptions

This chapter provides the user with a clear understanding of Voice Activity De-

tector (VAD) algorithms and their implementation with the TMS320 DSP Algo-
rithm Standard interface (XDAIS).

Topic Page
3.1 Standard Interface StruCtUrESooeueeee et
3.2 Standard Interface FUNCLIONSouuiuiniieeiaeeaeanann
3.3 Vendor-Specific Interface FUNCtiONSoooiiiiin....

3-1

Standard Interface Structures

3.1 Standard Interface Structures
The section describes parameter structures for the Voice Activity Detector.

Table 3-1 lists the type and location of the Standard Interface structures.

Table 3-1. Standard Interface Structures Summary

Parameters Located in Table...
Voice Activity States Table 3-2
Instance Creation Table 3-3
Flags description Table 3-4
VAD Real-time Status Table 3-5

3.1.1 \Voice Activity Status

Enumerated constants VAD_Resul t provide aliases for voice activity states.

Table 3-2. Voice Activity States

Enum Voice Activity

I VAD_NO SE Noise frame

I VAD_NO SE_HANGOVER Marks a few number of first voice frames
I VAD VO CE Speech frame

| VAD_VO CE_HANGOVER Arises after speech segment

3.1.2 Instance Creation Parameters

Description This structure defines the creation parameters for the algorithm. A default pa-
rameter structure is defined in “i VAD. c”.

Structure Definition Use structure | VAD_Par ans to provide each instance with parameters.

3-2

Table 3-3. Interface Creation Parameters

typedef struct

| VAD_Par ans {

Standard Interface Structures

Parameter Type

Parameter Name

Limits and Typical
Value

Description

XDAS I nt 16

XDAS_| nt 16

XDAS I nt 16

XDAS_| nt 16

XDAS I nt 16

XDAS_| nt 16

XDAS I nt 16

hi ghAmp

| owAmp

quality

spFl at

updat eCoef

updat eRat e

speechSnoot h

0...32767

0...32767

-32768...32767

0...32767

-32768...32767

0...32767

0...32767

Average speech amplitude; signal with
higher amplitude will be recognized as
speech.

Minimum noise amplitude; signal with low-
er amplitude will be recognized as noise.

Used for VAD energetic thresholds adjust-
ment.

The lower this number is, the higher is
probability that noise will be recognized as
speech, and vice versa. In other words,
these parameters allow to tune VAD for
different speech-to-noise ratios or for dif-
ferent applications.

If, for example, VAD is used together with
vocoder, this parameter should be low
(around —19000); in order to make sure
that even noise-like speech segments will
be detected as speech.

On the other hand, if VAD is used to con-
trol AGC, this parameter can be chosen
higher (above -10000), in order to make
sure that only those segments that really
represent speech are detected.

Sets degree of closeness of background
noise to broadband white noise; higher
value corresponds to non-broadband
noise.

Sets the degree of noise (stationary power
spectrum envelope and of energy); de-
creasing the filed value corresponds to
more stationary noise.

Minimum energy update rate; it is used for
checking noise adaptation correctness.

Number of frames after speech frames will
be marked as IVAD_VOICE_HANGOVER
even if they contains noise (see).

Voice Activity Detector (VAD) API Descriptions 3-3

Standard Interface Structures

Table 3-3. Interface Creation Parameters (Continued)

Limits and Typical
Parameter Type Parameter Name Value Description

XDAS I nt 16 noi seSnoot h 0...32767 Count of voice frames in a row before VAD
result will be switched to IVAD_VOICE; be-
fore this VAD result will be
IVAD_NOISE_HANGOVER (see Figure 3-1).

XDAS I nt 16 i ni tFrames 0...6 Power of two of frames, which must be
used for noise estimation and adaptation;
increasing of this value corresponds to de-
creasing adaptation speed.

XDAS Int 16 fl ags 0x0000...0xfff0 Sets modes of VAD by appropriate flags;
the user must write “1” in the appropriate
bit for enabling the needed mode; the
numbering performed from low bit to high
bit modes are listed in the table below.

XDAS I nt 16 cngOr der 0...10 Number of LPC (Linear Prediction Coeffi-
cients); sets accuracy of spectrum enve-
lope to be reproduced by CNG.

XDAS I nt 16 cngEner gy Coef 0...32767 Eenergy smoothing for CNG.

} 1 VAD_Par ans

Figure 3-1. VAD Result Smoothing

VAD doesn’t VAD detects voice here VAD doesn'’t
detect voice here detect voice here

IVAD_NOISE IVAD_NOISE_HANGOVER IVAD_VOICE
1 1 1 1

noiseSmooth frames voiceSmooth frames

IVAD_VOICE_HANGOVER IVAD_NOISE
1 1

3-4

Standard Interface Structures

Table 3-4. Flags Description

Bit Number Description
15 Enables/disables mode of continuous adaptation to noise level; it could be used in case
of sudden noise changing; this flag is used only in case of enabled adaptation (bit 4
equal to “1”, see below).
14 Usage of highAmp field in decision making process
13 Usage of lowAmp field in decision making process
12 Usage of spectrum envelope stationarity in noise adaptation process
11 Usage of energy stationarity in noise adaptation process
10 Usage of closeness of background noise to broadband white noise in noise adaptation
process
9 Usage of closeness of background noise to broadband white noise in decision making
process
8-7 Usage of spectrum envelope stationarity in decision making process
6-5 Usage of energy stationarity in decision making process
4 Enables/disables adaptation mode to noise level;
3-0 Unused
Type | VAD_Par ans is defined in “i VAD. h".

3.1.3 Status Structure

Structure Definition

Table 3-5. VAD Real-Time Status Parameters

Description

Not used.

typedef struct |VAD Status {

Status Type

Status Name Description

} 1 VAD_St at us;

Type

| VAD_St at us defined in “i VAD. h”.

Voice Activity Detector (VAD) API Descriptions 3-5

VAD_exit

3.2 Standard Interface Functions

Table 3-6 summarizes the standard Interface functions of the Voice Activity
Detector API. They are required when using VAD.

VAD appl y() and VAD_control () are optional, but neither are supported
by Spirit Corp.

Table 3-6. Echo Canceller Standard Interface Functions

Functions Description See Page...

VAD _i ni t Algorithm initialization 3-7

VAD_exi t Algorithm deletion

VAD cr eat e Instance creation

VAD_del et e Instance deletion 3-8
3.2.1 Algorithm Initialization

VAD init Calls the framework initialization function to initialize an algorithm

Description

Function Prototype
Arguments

Return Value

This function calls the framework initialization function, ALG i nit(), to
initialize the algorithm. For VAD detector, this function does nothing. It can be
skipped and removed from the target code according to Achieving Zero
Overhead With the TMS320 DSP Algorithm Standard IALG Interface
(SPRA716).

voi d VAD_init()

none

none

3.2.2 Algorithm Deletion

VAD_exit Calls the framework exit function to remove an algorithm
Description This function calls the framework exit function, ALG exi t (), to remove the

Function Prototype
Arguments

Return Value

algorithm. For VAD detector, this function does nothing. It can be skipped and
removed from the target code according to Achieving Zero Overhead With the
TMS320 DSP Algorithm Standard IALG Interface (SPRA716).

voi d VAD exit()
none

none

3-7

VAD_create

3.2.3 Instance Creation

VAD create Function called in order to creat a new VAD detector object
Description In order to create a new VAD detector object, VAD cr eat e function should

Function Prototype

Arguments

Return Value

be called. This function calls the framework create function, ALG create(),
to create the instance object and perform memory allocation tasks. Global
structure VAD_SPCORP_| VAD contains VAD virtual table supplied by SPIRIT
Corp.

VAD Handl e VAD create
(const | VAD Fxns *fxns,
const VAD Parans *prns);

| VAD_Fxns * Pointer to vendor’s functions (Implementation ID).
Use reference to VAD_SPCORP_I VAD virtual table
supplied by SPIRIT Corp.

VAD Par ans * Pointer to Parameter Structure. Use NULL pointer to load
default parameters.

VAD Handl e Defined in file “VAD. h”. This is a pointer to the created

instance.
3.2.4 Instance Deletion
VAD delete Calls the framework delete function to delete an instance object

Description

Function Prototype
Arguments

Return Value

This function calls the framework delete function, ALG del et e(), to delete
the instance object and perform memory de-allocation tasks.

voi d VAD del ete (VAD Handl e handl e)
VAD Handl e Instance’s handle obtained from VAD cr eat e()

none

VAD _relnit

3.3 Vendor-Specific Interface

This section describes the vendor-specific functions in the SPIRIT’s algorithm
implementation and interface (extended IALG methods). Table 3-7 summa-
rizes SPIRIT’s API functions of VAD detector.

The whole interface is placed in header files i VAD. h, VAD. h,
VAD_spcor p. h.

Table 3-7. Detector-Specific Interface Functions

Functions Description See Page...
VAD relnit Sets VAD parameters 3-9
VAD process Returns valid status of voice activity

VAD get Noi seLPC Returns structure with LPC coefficients for
CNG

3.3.1 Re-initialization

VAD _relnit Returns valid call progress tones or special notification messages
Description Returns valid call progress tones or special notification message.

Function Prototype | VAD Synbol VAD relnit
(VAD_Handl e handl e,
| VAD Paramns * paramns)

Arguments handl e Pointer to VAD instance
*par ans Pointer to parameter structure

Return Value none

Restrictions none

VAD_process

3.3.2 Voice Dctivity Detection

VAD_ process Returns the valid voice activity status

Description Returns valid voice activity status.

Function Prototype XDAS_Result VAD process
(VAD_Handl e handl e,
XDAS_I nt 16 *pBuf,
XDAS | nt 16 buf Si ze)

Arguments handl e Pointer to VAD instance
* pBuf Array of input samples at sample rate 8 kHz
buf Si ze Number of samples to be processed

Return Value Voice activity status according to Table 3-2.

Restrictions Maximum length of input and output buffer is 65535.

3.3.3 Get LPC for CNG

VD RCNCIE:IM{® Performs an estimation of LPC coefficients for the noise generator

Description Performs an estimation of LPC coefficients for the noise generator.

Function Prototype | VAD Noi seLPCPar ans VAD get Noi seLPC
(VAD_Handl e handl e)

Arguments handl e Pointer to VAD instance

Used Definition
typedef struct |VAD Noi seLPCParans {

Status Type Status Name Description

XDAS I nt 16 pLPC[| VAD_LPCORDER] buffer for LPC coefficients
XDAS I nt 16 order number of LPC coefficients
XDAS I nt 16 r esAnmp residual amplitude

} 1 VAD_Noi seLPCPar ans;

Return Value Actual detector status (see Table 3-5).

Restrictions none

3-10

Test Environment

C54CST

Note: Test Environment Location
This chapter describes test environment for the VAD object.

For TMS320C54CST device, test environment for standalone VAD object is
located in the Software Development Kit (SDK) in Src\ Fl exExam
pl es\ St andal oneXDAS\ VAD.

Topic Page

A.1 Description of Directory Tree . ..ot A-2

A-1

Description of Directory Tree

A.1 Description of Directory Tree

The SDK package includes the test project “test.pjt” and corresponding refer-
ence test vectors. The user is free to modify this code as needed, without sub-
missions to SPIRIT Corp.

Table A-1. Test Files for VAD

File Description
main.c Test file
FileC5x.c File input/output functions

.\ROM\CSTRom.s54
Test.cmd

Vectors\output.pcm

ROM entry address
Linker command file

Reference output test vectors

A.1.1 Test Vectors Format

All test vectors are raw PCM files with following parameters:
(1 Bits per sample - 16, Mono
[Word format - Intel PCM (LSB goes first)

(4 Encoding - Uniform

A.1.2 Test Project

Description of Directory Tree

To build and run a project, the following steps must be performed:

Step 1:
Step 2:
Step 3:
Step 4:

Step 5:

Open the project: Pr oj ect \ Open

Build all necessary files: Proj ect\ Rebui | d Al |
Initialize the DSP: Debug\ Reset CPU

Load the output-file: Fi | e\ Load pr ogram

Run the executable: Debug\ Run

Once the program finishes testing, the file Output.pcm will be written in the cur-
rent directory. Compare this file with the reference vector contained in the
directory Vectors.

Note:

Test Duration

Since the standard file I/O for EVM is very slow, testing may take several min-
utes. Test duration does not indicate the real algorithm’s throughput.

Test Environment A-3

ALG, interface |1-3
ALG_activate |1-3
ALG_control |[1-4
ALG_create |[1-3
ALG_deactivate |1-4
ALG_delete |[1-3
ALG_exit

ALG_init

Algorithm Deletion
Algorithm Initialization

Application Development
steps to creating an application |1-7

Application/Framework

Directory Tree

Environment, for testing

Framework
Functions

standard

vendor-specific |3-9

Index

Get LPC for CNG

Header file
for abstract interfaces |1-5
for concrete interfaces

IALG
Instance Creation |[3-8
Instance Deletion [3-8
Integration

overview
steps to integrating a CNG generator into a
framework |2-4

Interface
abstract
concrete
vendor implementation |1-5

Module Instance Lifetime. See Application
Development

Packet Voice System, illustration of

Re-initialization

Index-1

Index

Related Products |1-8

Source file
for abstract interfaces

for concrete interfaces

Structures
flag descriptions |3-5

Instance creation |[3-2

standard
status |3-5

Test
files
format
project

Test Environment

VAD_apply()

Index-2

VAD_ control()
VAD_create |3-8
VAD_delete |3-8
VAD_exit
VAD_getNoiseLPC
VAD_init
VAD_process
VAD_relnit

Voice Activity Detector

call sequence example |2-5
using to control AGC adaptation, illustration

of [2:2]

Voice Dctivity Detection

XDAIS
Application DevelopmentE
Application/Framework
basics

Interface
related documentaion
System Layers, illustration of

	IMPORTANT NOTICE
	Read This First
	About This Manual
	Related Documentation From Texas Instruments
	Related Documentation
	Trademarks
	Software Copyright
	If You Need Assistance..

	Contents
	Figures
	Tables
	Notes, Cautions, and Warnings
	Chapter 1: Introduction to Voice Activity Detector (VAD) Algorithms
	1.1 Introduction
	1.2 XDAIS Basics
	1.2.1 Application/Framework
	1.2.2 Interface
	1.2.2.1 Concrete Interface
	1.2.2.2 Abstract Interface
	1.2.2.3 Vendor Implementation

	1.2.3 Application Development

	1.3 Related Products

	Chapter 2: Voice Activity Detector (VAD) Integration
	2.1 Overview
	2.2 Integration Flow
	2.3 Example of a Call Sequence

	Chapter 3: Voice Activity Detector (VAD) API Descriptions
	3.1 Standard Interface Structures
	3.1.1 Voice Activity Status
	3.1.2 Instance Creation Parameters
	3.1.3 Status Structure

	3.2 Standard Interface Functions
	3.2.1 Algorithm Initialization
	VAD_init

	3.2.2 Algorithm Deletion
	VAD_exit

	3.2.3 Instance Creation
	VAD_create

	3.2.4 Instance Deletion
	VAD_delete

	3.3 Vendor-Specific Interface
	3.3.1 Re-initialization
	VAD_reInit

	3.3.2 Voice Dctivity Detection
	VAD_process

	3.3.3 Get LPC for CNG
	VAD_getNoiseLPC

	Appendix A: Test Environment
	A.1 Description of Directory Tree
	A.1.1 Test Vectors Format
	A.1.2 Test Project

	Index

