TMS320C62x/64x FastRTS Library
Programmer’s Reference

Literature Number: SPRU653
February 2003

b TEXAS

INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (T1) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products and services at
any time and to discontinue any product or service without notice. Customers should obtain the
latest relevant information before placing orders and should verify that such information is current
and complete. All products are sold subject to TI's terms and conditions of sale supplied at the
time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of
sale in accordance with TI's standard warranty. Testing and other quality control techniques are
used to the extent TlI deems necessary to support this warranty. Except where mandated by
government requirements, testing of all parameters of each product is not necessarily performed.

Tl assumes no liability for applications assistance or customer product design. Customers are
responsible for their products and applications using Tl components. To minimize the risks
associated with customer products and applications, customers should provide adequate design
and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any
Tl patent right, copyright, mask work right, or other Tl intellectual property right relating to any
combination, machine, or process in which TI products or services are used. Information
published by TI regarding third party products or services does not constitute a license from Tl
to use such products or services or a warranty or endorsement thereof. Use of such information
may require a license from a third party under the patents or other intellectual property of that third
party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction
is without alteration and is accompanied by all associated warranties, conditions, limitations, and
notices. Reproduction of this information with alteration is an unfair and deceptive business
practice. Tl is not responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated
by TI for that product or service voids all express and any implied warranties for the associated
Tl product or service and is an unfair and deceptive business practice. Tl is not responsible or
liable for any such statements.

Mailing Address:
Texas Instruments

Post Office Box 655303
Dallas, Texas 75265

Copyright 0 2003, Texas Instruments Incorporated

About This Manual

Preface

Read This First

Welcome to the TMS320C62x/64x Fast Run-Time-Support Library, or
FastRTS library for short. The FastRTS library is a collection of 28 optimized
floating-point functions for the fixed-point TMS320C62x/64x devices. This
source code library includes C-callable (ANSI-C-language compatible) opti-
mized versions of the floating-point functions included in previous run-time
support libraries.

How to Use This Manual

The

information in this document describes the contents of the

TMS320C62x/64x FastRTS library in several different ways.

U

Chapter 1 provides a brief introduction to the C62x/64x FastRTS library,
shows the organization of the routines contained in the library, and lists the
features and benefits of the library.

Chapter 2 provides information on how to install, use, and rebuild the
C62x/64x FastRTS library.

Chapter 3 provides a quick overview of all FastRTS functions for easy ref-
erence. The information shown for each function includes the name, a
brief description, and a page reference for obtaining more detailed infor-
mation.

Chapter 4 provides a list of the routines within the FastRTS library orga-
nized into functional categories. The functions are listed in alphabetical or-
der and include syntax, file defined in, description, functions called, and
special cases.

Appendix A provides information about warranty issues, software up-
dates, and customer support.

Notational Conventions

Notational Conventions

This document uses the following conventions:

(1 Program listings, program examples, and interactive displays are shown
inaspeci al typeface.

(1 In syntax descriptions, the function appears in a bold typeface, and the
parameters appear in plainface.

(1 The TMS320C62x is also referred to in this reference guide as the C62x.
The TMS320C64x is also referred to in this reference guide as the C64x.

Related Documentation From Texas Instruments

The following books describe the TMS320C6000 devices and related support
tools. To obtain a copy of any of these Tl documents, call the Texas Instru-
ments Literature Response Center at (800) 477-8924. When ordering, please
identify the book by its title and literature number. Many of these documents
can be found on the Internet at http://www.ti.com.

TMS320C62x/C67x Technical Brief (literature number SPRU197) gives an
introduction to the TMS320C62x[0] and TMS320C67x0 digital signal
processors, development tools, and third-party support.

TMS320C6000 CPU and Instruction Set Reference Guide (literature
number SPRU189) describes the TMS320C600000 CPU architecture,
instruction set, pipeline, and interrupts for these digital signal proces-
sors.

TMS320C6201/C6701 Peripherals Reference Guide (literature number
SPRU190) describes common peripherals available on the
TMS320C6201 and TMS320C6701 digital signal processors. This book
includes information on the internal data and program memories, the
external memory interface (EMIF), the host port interface (HPI), multi-
channel buffered serial ports (McBSPs), direct memory access (DMA),
enhanced DMA (EDMA), expansion bus, clocking and phase-locked
loop (PLL), and the power-down modes.

TMS320C6000 Programmer’s Guide (literature number SPRU198)
describes ways to optimize C and assembly code for the
TMS320C600000 DSPs and includes application program examples.

TMS320C6000 Assembly Language Tools User’s Guide (literature number
SPRU186) describes the assembly language tools (assembler, linker,
and other tools used to develop assembly language code), assembler
directives, macros, common object file format, and symbolic debugging
directives for the TMS320C6000C generation of devices.

Trademarks

Trademarks

TMS320C6000 Optimizing Compiler User’s Guide (literature number
SPRU187) describes the TMS320C6000L1 C compiler and the assembly
optimizer. This C compiler accepts ANSI standard C source code and
produces assembly language source code for the TMS320C6000 gen-
eration of devices. The assembly optimizer helps you optimize your
assembly code.

TMS320C6000 Chip Support Library (literature number SPRU401) de-
scribes a set of application programming interfaces (APIs) used to con-
figure and control all on-chip peripherals.

Texas Instruments trademarks include: Tl, Code Composer Studio, TMS320,
TMS320C6000, TMS320C62%x, TMS320C64x, and TMS320C67x.

All other trademarks are the property of their respective owners.

Read This First v

Contents

INTrOAUCTION . .o e e
Provides an introduction to the C62x/64x FastRTS, shows the organization of the routines

contained in the library, and explains the features and benefits of the library.

1.1 Introduction to the C62x/64x FastRTS Librarycoiiiiiin...
1.2 Featuresand Benefits

Installing and Using FastRTS e e

Provides information on how to install and rebuild the FastRTS library.

2.1 FastRTS Library CONtents . ..ot e
2.2 Howto Installthe FastRTS Library,
2.3 Usingthe FastRTS Libraryco i e
2.3.1 FastRTS Library Argumentsand Data Types
2.3.2 CallingaFastRTS Function From C
2.3.3 Calling a FastRTS Function From Assembly
2.4 How to Rebuild the FastRTS Library i,

FastRTS Library Functions Tables i

Provides a list of the functions in the Fast Run-Time-Support (FastRTS) Library,
organized alphabetically in two functional categories.

3.1 Arguments and Conventions Usedciiiiiiiieiniiinann
3.2 FastRTS FUNCHONS e i

FastRTS REfEIrENCE . ..o e e e

Provides a list of the functions in the Fast Run-Time-Support (FastRTS) Library,
organized alphabetically in two functional categories.

4.1 General FastRTS FUNCLIONSot e e e e
4.2 CoNVersioN ROULINES i e e e e e

Performance Considerationsottt i e
Describes performance considerations related to the C67x FastRTS and provides

information about software updates and customer support issues.

A.1l Performance Considerationscoiiiiiiii i
A.2 FastRTS Software Updatest
A.3 FastRTS CuStOmer SUPPOI . ..ot e e et

GOSN ottt

Defines terms and acronyms used in this book.

1-2

1-3

2-2

2-3

2-4

2-4

2-5

2-5

2-6

3-2

3-3

4-1

42
4-11 |

A-1

A-2

A-4

B-1

Vii

Tables

viii

FastRTS Library FUNCLIONSo e
FastRTS Data TYPeS . ..ottt e e
Argument CONVENLIONS ot e e e et e e e
FastRTS Function Names COmpPariSONttt
FastRTS Conversion Functions Names Comparisonsiiiniinennennnnn
Sample Performancet e

Chapter 1

Introduction

This chapter provides a brief introduction to the C62x/64x FastRTS Library,
shows the organization of the routines contained in the FastRTS library, and
lists the features and benefits of the FastRTS library.

Topic Page
1.1 Introduction to the C62x/64x FastRTS Library 1-2
1.2 Featuresand Benefitst 1-3

1-1

Introduction to the C62x/64x FastRTS Library

1.1 Introduction to the C62x/64x FastRTS Library

The C62x/64x FastRTS library is an optimized, floating-point function library
for C programmers using either TMS320C62x or TMS320C64x devices.
These routines are typically used in computationally intensive real-time ap-
plications where optimal execution speed is critical. By replacing the current
floating-point library (RTS) with the FastRTS library, you can achieve execu-
tion speeds considerably faster, without rewriting existing code.

The FastRTS library includes the routines currently provided in existing run-
time-support libraries which provide floating-point functionality for the fixed-
point C62x and C64x devices. These new functions can be called with the cur-
rent run-time-support library names or the new names provided in the
FastRTS library.

As shown in Table 1-1, single- and double-precision routines are available.

Table 1-1. FastRTS Library Functions

Single Precision Double Precision Others
_addf _addd _cvtdf
_divf _divd _cvtfd
_fixfi _fixdi

_fixfli _fixdli

_fixfu _fixdu

_fixful _fixdul

_fltif _fitid

_fitlif _fitlid

_fituf _fitud

_fltulf _fltuld

_mpyf _mpyd

recipf recip

_subf _subd

Features and Benefits

1.2 Features and Benefits
The FastRTS library provides the following features and benefits:
[J Hand-coded, assembly-optimized routines

(1 C-callable routines, which are fully compatible with the TMS320C6000
compiler

[Provided functions are tested against C model and existing run-time-
support functions

Introduction 1-3

Chapter 2

Installing and Using FastRTS

This chapter provides information on the contents of the FastRTS archive, and
how to install, use, and rebuild the C62x/64x FastRTS library.

Topic Page
2.1 FastRTS Library Contentsiiuiiinainanann.n. 2-2
2.2 How to Install the FastRTS Libraryciiiiun... 2-3
2.3 Usingthe FastRTS Libraryco ... 2-4
2.4 How to Rebuild the FastRTS Library 2-6

2-1

FastRTS Library Contents

2.1 FastRTS Library Contents

The C62x64xFastRTS.exe installs the following file structure:

lib

include

doc

Directory containing the following library files:

fastrts62x64x.lib Little-endian C62x/C64x library file
fastrts62x64xe.lib Big-endian C62x/C64x library file
fastrts62x64x.src Source archive file

Directory containing the following include files:

fastrts62x64x.h Alternative entry header file
recip.h Header file for reciprocal functions

Directory containing the following document files:
spru653.pdf PDF document of API (this document)

How to Install the FastRTS Library

2.2 How to Install the FastRTS Library

To install the FastRTS libary, follow these steps:

Step 1:
Step 2:
Step 3:

Step 4.

Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

Open the file, C62x64xFastRTS.exe.
Click Yes to install the library.
Click Next to continue with the Install Shield Wizard.

Read the Software Licenses, and choose either “l accept” or “| don't
accept.”

Click Next to continue.

If you selected “I accept,” the installation will continue.
If you selected “I don’t accept,” the installation cancels.

Choose the location where you would like to install the library. The
wizard will install the header files in the include directory, documen-
tation in the doc directory, and the library and source files in the lib
directory.

The default location is c:\ti\c6000\cgtools.
Click Next.

If the library has already been installed, you will be prompted to de-
cide whether to replace the files or not. Click Yes to update the library.

The Install Shield will complete the installation. When the installation
is complete, click Finish.

Installing and Using FastRTS 2-3

Using the FastRTS Library

2.3 Using the FastRTS Library

Before using the FastRTS library functions, you need to update your linker
command file. If you want to use the FastRTS functions in place of the existing
version of these functions, the FastRTS library must be linked in before the ex-
isting run-time-support library.

Ensure that you link with the correct run-time-support library and the FastRTS
library for little-endian code by adding the following line in your linker command
file before the line linking the current run-time-support library:

-l fastrts62x64x.lib

For big-endian code, add the following line in your linker command file before
the line linking the current run-time-support library:

-l fastrts62x64xe.lib

The FastRTS library also contains alternate names for the functions. This al-
lows you to choose where you want use the current RTS or FastRTS functions
throughout your code. To exploit this option, link the FastRTS library after the
current run-time-support library. The existing routines will automatically be
called; however, you can now also explicitly call the FastRTS functions by us-
ing the alternate names.

2.3.1 FastRTS Library Arguments and Data Types

2.3.1.1 FastRTS Types

Table 2-1 shows the data types handled by the FastRTS.

Table 2-1. FastRTS Data Types

Size
Name (bits) Type Minimum Maximum
IEEE float 32 Floating-point 1.17549435e-38 3.40282347e+38
IEEE double 64 Floating-point 2.2250738585072014e-308 1.7976931348623157e+308
int 16 Integer -32767 +32767
long int 40 Long integer -549755813887 +549755813887
unsigned int 16 Unsigned integer 0 +65535
unsigned long 40 Unsigned long integer 0 +1099511627775

2.3.1.2 FastRTS Arguments

The C62x/C64x FastRTS functions operate on single value arguments. The
functions add, div, mpy, and sub require two arguments.

Using the FastRTS Library

2.3.2 Calling a FastRTS Function From C

In addition to correctly installing the FastRTS software, you must follow these
steps to include a FastRTS function in your code:

[Include the function header file corresponding to the FastRTS function:

W The fastrts62x64x.h header file must be included if you use the special
FastRTS function names.

B The recip.h header file must be included if the recipd, recipdp, recipf,
or recipsp functions are called.

(1 Link your code with fastrts62x64x.lib for little-endian code or
fastrts62x64xe.lib for big-endian code.

[d Use the correct linker command file for the platform you use. Remember,
the FastRTS library replaces only a subset of the functions in current run-
time-support libraries. Therefore, fastrts62x64x.lib or fastrts62x64xe.lib
must be linked in along with rts6x.lib or rtséxe.lib.

For example, if you call the add FastRTS function, you would add in your C file,
and compile and link using:

cl6x main.c -z -o drv.out -lIfastrts62x64x.lib -rts6201.1ib

Note: Adding FastRTS in Code Composer Studio

If you set up a project under Code Composer Studio, you can add the
FastRTS library to your project by selecting Project — Add Files to Project,
and choosing fastrts62x64x.lib for fastrts62x64xe.lib.

2.3.3 Calling a FastRTS Function From Assembly

The C62x/C64x FastRTS functions were written to be used from C. Calling the
functions from assembly language source code is possible as long as the call-
ing function conforms to the Texas Instruments C67x C compiler calling con-
ventions. For more information, refer to the Run-Time Environment chapter of
the TMS320C6000 Optimizing C/C++ Compiler User’s Guide (SPRU212).

Installing and Using FastRTS 2-5

How to Rebuild the FastRTS Library

2.4 How to Rebuild the FastRTS Library

If you want to rebuild the FastRTS library (for example, because you modified
the source file contained in the archive), you must use the mkéx utility as fol-
lows for little-endian and big-endian versions:

nk6x fastrts62x64x.src -1 fastrts62x64x.lib
nk6x -nme fastrts62x64x.src -1 fastrts62x64xe.lib

Chapter 3

FastRTS Library Functions Tables

This chapter provides tables containing all FastRTS functions, a brief descrip-
tion of each, and a page reference for more detailed information.

Topic

Page
3.1 Arguments and ConventionsUsed 3-2
3.2 FastRTS FUNCHIONSttt e 3-3

3-1

Arguments and Conventions Used

3.1 Arguments and Conventions Used

The conventions shown in Table 3-1 have been followed when describing the
arguments for each individual function.

Table 3-1. Argument Conventions

Argument Description
X,y Argument reflecting input data
r Argument reflecting output data

3-2

FastRTS Functions

3.2 FastRTS Functions

The routines included in the FastRTS library are provided as both single- and
double-precision versions. SP is used in the following tables to identify the
single-precision functions. DP is used to identify the double-precision func-
tions. Listed in Table 3-2 are current run-time-support library function names
and the alternate function names for the FastRTS library. Either name can
used to call the FastRTS version of the function.

For practical use, the routines included in the C62x/C64x FastRTS library are
invoked automatically by the compiler when the appropriate floating-point op-
eration or conversion is required for the fixed-point C62x/C64x processors.
For example, the following addition of two SP floating-point numbers on the
C62x/C64x will cause the C compiler to invoke a function call to _addf:

float x = 5.0;

float y = 2.5;

float z;

Z =Xty
Similarly, an appropriate type cast in C will cause the C compiler to invoke the
corresponding run-time-support library function. For example, the following

conversion of a signed integer to a SP floating-point number will cause the
C compiler to invoke a function call to _fltif:

int y =2
float z;
z = (float)y;

Also included in the following chart is the C syntax that will force the C compiler
to invoke the corresponding FastRTS library. The C syntax listing assumes the
following data types:

float x, vy;
double r, s;
int a;

unsi gned int b;
long int c;

unsi gned long int d;

FastRTS Library Functions Tables 3-3

FastRTS Functions

Table 3-2. FastRTS Function Names Comparison

Current Name

Alternate Name

C Invocation

See
Description SP DP SP DP SP DP Page
Floating-point addition _addf _addd addsp adddp X=X+Y; r=r+s; 4-2
Floating-point division _divf _divd divdsp divdp X = xly; r=r/s; 4-2,

4-3
Floating-point to 32-bit ~ _fixfi _fixdi spint dpint a = (int)x; a = (int)r; 4-3,
signed integer 4-3
Floating-point to 40-bit ~ _fixfli ~ _fixdli splong dplong ¢ =(longint)x; ¢ = (long int)r; 4-4
signed long integer
Floating-point to 32-bit _fixfu _fixdu spuint dpuint b= b = (unsigned)r; |(4-4,
unsigned integer (unsigned)x; 4-5
Floating-point to 40-bit ~ _fixful _fixdul ~ spulong dpulong d = (unsigned d = (unsigned 4-5,
unsigned long integer long)x; long)r; 4-6
32-bit signed integer to _fltif _fltid intsp intdp x = (float)a; r = (double)a; 4-6
floating point
40-bit signed long _fitlif _fitlid longsp longdp x = (float)c; r = (double)c; 4-6,
integer to floating point 4-7
32-bit unsigned integer _fltuf _fltud uintsp uintdp x = (float)b; r = (double)b; 4-7
to floating point
40-bit unsigned long _fltulf _fltuld ulongsp ulongdp x = (float)d; r = (double)d; 4-7,
integer to floating point 4-8
Floating-point _mpyf _mpyd mpysp mpydp X = x*y,; r=rxs, 4-8
multiplication
Floating-point reciprocal recipft recipd? recipsp recipdp x = recipf(y); r = recipd(s);
Floating-point _subf _subd subsp subdp X=X-Y; r=r-s; 4-9,
subtraction 4-10

T The FastRTS functions recipf and recipd are not defined in the corresponding rts62xx.lib and rts64xx.lib.

Two of the functions are for conversion between single-precision and double-
precision floating-point numbers. Table 3-3 lists these functions.

Table 3-3. FastRTS Conversion Functions Names Comparisons

Description Current Name Alternate Name C Invocation See Page
DP to SP Conversion _cvtdf dpsp x = (float)r;
SP to DP Conversion _cvtfd spdp r = (double)x; 4-11

3-4

Chapter 4

FastRTS Reference

This chapter provides a list of functions within the FastRTS library. The func-
tions are listed in alphabetical order and include syntax, file defined in, descrip-
tion, functions called, and special cases.

Topic Page
4.1 General FastRTS FUNCLIONSo 4-2
4.2 Conversion Routinescoiiiiiiiiiiiiiiaa.., 4-11

4-1

_addd/adddp

4.1 General FastRTS Functions

_addd/adddp Double-precision floating-point addition

Syntax - Standard

Syntax - FastRTS

Defined in
Description

Special Cases

double _addd(double x, double y);

#include < fastrts62x64x.h>
double _addd(double x, double y); or double adddp(double x, double y);

adddp.asm
The sum of two input 64-bit floating-point (FP) numbers is generated.

Underflow returns zero; overflow returns + or - infinity.

_addf/addsp Single-precision floating-point addition

Syntax - Standard

Syntax - FastRTS

Defined in
Description

Special Cases

“divd/divdp

Syntax - Standard

Syntax - FastRTS

Defined in
Description

Special Cases

4-2

float _addf(float x, float y);

#include < fastrts62x64x.h>
float _addf(float x, float y); or float addsp(float x, float y);

addsp.asm
The sum of two input 32-bit floating-point (FP) numbers is generated.

Underflow returns zero; overflow returns + or - infinity.

Double-precision floating-point division

double _divd(double x, double y);

#include < fastrts62x64x.h >
double _divd(double x, double y); or double divdp(double x, double y);

divdp.asm
The quotient of two input 64-bit FP numbers is generated.

Underflow returns zero; overflow returns + or - infinity. Zero over zero returns
Zero; non-zero over zero returns infinity.

~divf/divsp

Syntax - Standard

Syntax - FastRTS

Defined in
Description

Special Cases

_fixdi/dpint

Syntax - Standard

Syntax - FastRTS

Defined in
Description

Special Cases

_fixfi/spint
Syntax - Standard

Syntax - FastRTS

Defined in

Description

_fixfi/spint

Single-precision floating-point division

float _divf(float x, float y);

#include < fastrts62x64x.h >
float _divf(float x, float y); or float divsp(float x, float y);

divsp.asm
The quotient of two input 32-bit FP numbers is generated.

Underflow returns zero; overflow returns + or - infinity. Zero over zero returns
Zero; non-zero over zero returns infinity.

Double-precision floating-point to 32-bit signed integer

int _fixdi(double x);

#include <fastrts62x64x.h>
int _fixdi(double x); or int dpint(double x);

dpint.asm
An input 64-bit FP number is converted to a 32-bit signed integer.

Numbers with magnitude less than 1.0 return zero. Numbers greater than
32 bits return one of the following saturation values:

[Ox7fff_ffff for positive numbers

[J 0x8000_0000 for negative numbers

Single-precision floating-point to 32-bit signed integer

int_fixfi(float x);

#include <fastrts62x64x.h>
int _fixfi(float x); or int spint(float x);

spint.asm

An input 32-bit FP number is converted to a 32-bit signed integer.

4-3

_fixdli/dplong

Special Cases

fixdli/dplong

Syntax - Standard
Syntax - FastRTS

Defined in
Description

Special Cases

_fixfli/splong

Syntax - Standard
Syntax - FastRTS

Defined in
Description

Special Cases

_fixdu/dpuint

Syntax - Standard
Syntax - FastRTS

Numbers with magnitude less than 1.0 return zero. Numbers greater than
32 bits return one of the following saturation values:

(O Ox7fff_ffff for positive numbers
[0 0x8000_0000 for negative numbers

Double-precision floating-point to 40-bit signed long integer

long int _fixdli(double x);

#include <fastrts62x64x.h>
long int _fixdli(double x); or long int dplong(double x);

dplong.asm
An input 64-bit FP number is converted to a 40-bit signed long integer.

Numbers with magnitude less than 1.0 return zero. Numbers greater than
40 bits return one of the following saturation values:

(O Ox7f_ffff_ffff for positive numbers
(1 0x80_0000_0000 for negative numbers

Single-precision floating-point to 40-bit signed long integer

long int _fixfli(float x);

#include <fastrts62x64x.h>
long int _fixfli(float x); or long int splong(float x);

splong.asm
An input 32-bit FP number is converted to a 40-bit signed long integer.

Numbers with magnitude less than 1.0 return zero. Numbers greater than
40 bits return one of the following saturation values:

O Oxrf_ffff_ffff for positive numbers
(1 0x80_0000_0000 for negative numbers

Double-precision floating-point to 32-bit unsigned integer

unsigned int _fixdu(double x);

#include <fastrts62x64x.h>
unsigned int _fixdu(double x); or unsigned int dpuint(double x);

Defined in
Description

Special Cases

_fixfu/spuint

Syntax - Standard

Syntax - FastRTS

Defined in
Description

Special Cases

_fixdul/dpulong

Syntax - Standard

Syntax - FastRTS

Defined in
Description

Special Cases

_fixdul/dpulong

dpuint.asm
An input 64-bit FP number is converted to a 32-bit unsigned integer.

Numbers less than 1.0 return zero. Numbers greater than 32 bits return one
of the following saturation values:

[Oxffff_ffff for positive numbers

[J 0x0000_0000 for negative numbers

Single-precision floating-point to 32-bit unsigned integer

unsigned int _fixfu(float x);

#include <fastrts62x64x.h>
unsigned int _fixfu(float x); or unsigned int spuint(float x);

spuint.asm
An input 32-bit FP number is converted to a 32-bit unsigned integer.

Numbers less than 1.0 return zero. Numbers greater than 32 bits return one
of the following saturation values:

[Oxffff_ffff for positive numbers

(1 0x0000_0000 for negative numbers

Double-precision floating-point to 40-bit unsigned long integer

long _fixdul(double x);

#include <fastrts62x64x.h>
long _fixdul(double x); or long dpulong(double x);

dpulong.asm
An input 64-bit FP number is converted to a 40-bit unsigned long integer.

Numbers less than 1.0 return zero. Numbers greater than 32 bits return one
of the following saturation values:

[Oxff_ffff ffff for positive numbers

] Ox00_0000_0000 for negative numbers

4-5

_fixful/spulong

_fixful/spulong

Syntax - Standard
Syntax - FastRTS

Defined in
Description

Special Cases

~fltid/intdp

Syntax - Standard
Syntax - FastRTS

Defined in

Description

_fltif/intsp

Syntax - Standard
Syntax - FastRTS

Defined in

Description

_fltlid/longdp

Syntax - Standard
Syntax - FastRTS

4-6

Single-precision floating-point to 40-bit unsigned long integer

long _fixful(float x);

#include <fastrts62x64x.h>
long _fixful(float x); or long spulong(float x);

spulong.asm
An input 32-bit FP number is converted to a 40-bit unsigned long integer.

Numbers less than 1.0 return zero. Numbers greater than 32 bits return one
of the following saturation values:

[Oxff_ffff ffff for positive numbers
[J Ox00_0000_0000 for negative numbers

Convert 32-bit signed integer to double-precision floating point

double _fltid (int x);

#include <fastrts62x64x.h>
double _fltid (int x); or double intdp (int x);

intdp.asm

An input 32-bit signed integer is converted to a 64-bit SP FP number.

Convert 32-bit signed integer to single-precision floating point

float _fltif (int x);

#include <fastrts62x64x.h>
float _fltif (int x); or float intsp (int x);

intsp.asm

An input 32-bit signed integer is converted to a 32-bit SP FP number.

Convert 40-bit signed long integer to double-precision floating point

double _fltlid (long x);

#include <fastrts62x64x.h>
double _fltlid (long x); or double longdp (long x);

Defined in

Description

_fltlif/longsp

Syntax - Standard

Syntax - FastRTS

Defined in

Description

_fltud/uintdp

Syntax - Standard

Syntax - FastRTS

Defined in

Description

_fltuf/uintsp

Syntax - Standard

Syntax - FastRTS

Defined in

Description

_fltuld/ulongdp

Syntax - Standard

Syntax - FastRTS

_fltuld/ulongdp

longdp.asm

An input 40-bit signed long integer is converted to a 64-bit SP FP number.

Convert 40-bit signed long integer to single-precision floating point

float _fltlif (long x);

#include <fastrts62x64x.h>
float _fltlif (long x); or float longsp (long x);

longsp.asm

An input 40-bit signed long integer is converted to a 32-bit SP FP number.

Convert 32-bit unsigned integer to double-precision floating point

double _fltud (unsigned int x);

#include <fastrts62x64x.h>
double _fltud(unsigned int x); or double uintdp(unsigned int x);

uintdp.asm

An input 32-bit unsigned integer is converted to a 64-bit SP FP number.

Convert 32-bit unsigned integer to single-precision floating point

float _fltuf (unsigned int x);

#include <fastrts62x64x.h>
float _fltuf(unsigned int x); or float uintsp(unsigned int x);

uintsp.asm

An input 32-bit unsigned integer is converted to a 32-bit SP FP number.

Convert 40-bit unsigned long integer to double-precision floating point

double _fltuld (unsigned long int x);

#include <fastrts62x64x.h>
double _fltuld (unsigned long int x); or double ulongdp (unsigned long int x);

4-7

_fltulf/lulongsp

Defined in

Description

_fltulf/ulongsp

Syntax - Standard

Syntax - FastRTS

Defined in

Description

_mpyd/mpydp

Syntax - Standard

Syntax - FastRTS

Defined in
Description

Special Cases

_mpyf/mpysp

Syntax - Standard

Syntax - FastRTS

Defined in

Description

4-8

ulongdp.asm

An input 40-bit unsigned long integer is converted to a 64-bit SP FP number.

Convert 40-bit unsigned long integer to single-precision floating point

float _fltulf (unsigned long int x);

#include <fastrts62x64x.h>
float _fltulf (unsigned long int x); or float ulongsp (unsigned long int x);

ulongsp.asm

An input 40-bit unsigned long integer is converted to a 32-bit SP FP number.

Double-precision floating-point multiplication

double _mpyd (double x);

#include <fastrts62x64x.h>
double _mpyd(double x, double y); or double mpydp(double x, double y);

mpydp.asm
The product of two input 64-bit FP numbers is generated.

Underflow or exponents < 2 (2 ~1022 =445 x 10 - 308) returns zero; overflow
returns + or - infinity.

Single-precision floating-point multiplication

float _mpyf (float x);

#include <fastrts62x64x.h>
float _mpyf(float x, float y); or float mpysp(float x, float y);

mpysp.asm

The product of two input 32-bit FP numbers is generated.

Special Cases

recipd/recipdp

Syntax - FastRTS

Defined in
Description

Special Cases

recipf/recipsp

Syntax - FastRTS

Defined in
Description

Special Cases

_subd/subdp

Syntax - Standard

Syntax - FastRTS

Defined in

_subd/subdp

Underflow or exponents < 2 (2 ~125 =2.35 x 10 - 38) returns zero; overflow
returns + or - infinity.

Double-precision floating-point reciprocal

#include <fastrts62x64x.h>
#include <recip.h>
double recipd (double x); or double recipdp (double x);

divdp.asm
The reciprocal of an input 64-bit FP number is generated.

Underflow returns zero; overflow returns + or - infinity. The reciprocal of zero
returns infinity.

Single-precision floating-point reciprocal

#include <fastrts62x64x.h>
#include <recip.h>
float recipf (float x); or float recipsp (float x);

divsp.asm
The reciprocal of an input 32-bit FP number is generated.

Underflow returns zero; overflow returns + or - infinity. The reciprocal of zero
returns infinity.

Double-precision floating-point subtraction

double _subd(double x, double y);

#include <fastrts62x64x.h>
double _subd(double x, double y); or double subdp(double x, double y);

adddp.asm

4-9

_subf/subsp

Description

Special Cases

_subf/subsp

Syntax - Standard

Syntax - FastRTS

Defined in
Description

Special Cases

4-10

The difference of two input 64-bit FP numbers is generated.

Underflow returns zero; overflow returns + or - infinity.

Single-precision floating-point subtraction

float _subf(float x, float y);

#include <fastrts62x64x.h>
float _subf(float x, float y); or float subsp(float x, float y);

addsp.asm
The difference of two input 32-bit FP numbers is generated.

Underflow returns zero; overflow returns + or - infinity.

_cvtfd/spdp

4.2 Conversion Routines

_cvtdf/dpsp

Syntax - Standard

Syntax - FastRTS

Defined in
Description

Special Cases

_cvtfd/spdp

Syntax - Standard

Syntax - FastRTS

Defined in
Description

Special Cases

Convert double-precision to single-precision floating point

float _cvtdf(double x);

#include < fastrts62x64x.h>
float _cvtdf(double x); or float dpsp(double x);

dpsp.asm
An input 64-bit FP number is converted to a 32-bit FP nhumber.

Underflow returns zero; overflow returns + or - SP infinity.

Convert single-precision to double-precision floating point

double _cvtfd(float x);

#include < fastrts62x64x.h>
double _cvtfd(float x); or double spdp(float x);

spdp.asm
An input 32-bit FP number is converted to a 64-bit FP number.

Underflow returns zero; overflow returns + or - infinity.

4-11

Performance Considerations

This appendix describes the sample performance of the C62x/64x FastRTS.

It also provides information about software updates and customer support
issues.

Topic Page
A.1 Performance Considerationsiiuiiiiinienannnn.. A-2
A.2 FastRTS Software Updatesc.coiiiiiiiiinneinnann. A-4
A.3 FastRTS Customer SUPPOrtttt A-4

A-1

Performance Considerations

A.1 Performance Considerations

Table A-1 gives samples of execution clock cycles. Times include the call and
return overhead. The cycle counts were found with the following arguments:
funcl (3.15) or func2 (3.15, -0.625). The table compares the execution clock
cycles for the current run-time-support libraries for the C62x and C64x versus
the execution clock cycles for the new FastRTS routines.

Table A-1. Sample Performance

C64x C62x
RTS/ RTS/
Alternate FastRTS FastRTS
Function Name Data rts6400.lib FastRTS Ratio rts6200.lib FastRTS Ratio
_addf addsp 32FP 81 29 2.79 88 24 3.67
_addd adddp 64 FP 142 75 1.89 141 70 2.01
_divf divsp 32FP 109 32 341 115 27 4.26
_divd divdp 64 FP 204 77 2.65 156 72 2.17
_fixfi spint 32FP 85 29 2.93 82 22 3.73
_fixdi dpint 64FP 165 51 3.24 170 44 3.86
_fixfli splong 32FP 154 52 2.96 149 51 2.92
_fixdli dplong 64 FP 306 238 1.29 306 188 1.63
_fixfu spuint 32FP 154 53 291 152 53 2.87
_fixdu dpuint 64 FP 310 239 1.30 310 190 1.63
_fixful spulong 32FP 32 14 2.29 31 15 2.07
_fixdul dpulong 64FP 30 20 1.50 30 17 1.76
_fitif intsp 32FP 37 16 2.31 37 17 2.18
_fitid intdp 64FP 35 21 1.67 40 21 1.90
_fitlif longsp 32FP 16 14 1.14 17 15 1.13
_fltlid longdp 64FP 20 17 1.18 21 17 1.24
_fltuf uintsp 32FP 28 15 1.87 31 16 1.94
_fltud uintdp 64 FP 29 16 1.81 35 20 1.75

A-2

Table A-1. Sample Performance (Continued)

Performance Considerations

C64x C62x
RTS/ RTS/
Alternate FastRTS FastRTS
Function Name Data rts6400.lib FastRTS Ratio rts6200.lib FastRTS Ratio
_fltulf ulongsp 32FP 30 18 1.67 32 15 2.13
_fltuld ulongdp 64FP 34 17 2.00 43 18 2.39
_mpyf mpysp 32FP 35 18 1.94 36 17 2.12
_mpyd mpydp 64FP 42 19 221 46 22 2.09
recipf recipsp 32FP 37 17 2.18 37 16 231
recipd recipdp 64FP 46 19 2.42 49 18 2.72
_Subf subsp 32FP 37 18 2.06 37 16 231
_subd subdp 64 FP 45 22 2.05 51 22 2.32
_cvtfd spdp 32FP 28 16 1.75 33 15 2.20
_cvtdf dpsp 64 FP 38 17 2.24 39 18 2.17
Performance Considerations A-3

FastRTS Software Updates

A.2 FastRTS Software Updates

C62x/C64x FastRTS Software updates may be periodically released incorpo-
rating product enhancements and fixes as they become available. You should
read the spru653.pdf available in the root directory of every release.

A.3 FastRTS Customer Support

If you have questions or want to report problems or suggestions regarding the
C62x/C64x FastRTS, contact Texas Instruments at dsph@ti.com.

Glossary

API: See application programming interface.

application programming reference (API): Used for proprietary applica-
tion programs to interact with communications software or to conform to
protocols from another vendor’s product.

bit: A binary digit, either a 0 or 1.

big endian: An addressing protocol in which bytes are numbered from left to
right within a word. More significant bytes in a word have lower humbered
addresses. Endian ordering is specific to hardware and is determined at
reset. See also little endian.

clock cycle: A periodic or sequence of events based on the input from the
external clock.

code: A set of instructions written to perform a task; a computer program or
part of a program.

compiler: A computer program that translates programs in a high-level lan-
guage into their assembly-language equivalents.

digital signal processor (DSP): A semiconductor that turns analog sig-
nals—such as sound or light—into digital signals, which are discrete or
discontinuous electrical impulses, so that they can be manipulated.

FastRTS: Fast Run-Time-Support

B-1

B-2

least significant bit (LSB): The lowest-order bit in a word.

linker: A software tool that combines object files to form an object module,
which can be loaded into memory and executed.

little endian: An addressing protocol in which bytes are numbered from right
to left within a word. More significant bytes in a word have higher-num-
bered addresses. Endian ordering is specific to hardware and is deter-
mined at reset. See also big endian.

_addd function f-7
_addf function [F-2
_cvtdf function B-T]|
_cvtfd function B-T1]
_divd function F-2
_divf function f-3
_fixdi function B3
_fixdli function B4
_fixdu function E-4
_fixdul function [E-3
_fixfi function FE-3
_fixfli function [F-4
_fixfu function [F-3
_fixful function [E-q
_fltid function §-g
_fitif function f-g
_fltlid function [F-g
_fltlif function B-7
_fltud function B
_fltuf function [F-7
_fltuld function [E-7
_fltulf function [E-§
_mpyd function [E-§
_mpyf function [E-§
_subd function [£-9
_subf function E-I0

Index

A

adddp function B2

addition
double-precision -2
single-precision -2
addsp function F-2
API, defined [B-]

application programming interface,
defined [B-1|

arguments, conventions -2

big endian, defined [B-]|
bit, defined [B-1|

C

clock cycle, defined [B-]]
code, defined [B-]|
compiler, defined B-]|

conversion functions

32-bit signed integer to double-precision
floating point [f-g

32-bit signed integer to single-precision
floating point [E-g

32-bit unsigned integer to double-precision
floating point [E-1

32-bit unsigned integer to single-precision
floating point [E-1

40-bit signed long integer to double-precision
floating point [E-g

Index-1

Index

40-bit signed long integer to single-precision _fixdul B3
floating point ﬁ _fltid E-q
40-bit unsigned long integer to double-precision _fitlid B-§
floating point E _fltud F7
40-bit unsigned long integer to single-precision _fltuld 7
floating point f-§ mpyd F§
double-precision floating-point to 32-bit signed :subd 9
integer f-3 adddp B2
double-precision floating-point to 32-bit un- divdp B2
signed integer [E-4 dpint 3
double-precision floating-point to 40-bit signed dplong B4
long integer B4 dpuint F4
double-precision floating-point to 40-bit dpulong B3
unsigned long integer [F-3 intdp [-§
double-precision to single-precision floating longdp PB4
point f-T] mpydp B3
singl'e-precision floating-point to 32-bit signed recipd A9
integer B3 recipdp B9
single-precision floating-point to 32-bit spdp 1T
unsigned integer [F-3 subdp B9
single-precision floating-point to 40-bit signed uintdp B-1
long integer F-4 ulongdp BT
single-precision floating-point to 40-bit
unsigned long integer f=q double-precision routines, table listing [-2
single-precision to double-precision floating dpint function f-j3
point B-T1|

dplong function f-4

dpsp function F-T1|
dpuint function f-4

customer support A4

D dpulong function F-3
data types, FastRTS P-4 F
digital signal processor (DSP), defined [B-]|
. . FastRTS
divdp function B3 archive contents [-7
division argument conventions [-2
double-precision F-2 arguments and data types [-4
single-precision f-3 calling a function from assembly -3
. . calling a function from C P-3
divsp function -3 customer support [A-4
double-precision functions data types, table P-4
_addd B2 defined [B-]|
_cvtfd B-T7] features and benefits [-3

B2 function, reference f-]]

B3 function names comparison table [B-4
_fixdli B4 how to install -3

E-4 how to rebuild FastRTS P-§

Index

include directory -3 R
introduction [-2
performance [A-2 rebuilding FastRTS [-§

software updates [A-4
fastrts62x64x.h header file [-3
fastrts67x.h header file [-3
features and benefits [-3

recipd function [F-9
recipdp function [F-9
recipf function [F-9

reciprocal
function double-precision [E-9
calling a FastRTS function from assembly [-3 single-precision -9

calling a FastRTS function from C -3

. recipsp function
names comparison table [-4 psp It 1S

routines, FastRTS [-7

include directo
v B3 single-precision functions

installing FASTRTS (-3 addf [
intdp function [F-g _ovtdf AT
. . _divf B3
intsp function [f-§ Thixti B3
_fixfli B4
_fixfu B3
L fixful [E-q
C .) flitif B-q
least significant bit (LSB), defined [B-2 fltlif A
linker, defined B-2 _fltuf B=7
. . , fltulf [E-§
little endian, defined
, B2 _mpyf f-§
longdp function F-g _subf E-I0
longsp function addsp f-7
&P H divsp [E-3
dpsp R-T1
M intsp f-qg
longsp [B-7
- mpysp f-§
mpydp funct.lon A8 recipf [
mpysp funCtlon E recipsp E
multiplication spint f-3
double-precision [E-§ splqng -4
single-precision [F-§ spuint f-3
spulong F-g
subsp E-10
P uintsp -7
ulongsp F-§
performance [A-7 single-precision routines, table listing [

Index-3

Index

software updates [A-4 subtraction

: double-precision F-9
spdp function BT single-precision F-10
spint function F-3
splong function [E-4 U

spuint function [F-3 uintdp function 7

spulong function [-§ uintsp function F-7
subdp function A9 ulongdp function =7

subsp function [E-10 ulongsp function F-§

Index-4

	IMPORTANT NOTICE
	Read This First
	About This Manual
	How to Use This Manual
	Notational Conventions
	Related Documentation From Texas Instruments
	Trademarks

	Contents
	Tables
	Introduction
	Introduction to the C62x/64x FastRTS Library
	Features and Benefits

	Installing and Using FastRTS
	FastRTS Library Contents
	How to Install the FastRTS Library
	Using the FastRTS Library
	FastRTS Library Arguments and Data Types
	FastRTS Types
	FastRTS Arguments

	Calling a FastRTS Function From C
	Calling a FastRTS Function From Assembly

	How to Rebuild the FastRTS Library

	FastRTS Library Functions Tables
	Arguments and Conventions Used
	FastRTS Functions

	FastRTS Reference
	General FastRTS Functions
	_addd/adddp
	_addf/addsp
	_divd/divdp
	_divf/divsp
	_fixdi/dpint
	_fixfi/spint
	_fixdli/dplong
	_fixfli/splong
	_fixdu/dpuint
	_fixfu/spuint
	_fixdul/dpulong
	_fixful/spulong
	_fltid/intdp
	_fltif/intsp
	_fltlid/longdp
	_fltlif/longsp
	_fltud/uintdp
	_fltuf/uintsp
	_fltuld/ulongdp
	_fltulf/ulongsp
	_mpyd/mpydp
	_mpyf/mpysp
	recipd/recipdp
	recipf/recipsp
	_subd/subdp
	_subf/subsp

	Conversion Routines
	_cvtdf/dpsp
	_cvtfd/spdp

	Performance Considerations
	Performance Considerations
	FastRTS Software Updates
	FastRTS Customer Support

	Glossary
	Index

