
Technical Article
Optimizing Code to Fit Your MCU: Tips and Tricks

Katie Pier

Have you ever been close to finishing your microcontroller (MCU) code, only to get the dreaded error message 
shown in Figure 1?

Figure 1. Error Message

Your program is too large to fit in your device! This may seem like a hopeless situation, but fortunately, there are 
a lot of strategies you can take to get your code to build smaller and hopefully squeeze a few more functions into 
your device. By using the compiler settings to their fullest and carefully considering how you write your code, you 
can get the best code-size efficiency possible for your MSP430™ MCU project.

Tip No. 1: Use Optimizer Assistant in Code Composer Studio™ IDE

The Code Composer Studio integrated development environment (IDE) offers different optimization levels as 
well as different size-versus-speed settings for compiler optimizations. That’s a lot of combinations to try. 
However, there is a little-known gem built right into the software called Optimizer Assistant; see Figure 2.

Figure 2. Optimizer Assistant

Optimizer Assistant automatically builds with all of the different variants for size versus speed or optimization 
level and reports the code size back for each, along with whether the project will fit into the device. You can use 
it to help pick the right settings for your project: for example, to get the best speed performance for code that will 
still fit into the device’s nonvolatile memory.

www.ti.com

SSZT904 – NOVEMBER 2017
Submit Document Feedback

Optimizing Code to Fit Your MCU: Tips and Tricks 1

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SSZT904
https://www.ti.com/feedbackform/techdocfeedback?litnum=SSZT904&partnum=CC3120MOD


Tip No. 2: Pick the Right Code and Data-model Settings

The MSP430X central processing unit (CPU) architecture on most MSP430 MCUs supports up to 20-bit 
addresses, because some MSP430 devices have memory sizes such that they need to have locations above 
10000 h, requiring 20-bit addressing. However, the extended instruction set used for operations on 20-bit 
addresses requires increased program space. The code and data-model settings as shown in Figure 3 tell the 
compiler whether to support 20-bit addressing and extended instructions or not.

Figure 3. Code and Data Model Settings

So if you are using an MSP430 device that doesn’t have any nonvolatile memory above 10000h, make sure 
to choose small code model so that the compiler can optimize and use only 16-bit addressing, thus taking less 
code space.

Selecting small data model tells the compiler that there will be no variables above 10000h (for example, no 
random access memory [RAM] nor ferroelectric RAM [FRAM] variables above 10000h). Making just this simple 
setting change on the msp430fr211x_euscia0_uart_03.c code example caused the code to build 38% smaller.

Tip No. 3: Eliminate Automatic Global Variable Initialization

The C compiler inserts initialization code from the runtime support (RTS) library that runs every time the device 
starts up to prepare the C environment. The C compiler’s default initialization routines use a compressed table 
of initialization data for global variables and therefore run decompression routines during startup to get the data 
and initialize the variables. For large projects with large numbers of variables, this saves code space. But for 
small projects with just a few global variables, the code is no longer space-efficient.

When you are using a small device and are concerned about code size, I recommend either eliminating global 
variables entirely (if possible), or using a limited number of global variables and setting them up such that they 
are initialized at the beginning of main() by user code instead of by the RTS library. To do this, simply move the 
initial value of the global variable into main, as shown in Figure 4.

Figure 4. Moving Initialization into Main()

Then, set Project > Properties > MSP430 Linker > Advanced Options > Miscellaneous > “Zero initialize ELF 
uninitialized sections (--zero_init)” to off, as shown in Figure 5.

www.ti.com

2 Optimizing Code to Fit Your MCU: Tips and Tricks SSZT904 – NOVEMBER 2017
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SSZT904
https://www.ti.com/feedbackform/techdocfeedback?litnum=SSZT904&partnum=CC3120MOD


Figure 5. Disable Automatic Zero-initialization of Uninitialized Variables

For the msp430fr211x_euscia0_uart_03.c example, making this change resulted in a 62% reduction in code 
size, saving more than half the memory size of the 512-byte MSP430FR2000 device.

Tip No. 4: Write Your Code for Efficiency

There are also a number of coding techniques, like using lookup tables instead of complex calculations, using 
small types for variables and constants, using the __even_in_range() intrinsic, and more that can help your code 
build in the smallest amount of space.

The application note, “Optimizing C Code for Size with MSP430 MCUs: Tips and Tricks,” outlines these and 
other techniques in more detail, including tips for the IAR compiler. Check it out today and get optimizing!

www.ti.com

SSZT904 – NOVEMBER 2017
Submit Document Feedback

Optimizing Code to Fit Your MCU: Tips and Tricks 3

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/slaa801
https://www.ti.com
https://www.ti.com/lit/pdf/SSZT904
https://www.ti.com/feedbackform/techdocfeedback?litnum=SSZT904&partnum=CC3120MOD


IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE 
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” 
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY 
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD 
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate 
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable 
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an 
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license 
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you 
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these 
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with 
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for 
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

