Is PMBus Still Useful without Telemetry?

Xiao Xu

PMBus is an Inter-Integrated Circuit (I²C)-based communication standard/interface for power-supply management. Many point-of-load (POL) converters on the market today are built with the PMBus interface, which enables digital communication between converters and their hosts. The host can be any microcontroller, microprocessor, computer, board-management controller, automatic test equipment or application-specific integrated circuit/field-programmable gate array. There are four general types of communication between the converter and host: command, control, sequence and monitor. A PMBus device can support any combinations of the above communication types.

To know which PMBus device to choose for a particular application depends on the application environment and price point. Generally, PMBus devices designed to provide monitoring functions such as input voltage, input current, output voltage, output current and die temperature have significantly higher silicon and design costs because of the addition of a precision analog-to-digital converter circuit design.

The monitoring capability through PMBus is generally referred to as "telemetry." Figure 1 shows a graphical user interface (GUI) generated by TI's Fusion Digital Power™ designer software. The GUI displays three telemetries: output voltage, output current and temperature.

Telemetry is also very useful in systems where data analysis and system characterization are essential. In high-reliability systems where live performance monitoring and failure analysis are absolute musts, the right kind of telemetry can provide great value.

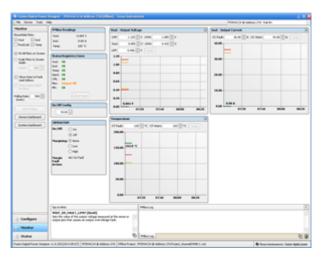


Figure 1. TI Fusion Digital Power GUI for Live Telemetry Reading

Even though telemetry is a very useful feature in a PMBus device, not every system or application has the right environment or the need to take advantage of the feature, especially since PMBus devices with telemetry normally cost more than devices without telemetry. But the value and benefit of PMBus is so compelling that even without telemetry, it is still worth your consideration.

One of the major benefits of PMBus is the cost savings that it brings to the overall system bill of materials (BOM). Integrating the PMBus interface into the POL converter eliminates external pin-strapping components that analog designs need to program converter configurations such as switching frequency, current limit, under voltage lockout, soft-start time, power good delay and voltage margining/tracking components.

Figure 2 shows the waveform of adaptive voltage scaling behavior by using the TPS549D22, a 40A PMBus synchronous step-down converter. A voltage identification digital (VID) chip like the TI LM10011 – with several resistors to support the identical voltage scaling functionalities – is necessary to support the series of digital events shown in Figure 2. The PMBus benefit includes not only BOM cost optimization, but also the printed circuit board area reduction achieved by fewer components and routing traces.

Figure 2. TPS549D22 Digital Events Driven by a 1MHz PMBus Device

TI offers several unique high performance and high current converter families. Figure 3 summarizes Tl's PMBus and multi-chip module (MCM) converter products, including the TPS549D22, which is the highest current rated (40A) synchronous buck converter with PMBus, albeit without telemetry. Figure 4 shows the detailed PMBus command sets for the TPS549D22.

Device	12A	15A	40A	20A	30A	35A	20A	30A
P/N	TPS53915	TPS549A20 (ptp with TPS53915)	TPS549D22	TP\$544B25	TPS544C25 (ptp to B25)	TPS546C20/23	TP\$544B20	TPS544C20
Control Mode	DCAP3			Fixed Frequency Voltage Mode with Input Feed-forward			DCAP2	
Vin Range	1.5V to 18V 1.5V to 20V 1.5V to		1.5V to 16V	4.6V to 18V			4.5V to 18V	
Vout Range	0.6V to 5.5V			0.5V to 5.5V			0.6V to 5.5V	
PMBus capability	Programming/ Configuration/ Margining			Programming/ Configuration/ Margining + Telemetry RESET to VOUT_COMMAND back to the initial boot voltage set @ startup w/o power cycling			Programming/ Configuration/ Margining + Telemetry	
Special Features	0.5% 0.6V Vref accuracy, Eco Mode, No external compensation, up to 1MHz Fsw Voltag Sensing,		accuracy from -40°C to +125°C Tj, Remote Differential Voltage Sensing, up to 1MHz	40°C to +12 Differential Vo	occuracy from - 5°C, Remote iltage Sensing, MHz Fsw	Stackable x 2 for 70A Output Current 0.5% 0.6V Vref accuracy from - 40°C to +85°C, Remote Differential Voltage Sensing, up to 1MHz Fsw	accuracy (in comparator errors) from - Tj, Remote Voltage Sensi	sedback Pin noludes loop input offset 40°C to +125°C Differential ng, up to 1MHz sw
HS/LS FET Rds_ON	13.8/5.9m Ohm	9.9/4.3mOhm	2.9/1.2mOh m	5.5/2r	mOhm	3.2/1.4mOhm	4.5/2.1	ImOhm
FSYNC	No			Yes, 200KHz to 1MHz			No	
AVS	VREF_TRIM VOUT_COM (MFGR_SPECIFIC_04), D4h MAND (21h)			VOUT_COMMAND (21h) and VOUT_SCALE_LOOP			VREF_TRIM (MFGR_SPECIFIC_04), D4h	
Package	3.5x4.5 QFN single GND Pad Powerstack™			5x7 QFN single GND Pad Powerstack™				

Figure 3. PMBus Converter Selection at a Glance

CMD CODE (HEX)	COMMAND NAME (PMBus 1.2 spec)	CMD CODE (HEX)	COMMAND NAME (PMBus 1.2 Spec
0	PAGE	50	OT_FAULT_RESPONSE
1	OPERATION	51	OT_WARN_LIMIT
2	ON_OFF_CONFIG	60	TON_DELAY
3	CLEAR_FAULTS	61	TON_RISE
10	WRITE_PROTECT	62	TON_MAX_FAULT_LIMIT
11	STORE_DEFAULT_ALL	63	TON_MAX_FAULT_RESPONSE
12	RESTORE_DEFAULT_ALL	64	TOFF_DELAY
15	STORE_USER_ALL	65	TOFF_FALL
16	RESTORE_USER_ALL	78	STATUS_BYTE
19	CAPABILITY	79	STATUS_WORD
18	SMBALERT_MASK	7A	STATUS_VOUT
20	VOUT_MODE (2 bytes)	78	STATUS_IOUT
21	VOUT_COMMAND	7C	STATUS_INPUT
24	VOUT_MAX	7D	STATUS_TEMPERATURE
25	VOUT_MARGIN_HIGH	76	STATUS_CML
26	VOUT_MARGIN_LOW	80	STATUS_MFR_SPECIFIC
27	VOUT_TRANSITION_RATE	88	READ_VOUT
29	VOUT_SCALE_LOOP	8C	READ_IOUT
35	VIN_ON	38	READ_TEMPERATURE_2
36	VIN_OFF	98	PMBUS_REVISION
39	IOUT_CAL_OFFSET	A4	MFR_VOUT_MIN
40	VOUT_OV_FAULT_LIMIT	AD	IC_DEVICE_ID
41	VOUT_OV_FAULT_RESPONSE	AE	IC_DEVICE_REV
42	VOUT_OV_WARN_LIMIT	00	MFR_SPECIFIC_00, SCRATCH PAD
43	VOUT_UV_WARN_LIMIT	01	MFR_SPECIFIC_01, DELAY_CONTROL
44	VOUT_UV_FAULT_LIMIT	02	MFR_SPECIFIC_02, SOFT START & MODI
45	VOUT_UV_FAULT_RESPONSE	03	MFR_SPECIFIC_03, FREQUENCY SETTING
46	IOUT_OC_FAULT_LIMIT	04	MFR_SPECIFIC_04, VOUT ADJ +/-0.75%
47	IOUT_OC_FAULT_RESPONSE	05	MFR_SPECIFIC_05, VOUT_MARGIN
4A	IOUT_OC_WARN_LIMIT	D6	MFR_SPECIFIC_06, UVLO THRESHOLD
4F	OT_FAULT_LIMIT	07	MFR_SPECIFIC_07 TRK THRESHOLD
		FC	Read GUI device ID and IC rev

Figure 4. Total PMBus Command Sets Supported by the TPS549D22

Today, PMBus is widely adopted as an effective communication means between the load and its power supply source during design, production test and every day in-system usage. Choosing the right PMBus feature for the power supply application becomes increasingly critical due to multiple considerations contributing to the success of the overall design, including functionality, performance and cost. PMBus without telemetry is still useful when it comes to configuring and controlling all the power sources, and the high integration simplifies design.

For more information on designing with PMBus, read the Power House blogs "PMBus benefits in multi-rail systems," and "Save PCB space and overcome point-of-load design complexity with PMBus modules."

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated