Technical Article How You Can Use the LDC Racetrack Inductor Designer Tool

Chris Oberhauser66

In my previous post, I introduced the LDC calculator tool, which you can download here. It can calculate a number of useful parameters for an Inductive Sensing application.

LDC devices use inductors to sense the movement of conductive targets. At TI, we commonly use spiral traces routed on a printed circuit board (PCB) to form sensing inductors. WEBENCH® Coil Designer is a useful online tool that can help you design a sensor inductor and also generate a layout.

The racetrack inductor designer tool is another useful designer in the LDC tools spreadsheet. While the racetrack inductor designer only calculates sensor parameters and does not generate a layout, it is quick to use. Simply click Racetrack Inductor Designer on the Contents tab of the LDC calculator tool, or click the Racetrack_Inductor_Designer tab, as shown in Figure 1. You'll wind up on the tab shown in Figure 2.

LDC Calculations T	ool rev1.26	
Note: these calculation	n tools are provided without any	warranty.
User should independ	ently verify any calculation result	s.
Click on a tool from th	e list below:	
Racetrack Induct	or Designer	
Sample Rate Cale	culator	
Inductance&Free	quency from Output Code	Click her
Skin Depth Calcu	lation	
LDC161x/LDC13	1x Current Consumption Estimato	r
LDC131x/LDC16	1x Sensor Configuration	
Remote Coll Max	kimum Distance Calculator	
LDC0851 Calcula	tor Tool	
LDC1101 RP Con	figuration	
Spring Sensor Ca	Iculator Tool	
Sensor Region G	raph	
		or here fo
Quick Sensor L/	C/f Calculator:	the Racetra
L	1.461 µH	die nacetra
tsensor	13.840 MHz	designer
¢	90.545 pr	
Outek Consor D	/Pr/O Calculatory	
Quick Sensor K	0.70 ult	
c	100.00 pF	
Re	500 0	
Ro	1.40 k0	
np	2.40 1.12	

Figure 1. Accessing the Racetrack Inductor Designer

1

Figure 2. Racetrack Coil Designer Tool

The LDC calculator tool is pretty accurate – typically a physical sensor will be within 10% of the calculations. For racetrack-shaped sensors, however, the accuracy may degrade when the ratio of the long side to the short side is greater than 4.

The first step in the process to design a sensor is to determine the PCB manufacturing limitations. Table 1 shows an example of limits from one PCB manufacturer.

Sensor Parameter	Value	Comments
PCB minimum trace width/space	0.125 mm (5 mil)	Fabrication limitation
Via minimum pad size	0.6 mm (24 mil)	Fabrication limitation
Via minimum hole size	0.25 mm (10 mil)	Fabrication limitation
Sensor minimum inner diameter	0.825 mm (21 mil)	0.6 mm + 2 × 0.125 mm One via pad + two trace spaces
Stack-up thickness between layers	0.80 mm (32 mil)	Desired PCB thickness
Copper thickness	0.5-1.0 oz-Cu	

You now need to know a few system limitations – what is the maximum possible size of the sensor, and how close the target can be to the sensor. I've summarized the values for an example system in Table 2.

How You Can Use the LDC Racetrack Inductor Designer Tool

2

Sensor Parameter	Value	Comments
Maximum sensor diameter	9mm (315mil)	Mechanical constraint
Target closest distance	1.8mm	Based on system mechanicals

For this example, I will use the LDC1612 and comply with the limitations from Table 1 and Table 2. Figure 3 shows the calculating region of the racetrack coil designer. I placed a number to the left of each parameter so you can follow me as I walk through each setting below.

Le Sensor cale	ulations		_
LDC Device		LDC1612/4	
Operating temperature	Т	25	°C
Sensor capacitance	С	550.0	pF
Layers	M	2	Laye
Turns	N	11	Turns
Outer diameter of the inductor (short side)	dout	7.00	m
ratio of long edge to short edge (>=1)	d/dout	1.00	
Long side of inductor	dL	7.000	m
spacing between traces	s	5.000	m
width of trace	w	5.000	m
PCB thickness between 1st layer and 2nd layer	h12	32.000	m
PCB thickness between 2nd layer and 3rd layer	h23	30.000	mi
Copper thickness	t	1.000	oz-(
Coil Fill Ratio	din/dout	0.20	
Inductor inner diameter	din	1.412	m
Self inductance per layer	L.	0.447	μН
Total Inductance with no target	LTOTAL	1.415	μН
Sensor Operating Frequency no target	f RES	5.683	MHz
Rp with no Target	Rp	1.29	kΩ
Q factor	Q	25.35	
Self resonant frequency (estimated)	SRF	66.887	MHz
Target Distance	D	0.500	mm
Sensor Inductance from Target Interaction	Ľ	0.665	μН
Sensor Frequency with Target Interaction	f RES'	8.325	MHz
Rp with Target Interaction	R _P '	0.55	kΩ
Q Factor with target	Q'	15.7	

Figure 3. Sequence to Enter Parameters

Next, follow these steps to calculate a basic sensor design:

- 1. Select the appropriate LDC device for this application, the LDC1612/4 (the LDC1612 and LDC1614 share the same limitations on sensor drive).
- 2. Set the spacing between traces and the width of traces to the 0.125 mm (5 mil) manufacturer's minimum.
- 3. Set the spacing between layers to 32 mil.
- 4. Use 1oz-CU, which is the thickest copper available, for better performance.
- 5. Set the number of layers usually two or four. Since this PCB is going to be two layers, set the number of layers to two.
- 6. Enter the outer diameter of the inductor 9mm is the maximum size for this example.
- 7. Set the ratio to 1.0 for a circular-shaped sensor. Values larger than 1 will have a racetrack shape. The racetrack shape has higher inductance but a lower Q than a circular sensor. For many applications like Metal Touch buttons, a racetrack shape fits the available area better and enables smaller buttons than a circular sensor.
- Set the number of turns. If you set it to more than 16 turns, you will be below the minimum inner diameter of 0.825mm from Table 1. If you set the number of turns to 13, the coil fill ratio is close to the optimum value of ~0.3. (The 0.3 coil fill ratio is optimal for most applications, although Metal Touch applications perform better with lower values.)
- 9. Calculate the effect of the target on the sensor by setting the distance to the target. Set the target distance to 1.80mm, which is the spacing between the sensor and the metal surface.
- 10. Adjust the sensor capacitor to so that f_{RES}', R_P', and Q' are within the LDC1614's design space constraints. The calculator tool will indicate any parameters that are outside the design space with a red warning label on the appropriate parameter, as shown in Figure 4.

Target Distance	D	1.800	mm	For aluminum target of at least 5 skin depths
Sensor Inductance from Target Interaction	U U	2.291	μН	
Sensor Frequency with Target Interaction	fies	10.027	MHz	Esensor is too high - increase L or C
Rp with Target Interation	R _a '	5.57	kO	
Q Factor with target	Q'	38.6		

Figure 4. Example Error Warning Generated by the Calculator Tool

After entering your numbers, you may need to adjust the number of turns or the sensor capacitance. After trying several settings, I wound up with the values shown in Table 3. I chose 130 pF for the sensor capacitor so that I could safely use a 10% tolerance part.

Table 3. Resulting Parameters

Sensor Parameter	Value
Sensor capacitance	130 pF
Layers	2
Turns	14
Outer diameter	9.0 mm
Ratio of long edge to short edge	1
Spacing between traces	5 mil
Width of trace	5 mil
PCB thickness	32 mil
Copper thickness	1.0 oz-Cu

Because the sensor's electrical parameters change when the target is close, you need to verify that the sensor is still within the valid operating range of the LDC when this occurs. With the closest target distance of 1.8 mm, my sensor has the electrical specifications shown in Table 4, which are within the LDC1614's operating region.

Sensor Inductance from Target Interaction	Ľ	2.380µH
Sensor Frequency with Target Interaction	f _{RES} '	9.049MHz
Rp with Target Interaction	R _P '	4.90kΩ
Q Factor with Target	Q'	36.3

Table 4. Sensor Parameters Due to Target Interaction

The LDC tool spreadsheet has a lot more uses. In my next post, I'll review the LDC0851 calculator tab.

Additional Resources

- · Check out the "Sensor Design for Inductive Sensing Applications Using LDC".
- To learn more about metal touch applications, download the "Inductive Sensing Touch-On-Metal Buttons Design Guide."
- Read other inductive sensing blog posts.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated