

TPS659103 User Guide for S5PC100

This user guide describes how to integrate the TPS659103 power-management integrated circuit (PMIC) in a system with the S5PC100 application processor. This user guide also describes the connectivity between the processor and the PMIC and details the TPS659103 EEPROM bit configuration programmed to support the power-up sequence requirements of the S5PC100.

Contents

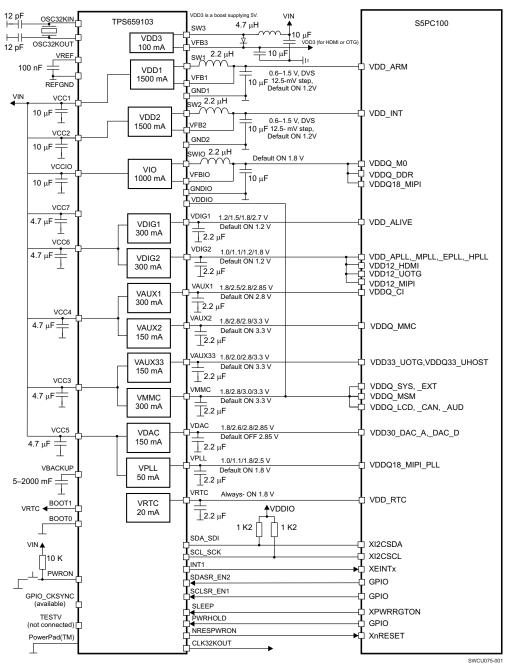
Introdu	iction	1
Platfor	m Connection Diagram	1
Power-	Up Sequence	3
Getting	Started With the TPS659103/Samsung Processor	4
dix A	Pin Mapping Between MAX8698 and TPS659103	8
	Platfor Power- Getting	Introduction Platform Connection Diagram Power-Up Sequence Getting Started With the TPS659103/Samsung Processor dix A Pin Mapping Between MAX8698 and TPS659103

List of Figures

1	Diagram of Connections Between the S5PC100 and the TPS659103	2
2	Power-Up Sequence Matching the S5PC100 Processors	3

List of Tables

1	EEPROM Configuration of TPS659103	3
2	DCDC Behavior	5

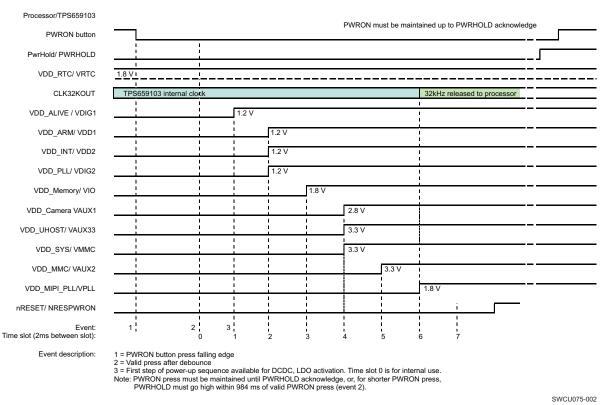

1 Introduction

This user guide describes how to integrate the TPS659103 PMIC in a system with the S5PC100 application processor. This user guide also describes the connectivity between the processor and the PMIC and details the TPS659103 EEPROM bit configuration programmed to support the power-up sequence requirements of the S5PC100.

For information about PMIC features and performance, see the full specification document, *TPS65910 Data Manual*.

2 Platform Connection Diagram

Figure 1 shows the connections between the S5PC100 and the TPS659103.



- (1) VIN can be connected to the battery (2.7–5.5 V) or to a preregulated supply (for example, 5 V in a netbook system).
- (2) The voltage level of the TPS659103 I/O control signals (I2C, INT1, SLEEP, EN1/2, PWRHOLD, and NRESPWRON) is defined by the VDDIO input, which can be connected to 1.8–3.3 V.
- (3) The LDO connection for a peripheral I/O is an example. Depending on system requirements, each peripheral I/O (CAM, LCD, and AUD) can be connected to an LDO at the required level.
- (4) For SLEEP pin use, see Section 4, Getting Started With the PS659103/Samsung Processor. Using the SLEEP input of the TPS659103 is an effective way to configure several DCDCs and LDOs to low-power mode or off with one signal to save power.
- (5) SDASR_EN2 and SCLSR_EN1 can be used for dynamic control of the VDD1 and VDD2 output voltage (for details, see Section 4.1.4, DCDC Maximum Current Capability).
- (6) When VDD3 boost is used, VAUX33 must be active and set to the 2.8-V, 3-V, or 3.3-V level. The input for VDD3 is VCC7.

Figure 1. Diagram of Connections Between the S5PC100 and the TPS659103

3 Power-Up Sequence

The power-up sequence matching the S5PC100 processors is programmed on the TPS659103 EEPROM (see Figure 1).

Figure 2. Power-Up Sequence Matching the S5PC100 Processors

Table 1 lists the EEPROM configuration of the TPS659103, including the power-up sequence and additional configurable bits.

Register	Bit	Description	TPS659103 EEPROM
VDD1_OP_REG	SEL	VDD1 voltage level selection for boot	1.2 V
VDD1_REG	VGAIN_SEL	VDD1 Gain selection (x1 or x2)	x1
EEPROM		VDD1 time slot selection	2
DCDCCTRL_REG	VDD1_PSKIP	VDD1 pulse skip mode enable	Skip enabled
VDD2_OP_REG/VDD2_SR_REG	SEL	VDD2 voltage level selection for boot	1.2 V
VDD2_REG	VGAIN_SEL	VDD2 gain selection (x1 or x3)	x1
EEPROM		VDD2 time slot selection	2
DCDCCTRL_REG	VDD2_PSKIP	VDD2 pulse skip mode enable	Skip enabled
VIO_REG	SEL	VIO voltage selection	1.8 V
EEPROM		VIO time slot selection	3
DCDCCTRL_REG	VIO_PSKIP	VIO pulse skip mode enable	Skip enabled
EEPROM		VDD3 time slot selection	OFF
VDIG1_REG	SEL	LDO voltage selection	1.2 V
EEPROM		LDO time slot	1
VDIG2_REG	SEL	LDO voltage selection	1.2 V
EEPROM		LDO time slot	2

Table 1. EEPROM Configuration of TPS659103

Register	Bit	Description	TPS659103 EEPROM
VDAC_REG	SEL	LDO voltage selection	2.85 V
EEPROM		LDO time slot	OFF
VPLL_REG	SEL	LDO voltage selection	1.8 V
EEPROM		LDO time slot	6
VAUX1_REG	SEL	LDO voltage selection	2.8 V
EEPROM		LDO time slot	4
VMMC_REG	SEL	LDO voltage selection	3.3 V
EEPROM		LDO time slot	4
VAUX33_REG	SEL	LDO voltage selection	3.3 V
EEPROM		LDO time slot	4
VAUX2_REG	SEL	LDO voltage selection	3.3 V
EEPROM		LDO time slot	5
CLK32KOUT pin		CLK32KOUT time slot	6
NRESPWRON pin		NRESPWRON time slot	7 + 1
OFF state.		1 = VRC LDO is in full-power mode during	Full-power mode
DEVCTRL_REG	RTC_PWDN	0 = RTC in normal power mode 1 = Clock gating of RTC register and logic, low-power mode	0
DEVCTRL_REG	CK32K_CTRL	0 = Clock source is the crystal/external clock. 1 = Clock source is the internal RC oscillator.	Crystal
DEVCTRL2_REG TSLOT_LENGTH Boot sequence time slot duration: 0 = 0.5 ms 1 = 2 ms		2 ms	
DEVCTRL2_REG	IT_POL	0 = INT1 signal is active low. 1 = INT1 signal is active high.	Active low
INT_MSK_REG	VMBHI_IT_MSK	 0 = Device automatically switches on at NO SUPPLY-to-OFF or BACKUP-to-OFF transition. 1 = Start-up reason required before switch-on. 	1 = Start-up reason required
VMBCH_REG	VMBCH_SEL[1:0]	Select threshold for main battery comparator threshold VMBCH.	3 V

Table 1. EEPROM Configuration of TPS659103 (continued)

4 Getting Started With the TPS659103/Samsung Processor

4.1 First Initialization

4.1.1 I/O Polarity/Muxing Configuration

In the DEVCTRL_REG register, set SR_CTL_I2C_SEL = 1 to use the SCLSR_EN1 and SDASR_EN2 pins for voltage scaling rather than the I^2 C interface.

In the DEVCTRL_REG2 register, the SLEEPSIG_POL bit defines polarity for the SLEEP signal. To enable VDD1 and VDD2, use the default value (SLEEPSIG_POL = 0) when connected to XPWRRGTON of the processor.

In the DEVCTRL_REG register, set DEV_SLP = 1 to allow sleep transition when requested.

An update is not required in the DEVCTRL_REG2 register for the IT_POL bit: This is already programmed in the EEPROM.

GPIO0 is available for system use. If used, update the GPIO0 configuration (GPIO0_REG) and INT_MSK2_REG based on system requirements.

4.1.2 Define Wake Up/Interrupt Event (SLEEP or OFF)

In the INT_MSK_REG and INT_MSK2_REG registers, select which interrupts to wake up the system. For the Samsung Netbook Platform, enabling HotDie, PWRON_LP, and PWRON is recommended.

4.1.3 Backup Battery Configuration

If the system has backup battery, set BBCHEN = 1 in the BBCH_REG register to enable the backup battery charger.

The maximum voltage to charge the backup battery is set by the BBSEL(1:0) bits.

4.1.4 DCDC Maximum Current Capability

In the VDD1_REG and VDD2_REG registers, set ILMAX = 1 to increase the current limit from the default 1 A to 1.5 A.

In the VIO_REG register, set the ILMAX bits based on the required current capablity, the default limit is 0.5 A.

4.1.5 DCDC Voltage Scaling

DCDC output voltage can be controlled three ways:

- I²C write to VDD1_OP_REG and VDD2_OP_REG to set the output voltage level with the SEL[6:0] bits. DCDCs can also be set off (0 V).
- VDD1 and VDD2 can be enabled/disabled using the SLEEP pin. By default, the SLEEP signal is active low. To disable VDD1 and VDD2 in sleep mode, in the SLEEP_SET_RES_OFF_REG register, set VDD1_SETOFF = 1 and VDD2_SETOFF = 1. These settings achieve the DCDC behavior described in Table 2.

Table 2. DCDC Behavior

SLEEP	VDD1	VDD2
0	Off	Off
1	On	On

By default, when returning to active mode, DCDC output voltages return the values set prior to the device entering sleep mode. To resume the values defined in the power-on sequence, set DEFAULT_VOLT = 1.

NOTE: To define how the SLEEP signal controls other LDOs and VIO (keep active/set off/set to low-power mode), see Section 4.1.6, *Sleep Configuration*.

- SCLSR_EN1 and SDASR_EN2 can be used for dynamic voltage control of the VDD1 and VDD2 DCDCs. EN1 and EN2 are mutually exclusive with the SLEEP signal; that is, if VDD1 and VDD2 are assigned to be controlled by EN1 and EN2, the SLEEP signal no longer controls these DCDCs. To assign VDD1 to EN1 and VDD2 to EN2, use the following register settings:
 - In the EN1_SMPS_ASS_REG register, set VDD1_EN1 = 1.
 - In the EN2_SMPS_ASS_REG register, set VDD2_EN2 = 1.

The DCDC output voltage level switches between two levels based on ENx being low or high.

The DCDC output voltage levels are defined in the following registers:

- In the VDDx_OP_REG register, the SEL[6:0] bits define roof voltage. Roof value is used when ENx ball = High.
- In the VDDx_SR_REG register, the SEL[6:0] bits define floor voltage. Floor value is used when ENx ball = Low.

During floor voltage operation (ENx input low), the operating mode of VDD1 and VDD2 is low-power PFM mode by default, which saves power but has limited transient capability.

To maintain full transient performance:

- In the SLEEP_KEEP_RES_ON_REG register, set VDD2_KEEPON = 1.
- In the SLEEP_KEEP_RES_ON_REG register, set VDD1_KEEPON = 1.

4.1.6 Sleep Configuration

The SLEEP input of TPS659103 is an effective way to configure several DCDCs and LDOs to low-power or off mode with one signal, minimizing system power consumption. By default ,when the SLEEP signal is activated, all resources maintain their output voltage and load capability but response to transients (load change) is reduced.

Resources that must keep full load capability must be set in the SLEEP_KEEP_LDO_ON_REG and SLEEP_KEEP_RES_ON_REG registers.

Resources that can be set off in SLEEP to optimize power consumption must be indicated in the SLEEP_SET_LDO_OFF_REG and SLEEP_SET_RES_OFF_REG registers.

For example, to keep VIO at full performance in SLEEP mode:

In the SLEEP_KEEP_RES_ON_REG register, set VIO_KEEPON = 1.

To set VAUX1 off in SLEEP mode:

In the SLEEP_SET_LDO_OFF_REG register, set VAUX33_SETOFF = 1.

NOTE: No interrupt should be pending to allow transition to sleep mode.

Any DCDC or LDO assigned to EN1 or EN2 is not controlled by the SLEEP signal.

4.2 Event Management Through Interrupt

4.2.1 INT_STS_REG.VMBHI_IT

INT_STS_REG.VMBHI_IT indicates that the supply is inserted. Leaving BACKUP or NO SUPPLY state, the system must be initialized (see Section 4.1, *First Initialization*).

4.2.2 INT_STS_REG.PWRHOLD_IT

INT_STS_REG.PWRHOLD_IT indicates that OFF to ACTIVE transition occurs through PWRON or any other allowed event. The processor gets the power supply back. Resets get released.

4.2.3 INT_STS_REG.PWRON_IT

INT_STS_REG.PWRON_IT indicates the PWRON button has been pressed. If the system was in OFF or SLEEP, it enters wakeup and resources are reinitialized.

4.2.4 INT_STS_REG.HOTDIE_IT

INT_STS_REG.HOTDIE_IT indicates that the temperature of the die is reaching the limit. The user must decrease power consumption before automatic shutdown.

4.2.5 INT_STS_REG.VMBDCH_IT

INT_STS_REG.VMBDCH_IT indicates that the input supply is low and the processor must prepare a shutdown to avoid losing data. This interrupt is linked to VBAT but does not apply in a system where PMIC is connected to 5-V rails and not directly to VBAT.

4.2.6 INT_STS_REG.GPIO_X

INT_STS_REG.GPIO_X indicates that the GPIO event detection is linked to the final platform use.

NOTE: An event is usable only for SLEEP wakeup and not OFF wakeup.

4.2.7 INT_STS_REG.RTC_XX

INT_STS_REG.RTC_XX is not commonly used in the Samsung processor.

Appendix A Pin Mapping Between MAX8698 and TPS659103

MX8698 Pin	TPS659103 Pin	Notes
BUCK1	VFB1	DCDC
IN1	VCC1	
LX1	SW1	
PGND1	GND1	
BUCK2	VFB2	DCDC
IN2	VCC2	
LX2	SW2	
PGND2	GND2	
BUCK3	VFBIO	DCDC
IN3	VCCIO	
LX3	SWIO	
PGND3	GNDIO	
LDO1	VRTC	
LDO2	VPLL	
LDO3	VDIG2	
LDO4	VDIG1	
LDO5	VAUX1	
LDO6	VDAC	
LD07	VAUX2	
LDO8	VAUX33	
LDO9	VMMC	
IN4, IN6	VCC3, VCC4, VCC5, VCC6	LDO inputs. For TPS659103, see Section 2, Platform Connection Diagrams.
IN5	VCC7	
VCC_COIN	VBACKUP	Backup battery
REFBP	VREF	Reference voltage
PWREN	SLEEP	
MR		Manual reset input is not supported in TPS659103.
SDA	SDA_SDI	
SCL	SCL_SCK	
PWRON	PWRON	For TPS659103 connection, see Section 2, Platform Connection Diagrams.
PWRHOLD	PWRHOLD	
SET1 (SET2)	SCLSR_EN1	TPS659103 can support two values; see Section 4.1.5, DCDC Voltage Scaling. Using EN1 is an alternative to using the SLEEP pin.
SET3	SDASR_EN2	Using EN2 is an alternative to using the SLEEP pin. See Section 4.1.5, DCDC Voltage Scaling.
JIGON		Not supported in TPS659103
SRAD		TPS659103 has single I ² C address, no selection pin
LBO		Low-battery detection in TPS659103 is through the INT1 interrupt (VMBDCH_IT)
ONO		The PWRON signal is indicated through INT1 in TPS659103.
RSO	NRESPWRON	

Appendix A

MX8698 Pin	TPS659103 Pin	Notes
AGND1, AGND2	PowerPad	TPS659103 analog ground pins connected to PowerPad

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DLP® Products	www.dlp.com	Communications and Telecom	www.ti.com/communications
DSP	dsp.ti.com	Computers and Peripherals	www.ti.com/computers
Clocks and Timers	www.ti.com/clocks	Consumer Electronics	www.ti.com/consumer-apps
Interface	interface.ti.com	Energy	www.ti.com/energy
Logic	logic.ti.com	Industrial	www.ti.com/industrial
Power Mgmt	power.ti.com	Medical	www.ti.com/medical
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Space, Avionics & Defense	www.ti.com/space-avionics-defense
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video and Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless-apps

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2010, Texas Instruments Incorporated