Test Report: PMP30338 Automotive dual port USB Type-C reference design (2x 15 W)

Texas Instruments

Description

This reference design showcases a system implementation of a dual port USB Type-C charger. The design includes input reverse polarity protection, input filtering and two individual USB Type-C charger circuits, which can supply up to 3.0 A each. The circuit has been space optimized to fit into a PCB area of 38 mm x 41 mm (without connectors) to meet current automotive requirements. Very good efficiency ensures that the maximum temperature rise is only 45.5 K.

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and other important disclaimers and information.

1 Test Prerequisites

1.1 Voltage and Current Requirements

Table 1. Voltage and Current Requirements

PARAMETER	SPECIFICATIONS
V _{IN}	6 V16 V, 13 V nom., 36 V peak
V _{OUT}	2x 5 V at 3.0 A max.
Nominal switching frequency	400 kHz (spread spectrum)

1.2 Required Equipment

- PMP30338
- USB Type-C to Type-C plug 3.1 cable
- PMP20413 USB Type-C load board

2 Testing and Results

The efficiency and load regulation measurements were made with the USB Type-C to Type-C plug cable attached to the PMP30338 and the PMP20413 load board. The input voltage was measured at J4. The output voltage was measured at C6 for the true converter efficiency and at the test points of the load board to showcase the effect of the output droop compensation of the TPS25830-Q1.

<caption><caption>

Testing and Results

www.ti.com

2.1 Efficiency Graphs

2.2 Efficiency Data

Voltage [V]	Current [A]	Power [W]	Voltage [V]	Current [A]	Power [W]	Losses [W]	Efficiency [%]
6.022	3.011	18.132	5.557	3.013	16.743	1.389	92.3
6.025	2.463	14.840	5.477	2.521	13.808	1.032	93.0
6.027	1.934	11.656	5.402	2.026	10.944	0.712	93.9
6.042	1.411	8.525	5.326	1.517	8.080	0.446	94.8
6.045	0.931	5.628	5.252	1.022	5.368	0.260	95.4
6.058	0.476	2.884	5.177	0.528	2.733	0.150	94.8

Voltage [V]	Current [A]	Power [W]	Voltage [V]	Current [A]	Power [W]	Losses [W]	Efficiency [%]
13.020	1.392	18.124	5.567	3.013	16.773	1.350	92.5
13.027	1.141	14.864	5.491	2.521	13.843	1.021	93.1
13.031	0.901	11.741	5.413	2.026	10.967	0.774	93.4
13.043	0.662	8.634	5.333	1.517	8.090	0.544	93.7
13.047	0.441	5.754	5.255	1.022	5.371	0.383	93.3
13.072	0.230	3.007	5.178	0.528	2.734	0.273	90.9

Testing and Results

Voltage [V]	Current [A]	Power [W]	Voltage [V]	Current [A]	Power [W]	Losses [W]	Efficiency [%]
16.014	1.134	18.160	5.567	3.013	16.773	1.387	92.4
16.015	0.934	14.958	5.492	2.521	13.845	1.113	92.6
16.024	0.737	11.810	5.414	2.026	10.969	0.841	92.9
16.031	0.543	8.705	5.334	1.517	8.092	0.613	93.0
16.039	0.363	5.822	5.256	1.022	5.372	0.451	92.3
16.060	0.191	3.067	5.179	0.528	2.735	0.333	89.1

2.3 Load Regulation

Testing and Results

www.ti.com

2.4 Efficiency Graphs Including USB Cable and Load Board

2.5 Efficiency Data Including USB Cable and Load Board

Voltage [V]	Current [A]	Power [W]	Voltage [V]	Current [A]	Power [W]	Losses [W]	Efficiency [%]
6.044	2.980	18.011	4.980	3.013	15.005	3.006	83.3
6.048	2.453	14.836	5.021	2.521	12.658	2.178	85.3
6.154	1.893	11.650	5.038	2.026	10.207	1.443	87.6
6.157	1.383	8.515	5.055	1.517	7.668	0.847	90.1
6.152	0.917	5.641	5.070	1.022	5.182	0.460	91.8
6.140	0.470	2.886	5.084	0.528	2.684	0.201	93.0

Voltage [V]	Current [A]	Power [W]	Voltage [V]	Current [A]	Power [W]	Losses [W]	Efficiency [%]
13.000	1.401	18.213	5.014	3.013	15.107	3.106	82.9
13.050	1.144	14.929	5.028	2.521	12.676	2.254	84.9
13.100	0.899	11.782	5.043	2.026	10.217	1.565	86.7
13.150	0.659	8.670	5.057	1.517	7.671	0.998	88.5
13.190	0.438	5.772	5.071	1.022	5.183	0.589	89.8
13.230	0.228	3.018	5.084	0.528	2.684	0.333	89.0

Testing and Results

Voltage [V]	Current [A]	Power [W]	Voltage [V]	Current [A]	Power [W]	Losses [W]	Efficiency [%]
16.030	1.141	18.290	5.017	3.013	15.116	3.174	82.6
16.080	0.934	15.019	5.030	2.521	12.681	2.338	84.4
16.110	0.735	11.841	5.044	2.026	10.219	1.622	86.3
16.150	0.541	8.737	5.059	1.517	7.675	1.063	87.8
16.190	0.361	5.845	5.072	1.022	5.184	0.661	88.7
16.220	0.190	3.082	5.085	0.528	2.685	0.397	87.1

2.6 Load Regulation Including USB Cable and Load Board

Testing and Results

www.ti.com

2.7 Thermal Images

Figure 2. Thermal Image of the PCB's Top Side at 13.0-V in and 3.0-A Load Current at Both USB Type-C Charger Outputs (Top/Bottom Layers are 2 oz)

Copyright © 2019, Texas Instruments Incorporated

Figure 3. Thermal Image of the PCB's Bottom Side at 13.0-V in and 3.0-A Load Current at Both USB Type-C Charger Outputs (Top/Bottom Layers are 2 oz)

2.8 Dimensions

PCB: 70 mm x 50 mm Circuit: 38 mm x 41mm

Waveforms

3 Waveforms

3.1 Switching

Figure 4. Switching Node of U1 at 13.0-V in and 3.0-A Load Current

• Ch2: Switching Node of U1 [scale: 5.0 V/div, 1.0 us/div]

Te<u>k Stop</u> D. Ó 2)SW# 1.00µs 1.00µs <mark>2)</mark> ∫ 9.80,V 2.50GS/s] 2 10.0 V 1M points 20 Sep 2018 10:37:41 2 Min -2.20 V 36.2 V Max 2 390.8kHz Frequency

Waveforms

Ch2: Switching Node of U1 [scale: 10.0 V/div, 1.0 us/div]

Waveforms

www.ti.com

3.2 Output Voltage Ripple

Copyright © 2019, Texas Instruments Incorporated

Figure 6. AC-Coupled Output Voltage Signal at 13.0-V in Measured at C6

Ch2: 13.0-V in, 71.2-mV peak-peak ripple (1.4%) [scale: 20.0 mV/div, 1.0 us/div]

3.3 Input Voltage Ripple

Figure 7. AC-Coupled Input Voltage Signal at 13.0-V in and Both TPS25830-Q1 Operating at 3.0-A Load Current Measured Directly at the Input Capacitor C4

• Ch2: 13.0-V in, 1.05-V peak-peak ripple [scale: 200 mV/div, 1.0 us/div]

Waveforms

www.ti.com

Figure 8. AC-Coupled Input Voltage Signal at 13.0-V in and Both TPS25830-Q1 Operating at 3.0-A Load Current Measured at the Input Filter Capacitor C10

Ch2: 13.0-V in, 64-mV peak-peak ripple [scale: 20.0 mV/div, 20.0 us/div]

3.4 Load Transients

Tek Stop Ť 2 dvour IOUT 2 200mV 2.00ms 50.0MS/s <mark>(4)</mark>] 1.92 A 🔲 20.10 % 1M points 4 2 Min 368mV 20 Sep 2018 2 Max 368mV 16:53:10 4

Figure 9. Load Transient From 1.5 A to 3.0 A at 13.0 V in Results in 368-mV Undershoot and 368-mV Overshoot (Measured at the Terminal of the Load Board)

- Ch2: AC-coupled output voltage at the load board [scale: 200 mV/div, 2.0 ms/div]
- Ch4: output current [scale: 2.0 A/div, 2.0 ms/div]

Waveforms

www.ti.com

3.5 Start-up Sequence

• Ch1: output voltage at the load board [scale: 2.0 V/div, 20.0 ms/div]

• Ch3: input voltage [scale: 5.0 V/div, 20.0 ms/div]

3.6 Undervoltage Protection

- Ch1: output voltage at the load board [scale: 2.0 V/div, 80.0 us/div]
- Ch3: input voltage [scale: 5.0 V/div, 80.0 us/div]

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated