Test Report: PMP30930 Reference Design With EMI-Optimized Buck Solutions

TEXAS INSTRUMENTS

Description

This design consists of three separable boards optimized for low EMI. The three boards are labeled

- PMP30930 Part A (using LM63635-Q1, PW package)
- PMP30930 Part B (using LM63635-Q1, DR package)
- PMP30930 Part C (Using LM61460-Q1)

Features

• Two and four layer designs for cost and performance optimization

Applications

· Automotive buck regulators

Two-Layer PCB for Part A, Four Layers for Parts B and C Standard FR4, 1.6-mm Thickness, 35-µm Copper

1 Test Prerequisites

DNP capacitors C43, C44, and C58 are populated on the tested boards.

Conducted EMI measurements were taken with an input voltage of 13 V and a resistive load of 2R for all converters.

Part C was tested with 400-kHz and 2.1-MHz switching frequency.

2 Voltage and Current Requirements

Table 2-1. Voltage and Current Requirements					
Parameter	Specifications				
V _{IN} – Part A	7.5 V to 18 V, 32-V surge				
V _{IN} – Part B	7.5 V to 18 V, 32-V surge				
V _{IN} – Part C	6 V to 16 V, 36-V surge				
V _{OUT} – Part A	6.1 V at 2.2 A continuous, 3-A peak				
V _{OUT} – Part B	6.1 V at 2.2 A continuous, 3-A peak				
V _{OUT} – Part C	5 V at 4 A continuous, 6-A peak				

3 Thermal Images

Figure 3-1. Part A – V_{IN} 12 V, I_{OUT} 2.2 A

Figure 3-3. Part C – V_{IN} 12 V, I_{OUT} 4 A, 400 kHz

Figure 3-2. Part B – V_{IN} 12 V, I_{OUT} 2.2 A

Figure 3-4. Part C – V_{IN} 12 V, I_{OUT} 3.65 A, 2.1 MHz

4 Efficiency Graphs

Figure 4-2. Part B – V_{IN} 12 V

Output Current (A)

Figure 4-4. Part C – V_{IN} 12 V, 2.1 MHz

5 Conducted Emissions

Figure 5-1 and Figure 5-2 show the test setup with 13-V input voltage. All tests were performed with 2R load resistance.

Figure 5-1. Test Setup

Figure 5-2. Test Setup - Top View

5.1 Conducted Emissions – Test Results

Figure 5-3 and Figure 5-4 illustrate the low- and high-frequency range scopes for part A.

Date: 5.0CT.2020 15:18:57

Date: 5.0CT.2020 15:16:20

Figure 5-4. Part A – High-Frequency Range

Figure 5-5 and Figure 5-6 illustrate the low- and high-frequency range scopes for part B.

Date: 5.0CT.2020 15:12:55

							100	MHI
- 90-	31	<u>e</u>		3			8	8 - 9
- 80-		-				;	2	6 - 3
CT25 5PK								
- 60-								
CI25 AVO								
			Î	Î				
-40-								
- 30-	14	م الدينا الله	R. L. Lakel Hor.	mappelly	epublic	manstore	derively/th	ulum
-20-	CALCULATION COTTAL		Sara - Sara	16 10	20-20 M.	ei.		
-10-		~~~~	~~~~			, 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	******	
-0-		55			-		6.	

Date: 5.0CT.2020 15:14:01

Figure 5-6. Part B – High-Frequency Range

Figure 5-7 through Figure 5-10 illustrate the low- and high-frequency range scopes for part C.

Date: 5.0CT.2020 15:23:29

						100	MHI
- 90-		(c				5	9 - P
-80-		-		-		8	-
C125 SPX							
- 60-							
0125_AV0							
				ĺ		ľ	
-40-		Para Para Para Para Para Para Para Para					
-36-		R 1985 - 107	ie verme		1 183 71 71	L. L. WILL	
an action and the state of the	wellinkunkkiinikkii	within	windpatrick	Autor Harris	Marine and South	e nettin Asaa	alla and
ngandadaaaddaargdada - 10-	villourproduction	1.4.540 4m-14.m	4.W. ~ 16+ 4++++++++			un ter+1914-14	
-0-		15	9		3	w	

Date: 5.0CT.2020 15:24:47

Figure 5-8. Part C – Low-Frequency Range, 400 kHz

Date: 7.0CT.2020 14:23:51

Figure 5-9. Part C – Low-Frequency Range, 400 kHz

www.ti.com

Date: 7.0CT.2020 14:25:50

Figure 5-10. Part C – High-Frequency Range, 2.1 MHz

6 Switching

The waveforms in Figure 6-1 through Figure 6-4 were tested with 12-V input voltage.

Figure 6-2. Part B – 3-A Load Current, 2.1 MHz

Figure 6-3. Part C – 6-A Load Current, 400 kHz

Figure 6-4. Part C – 6-A Load Current, 2.1 MHz

7 Load Transients

Figure 7-1 through Figure 7-5 show the scope trace images at load step, 10% to 90% to 10% of maximum output current.

Figure 7-1. Part A – 2.1 MHz

Figure 7-2. Part B – 2.1 MHz

Figure 7-3. Part C – 400 kHz

Figure 7-4. Part C – 2.1 MHz

Figure 7-5. Part C – 2.1 MHz, 1 A to 6 A to 1 A

8 Start-up Sequence

Figure 8-1 through Figure 8-4 illustrate the start-up waveforms at no load.

Figure 8-2. Part B – 2.1 MHz

Figure 8-3. Part B – 2.1 MHz

Figure 8-4. Part C – 2.1 MHz

9 Shutdown Sequence

Figure 9-1 through Figure 9-4 illustrate the shutdown waveforms at full load.

Figure 9-2. Part B – 2.1 MHz

Figure 9-3. Part C – 400 kHz

Figure 9-4. Part C – 2.1 MHz

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated