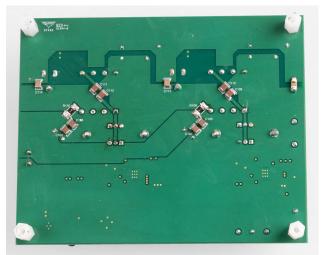
500-W Interleaved SEPIC Power Supply Reference Design

Description

This 500-W interleaved SEPIC converter reference design supplies a non-isolated adjustable 5-V to 110-V output voltage with a maximum output current of 5 A.


Top of Board

Features

- Interleaved power stages reduces output capacitance
- 1-V peak-to-peak ripple at full load with output voltage = 110 V
- Achieves over 96% efficiency above 500-W loading across input voltage range

Applications

· Power supply module

Bottom of Board

Angled Board Photo

Test Prerequisites www.ti.com

1 Test Prerequisites

1.1 Voltage and Current Requirements

Table 1-1. Voltage and Current Requirements

Parameter	Specifications
Input Voltage	45 V to 60 V, 48-V nominal
Output Voltage	110 V
Output Current	5-A maximum, 3-A nominal

1.2 Required Equipment

- DC power supply
- Electronic load
- Digital multimeters
- Oscilloscope

1.3 Considerations

Unless noted, all waveforms were captured at full load with a 48-V_{DC} input.

1.4 Dimensions

The PCB is a two-layer, 1-oz per layer design. The dimensions are 5 in × 4 in with a maximum component height of 1.16 in.

2 Testing and Results

2.1 Efficiency Graphs

Figure 2-1 shows the efficiency graph.

Figure 2-1. Efficiency Graph

www.ti.com Testing and Results

2.2 Efficiency Data

Efficiency data is shown in the following table.

Table 2-1. PMP23320 Efficiency Data

Input		Input			Total		
Voltage (V)	Current (A)	Power (W)	Current (A)	Voltage (V)	Power (W)	Loss (W)	Efficiency (%)
47.944	0.338	16.217	0.102	111.25	11.348	4.869	69.975
47.944	0.663	31.796	0.251	111.25	27.924	3.873	87.820
47.943	1.274	61.075	0.500	111.26	55.630	5.445	91.085
47.943	1.849	88.627	0.750	111.26	83.445	5.182	94.153
47.942	2.445	117.213	1.000	111.26	111.260	5.953	94.921
47.942	3.684	176.618	1.500	111.27	166.905	9.713	94.500
47.941	4.876	233.736	1.999	111.27	222.429	11.308	95.162
47.938	7.264	348.222	2.999	111.27	333.699	14.523	95.829
47.937	9.666	463.359	3.998	111.28	444.897	18.462	96.016
47.935	12.082	579.151	4.997	111.28	556.066	23.085	96.014

Input		Output			Total		
Voltage (V)	Current (A)	Power (W)	Current (A)	Voltage (V)	Power (W)	Loss (W)	Efficiency (%)
59.949	0.225	13.498	0.101	111.30	11.241	2.257	83.281
59.950	0.567	34.001	0.250	111.30	27.825	6.176	81.835
59.950	0.987	59.189	0.500	111.30	55.650	3.539	94.021
59.949	1.497	89.756	0.750	111.30	83.475	6.281	93.003
59.949	1.967	117.908	1.000	111.31	111.310	6.598	94.404
59.948	2.922	175.174	1.499	111.31	166.854	8.320	95.250
59.947	3.903	233.961	1.999	111.31	222.509	11.452	95.105
59.946	5.820	348.874	2.999	111.32	333.849	15.025	95.693
59.944	7.733	463.547	3.999	111.32	445.169	18.378	96.035
59.943	9.658	578.929	4.996	111.32	556.155	22.775	96.066

Testing and Results www.ti.com

2.3 Thermal Images

Thermal image was captured after 15 minutes of operation with 48-V input, 3-A loading, with no airflow.

Measu	rements		
Bx1	Max	64.7 °C	
Bx2	Max	68.8 °C	
Param	eters		
Emissivity		0.95	
Refl. temp.		20 °C	

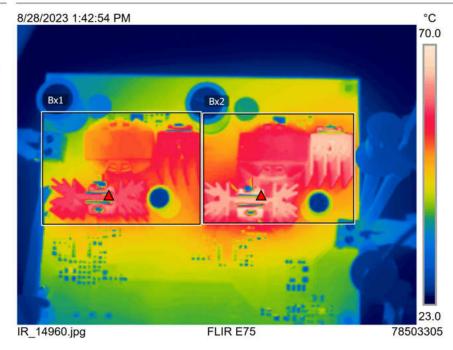


Figure 2-2. Thermal Image

3 Waveforms

3.1 Switching

The following waveform shows the primary switching node for both phases.

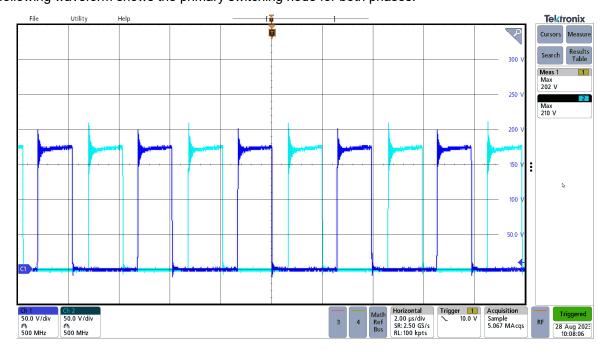


Figure 3-1. 60-V Input

www.ti.com Waveforms

3.2 Output Voltage Ripple

Figure 3-2 shows the PMP23124 output voltage ripple waveform.

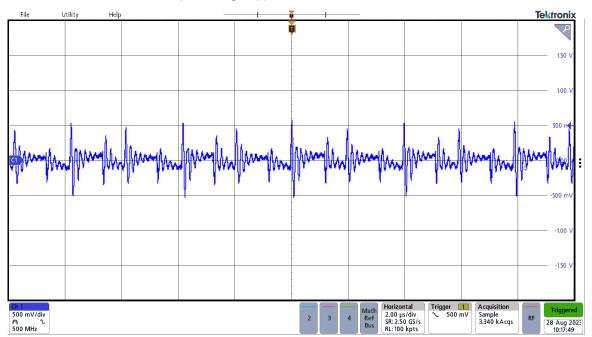


Figure 3-2. Output Voltage Ripple

3.3 Load Transients

Figure 3-3 shows the load transient testing stepping between 0.5 A and 3.5 A.

Figure 3-3. Load Transient

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated