
TIDA-00262 Design Considerations 

Serializer Design Considerations 
Serialized Output: The high speed FPDLink communication is output on the DOUT+/DOUT- pins of the 
DS90UB913A device. The lines are coupled with small capacitors to remove DC bias from the lines. Our 
application uses a single-ended output (DOUT+), and the other differential output is terminated with a 
50Ω resistor. Using single-ended output rather than differential allows us to use a small coax cable, but 
results in a slightly less reliable signal. 

During layout, minimize the distance between the coax connector and the serializer device. This line will 
also split off to the power-over-coax filter; this can create a stub on the transmission line, so this length 
after the split should also be minimized.  

Reset Circuit: The PDB pin on the DS90UB913A is used to hold the device in a power-down mode until 
the voltages in the rest of the system can stabilize. It is important that the ID(X) and MODE pins, supply 
rails, and oscillator are stable when the devices comes out of reset. 

Some reference designs will use an RC circuit with a large time constant to create a delay, but our design 
uses a Supply Voltage Supervisor (SVS). This device will hold the PDB pin low (low = powered down) 
once the 1.8V rail rises to about 1.1V, and will hold it low until it crosses a threshold voltage (1.71V in 
this case). Once reaching the threshold, there is a hard 2ms delay until the SVS will release the serializer 
from reset. In systems where more GPIOs are available, there is also a manual reset available on this 
device as well. 

Parallel Image Data Interface: The DIN[0…11], HSYNC, VSYNC, and PCLK inputs to the serializer make up 
the interface to the Aptina Digital Image Sensor. These signals are relatively slow, especially compared 
to the serialized data output, but need to be length-matched on the board to a certain extent. There 
should not be a difference of greater than 0.25” between any of the traces. 

Power Supply Decoupling and Filters: There are five supply rails on the device. All have some 
decoupling capacitors which supply the device with current during transient loads. These capacitors 
should be placed close to each supply pin, with the smaller values being placed the closest. Larger values 
can be further away. 

In addition to decoupling, some of the supplies (VDDPLL and VDDCML) are very susceptible to noise 
from the switching power supplies, and can also produce high frequency noise which couples back into 
the system. Ferrite beads and larger capacitors are added to these lines to attenuate this high frequency 
noise. The behavior of these filters can be seen in the simulations section. 

GPOs: The serializer has 3 GPO (General Purpose Output) pins which are also serialized and control via 
the FPDLink-III interface. However, in systems (like ours) where the Serializer is generating the clock for 
the imager, GPO3 is used as an oscillator input, and GPO2 supplies a clock for the imager. It is actually 
possible to instead generate the clock on the Imager and gain these GPOs back. 



The two signals used on our remaining GPOs are Trigger and Reset. The Reset goes to an active-low 
reset pin on the Aptina imager and is used during the start-up sequence; this is a required connection. 
The Trigger pin is used as a “Frame Sync”, which has the imager capture an image at a specified time. 
This is used in Surround View systems where multiple cameras are synchronized, and their images are 
later stitched together to create one image. If this feature is not needed, this GPO can be repurposed. 
 
 

Power over Coax Design Considerations 
 

Coax Connector: As discussed in the BOM Analysis, TI only recommends one family of automotive coax 
connectors be used with our FPDLink-III SerDes devices: the Rosenberger Fakra connectors. There are 
several variations of the housing for the same basic connector (straight/right angle, different footprints, 
etc.) which can be chosen depending on the form factor needed. 

Power Supply Filter: One of the most critical portions of a design which uses Power over Coax is the 
filter circuitry. The goal is twofold: 1) deliver a clean DC supply to the input of the switching regulators, 
and 2) protect the FPDLink communication channels from noise coupled backwards from the rest of the 
system. 

The DS90UB913/914 SerDes devices used in this system communicate over two carrier frequencies, 
700MHz at full speed (“forward channel”) and a lower frequency between 1.75 and 3.25MHz (“back 
channel”) determined by the deserializer device. The filter should attenuate this rather large band 
spanning both carriers, hoping to pass only DC. Luckily, by filtering the back channel frequency, we will 
also be filtering the frequencies from the switching power supplies on the board. 

An ideal series 100 µH inductor could work as a low pass filter, with impedance >1KΩ at frequencies 
starting at 1MHz. However, due to parasitic capacitances, a real 100 µH inductor would cease to have 
high impedance around 70MHz. To cover the higher frequency band, we need another series inductor. A 
4.7 µH inductor will ensure we have high impedance up to frequencies well above the 700MHz forward 
channel. 

For this design we want to minimize the physical size of the inductors used, which is determined by the 
saturation current of the inductor. As discussed in the Power Budget section in the Power Supply design 
considerations, ideally we would only be drawing 67.33 mA of current @9V to power our system. 
However, we need to take into consideration a few non-idealities. First, the efficiency of our power 
supply is designed to be 77%, not 100%. Second, any voltage droop (due to various causes) from the 
supply will cause the system to draw more current. Due to this, a conservative approach is to add 
saturation current headroom above what is needed (37% headroom used in this design). 

The ferrite bead is added for filtering out coupled Electro-Magnetic Interference (EMI) in the coax cable. 
The capacitors are simply bulk capacitance to reduce current ripple to the input of the power supplies. 
Of course these components effect the frequency response of the filter as well. See the simulations 
section to see the frequency response with these components removed. Here is a summary: 



Topology -3dB Point (Hz) 
As Designed 9.28k 
No Ferrite Bead 9.47k 
No FB or Caps 146.9k 
Inductors Only 160k 

 

 

Power Supply Design Considerations 
 

General Comments: Due to the fact that our design is targeted at automotive applications, there are a 
few considerations that constrict our design choices. In addition, there are a few systems-level 
specifications as well which shaped our overall design: 

-The total solution size needs to be minimized to meet our size requirements for the system 
(less than 20 x 20 mm). This means that we need to minimize the need for external components 
by choosing parts which integrate as much as possible, such as FETs, diodes, and compensation 
networks, or even choosing a fixed-voltage part to eliminate feedback resistor dividers. 

-To avoid interference with the AM radio band, all switching frequencies need to either be 
greater than 1700 kHz or less than 540 kHz. Lower switching frequencies are less desirable in 
this case because they require larger inductors, and can still produce harmonics in the AM band. 
For this reason, we chose to look at higher frequency switchers.  

-All devices chosen need to be AEC Q100 (-Q1) rated. 

-Efficiency is important insofar as to keep the total power budget <1W. We can balance 
efficiency with size and cost, but wanted to keep this as a good number to stay below. Though 
the system will be quite low-power anyway, it is also an extremely small board in a hot 
environment. 

Power Budget: Before choosing parts, one needs to know a few things: input voltage range, rails 
needed, and current required on each rail. The input voltage in our case is a pre-regulated 9V supply 
coming in over coax. We will discuss the possible range later, but this is our nominal value. Our system 
has only two main ICs which will consume the majority of the power. Here are the requirements for 
those devices: 

  Voltage Current (Typ) (A) Current (Max) (A) Power (Typ) (W) Power (Max) (W) 
DS90UB913Q 

     VDDT 1.8 0.061 0.08 0.1098 0.144 
VDDIO 1.8 0.0015 0.003 0.0027 0.0054 

Aptina Imager 
     VDD 1.8 0.12 0.14 0.216 0.252 

VDDIO 1.8 0.018 0.025 0.0324 0.045 



VAA 2.8 0.035 0.045 0.098 0.126 
VAA_PIX 2.8 0.003 0.004 0.0084 0.0112 

VDD_PLL 2.8 0.006 0.008 0.0168 0.0224 
 TOTALS 

 
0.2445 0.305 0.4841 0.606 

  

Summing these values up, we need ~248mA for the 1.8V rails, and 57mA for the 2.8V rails. If we later 
choose to cascade these power supplies, then the 2.8V regulator will actually need to source the current 
for the 1.8V rail as well. This neglects the consumption of passive components, oscillator, IC quiescents 
currents, etc., but is a good ballpark number. We now have our input and output voltages, and our 
output current requirements. Also, since we know the total wattage needed, we can calculate what our 
input currents will look like: 

𝑃𝑜𝑢𝑡 = 𝑃𝑖𝑛 = 𝐼𝑖𝑛 ∗ 𝑉𝑖𝑛 → 606𝑚𝑊 = 𝐼𝑖𝑛 ∗ 9𝑉 → 𝐼𝑖𝑛 = 𝟔𝟕.𝟑𝟑 𝒎𝑨 (𝑴𝒂𝒙) 

These numbers give us a good starting point for selecting the parts and topology for our regulators, as 
well as our inductor selections later on. However, this does not take into account the efficiencies of our 
power supplies. 

Part Selection: There are several factors affecting our part selection for the power supplies. We can 
immediately filter out all parts that are not Q100 rated, as well as those with switching frequencies in 
the AM band. We also need them to satisfy the voltage and current in/out requirements listed above 
(though this depends a bit on which topology we choose, which is discussed in the next section). We 
also know that our input voltage will always be strictly greater than any of our power rail needs, so we 
choose from buck regulators and LDOs only. This still leaves us with a huge range of devices to choose 
from. 

The key feature of our system design is small solution size, so the biggest factor in choosing parts is high 
integration. Integrating FETs, compensation networks, and sometimes feedback, can significantly reduce 
total solution size. Many of our buck regulators integrate everything but the input/output caps and the 
inductor into very small packages. With high integration, you also lose a lot of efficiency across different 
operating points. However, for our design we were willing to sacrifice some efficiency for size and 
simplicity reasons. 

Ultimately we chose two device families that would be good candidates, the TPS621x0 (TPS62170 for 
the 2.9V rail), TPS621x1 (possibly the TPS62171 as an option for the 1.8V rail) and TPS6223x (TPS62231 
is the fixed-1.8V option). 

Topologies: Since we only have two rails, we have the option of either having a parallel topology (both 
rails being fed by the input voltage), or a cascaded topology (one rail is fed by the input voltage, and 
then feeds the second rail). We present here a few sample options, including buck regulator only (which 
is what our final design uses), buck + LDO, and LDO only solutions. There are of course many more ways 
to design this power supply, these being just a few. 

Device (2.9V) Device (1.8V) Topology Efficiency (theoretical) Cost (1ku) 



TPS62170 TPS62171 Parallel 80.70% $1.30  
TPS62170 TPS62231 Cascade 77.10% $1.15  
TPS62170 LM2941 (LDO) Cascade 60.20% $1.33  
LM2941 (LDO) TPS62171 Parallel 57.50% $1.33  
LM2941 (LDO) LM2941 (LDO) Cascade/Parallel 22.30% $1.36  

 

Clearly the largest trade-off with using LDOs is that the efficiency drops significantly, raising our total 
power draw to over 1W. We chose to go for a lower-power design; however, in some situations a 
designer may sacrifice the efficiency in order to avoid the inherent noise and EMI issues associated with 
switching power supplies. 

Another decision to make is parallel vs. cascaded topologies. In this case, the parallel topology is actually 
the most efficient. However, it presents a few problems, especially in the case of the 
TPS62170+TPS62171 parallel combination. The first issue is that the TPS62170 would be running in 
discontinuous mode, which could potentially introduce noise into the system that is different from the 
typical switching frequency. The second issue is that we would now have two different regulators 
introducing noise backwards to the input. Since they have similar switching frequencies, this could cause 
low-frequency beat frequencies that are very difficult to filter out. We were willing to sacrifice the 
efficiency in order to avoid these possible issues. 

Ultimately we chose to go with the TPS62170 & TPS62231 Cascaded topology. It is significantly more 
efficient than designs using LDOs, though not the most efficient design available. It is, however, lower 
cost than the more efficient options. Functionally, the cascaded topology means that the output current 
is sufficient such that neither device will operate in discontinuous mode, allowing us to better predict 
and control the switching noise produced by the devices, and operate with better efficiency. 

Component Selection/Circuit Design: Finally, we’ll discuss some specifics for the circuitry around each 
chosen part. 

TPS62170: A lot of the component selection and design theory can be found in the Application 
Information section of the datasheet. There are very few external components to choose. 

Since the device is internally compensated, it is only stable for certain component values in the LC 
output filter:  

 

On the left are inductor values, across the top are output capacitor values, and the check-marked boxes 
are stable combinations. There are only two values to choose from for the inductor; lower inductances 
will give better transient response, while larger inductances reduce ripple current. We chose to use 
2.2uH, the recommended value. We also chose to use a 22uF output capacitor, as larger values would 



require prohibitively large package sizes for our application. Larger capacitance values would give better 
output current ripple filtering. 

With our inductance value chosen, we now need an inductor with a proper saturation current. This is 
going to be the combination of the steady state supply current, as well as the inductor ripple current. 
We want the current rating to be sufficiently high, but minimize it as much as possible to reduce the 
physical size of the inductor. The following is the equation used to calculate the inductor ripple current 
(from the datasheet): 

∆𝐼𝐿 = 𝑉𝑜𝑢𝑡 ∗ �
�1 − 𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
�

𝐿 ∗ 𝑓𝑠𝑤
�  

Here are the parameters for our design using the TPS62170: 

𝑉𝑜𝑢𝑡 = 2.9𝑉,𝑉𝑖𝑛 = 9𝑉, 𝐿 = 2.2𝜇𝐻,𝑓𝑠𝑤 = 2.25𝑀𝐻𝑧  

Which yields an inductor current of ∆𝐼𝐿 = 397mA. The maximum current draw of the system through this 
regulator is 238mA. Finally, the following equation gives us our minimum saturation current (as 
discussed in the Power Section of the BOM Analysis): 

𝐿𝑠𝑎𝑡 ≥ � 𝐼𝑚𝑎𝑥 +
𝐼𝑟𝑖𝑝𝑝𝑙𝑒

2
� ∗ 1.2 = �238𝑚𝐴 +

397𝑚𝐴
2

� ∗ 1.2 = 𝟓𝟐𝟒𝒎𝑨 

We chose a MuRata LQM21PN2R2MC0D which has a saturation current of 600mA in a very small 0805 
SMD package. 

The input capacitor value was chosen to be 10uF. This can be increased for better decoupling, and to 
reduce input current ripple. However, in order to keep the package size small (0805 in this case), we 
chose not to go any higher. 

The output voltage is determined by the resistor divider to the feedback pin. The following is the 
calculation for our output voltage. We aim for 2.9V out, but wanted to work with readily available 
resistor values: 

𝑅1 = 𝑅2 ∗ �
𝑉𝑜𝑢𝑡
𝑉𝑟𝑒𝑓

− 1� → 𝑉𝑜𝑢𝑡 = �
𝑅1
𝑅2
� ∗ 𝑉𝑟𝑒𝑓 + 1 = �

261𝑘Ω
100𝑘Ω

� ∗ 0.8𝑉 + 1 = 2.888𝑉 

This gives us a close enough output voltage to the desired 2.9V. 

TPS62231: This device is a bit easier than the TPS62170 because it is a simpler, fixed voltage device. 
However, the considerations are quite similar. 

Following the same procedure as for the TPS62170, we select the output LC filter for this supply. This 
converter is stable with a 1uH or 2.2uH inductor and a 4.7uF capacitor. The larger inductance was 
chosen in this case in part to reduce ripple current (important for keeping the regulator in continuous 



mode), but also because we are able to use the same inductor for both regulators, reducing unique BOM 
count. The above equations can be used to find a minimum LSAT of 360mA which our inductor covers 
easily. 

The only additional feature of this device not present on the TPS62170 is the Mode select pin. By pulling 
this pin up we are able to force PWM mode. With our typical load current, the PFM/PWM mode option 
would not provide additional efficiency benefits. 

Layout:  There are a few guidelines for placement and layout of the power supplies. There are not many 
components in this design due to the high integration of the devices. 

- Generally, avoid long traces and keep the components as close to the regulators as possible 
- The input capacitor should be located as close as possible to the VIN and GND pins of the 

devices 
- The inductors should be kept close to the regulator, and the switch nodes (between the 

inductors and SW pins) kept short. Other traces should not be routed directly under the switch 
node or the inductor body on other layers. If possible, place a ground layer between the 
regulator and signals on other layers. This will help decouple radiated noise from the high 
energy switch nodes. 

- Feedback resistors (where used) should be placed close to the device 
- Ensure that the device is well grounded to a pour on the same layer and through vias to ground 

layers 
 

 

Aptina Digital Image Sensor Design Considerations 
 

Parallel Image Data Output: Please see the same section in the Serializer design considerations for 
comments on this data bus which is also connected to that device. 

Power Supply Filters: Imaging devices are particularly susceptible to noise from the rest of a system. 
Disturbances to power supplies can actually visually affect the image data captured, which is very 
undesirable. The three analog supplies (VAA, VDD_PLL, and VGND_PIX) therefore need filtering to 
ensure noise is not coupled into the critical imaging parts of the IC. RC low-pass filters are used, and are 
designed to have corner frequencies well below the frequency of any other frequencies being produced 
on our board. The following is a table of the corner frequencies of each of the three filters: 

Device Supply -3dB Point (Hz) of filter 
VAA 7.58k 
VDD_PLL 86.79k 
VGND_PIX 3.05k 

 
This is well below the frequency range of anything being produced on our boards. 



 
In addition to filtering, the RC circuits serve a second purpose: power supply sequencing. Due to the 
different RC time constants of the filters, each rail comes up about 100µS after the last one (VDD_PLL-
>VAA->VGND_PIX), which is a requirement set in the Aptina datasheet. 

Optics and Mechanical Considerations: Optics is a very important part of a camera design. After 
selecting a Digital Image Sensor, the lens itself can be chosen. Be sure that the lens is chosen for the size 
of the sensor being used; in our case, the ¼” AR0140AT sensor is being used, so we chose the DSL945D 
lens from Sunex Optics which is designed for this size sensor in Automotive applications. 

One of the determining factors in the physical shape of our design was the optics housing needed for 
the lens selected. Our board was actually shaped to exactly fit on the bottom of the lens housing we 
chose, the CMT821 from Sunex Optics. After choosing a housing, there are some very important 
considerations for layout to ensure the integrity of the housing and your board: 

- If screws will be used to mount the housing to your board, ensure that when the screw is 
tightened, there is no risk that it will come into contact (physical or electrical) with any 
components on the board. For this reason, it is wise to choose the screw you will use before 
finishing the layout and creating a keep-out area on the PCB where the screw head will come 
down. 

- The area where the housing will rest on the PCB, there needs to be a strict keep-out of 
components, pads, and through-hole components from the other side. Traces and tented vias 
which will not be soldered are ok. One needs to ensure that the housing will mount completely 
flush with the board, so that the lens will not be askew with respect to the image sensor 

- The lens will screw down into the lens housing. It is possible for the lens (when focusing) to 
come down and nearly make contact with the image sensor. For this reason, it is best to keep 
component bodies outside of this area to avoid interference with focus or possibly crushing a 
component. 

 

TIDA-00262 BOM Analysis 

 
General Comments: There are a few general requirements for components in this design: 

Automotive Qualification: Every IC and passive component must be automotive qualified. For all 
components this implies an extended automotive temperature range. For TI ICs this means they 
need to be AEC Q100 rated (denoted as Q or –Q1 on part numbers). For capacitors, this means 
that the dielectric must have an appropriate temperature coefficient (X7R should be used). 
 
Voltage Rating: During selection of capacitors, consider the possible maximum voltage that 
could be seen by that component. This will affect the size of the capacitor. Parts that are directly 
exposed to an external source (such as those on the input filter) should be chosen with high 
voltage ratings to protect from unexpected spikes from other parts of the system not under the 



designers control. Other capacitors which are driven only by on-board supplies can have their 
voltage rating requirements relaxed. 
 
Resistor Precision: Unless otherwise noted, 5% tolerance resistors should be fine in most places 
(pull-ups/pull-downs, part of RC filters, etc.). There are certainly some places where it is 
appropriate, but cost can be saved by not choosing high precision resistors where it isn’t 
necessary. 

 
Coax Input: The only electrical input/output to the board is a single coax connection, which carries 
power to the board as well as data riding on two carrier frequencies, as discussed in the design 
considerations section. There are several key components in this section: 

Coax Connector: This is an extremely critical component to signal integrity. The baseline 
requirements are that it should be an automotive graded SMB 50Ω connector. TI’s FPDLink 
interface team has characterized several manufacturers’ connectors with our SerDes devices, 
and has determined that the Rosenberger Fakra connector series is the only one which provides 
great signal integrity. It is heavily recommended that the one sticks with a connector within this 
family. 

Inductors: The inductors are the most important part of the filter to the power supplies. The 
inductance values chosen for the inductors are discussed in the design considerations section. 
Besides the inductance, the most important factor is the saturation current of the two 
inductors. The designer must take into consideration both the normal maximum power draw, as 
well as the peak current, especially during startup when there could be a large inrush current. 
The inductor’s physical size scales with its saturation current, so there is reason to minimize this 
value. Good practice would be to find the max current of your system, and add a safety factor 
(perhaps 20% of current overhead). Finding the maximum current is a topic discussed in the 
design considerations. 

Other Components: Other components in the filter simply need to be rated for the voltage and 
power that they can be expected to be seen by them. Their necessity to the design of the filter is 
discussed in the design considerations section. The ferrite bead is used for EMI compliance; if 
the user doesn’t need to pass EMI tests, it may be removed. The capacitors may also be 
unnecessary if the filter is already very close to the input capacitor of the power supply. 

Power Section:  The IC’s for the power section were chosen to reduce the BOM count to save on space 
and complexity, as discussed in design considerations. 

Output Filters: The inductor and capacitor values are important to the stability of the power 
supplies, but they are discussed in the design considerations. Once the inductance value is 
selected, the only important factor is the saturation current. In addition to the normal current 
draw of that rail, one must also consider the ripple current of the inductor, which is quite large. 
This ripple current can be calculated from the inductance, switching frequency, and 
input/output voltages (this calculation is done elsewhere). Choose a saturation current which 
satisfies the following: 



𝐿𝑠𝑎𝑡 ≥ � 𝐼𝑚𝑎𝑥 +
𝐼𝑟𝑖𝑝𝑝𝑙𝑒

2
� ∗ 1.2 

Where Lsat is the saturation current of the inductor, Imax is the maximum current draw of that 
power rail, Iripple/2 is half of the inductor ripple current (the part of the ripple above the 
maximum current draw), and 1.2 provides a 20% overhead. 
 
Pull-ups and test resistors: The pull-ups on enable and mode lines, as well as the 0 Ω resistors in 
series with the outputs, are there simply for testing purposes. If needed, the ‘Rtest’ resistors can 
be removed, and the pull-ups can be replaced with shorts and pulled directly up to the rail. 
 
Feedback resistors: These resistors need to be 1% tolerance. To reduce current, they can be 
large values, but should not be made any larger than 400kΩ at the very most. 
 

Imager Section: The CMOS imager has some power supply filtering and other components associated 
with it, but not much needs to be noted. 

Test Resistors: There are several resistors on the schematic which are only present for testing, 
and could be removed if needed; specifically, the 0Ω pull-downs on OE_BAR and STANDBY lines, 
as well as the Rvddio & Rvdd. Functionally, these serve no purpose. 
 
Pull-up Resistors: The pull-ups on the I2C lines are currently set to 3.3kΩ, but this value can be 
changed. Be aware that using weak pull-ups can cause the rise-time of the I2C lines to be too 
slow, potentially leading to problems with communication. 10kΩ or stronger pull-ups should be 
used.  

 
Serializer Section: The FPDLink-III serializer has mostly just power supply decoupling/filtering and some 
resistor dividers, but some are notably important. 

Resistor Dividers: The resistor dividers on the ID(X) and MODE pins feed internal 
comparators/ADCs to determine settings for the device. Do not vary the values of these 
components, and use precision resistors if possible. Currently the bottom leg of the ID(X) divider 
is a 0Ω resistor; normally this would indicate that it could be replaced with a short if needed, but 
in this case it is best to leave it. It can be replaced with other values to change the I2C address of 
the device, which could be important in designs with multiple serializer devices. 
 
Supply Voltage Supervisor: This device is selected to hold the device in a power-down mode 
while other voltages on the boards settle. Ensure that any SVS selected has an active-low, push-
pull output. If a device with open-drain output is used, add a 10kΩ pull-up. This circuit could be 
replaced by an RC delay circuit to save on silicon costs, but is less of a robust design. 
 
Power Supply Filters: The power supply decoupling and filter components are discussed in 
design considerations, but there are no special considerations for the components themselves. 
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TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per
JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant
information before placing orders and should verify that such information is current and complete. All semiconductor products are sold
subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI
deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not
necessarily performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is
without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for
such altered documentation. Information of third parties may be subject to additional restrictions.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that
anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate
remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in
Buyer’s safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed an agreement specifically governing such use.
Only those TI components that TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that
have not been so designated is solely at Buyer's risk, and Buyer is solely responsible for compliance with all legal and regulatory
requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
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