1 General

1.1 Purpose

This test report is to provide the detailed data for evaluating and verifying the PMP40001 which employs one Buck-Boost Controller ---- LM5175 combined with a USB C PD DFP Controllers -TPS25740 which can negotiate with the external USB C PD devices for 3 sets of output voltage $(5 / 12 / 20 \mathrm{~V})$. The maximal output power is designed as 60 W and valid input voltage is from 6 V to 13.5 V which is compatible with the 2 S and 3 S lithium battery pack.

1.2 Reference Documentation

Schematic: PMP40001_Sch.pdf
Gerber: PMP40001_GerberNCdrills.zip
Layer Plot: PMP40001_PCBlayers.pdf
Assembly Drawing: PMP40001_Assy.pdf
CAD File: PMP40001_CAD.zip
BOM: PMP40001_BOM.pdf

1.3 Test Equipment

Multi-meter (current): Fluke 287C
Multi-meter (voltage): Fluke 287C
DC Source: Chroma 62006P-100-25
E-Load: Chroma 63105A module
Oscilloscope: Tektronix DPO3054
Electrical Thermography: Fluke Ti9

2 Performance Data and Waveform

2.1 Efficiency

2.1.1 Output voltage: 5 V

$\operatorname{Vin}(\mathrm{V})$	$\operatorname{lin}(\mathrm{A})$	$\mathrm{Vo}(\mathrm{V})$	$\mathrm{lo}(\mathrm{A})$	Efficiency
6.002	0.130	5.170	0.087	57.78%
5.985	0.484	5.164	0.493	87.90%
5.964	0.922	5.156	0.986	92.49%
5.940	1.370	5.146	1.496	94.62%
5.921	1.817	5.136	1.991	95.07%
5.907	2.268	5.128	2.485	95.12%
5.889	2.736	5.116	2.994	95.08%
9.002	0.079	5.174	0.088	64.09%
8.998	0.314	5.165	0.494	90.33%
8.993	0.607	5.155	0.987	93.27%
8.987	0.906	5.144	1.496	94.53%
8.981	1.198	5.135	1.991	95.04%
8.976	1.493	5.124	2.485	95.02%
8.970	1.798	5.114	2.995	94.97%
13.501	0.060	5.175	0.088	56.28%
13.498	0.216	5.168	0.494	87.57%
13.494	0.411	5.156	0.986	91.70%
13.491	0.615	5.145	1.495	92.72%
13.487	0.808	5.135	1.990	93.78%
13.484	1.005	5.124	2.485	93.97%
13.479	1.209	5.113	2.994	93.94%

Texas
INSTRUMENTS
2.1.2 Output voltage: 12V

$\operatorname{Vin}(\mathrm{V})$	$\operatorname{lin}(\mathrm{A})$	$\mathrm{Vo}(\mathrm{V})$	$\mathrm{Io}(\mathrm{A})$	Efficiency
8.998	0.175	12.089	0.087	66.95%
8.986	0.725	12.079	0.493	91.42%
8.971	1.404	12.068	0.986	94.50%
8.956	2.105	12.056	1.496	95.69%
8.941	2.788	12.045	1.991	96.22%
8.926	3.476	12.034	2.485	96.39%
8.910	4.189	12.021	2.994	96.44%
11.497	0.139	12.080	0.087	65.91%
11.487	0.569	12.070	0.493	91.06%
11.476	1.097	12.059	0.986	94.52%
11.464	1.641	12.046	1.495	95.75%
11.453	2.171	12.035	1.990	96.34%
11.441	2.703	12.025	2.485	96.64%
11.429	3.253	12.015	2.994	96.77%
13.497	0.127	12.071	0.087	61.41%
13.489	0.490	12.063	0.493	89.99%
13.479	0.938	12.054	0.986	94.03%
13.469	1.403	12.043	1.495	95.29%
13.460	1.852	12.030	1.990	96.05%
13.449	2.304	12.020	2.485	96.43%
13.439	2.769	12.008	2.994	96.63%

2.1.3 Output voltage: 20V

$\operatorname{Vin}(\mathrm{V})$	$\operatorname{lin}(\mathrm{A})$	$\mathrm{Vo}(\mathrm{V})$	$\mathrm{Io}(\mathrm{A})$	Efficiency
9.097	0.312	20.123	0.086	61.19%
9.080	1.214	20.114	0.492	89.81%
9.059	2.357	20.096	0.984	92.65%
9.034	3.520	20.084	1.493	94.26%
9.013	4.662	20.068	1.986	94.83%
8.991	5.816	20.054	2.480	95.10%
8.968	7.016	20.039	2.988	95.16%
11.497	0.244	20.144	0.086	61.97%
11.484	0.956	20.105	0.491	89.97%
11.467	1.851	20.086	0.985	93.24%
11.450	2.765	20.074	1.493	94.69%
11.433	3.652	20.059	1.987	95.44%
11.416	4.547	20.046	2.481	95.80%
11.399	5.474	20.031	2.990	95.98%
13.498	0.203	20.109	0.086	63.33%
13.487	0.809	20.100	0.491	90.51%
13.472	1.558	20.083	0.984	94.19%
13.457	2.343	20.069	1.494	95.12%
13.443	3.094	20.056	1.988	95.84%
13.428	3.850	20.043	2.481	96.17%
13.413	4.630	20.028	2.990	96.42%

2.2 Standby Current

INSTRUMENTS

PARAMETER		TEST CONDITION	MIN	TYP	MAX	UNIT
I STD *	Standby current	Vin=6V, output port unattached		26.7		uA
	Standby current	Vin=9V, output port unattached		37.6		uA
	Standby current	Vin=13.5V, output port unattached		53.7		uA

2.2 Port Attach and Detach

Apply a type C PD UFP at the output port and remove it after 10s.

Vin=6V and Attach the 5V UFP
CH1: VBUS 2V/Div
CH2: CC 2V/Div

Vin=9V and Attach the 5V UFP
CH1: VBUS 2V/Div
CH2: CC 2V/Div

Vin $=6 \mathrm{~V}$ and Detach the 5V UFP
CH1: VBUS 2V/Div
CH2: CC 2V/Div

Vin $=9 \mathrm{~V}$ and Detach the 5V UFP
CH1: VBUS 2V/Div
CH2: CC 2V/Div

Vin $=13.5 \mathrm{~V}$ and Attach the 5V UFP
CH1: VBUS 2V/Div
CH2: CC 2V/Div

Vin $=9 \mathrm{~V}$ and Attach the 12V UFP
CH1: VBUS 5V/Div
CH2: CC 2V/Div

Vin=11.5V and Attach the 12V UFP
CH1: VBUS 5V/Div
CH2: CC 2V/Div

Vin=13.5V and Attach the 12V UFP
CH1: VBUS 5V/Div
CH2: CC 2V/Div

Vin=13.5V and Detach the 5V UFP
CH1: VBUS 2V/Div
CH2: CC 2V/Div

Vin $=9 \mathrm{~V}$ and Detach the 12V UFP
CH1: VBUS 5V/Div
CH2: CC 2V/Div

Vin $=11.5 \mathrm{~V}$ and Detach the 12V UFP
CH1: VBUS 5V/Div
CH2: CC 2V/Div

Vin $=13.5 \mathrm{~V}$ and Detach the 12V UFP
CH1: VBUS 5V/Div
CH2: CC 2V/Div

Instruments

Vin=9V and Attach the 20V UFP
CH1: VBUS 5V/Div
CH2: CC 2V/Div

Vin=11.5V and Attach the 20V UFP
CH1: VBUS 5V/Div
CH2: CC 2V/Div

Vin $=13.5 \mathrm{~V}$ and Attach the 12 V UFP
CH1: VBUS 5V/Div
CH2: CC 2V/Div

Vin=9V and Detach the 20V UFP
CH1: VBUS 5V/Div
CH2: CC 2V/Div

Vin=11.5V and Detach the 20V UFP CH1: VBUS 5V/Div
CH2: CC 2V/Div

Vin=13.5V and Detach the 12V UFP CH1: VBUS 5V/Div
CH2: CC 2V/Div

2.3 Output Voltage Ripple

2.3.1 Output Voltage: 5V

Vin=9V and No Load
CH1: VBUS (AC Coupled) 20mV/Div

Vin=13.5V and No Load
CH1: VBUS (AC Coupled) 20mV/Div

Vin=6V and Full Load
CH1: VBUS (AC Coupled) 20mV/Div

Vin=9V and Full Load
CH1: VBUS (AC Coupled) 20mV/Div

Vin=13.5V and Full Load
CH1: VBUS (AC Coupled) 20mV/Div

Instruments

Vin=9V and No Load
CH1: VBUS (AC Coupled) 20mV/Div

Vin=11.5V and No Load
CH1: VBUS (AC Coupled) 20mV/Div

Vin=13.5V and No Load
CH1: VBUS (AC Coupled) 20mV/Div

Vin=9V and Full Load
CH1: VBUS (AC Coupled) 20mV/Div

Vin $=11.5 \mathrm{~V}$ and Full Load
CH1: VBUS (AC Coupled) 20mV/Div

Vin=13.5V and Full Load
CH1: VBUS (AC Coupled) 20mV/Div
2.3.3 Output Voltage: 20V

Vin=11.5V and No Load
CH1: VBUS (AC Coupled) $50 \mathrm{mV} / \mathrm{Div}$

Vin=13.5V and No Load
CH 1 : VBUS (AC Coupled) $50 \mathrm{mV} / \mathrm{Div}$

Vin=9V and Full Load
CH1: VBUS (AC Coupled) 50mV/Div

Vin $=11.5 \mathrm{~V}$ and Full Load
CH1: VBUS (AC Coupled) $50 \mathrm{mV} / \mathrm{Div}$

Vin=13.5V and Full Load
CH 1 : VBUS (AC Coupled) $50 \mathrm{mV} /$ Div
2.4 Dynamic Performance
2.3.1 Output Voltage: 5V
$0 \leftrightarrow 25 \%$ Load Step @ $150 \mathrm{~mA} / \mathrm{us}$

INSTRUMENTS

Vin $=6 \mathrm{~V}$ and Load switching from 0 to 25\% Load
CH1: VBUS (AC Coupled) 100mV/Div
CH4: lo 1A/Div

Vin=9V and Load switching from 0 to 25\% Load
CH1: VBUS (AC Coupled) 100mV/Div
CH4: lo 1A/Div

Vin=13.5V and Load switching from 0 to 25% Load
CH1: VBUS (AC Coupled) 100mV/Div CH4: lo 1A/Div

Vin=6V and Load switching from 25% to 0 Load
CH1: VBUS (AC Coupled) 100mV/Div
CH4: lo 1A/Div

Vin=9V and Load switching from 25\% to 0 Load
CH1: VBUS (AC Coupled) 100mV/Div
CH4: lo 1A/Div

Vin=13.5V and Load switching from 25\% to 0 Load
CH1: VBUS (AC Coupled) $100 \mathrm{mV} /$ Div
CH4: lo 1A/Div

Vin=6V and Load switching from 25\% to 50\% Load
CH1: VBUS (AC Coupled) 100mV/Div
CH4: lo 1A/Div

Vin=9V and Load switching from 25\% to 50\% Load
CH1: VBUS (AC Coupled) 100mV/Div
CH4: lo 1A/Div

Vin=13.5V and Load switching from 25\% to 50\% Load
CH1: VBUS (AC Coupled) 100mV/Div CH4: lo 1A/Div

Vin=6V and Load switching from 50\% to 25% Load
CH1: VBUS (AC Coupled) 100mV/Div
CH4: lo 1A/Div

Vin=9V and Load switching from 50\% to 25% Load
CH1: VBUS (AC Coupled) 100mV/Div
CH4: lo 1A/Div

Vin=13.5V and Load switching from 50% to 25% Load
CH1: VBUS (AC Coupled) 100mV/Div CH4: lo 1A/Div

INSTRUMENTS

Vin=6V and Load switching from 50% to 75% Load
CH1: VBUS (AC Coupled) 100mV/Div
CH4: Io 1A/Div

Vin=9V and Load switching from 50\% to 75% Load
CH1: VBUS (AC Coupled) 100mV/Div
CH4: lo 1A/Div

Vin $=13.5 \mathrm{~V}$ and Load switching from 50% to 75% Load
CH1: VBUS (AC Coupled) 100mV/Div
CH4: lo 1A/Div

Vin=6V and Load switching from 75\% to 50% Load
CH1: VBUS (AC Coupled) 100mV/Div
CH4: lo 1A/Div

Vin=9V and Load switching from 75\% to 50% Load
CH1: VBUS (AC Coupled) 100mV/Div
CH4: lo 1A/Div

Vin $=13.5 \mathrm{~V}$ and Load switching from 75% to 50% Load
CH1: VBUS (AC Coupled) 100mV/Div
CH4: lo 1A/Div

Vin=6V and Load switching from 75\% to 100\% Load
CH1: VBUS (AC Coupled) 100mV/Div
CH4: lo 1A/Div

Vin=9V and Load switching from 75\%
to 100% Load
CH1: VBUS (AC Coupled) 100mV/Div
CH4: Io 1A/Div

Vin=13.5V and Load switching from 75\% to 100\% Load
CH1: VBUS (AC Coupled) 100mV/Div
CH4: lo 1A/Div

Vin=6V and Load switching from 100\% to 75\% Load
CH1: VBUS (AC Coupled) 100mV/Div
CH4: lo 1A/Div

Vin=9V and Load switching from 100\% to 75\% Load
CH1: VBUS (AC Coupled) 100mV/Div
CH4: lo 1A/Div

Vin=13.5V and Load switching from 100\% to 75\% Load
CH1: VBUS (AC Coupled) 100mV/Div
CH4: lo 1A/Div

2.3.2 Output Voltage: 12V

$0 \leftrightarrow 25 \%$ Load Step @150mA/us

Vin=9V and Load switching from 0 to 25\% Load
CH1: VBUS (AC Coupled) 100mV/Div
CH4: Io 1A/Div

Vin=11.5V and Load switching from 0 to 25% Load
CH1: VBUS (AC Coupled) 100mV/Div
CH4: lo 1A/Div

Vin=13.5V and Load switching from 0 to 25% Load
CH1: VBUS (AC Coupled) 100mV/Div CH4: lo 1A/Div

Vin=9V and Load switching from 25\% to 0 Load
CH1: VBUS (AC Coupled) 100mV/Div
CH4: lo 1A/Div

Vin=11.5V and Load switching from 25% to 0 Load
CH1: VBUS (AC Coupled) 100mV/Div
CH4: lo 1A/Div

Vin=13.5V and Load switching from 25\% to 0 Load
CH1: VBUS (AC Coupled) 100mV/Div
CH4: lo 1A/Div

Vin=9V and Load switching from 25\%
to 50\% Load
CH1: VBUS (AC Coupled) 100mV/Div
CH4: lo 1A/Div

Vin=11.5V and Load switching from 25\% to 50\% Load
CH1: VBUS (AC Coupled) 100mV/Div
CH4: lo 1A/Div

Vin=13.5V and Load switching from 25\% to 50\% Load
CH1: VBUS (AC Coupled) 100mV/Div CH4: Io 1A/Div

Vin=9V and Load switching from 50\% to 25% Load
CH1: VBUS (AC Coupled) 100mV/Div
CH4: lo 1A/Div

Vin=11.5V and Load switching from 50\% to 25\% Load
CH1: VBUS (AC Coupled) 100mV/Div
CH4: lo 1A/Div

Vin=13.5V and Load switching from 50% to 25% Load
CH1: VBUS (AC Coupled) 100mV/Div CH4: lo 1A/Div

INSTRUMENTS

Vin=9V and Load switching from 50%
to 75% Load
CH1: VBUS (AC Coupled) 100mV/Div
CH4: Io 1A/Div

Vin $=11.5 \mathrm{~V}$ and Load switching from 50% to 75% Load
CH1: VBUS (AC Coupled) 100mV/Div
CH4: lo 1A/Div

Vin $=13.5 \mathrm{~V}$ and Load switching from 50% to 75% Load
CH1: VBUS (AC Coupled) 100mV/Div
CH4: lo 1A/Div

Vin=9V and Load switching from 75\% to 50% Load
CH1: VBUS (AC Coupled) 100mV/Div
CH4: lo 1A/Div

Vin $=11.5 \mathrm{~V}$ and Load switching from 75% to 50% Load
CH1: VBUS (AC Coupled) 100mV/Div
CH4: lo 1A/Div

Vin $=13.5 \mathrm{~V}$ and Load switching from 75% to 50% Load
CH1: VBUS (AC Coupled) $100 \mathrm{mV} /$ Div
CH4: lo 1A/Div

Vin=9V and Load switching from 75\%
to 100\% Load
CH1: VBUS (AC Coupled) 100mV/Div
CH4: lo 1A/Div

Vin=11.5V and Load switching from 75\% to 100\% Load
CH1: VBUS (AC Coupled) 100 mV /Div
CH4: lo 1A/Div

Vin=13.5V and Load switching from 75\% to 100\% Load
CH1: VBUS (AC Coupled) 100mV/Div CH4: lo 1A/Div

Vin=9V and Load switching from 100\% to 75\% Load
CH1: VBUS (AC Coupled) 100mV/Div
CH4: lo 1A/Div

Vin=11.5V and Load switching from 100\% to 75\% Load
CH1: VBUS (AC Coupled) 100mV/Div
CH4: lo 1A/Div

Vin=13.5V and Load switching from 100\% to 75\% Load
CH1: VBUS (AC Coupled) 100mV/Div CH4: lo 1A/Div
2.3.3 Output Voltage: 20V
$0 \leftrightarrow 25 \%$ Load Step @ $150 \mathrm{~mA} / \mathrm{us}$

INSTRUMENTS

Vin=9V and Load switching from 0 to 25\% Load
CH1: VBUS (AC Coupled) 200mV/Div
CH4: Io 1A/Div

Vin=11.5V and Load switching from 0 to 25% Load
CH1: VBUS (AC Coupled) 200mV/Div
CH4: lo 1A/Div

Vin=13.5V and Load switching from 0 to 25% Load
CH1: VBUS (AC Coupled) 200mV/Div CH4: lo 1A/Div

Vin=9V and Load switching from 25\% to 0 Load
CH1: VBUS (AC Coupled) 200mV/Div
CH4: lo 1A/Div

Vin $=11.5 \mathrm{~V}$ and Load switching from 25% to 0 Load
CH1: VBUS (AC Coupled) 200mV/Div
CH4: lo 1A/Div

Vin=13.5V and Load switching from 25\% to 0 Load
CH1: VBUS (AC Coupled) 200mV/Div
CH4: lo 1A/Div

Vin=9V and Load switching from 25\% to 50\% Load
CH1: VBUS (AC Coupled) 200mV/Div
CH4: lo 1A/Div

Vin=11.5V and Load switching from 25\% to 50\% Load
CH1: VBUS (AC Coupled) 200mV/Div
CH4: Io 1A/Div

Vin=13.5V and Load switching from 25\% to 50\% Load
CH1: VBUS (AC Coupled) 200mV/Div CH4: Io 1A/Div

Vin=9V and Load switching from 50\% to 25% Load
CH1: VBUS (AC Coupled) 200mV/Div
CH4: lo 1A/Div

Vin=11.5V and Load switching from 50\% to 25\% Load
CH1: VBUS (AC Coupled) 200mV/Div
CH4: lo 1A/Div

Vin=13.5V and Load switching from 50% to 25% Load
CH1: VBUS (AC Coupled) 200mV/Div CH4: lo 1A/Div

INSTRUMENTS

Vin $=9 \mathrm{~V}$ and Load switching from 50\% to 75\% Load
CH1: VBUS (AC Coupled) 200mV/Div
CH4: Io 1A/Div

Vin=11.5V and Load switching from 50\% to 75\% Load
CH1: VBUS (AC Coupled) 200mV/Div
CH4: lo 1A/Div

Vin=13.5V and Load switching from 50% to 75% Load
CH1: VBUS (AC Coupled) 200mV/Div
CH4: Io 1A/Div

Vin=9V and Load switching from 75\% to 50\% Load
CH1: VBUS (AC Coupled) 200mV/Div
CH4: lo 1A/Div

Vin=11.5V and Load switching from 75\% to 50\% Load
CH1: VBUS (AC Coupled) 200mV/Div
CH4: lo 1A/Div

Vin=13.5V and Load switching from 75% to 50\% Load
CH1: VBUS (AC Coupled) 200mV/Div
CH4: lo 1A/Div

Vin=9V and Load switching from 75\% to 100\% Load
CH1: VBUS (AC Coupled) 200mV/Div
CH4: lo 1A/Div

Vin=11.5V and Load switching from 75\% to 100\% Load
CH1: VBUS (AC Coupled) 200mV/Div
CH4: lo 1A/Div

Vin=13.5V and Load switching from 75\% to 100\% Load
CH1: VBUS (AC Coupled) 200mV/Div CH4: lo 1A/Div

Vin=9V and Load switching from 100\% to 75\% Load
CH1: VBUS (AC Coupled) 200mV/Div
CH4: lo 1A/Div

Vin=11.5V and Load switching from 100\% to 75\% Load
CH1: VBUS (AC Coupled) 200mV/Div
CH4: lo 1A/Div

Vin=13.5V and Load switching from 100\% to 75\% Load
CH1: VBUS (AC Coupled) 200mV/Div CH4: lo 1A/Div

2.5 Bode Plot

2.5.1 Output Voltage: 5V

Vin $=6 \mathrm{~V}$ and $\mathrm{lo}=3 \mathrm{~A}$
Fc=8.28KHz; Phase Margin=50.6 ${ }^{\circ}$; Gain Margin=29.6dB

Vin=9V and $\mathrm{IO}=3 \mathrm{~A}$
Fc=10.0KHz; Phase Margin=57.9${ }^{\circ}$; Gain Margin=30.1dB

$\mathrm{Vin}=13.5 \mathrm{~V}$ and $\mathrm{Io}=3 \mathrm{~A}$
Fc=10.65KHz; Phase Margin=61.4 ; Gain Margin=30dB
2.5.2 Output Voltage: 12 V

Vin=9V and $\mathrm{Io}=3 \mathrm{~A}$
Fc=8.28KHz; Phase Margin=58.2; Gain Margin=19.4dB

$\mathrm{Vin}=11.5 \mathrm{~V}$ and $\mathrm{IO}=3 \mathrm{~A}$
Fc=9.26KHz; Phase Margin=54.9 ${ }^{\circ}$; Gain Margin=20.5dB

Vin=13.5V and $\mathrm{I} O=3 \mathrm{~A}$
Fc=10.0KHz; Phase Margin=58.2 ${ }^{\circ}$; Gain Margin=28.2dB

Vin=9V and $\mathrm{lo}=3 \mathrm{~A}$
Fc=4.6KHz; Phase Margin=56.3 ; Gain Margin=21.8dB

$\mathrm{Vin}=11.5 \mathrm{~V}$ and $\mathrm{IO}=3 \mathrm{~A}$
Fc=6.26KHz; Phase Margin=58.9${ }^{\circ}$; Gain Margin=23.2dB

INSTRUMENTS

$\mathrm{Vin}=13.5 \mathrm{~V}$ and $\mathrm{IO}=3 \mathrm{~A}$
Fc=7.56KHz; Phase Margin=61.9${ }^{\circ}$; Gain Margin=23.2dB

2.6 Thermal Performance

The board is applied a 9V DC voltage and output 20V/3A load to the output port. Run about 10 min for warming up.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
Tl's products are provided subject to TI's Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

