Contents

Preface .. 5
1 Introduction .. 7
2 TMS320C64x+ Megamodule .. 7
 2.1 TMS320C64x+ CPU ... 9
 2.2 Memory Controllers ... 10
 2.3 Internal Peripherals .. 13
3 Memory Map .. 15
 3.1 DSP Internal Memory (L1P, L1D, L2) ... 15
 3.2 External Memory .. 15
 3.3 ARM Internal Memory ... 16
 3.4 Internal Peripherals .. 16
 3.5 Device Peripherals ... 16
4 ARM–DSP Integration .. 16
5 DSP Subsystem Clock ... 18
6 Power Management ... 18
7 Boot and Reset .. 18
List of Figures

1 DSP Subsystem Block Diagram ... 8
2 C64x+ Cache Memory Architecture... 11

List of Tables

1 DSP Interrupt Map .. 13
2 External Memory Table ... 15
3 DSP Boot Configuration .. 18
About This Manual

Describes the digital signal processor (DSP) subsystem in the TMS320DM644x Digital Media System-on-Chip (DMSoC). The DM644x DSP subsystem includes TI's standard TMS320C64x+™ Megamodule and several blocks of internal memory (L1P, L1D, and L2). This document provides an overview of the DSP subsystem and the following considerations associated with it:

- Memory mapping
- Interrupts
- ARM–DSP integration
- DSP subsystem clocking
- Boot and reset
- Power management

Notational Conventions

This document uses the following conventions.

- Hexadecimal numbers are shown with the suffix h. For example, the following number is 40 hexadecimal (decimal 64): 40h.
- Registers in this document are shown in figures and described in tables.
 - Each register figure shows a rectangle divided into fields that represent the fields of the register. Each field is labeled with its bit name, its beginning and ending bit numbers above, and its read/write properties below. A legend explains the notation used for the properties.
 - Reserved bits in a register figure designate a bit that is used for future device expansion.

Related Documentation From Texas Instruments

The following documents describe the TMS320DM644x Digital Media System-on-Chip (DMSoC). Copies of these documents are available on the Internet at www.ti.com. Tip: Enter the literature number in the search box provided at www.ti.com.

The current documentation that describes the DM644x DMSoC, related peripherals, and other technical collateral, is available in the C6000 DSP product folder at: www.ti.com/c6000.

SPRUE14 — TMS320DM644x DMSoC ARM Subsystem Reference Guide. Describes the ARM subsystem in the TMS320DM644x Digital Media System-on-Chip (DMSoC). The ARM subsystem is designed to give the ARM926EJ-S (ARM9) master control of the device. In general, the ARM is responsible for configuration and control of the device; including the DSP subsystem, the video processing subsystem, and a majority of the peripherals and external memories.

SPRUE15 — TMS320DM644x DMSoC DSP Subsystem Reference Guide. Describes the digital signal processor (DSP) subsystem in the TMS320DM644x Digital Media System-on-Chip (DMSoC).

SPRUE19 — TMS320DM644x DMSoC Peripherals Overview Reference Guide. Provides an overview and briefly describes the peripherals available on the TMS320DM644x Digital Media System-on-Chip (DMSoC).

SPRAA84 — TMS320C64x to TMS320C64x+ CPU Migration Guide. Describes migrating from the Texas Instruments TMS320C64x digital signal processor (DSP) to the TMS320C64x+ DSP. The objective of this document is to indicate differences between the two cores. Functionality in the devices that is identical is not included.
SPRU732 — TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide. Describes the CPU architecture, pipeline, instruction set, and interrupts for the TMS320C64x and TMS320C64x+ digital signal processors (DSPs) of the TMS320C6000 DSP family. The C64x/C64x+ DSP generation comprises fixed-point devices in the C6000 DSP platform. The C64x+ DSP is an enhancement of the C64x DSP with added functionality and an expanded instruction set.

SPRU871 — TMS320C64x+ DSP Megamodule Reference Guide. Describes the TMS320C64x+ digital signal processor (DSP) megamodule. Included is a discussion on the internal direct memory access (IDMA) controller, the interrupt controller, the power-down controller, memory protection, bandwidth management, and the memory and cache.

SPRAAA6 — EDMA v3.0 (EDMA3) Migration Guide for TMS320DM644x DMSoC. Describes migrating from the Texas Instruments TMS320C64x digital signal processor (DSP) enhanced direct memory access (EDMA2) to the TMS320DM644x Digital Media System-on-Chip (DMSoC) EDMA3. This document summarizes the key differences between the EDMA3 and the EDMA2 and provides guidance for migrating from EDMA2 to EDMA3.
1 Introduction

The TMS320DM644x DSP subsystem (Figure 1) includes TI’s standard TMS320C64x+ Megamodule and several blocks of internal memory (L1P, L1D, and L2). This document provides an overview of the DSP subsystem and the following considerations associated with it:

- Memory mapping
- Interrupts
- ARM-DSP integration
- DSP subsystem clocking
- Boot and reset
- Power management

For more information, see the TMS320C64x+ Megamodule Peripherals Reference Guide (SPRUE871), the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (SPRU732), and the TMS320C64x+ DSP Cache User’s Guide (SPRU862).

2 TMS320C64x+ Megamodule

The C64x+ Megamodule consists of the following components:

- TMS320C64x+ CPU
- Internal memory controllers:
 - Program memory controller (PMC)
 - Data memory controller (DMC)
 - Unified memory controller (UMC)
 - External memory controller (EMC)
 - Internal direct memory access (IDMA) controller
- Internal peripherals
 - Interrupt controller
 - Power-down controller (PDC)
Figure 1. DSP Subsystem Block Diagram

- RAM/cache
- ROM/RAM
- L1P
- RAM/cache
- ROM/RAM
- L2
- Cache control
- Memory protect
- Bandwidth mgmt
- Instruction fetch
- C64x + CPU
- Register file A
- Register file B
- Bandwidth mgmt
- Memory protect
- Cache control
- Power down
- Interrupt controller
- Chip registers
- System infrastructure
2.1 TMS320C64x+ CPU

The C64x+ Megamodule includes the C64x+ CPU. The C64x+ CPU is a member of the TMS320C6000™ generation of devices. The C6000™ devices execute up to eight 32-bit instructions per cycle. The CPU consists of 64 general-purpose 32-bit registers and eight functional units. The eight functional units contain two multipliers and six ALUs. For more information on the CPU, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (SPRU732).

Features of the C6000 devices include:

- Advanced VLIW CPU with eight functional units, including two multipliers and six arithmetic units
 - Executes up to eight instructions per cycle for up to ten times the performance of typical DSPs
 - Allows designers to develop highly effective RISC-like code for rapid development time
- Instruction packing
 - Gives code-size equivalence for eight instructions that execute serially or in parallel
 - Reduces code size, program fetches, and power consumption
- Conditional execution of most instructions
 - Reduces costly branching
 - Increases parallelism for higher sustained performance
- Efficient code execution on independent functional units
 - Industry's most efficient C compiler on DSP benchmark suite
 - Industry's first assembly optimizer for rapid development and improved parallelization
- 8/16/32-bit data support, providing efficient memory support for a variety of applications
- 40-bit arithmetic options add extra precision for vocoders and other computationally intensive applications
- Saturation and normalization provide support for key arithmetic operations
- Field manipulation and instruction extract, set, clear, and bit counting support a common operation found in control and data manipulation applications

The C64x+ devices include the following additional features:

- Each multiplier can perform two 16×16-bit or four 8×8-bit multiplies every clock cycle
- Quad 8-bit and dual 16-bit instruction set extensions with data flow support
- Support for nonaligned 32-bit (word) and 64-bit (double word) memory accesses
- Special communication-specific instructions to address common operations in error-correcting codes
- Bit count and rotate hardware extends support for bit-level algorithms
- Compact instructions: common instructions (AND, ADD, LD, MPY) have 16-bit versions to reduce code size
- Protected mode operation: a two-level system of privileged program execution to support higher capability operating systems and system features, such as memory protection
- Exceptions support for error detection and program redirection to provide robust code execution
- Hardware support for modulo loop operation to reduce code size
- Industry's first assembly optimizer for rapid development and improved parallelization
2.2 Memory Controllers

The C64x+ Megamodule implements a two-level internal cache-based memory architecture with external memory support. Level 1 memory is split into separate program memory (L1P memory) and data memory (L1D memory). Figure 2 shows a diagram of the memory architecture. L1P and L1D are configurable as part L1 RAM (normal addressable on-chip memory) and part L1 cache. L1 memory is accessible to the CPU without stalls. Level 2 memory (L2) can also be split into L2 RAM (normal addressable on-chip memory) and L2 cache for caching external memory locations.

The following controllers manage RAM/cache configuration and cache data paths:

- Program memory controller (PMC)
- Data memory controller (DMC)
- Unified memory controller (UMC)
- External memory controller (EMC)

The Internal Direct Memory Access Controller (IDMA) manages DMA among the L1P, L1D, and L2 memories.

This section briefly describes the cache and DMA controllers. For detailed information about each of these controllers, see the TMS320C6000 DSP Cache User’s Guide (SPRU656) and the TMS320C64x+ Megamodule Reference Guide (SPRU871).

Note: The C64x+ Megamodule includes the memory controllers; however, the physical L1P, L1D, and L2 memories are not part of the megamodule. Thus, they are described separately because the C64x+ Megamodule supports a variety of memory configurations. Refer to Section 3 for more information on the L1P, L1D, and L2 memory configuration specific to the DM644x DMSoC.

2.2.1 Program Memory Controller (PMC)

The program memory controller (PMC) is the hardware interface between level 1 program memory (L1P memory) and the other components in the C64x+ Megamodule (for example, C64x+ CPU, UMC, and EMC). The PMC responds to instruction fetch requests from the C64x+ CPU and manages transfer operations between L1P memory and the UMC and between L1P memory and the EMC.

The DM644x DMSoC does not support the PMC memory protection feature of the standard C64x+ Megamodule.

Refer to the TMS320C6000 DSP Cache User’s Guide (SPRU656) and to the program memory controller section of the TMS320C64x+ Megamodule Reference Guide (SPRU871) for more information on the PMC and for a description of its control registers.

2.2.2 Data Memory Controller (DMC)

The data memory controller (DMC) is the hardware interface between level 1 data memory (L1D memory) and the other components in the C64x+ Megamodule (for example, C64x+ CPU, UMC, and EMC). The DMC responds to data requests from the C64x+ CPU and manages transfer operations between L1D memory and the UMC and between L1D memory and the EMC.

L1D memory includes 64 KB of RAM in the DM644x DMSoC. The DMC has a register interface that allows you to configure part of the L1D RAM as normal data RAM or as cache. You can configure cache sizes of 0 KB, 4 KB, 8 KB, 16 KB, or 32 KB of the 64 KB of RAM. The DM644x DMSoC does not support the DMC memory protection features of the standard C64x+ Megamodule.

Refer to the TMS320C6000 DSP Cache User’s Guide (SPRU656) and to the data memory controller (DMC) section of the TMS320C64x+ Megamodule Reference Guide (SPRU871) for more information on the DMC and for a description of its control registers.
Figure 2. C64x+ Cache Memory Architecture

Legend:

- addressable memory
- cache memory

Data paths managed by cache controller
2.2.3 Unified Controller (UMC)

The unified memory controller (UMC) is the hardware interface between level 2 memory (L2 memory) and the other components in the C64x+ Megamodule (for example, PMC, DMC, and EMC). The UMC manages transfer operations between L2 memory and the other memory controllers (PMC, DMC, and EMC).

L2 memory includes 64 KB of RAM in the DM644x DMSoC. The UMC has a register interface that allows you to configure part or all of the L2 RAM as normal RAM or as cache. You can configure cache sizes of 0 KB, 4 KB, 8 KB, 16 KB, 32 KB, or 64 KB of the 64 KB of RAM.

The DM644x DMSoC does not support the UMC memory protection feature of the standard C64x+ Megamodule.

Refer to the TMS320C6000 DSP Cache User’s Guide (SPRU656) and to the program unified controller section of the TMS320C64x+ Megamodule Reference Guide (SPRU871) for more information on the UMC and for a description of its control registers.

2.2.4 External Memory Controller (EMC)

The external memory controller (EMC) is the hardware interface between the external memory map (external memory and external registers) and the other controllers in the C64x+ Megamodule (for example, PMC, DMC, and UMC). The EMC manages transfer operations between external memory and registers and the other memory controllers (PMC, DMC, and EMC).

L2 memory includes 64 KB of RAM in the DM644x DMSoC. The UMC has a register interface that allows you to configure part or all of the L2 RAM as normal RAM or as cache. You can configure cache sizes of 0 KB, 4 KB, 8 KB, 16 KB, 32 KB, or 64 KB of the 64 KB of RAM.

EMC does not support the UMC memory protection feature of the standard C64x+ Megamodule.

Refer to the TMS320C6000 DSP Cache User’s Guide (SPRU656) and to the TMS320C64x+ Megamodule Reference Guide (SPRU871) for more information on the EMC and for a description of its control registers.

2.2.5 Internal DMA (IDMA)

The internal DMA (IDMA) controller facilitates DMA transfers between any two internal memory-mapped locations. Internal memory-mapped locations include L1P, L1D, L2, and internal peripheral configuration registers.

Note: The IDMA cannot facilitate DMA to or from external memory-mapped locations. The EDMA facilitates external DMA transfers. Refer to Section 3 and to the TMS320DM644x DMSoC Enhanced DMA (EDMA) Controller Reference Guide (SPRUE23) for information on EDMA.

The IDMA controller enables the rapid paging of data sections to any local memory-mapped RAM. A key advantage of the IDMA is that it allows paging between slower L2 and faster L1D data memory. These transfers take place without CPU intervention and without cache stalls.

Another key advantage is that you can use the IDMA controller to program internal peripheral configuration registers without CPU intervention.

Refer to the internal DMA (IDMA) controller section in the TMS320C64x+ Megamodule Reference Guide (SPRU871) for more information on the IDMA controller and for a description of its control registers.
2.3 Internal Peripherals

This C64x+ Megamodule includes the following internal peripherals:

- Interrupt controller (INTC)
- Power-down controller (PDC)

This section briefly describes the INTC and PDC. For more information on these peripherals, see the TMS320C64x+ Megamodule Reference Guide (SPRU871).

2.3.1 Interrupt Controller (INTC)

The C64x+ Megamodule includes an interrupt controller (INTC) to manage CPU interrupts. The INTC maps DSP device events to 12 CPU interrupts. All DSP device events are listed in Table 1. Shaded entries are standard C64x+ megamodule interrupt events. The interrupt controller section of the TMS320C64x+ Megamodule Reference Guide (SPRU871) fully describes the INTC.

Table 1. DSP Interrupt Map

<table>
<thead>
<tr>
<th>EVT</th>
<th>Abbreviation</th>
<th>Source</th>
<th>EVT</th>
<th>Abbreviation</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>EVT0</td>
<td>DSP – Interrupt Control</td>
<td>48</td>
<td>MBXINT0</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>EVT1</td>
<td>DSP – Interrupt Control</td>
<td>49</td>
<td>MBRINT0</td>
<td>ASP</td>
</tr>
<tr>
<td>2</td>
<td>EVT2</td>
<td>DSP – Interrupt Control</td>
<td>96</td>
<td>INTERR</td>
<td>DSP – INT CTL</td>
</tr>
<tr>
<td>3</td>
<td>EVT3</td>
<td>DSP – Interrupt Control</td>
<td>97</td>
<td>EMC_IDMAERR</td>
<td>DSP – EMC</td>
</tr>
<tr>
<td>4</td>
<td>TINT0</td>
<td>Timer 0 – TINT12</td>
<td>98</td>
<td>PBISTINT</td>
<td>PBIST</td>
</tr>
<tr>
<td>5</td>
<td>TINT1</td>
<td>Timer 0 – TINT34</td>
<td>100</td>
<td>EFIINTA</td>
<td>DSP – EFI A</td>
</tr>
<tr>
<td>6</td>
<td>TINT2</td>
<td>Timer 1 – TINT12</td>
<td>101</td>
<td>EFIITNB</td>
<td>DSP – EFI B</td>
</tr>
<tr>
<td>7</td>
<td>TINT3</td>
<td>Timer 1 – TINT34</td>
<td>112</td>
<td>PMC_ED</td>
<td>DSP – PMC</td>
</tr>
<tr>
<td>9</td>
<td>EMU_DTDMA</td>
<td>DSP – ECM</td>
<td>116</td>
<td>UMC_ED1</td>
<td>DSP – UMC</td>
</tr>
<tr>
<td>11</td>
<td>EMU_RTDXRX</td>
<td>DSP – RTDX</td>
<td>117</td>
<td>UMC_ED2</td>
<td>DSP – UMC</td>
</tr>
<tr>
<td>12</td>
<td>EMU_RTDXTX</td>
<td>DSP – RTDX</td>
<td>118</td>
<td>PDC_ERR</td>
<td>DSP – PDC</td>
</tr>
<tr>
<td>13</td>
<td>IDMAINT0</td>
<td>DSP – EMC</td>
<td>119</td>
<td>PVC_INT</td>
<td>DSP – PDC</td>
</tr>
<tr>
<td>14</td>
<td>IDMAINT1</td>
<td>DSP – EMC</td>
<td>120</td>
<td>PMC-CMPA</td>
<td>DSP – PMC</td>
</tr>
<tr>
<td>16</td>
<td>ARM2DSP0</td>
<td>ARM</td>
<td>121</td>
<td>PMC-DMPA</td>
<td>DSP – PMC</td>
</tr>
<tr>
<td>17</td>
<td>ARM2DSP1</td>
<td>ARM</td>
<td>122</td>
<td>DMC-CMPA</td>
<td>DSP – DMC</td>
</tr>
<tr>
<td>18</td>
<td>ARM2DSP2</td>
<td>ARM</td>
<td>123</td>
<td>DMC-DMPA</td>
<td>DSP – DMC</td>
</tr>
<tr>
<td>19</td>
<td>ARM2DSP3</td>
<td>ARM</td>
<td>124</td>
<td>UMC-CMPA</td>
<td>DSP – UMC</td>
</tr>
<tr>
<td>20</td>
<td>DSQINT</td>
<td>VICP – SEQ (DSP int)</td>
<td>125</td>
<td>UMC-DMPA</td>
<td>DSP – UMC</td>
</tr>
<tr>
<td>21</td>
<td>IMXINT</td>
<td>VICP – IMX</td>
<td>126</td>
<td>EMC-CMPA</td>
<td>DSP – EMC</td>
</tr>
<tr>
<td>22</td>
<td>VLCDINT</td>
<td>VICP – VLCD</td>
<td>127</td>
<td>EMC-DMPA</td>
<td>DSP – EMC</td>
</tr>
<tr>
<td>36</td>
<td>CCINT1</td>
<td>Region 1 CC Interrupt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>CCERRINT</td>
<td>CC Error</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>TCERRINT0</td>
<td>TC0 Error</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>TCERRINT1</td>
<td>TC1 Error</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.3.2 Power-Down Controller (PDC)

The C64x+ Megamodule includes a power-down controller (PDC). The PDC can power-down all of the following components of the C64x+ Megamodule and internal memories of the DSP subsystem:

- C64x+ CPU
- Program memory controller (PMC)
- Data memory controller (DMC)
- Unified memory controller (UMC)
- Extended memory controller (EMC)
- Internal Direct Memory Access controller (IDMA)
- L1P memory
- L1D memory
- L2 memory

The C64x Megamodule is capable of providing both dynamic and static power-down; however, only static power-down is supported on the DM644x DMSoC. The TMS320C64x+ Megamodule Reference Guide (SPRU871) describes the power-down control in more detail.

- Static power-down: The PDC initiates power down of the entire C64x+ Megamodule and all internal memories immediately upon command from software.

Static power-down affects all components of the C64x+ Megamodule and all internal memories. Software can initiate static power-down via a register bit in the PDC register. For more information on the PDC, see the TMS320C64x+ Megamodule Reference Guide (SPRU871).

Note: The DM644x DMSoC does not support dynamic power-down.

2.3.3 Bandwidth Manager

The bandwidth manager provides a programmable interface for optimizing bandwidth among the requesters for resources, which include the following:

- EDMA-initiated DMA transfers (and resulting coherency operations)
- IDMA-initiated transfers (and resulting coherency operations)
- Programmable cache coherency operations
 - Block based coherency operations
 - Global coherency operations
- CPU direct-initiated transfers
 - Data access (load/store)
 - Program access

The resources include the following:

- L1P memory
- L1D memory
- L2 memory
- Configuration bus

Since any given requestor could potentially block a resource for extended periods of time, the bandwidth manager is implemented to assure fairness for all requesters.
The bandwidth manager implements a weighted-priority-driven bandwidth allocation. Each requestor (EDMA, IDMA, CPU, etc.) is assigned a priority level on a per-transfer basis. The programmable priority level has a single meaning throughout the system. There are a total of nine priority levels, where priority zero is the highest priority and priority eight is the lowest priority. When requests for a single resource contend, access is granted to the highest-priority requestor. When the contention occurs for multiple successive cycles, a contention counter assures that the lower-priority requestor gets access to the resource every 1 out of n arbitration cycles, where n is programmable. A priority level of -1 represents a transfer whose priority has been increased due to expiration of the contention counter or a transfer that is fixed as the highest-priority transfer to a given resource.

3 Memory Map

Refer to your device-specific data manual for memory-map information.

3.1 DSP Internal Memory (L1P, L1D, L2)

This section describes the configuration of the DSP internal memory in the DM644x DMSoc that consists of L1P, L1D, and L2. In the DM644x DMSoc:

- L1P memory includes 32 KB of RAM. The PMC allows you to configure part or all of the L1P RAM as normal program RAM or as cache. You can configure cache sizes of 0 KB, 4 KB, 8 KB, 16 KB, or 32 KB of the 32 KB of RAM.
- L1D memory includes 80 KB of RAM. The DMC allows you to configure part of the L1D RAM as normal data RAM or as cache. You can configure cache sizes of 0 KB, 4 KB, 8 KB, 16 KB, or 32 KB of the 80 KB of RAM.
- L2 memory includes 64 KB of RAM. The UMC allows you to configure part or all of the L2 RAM as normal RAM or as cache. You can configure cache sizes of 0 KB, 4 KB, 8 KB, 16 KB, 32 KB, or 64 KB of the 64 KB of RAM.

3.2 External Memory

Devices connected to the DDR2 port and to the asynchronous EMIF are accessible to the DSP. Making the devices accessible to the DSP allows the DSP to access program memory and data memory from DDR2 on the DDR2 port and from devices attached to the asynchronous EMIF, such as NOR FLASH or SRAM. The EMC facilitates DSP access to these memories in the C64x+ Megamodule. The following external memories are accessible to the DSP:

- DDR2 port (8000:0000h–8FFF:FFFFh)
- Asynchronous EMIF (for example, NOR and NAND FLASH in 4 EM_CE regions)

Note: The DSP has access to the data space of the DDR2 port and asynchronous EMIF, but the DSP does not have access to the control registers of these EMIF controllers. The ARM is responsible for configuring the control registers of the DDR2 port and the asynchronous EMIF in the DM644x system. Refer to the TMS320DM644x DMSoc ARM Subsystem Reference Guide (SPRUE14) for more information on how the ARM configures the DDR2 port and the asynchronous EMIF.

<table>
<thead>
<tr>
<th>Table 2. External Memory Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>ASYNC EMIF Data (EM_CS2)</td>
</tr>
<tr>
<td>ASYNC EMIF Data (EM_CS3)</td>
</tr>
<tr>
<td>ASYNC EMIF Data (EM_CS4)</td>
</tr>
<tr>
<td>ASYNC EMIF Data (EM_CS5)</td>
</tr>
</tbody>
</table>
3.3 ARM Internal Memory

ARM internal memory is accessible to the DSP and includes 16 KB of ARM internal RAM and 8 KB of ARM internal ROM.

Note: ARM internal memory is external to the C64x+ Megamodule. The EMC facilitates DSP access to ARM internal memory in C64x+ Megamodule for DDR2 port and for asynchronous EMIF. Refer to the memory mapping section in the TMS320DM644x DMSoC ARM Subsystem Reference Guide (SPRUE14) for more information on the ARM’s internal memory.

3.4 Internal Peripherals

The following internal peripherals are accessible to the DSP:
- Power-down controller (PDC)
- Interrupt controller

For more information on the internal peripherals, see the TMS320C64x+ Megamodule Reference Guide (SPRU871).

3.5 Device Peripherals

The following device peripherals (external to the C64x+ DSP megamodule) are accessible to the DSP:
- ASP (audio serial port)
- EDMA (enhanced direct memory access)

Note: The ASP and EDMA peripherals are not in the DSP internal memory-map because these peripherals are not part of the standard C64x+ Megamodule, by design. Hence, such peripherals are occasionally described as external peripherals, with respect to the C64x+ Megamodule.

Refer to the TMS320DM644x DMSoC Peripherals Overview Reference Guide (SPRUE19) for more information on these peripherals.

4 ARM–DSP Integration

See the TMS320DM644x DMSoC ARM Subsystem Reference Guide (SPRUE14) for complete information on ARM–DSP integration.

The DM644x DMSoC integrates an ARM core for overall system control functions and a DSP subsystem for complex data and image/video processing functions. In the system, the ARM is typically responsible for managing DSP boot, DSP power-on/off, DSP clock enable/disable, DSP reset, DDR2 port initialization, and asynchronous EMIF initialization. The DM644x DMSoC includes the following features associated with ARM–DSP integration:
- Shared peripherals:
 - ARM and DSP have access to EDMA
 - ARM and DSP have access to ASP
 - ARM and DSP have access to Timer 0 and Timer 1
- Shared memory:
 - ARM can access DSP internal memory
 - DSP can access ARM internal memory
 - ARM and DSP can access DDR2 port and asynchronous EMIF
• ARM–DSP interrupts:
 – ARM can interrupt the DSP (via four general interrupts and one NMI)
 – DSP can interrupt the ARM (via two general interrupts)
• As system master, the ARM may manage the following DSP functions:
 – Boot the DSP
 – DSP power management
 – Enable/disable the DSP clock
 – Reset the DSP

5 DSP Subsystem Clock
See the TMS320DM644x DMSoC ARM Subsystem Reference Guide (SPRUE14) for complete information on DSP subsystem clocking.

PLL1 drives the DSP subsystem. The clock at device pin MXI drives the DSP in PLL bypass mode. Refer to the device-specific data manual for more information on supported clock speeds. The ARM controls turning the DSP clock on/off.

6 Power Management
See the TMS320DM644x DMSoC ARM Subsystem Reference Guide (SPRUE14) for complete information on DSP subsystem power management.

• DSP clock can be completely shut off
• C64x Megamodule can be put in sleep mode (refer to Section 2.3.2)
 – C64x+ CPU can be put in sleep mode
 – DSP internal memories (L1P, L1D, L2) can be statically put in sleep mode

7 Boot and Reset
The DSP can boot in either ARM boots DSP mode or DSP self-boot mode.

The ARM is responsible for managing DSP boot after power-on/reset in the ARM boots DSP mode. The DSP boots without intervention from the ARM immediately upon power-on/reset in DSP self-boot mode. The mode is determined by sampling the COUT3_BTSEL pin at power-on/reset (See Table 3). Refer to the boot and reset section and to the ARM–DSP integration section of the TMS320DM644x DMSoC ARM Subsystem Reference Guide (SPRUE14) for more information on boot and reset modes.

Table 3. DSP Boot Configuration

<table>
<thead>
<tr>
<th>Device Configuration</th>
<th>Function</th>
<th>Sampled Pin</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP Boot</td>
<td>0 = ARM Boots DSP</td>
<td>COUT3_BTSEL</td>
<td>ARM Boots DSP</td>
</tr>
<tr>
<td></td>
<td>1 = DSP Self-Boots</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to test the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or “enhanced plastic.” Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Audio</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Automotive</td>
</tr>
<tr>
<td>DSP</td>
<td>Broadband</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Digital Control</td>
</tr>
<tr>
<td>Interface</td>
<td>Medical</td>
</tr>
<tr>
<td>Logic</td>
<td>Military</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Optical Networking</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Security</td>
</tr>
<tr>
<td>RFID</td>
<td>Telephone</td>
</tr>
<tr>
<td>RF/I/F and ZigBee® Solutions</td>
<td>Video & Imaging</td>
</tr>
<tr>
<td></td>
<td>Wireless</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated